core.c revision 6f0b2c696ca340cc2da381fe693fda3f8fdb2149
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114	struct regulator *regulator = NULL;
115	struct regulator_dev *rdev;
116
117	mutex_lock(&regulator_list_mutex);
118	list_for_each_entry(rdev, &regulator_list, list) {
119		mutex_lock(&rdev->mutex);
120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
121			if (regulator->dev == dev) {
122				mutex_unlock(&rdev->mutex);
123				mutex_unlock(&regulator_list_mutex);
124				return regulator;
125			}
126		}
127		mutex_unlock(&rdev->mutex);
128	}
129	mutex_unlock(&regulator_list_mutex);
130	return NULL;
131}
132
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144	struct device_node *regnode = NULL;
145	char prop_name[32]; /* 32 is max size of property name */
146
147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149	snprintf(prop_name, 32, "%s-supply", supply);
150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152	if (!regnode) {
153		dev_dbg(dev, "Looking up %s property in node %s failed",
154				prop_name, dev->of_node->full_name);
155		return NULL;
156	}
157	return regnode;
158}
159
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162	if (!rdev->constraints)
163		return 0;
164
165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166		return 1;
167	else
168		return 0;
169}
170
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173				   int *min_uV, int *max_uV)
174{
175	BUG_ON(*min_uV > *max_uV);
176
177	if (!rdev->constraints) {
178		rdev_err(rdev, "no constraints\n");
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182		rdev_err(rdev, "operation not allowed\n");
183		return -EPERM;
184	}
185
186	if (*max_uV > rdev->constraints->max_uV)
187		*max_uV = rdev->constraints->max_uV;
188	if (*min_uV < rdev->constraints->min_uV)
189		*min_uV = rdev->constraints->min_uV;
190
191	if (*min_uV > *max_uV) {
192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193			 *min_uV, *max_uV);
194		return -EINVAL;
195	}
196
197	return 0;
198}
199
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204				     int *min_uV, int *max_uV)
205{
206	struct regulator *regulator;
207
208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209		/*
210		 * Assume consumers that didn't say anything are OK
211		 * with anything in the constraint range.
212		 */
213		if (!regulator->min_uV && !regulator->max_uV)
214			continue;
215
216		if (*max_uV > regulator->max_uV)
217			*max_uV = regulator->max_uV;
218		if (*min_uV < regulator->min_uV)
219			*min_uV = regulator->min_uV;
220	}
221
222	if (*min_uV > *max_uV)
223		return -EINVAL;
224
225	return 0;
226}
227
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230					int *min_uA, int *max_uA)
231{
232	BUG_ON(*min_uA > *max_uA);
233
234	if (!rdev->constraints) {
235		rdev_err(rdev, "no constraints\n");
236		return -ENODEV;
237	}
238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239		rdev_err(rdev, "operation not allowed\n");
240		return -EPERM;
241	}
242
243	if (*max_uA > rdev->constraints->max_uA)
244		*max_uA = rdev->constraints->max_uA;
245	if (*min_uA < rdev->constraints->min_uA)
246		*min_uA = rdev->constraints->min_uA;
247
248	if (*min_uA > *max_uA) {
249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250			 *min_uA, *max_uA);
251		return -EINVAL;
252	}
253
254	return 0;
255}
256
257/* operating mode constraint check */
258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259{
260	switch (*mode) {
261	case REGULATOR_MODE_FAST:
262	case REGULATOR_MODE_NORMAL:
263	case REGULATOR_MODE_IDLE:
264	case REGULATOR_MODE_STANDBY:
265		break;
266	default:
267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268		return -EINVAL;
269	}
270
271	if (!rdev->constraints) {
272		rdev_err(rdev, "no constraints\n");
273		return -ENODEV;
274	}
275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276		rdev_err(rdev, "operation not allowed\n");
277		return -EPERM;
278	}
279
280	/* The modes are bitmasks, the most power hungry modes having
281	 * the lowest values. If the requested mode isn't supported
282	 * try higher modes. */
283	while (*mode) {
284		if (rdev->constraints->valid_modes_mask & *mode)
285			return 0;
286		*mode /= 2;
287	}
288
289	return -EINVAL;
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295	if (!rdev->constraints) {
296		rdev_err(rdev, "no constraints\n");
297		return -ENODEV;
298	}
299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300		rdev_err(rdev, "operation not allowed\n");
301		return -EPERM;
302	}
303	return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307			     struct device_attribute *attr, char *buf)
308{
309	struct regulator *regulator;
310
311	regulator = get_device_regulator(dev);
312	if (regulator == NULL)
313		return 0;
314
315	return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332static ssize_t regulator_uA_show(struct device *dev,
333				struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341static ssize_t regulator_name_show(struct device *dev,
342			     struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347}
348
349static ssize_t regulator_print_opmode(char *buf, int mode)
350{
351	switch (mode) {
352	case REGULATOR_MODE_FAST:
353		return sprintf(buf, "fast\n");
354	case REGULATOR_MODE_NORMAL:
355		return sprintf(buf, "normal\n");
356	case REGULATOR_MODE_IDLE:
357		return sprintf(buf, "idle\n");
358	case REGULATOR_MODE_STANDBY:
359		return sprintf(buf, "standby\n");
360	}
361	return sprintf(buf, "unknown\n");
362}
363
364static ssize_t regulator_opmode_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
375	if (state > 0)
376		return sprintf(buf, "enabled\n");
377	else if (state == 0)
378		return sprintf(buf, "disabled\n");
379	else
380		return sprintf(buf, "unknown\n");
381}
382
383static ssize_t regulator_state_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	ssize_t ret;
388
389	mutex_lock(&rdev->mutex);
390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391	mutex_unlock(&rdev->mutex);
392
393	return ret;
394}
395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397static ssize_t regulator_status_show(struct device *dev,
398				   struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	int status;
402	char *label;
403
404	status = rdev->desc->ops->get_status(rdev);
405	if (status < 0)
406		return status;
407
408	switch (status) {
409	case REGULATOR_STATUS_OFF:
410		label = "off";
411		break;
412	case REGULATOR_STATUS_ON:
413		label = "on";
414		break;
415	case REGULATOR_STATUS_ERROR:
416		label = "error";
417		break;
418	case REGULATOR_STATUS_FAST:
419		label = "fast";
420		break;
421	case REGULATOR_STATUS_NORMAL:
422		label = "normal";
423		break;
424	case REGULATOR_STATUS_IDLE:
425		label = "idle";
426		break;
427	case REGULATOR_STATUS_STANDBY:
428		label = "standby";
429		break;
430	default:
431		return -ERANGE;
432	}
433
434	return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438static ssize_t regulator_min_uA_show(struct device *dev,
439				    struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	if (!rdev->constraints)
444		return sprintf(buf, "constraint not defined\n");
445
446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451				    struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	if (!rdev->constraints)
456		return sprintf(buf, "constraint not defined\n");
457
458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463				    struct device_attribute *attr, char *buf)
464{
465	struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467	if (!rdev->constraints)
468		return sprintf(buf, "constraint not defined\n");
469
470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475				    struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	if (!rdev->constraints)
480		return sprintf(buf, "constraint not defined\n");
481
482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487				      struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490	struct regulator *regulator;
491	int uA = 0;
492
493	mutex_lock(&rdev->mutex);
494	list_for_each_entry(regulator, &rdev->consumer_list, list)
495		uA += regulator->uA_load;
496	mutex_unlock(&rdev->mutex);
497	return sprintf(buf, "%d\n", uA);
498}
499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501static ssize_t regulator_num_users_show(struct device *dev,
502				      struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505	return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509				  struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	switch (rdev->desc->type) {
514	case REGULATOR_VOLTAGE:
515		return sprintf(buf, "voltage\n");
516	case REGULATOR_CURRENT:
517		return sprintf(buf, "current\n");
518	}
519	return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530		regulator_suspend_mem_uV_show, NULL);
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533				struct device_attribute *attr, char *buf)
534{
535	struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540		regulator_suspend_disk_uV_show, NULL);
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543				struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550		regulator_suspend_standby_uV_show, NULL);
551
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_mem.mode);
559}
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561		regulator_suspend_mem_mode_show, NULL);
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_disk.mode);
570}
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572		regulator_suspend_disk_mode_show, NULL);
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575				struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_opmode(buf,
580		rdev->constraints->state_standby.mode);
581}
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583		regulator_suspend_standby_mode_show, NULL);
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_mem.enabled);
592}
593static DEVICE_ATTR(suspend_mem_state, 0444,
594		regulator_suspend_mem_state_show, NULL);
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_disk.enabled);
603}
604static DEVICE_ATTR(suspend_disk_state, 0444,
605		regulator_suspend_disk_state_show, NULL);
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608				   struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612	return regulator_print_state(buf,
613			rdev->constraints->state_standby.enabled);
614}
615static DEVICE_ATTR(suspend_standby_state, 0444,
616		regulator_suspend_standby_state_show, NULL);
617
618
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623static struct device_attribute regulator_dev_attrs[] = {
624	__ATTR(name, 0444, regulator_name_show, NULL),
625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
626	__ATTR(type, 0444, regulator_type_show, NULL),
627	__ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
632	struct regulator_dev *rdev = dev_get_drvdata(dev);
633	kfree(rdev);
634}
635
636static struct class regulator_class = {
637	.name = "regulator",
638	.dev_release = regulator_dev_release,
639	.dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646	struct regulator *sibling;
647	int current_uA = 0, output_uV, input_uV, err;
648	unsigned int mode;
649
650	err = regulator_check_drms(rdev);
651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652	    (!rdev->desc->ops->get_voltage &&
653	     !rdev->desc->ops->get_voltage_sel) ||
654	    !rdev->desc->ops->set_mode)
655		return;
656
657	/* get output voltage */
658	output_uV = _regulator_get_voltage(rdev);
659	if (output_uV <= 0)
660		return;
661
662	/* get input voltage */
663	input_uV = 0;
664	if (rdev->supply)
665		input_uV = regulator_get_voltage(rdev->supply);
666	if (input_uV <= 0)
667		input_uV = rdev->constraints->input_uV;
668	if (input_uV <= 0)
669		return;
670
671	/* calc total requested load */
672	list_for_each_entry(sibling, &rdev->consumer_list, list)
673		current_uA += sibling->uA_load;
674
675	/* now get the optimum mode for our new total regulator load */
676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677						  output_uV, current_uA);
678
679	/* check the new mode is allowed */
680	err = regulator_mode_constrain(rdev, &mode);
681	if (err == 0)
682		rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686	struct regulator_state *rstate)
687{
688	int ret = 0;
689
690	/* If we have no suspend mode configration don't set anything;
691	 * only warn if the driver implements set_suspend_voltage or
692	 * set_suspend_mode callback.
693	 */
694	if (!rstate->enabled && !rstate->disabled) {
695		if (rdev->desc->ops->set_suspend_voltage ||
696		    rdev->desc->ops->set_suspend_mode)
697			rdev_warn(rdev, "No configuration\n");
698		return 0;
699	}
700
701	if (rstate->enabled && rstate->disabled) {
702		rdev_err(rdev, "invalid configuration\n");
703		return -EINVAL;
704	}
705
706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707		ret = rdev->desc->ops->set_suspend_enable(rdev);
708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709		ret = rdev->desc->ops->set_suspend_disable(rdev);
710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711		ret = 0;
712
713	if (ret < 0) {
714		rdev_err(rdev, "failed to enabled/disable\n");
715		return ret;
716	}
717
718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set voltage\n");
722			return ret;
723		}
724	}
725
726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728		if (ret < 0) {
729			rdev_err(rdev, "failed to set mode\n");
730			return ret;
731		}
732	}
733	return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739	if (!rdev->constraints)
740		return -EINVAL;
741
742	switch (state) {
743	case PM_SUSPEND_STANDBY:
744		return suspend_set_state(rdev,
745			&rdev->constraints->state_standby);
746	case PM_SUSPEND_MEM:
747		return suspend_set_state(rdev,
748			&rdev->constraints->state_mem);
749	case PM_SUSPEND_MAX:
750		return suspend_set_state(rdev,
751			&rdev->constraints->state_disk);
752	default:
753		return -EINVAL;
754	}
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759	struct regulation_constraints *constraints = rdev->constraints;
760	char buf[80] = "";
761	int count = 0;
762	int ret;
763
764	if (constraints->min_uV && constraints->max_uV) {
765		if (constraints->min_uV == constraints->max_uV)
766			count += sprintf(buf + count, "%d mV ",
767					 constraints->min_uV / 1000);
768		else
769			count += sprintf(buf + count, "%d <--> %d mV ",
770					 constraints->min_uV / 1000,
771					 constraints->max_uV / 1000);
772	}
773
774	if (!constraints->min_uV ||
775	    constraints->min_uV != constraints->max_uV) {
776		ret = _regulator_get_voltage(rdev);
777		if (ret > 0)
778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
779	}
780
781	if (constraints->uV_offset)
782		count += sprintf(buf, "%dmV offset ",
783				 constraints->uV_offset / 1000);
784
785	if (constraints->min_uA && constraints->max_uA) {
786		if (constraints->min_uA == constraints->max_uA)
787			count += sprintf(buf + count, "%d mA ",
788					 constraints->min_uA / 1000);
789		else
790			count += sprintf(buf + count, "%d <--> %d mA ",
791					 constraints->min_uA / 1000,
792					 constraints->max_uA / 1000);
793	}
794
795	if (!constraints->min_uA ||
796	    constraints->min_uA != constraints->max_uA) {
797		ret = _regulator_get_current_limit(rdev);
798		if (ret > 0)
799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800	}
801
802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803		count += sprintf(buf + count, "fast ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805		count += sprintf(buf + count, "normal ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807		count += sprintf(buf + count, "idle ");
808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809		count += sprintf(buf + count, "standby");
810
811	rdev_info(rdev, "%s\n", buf);
812
813	if ((constraints->min_uV != constraints->max_uV) &&
814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815		rdev_warn(rdev,
816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817}
818
819static int machine_constraints_voltage(struct regulator_dev *rdev,
820	struct regulation_constraints *constraints)
821{
822	struct regulator_ops *ops = rdev->desc->ops;
823	int ret;
824
825	/* do we need to apply the constraint voltage */
826	if (rdev->constraints->apply_uV &&
827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
828		ret = _regulator_do_set_voltage(rdev,
829						rdev->constraints->min_uV,
830						rdev->constraints->max_uV);
831		if (ret < 0) {
832			rdev_err(rdev, "failed to apply %duV constraint\n",
833				 rdev->constraints->min_uV);
834			return ret;
835		}
836	}
837
838	/* constrain machine-level voltage specs to fit
839	 * the actual range supported by this regulator.
840	 */
841	if (ops->list_voltage && rdev->desc->n_voltages) {
842		int	count = rdev->desc->n_voltages;
843		int	i;
844		int	min_uV = INT_MAX;
845		int	max_uV = INT_MIN;
846		int	cmin = constraints->min_uV;
847		int	cmax = constraints->max_uV;
848
849		/* it's safe to autoconfigure fixed-voltage supplies
850		   and the constraints are used by list_voltage. */
851		if (count == 1 && !cmin) {
852			cmin = 1;
853			cmax = INT_MAX;
854			constraints->min_uV = cmin;
855			constraints->max_uV = cmax;
856		}
857
858		/* voltage constraints are optional */
859		if ((cmin == 0) && (cmax == 0))
860			return 0;
861
862		/* else require explicit machine-level constraints */
863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864			rdev_err(rdev, "invalid voltage constraints\n");
865			return -EINVAL;
866		}
867
868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869		for (i = 0; i < count; i++) {
870			int	value;
871
872			value = ops->list_voltage(rdev, i);
873			if (value <= 0)
874				continue;
875
876			/* maybe adjust [min_uV..max_uV] */
877			if (value >= cmin && value < min_uV)
878				min_uV = value;
879			if (value <= cmax && value > max_uV)
880				max_uV = value;
881		}
882
883		/* final: [min_uV..max_uV] valid iff constraints valid */
884		if (max_uV < min_uV) {
885			rdev_err(rdev, "unsupportable voltage constraints\n");
886			return -EINVAL;
887		}
888
889		/* use regulator's subset of machine constraints */
890		if (constraints->min_uV < min_uV) {
891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892				 constraints->min_uV, min_uV);
893			constraints->min_uV = min_uV;
894		}
895		if (constraints->max_uV > max_uV) {
896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897				 constraints->max_uV, max_uV);
898			constraints->max_uV = max_uV;
899		}
900	}
901
902	return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
917	const struct regulation_constraints *constraints)
918{
919	int ret = 0;
920	struct regulator_ops *ops = rdev->desc->ops;
921
922	if (constraints)
923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924					    GFP_KERNEL);
925	else
926		rdev->constraints = kzalloc(sizeof(*constraints),
927					    GFP_KERNEL);
928	if (!rdev->constraints)
929		return -ENOMEM;
930
931	ret = machine_constraints_voltage(rdev, rdev->constraints);
932	if (ret != 0)
933		goto out;
934
935	/* do we need to setup our suspend state */
936	if (rdev->constraints->initial_state) {
937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938		if (ret < 0) {
939			rdev_err(rdev, "failed to set suspend state\n");
940			goto out;
941		}
942	}
943
944	if (rdev->constraints->initial_mode) {
945		if (!ops->set_mode) {
946			rdev_err(rdev, "no set_mode operation\n");
947			ret = -EINVAL;
948			goto out;
949		}
950
951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952		if (ret < 0) {
953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954			goto out;
955		}
956	}
957
958	/* If the constraints say the regulator should be on at this point
959	 * and we have control then make sure it is enabled.
960	 */
961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962	    ops->enable) {
963		ret = ops->enable(rdev);
964		if (ret < 0) {
965			rdev_err(rdev, "failed to enable\n");
966			goto out;
967		}
968	}
969
970	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
971		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
972		if (ret < 0) {
973			rdev_err(rdev, "failed to set ramp_delay\n");
974			goto out;
975		}
976	}
977
978	print_constraints(rdev);
979	return 0;
980out:
981	kfree(rdev->constraints);
982	rdev->constraints = NULL;
983	return ret;
984}
985
986/**
987 * set_supply - set regulator supply regulator
988 * @rdev: regulator name
989 * @supply_rdev: supply regulator name
990 *
991 * Called by platform initialisation code to set the supply regulator for this
992 * regulator. This ensures that a regulators supply will also be enabled by the
993 * core if it's child is enabled.
994 */
995static int set_supply(struct regulator_dev *rdev,
996		      struct regulator_dev *supply_rdev)
997{
998	int err;
999
1000	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1001
1002	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1003	if (rdev->supply == NULL) {
1004		err = -ENOMEM;
1005		return err;
1006	}
1007
1008	return 0;
1009}
1010
1011/**
1012 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1013 * @rdev:         regulator source
1014 * @consumer_dev_name: dev_name() string for device supply applies to
1015 * @supply:       symbolic name for supply
1016 *
1017 * Allows platform initialisation code to map physical regulator
1018 * sources to symbolic names for supplies for use by devices.  Devices
1019 * should use these symbolic names to request regulators, avoiding the
1020 * need to provide board-specific regulator names as platform data.
1021 */
1022static int set_consumer_device_supply(struct regulator_dev *rdev,
1023				      const char *consumer_dev_name,
1024				      const char *supply)
1025{
1026	struct regulator_map *node;
1027	int has_dev;
1028
1029	if (supply == NULL)
1030		return -EINVAL;
1031
1032	if (consumer_dev_name != NULL)
1033		has_dev = 1;
1034	else
1035		has_dev = 0;
1036
1037	list_for_each_entry(node, &regulator_map_list, list) {
1038		if (node->dev_name && consumer_dev_name) {
1039			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1040				continue;
1041		} else if (node->dev_name || consumer_dev_name) {
1042			continue;
1043		}
1044
1045		if (strcmp(node->supply, supply) != 0)
1046			continue;
1047
1048		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1049			 consumer_dev_name,
1050			 dev_name(&node->regulator->dev),
1051			 node->regulator->desc->name,
1052			 supply,
1053			 dev_name(&rdev->dev), rdev_get_name(rdev));
1054		return -EBUSY;
1055	}
1056
1057	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1058	if (node == NULL)
1059		return -ENOMEM;
1060
1061	node->regulator = rdev;
1062	node->supply = supply;
1063
1064	if (has_dev) {
1065		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1066		if (node->dev_name == NULL) {
1067			kfree(node);
1068			return -ENOMEM;
1069		}
1070	}
1071
1072	list_add(&node->list, &regulator_map_list);
1073	return 0;
1074}
1075
1076static void unset_regulator_supplies(struct regulator_dev *rdev)
1077{
1078	struct regulator_map *node, *n;
1079
1080	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1081		if (rdev == node->regulator) {
1082			list_del(&node->list);
1083			kfree(node->dev_name);
1084			kfree(node);
1085		}
1086	}
1087}
1088
1089#define REG_STR_SIZE	64
1090
1091static struct regulator *create_regulator(struct regulator_dev *rdev,
1092					  struct device *dev,
1093					  const char *supply_name)
1094{
1095	struct regulator *regulator;
1096	char buf[REG_STR_SIZE];
1097	int err, size;
1098
1099	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1100	if (regulator == NULL)
1101		return NULL;
1102
1103	mutex_lock(&rdev->mutex);
1104	regulator->rdev = rdev;
1105	list_add(&regulator->list, &rdev->consumer_list);
1106
1107	if (dev) {
1108		/* create a 'requested_microamps_name' sysfs entry */
1109		size = scnprintf(buf, REG_STR_SIZE,
1110				 "microamps_requested_%s-%s",
1111				 dev_name(dev), supply_name);
1112		if (size >= REG_STR_SIZE)
1113			goto overflow_err;
1114
1115		regulator->dev = dev;
1116		sysfs_attr_init(&regulator->dev_attr.attr);
1117		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1118		if (regulator->dev_attr.attr.name == NULL)
1119			goto attr_name_err;
1120
1121		regulator->dev_attr.attr.mode = 0444;
1122		regulator->dev_attr.show = device_requested_uA_show;
1123		err = device_create_file(dev, &regulator->dev_attr);
1124		if (err < 0) {
1125			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1126			goto attr_name_err;
1127		}
1128
1129		/* also add a link to the device sysfs entry */
1130		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131				 dev->kobj.name, supply_name);
1132		if (size >= REG_STR_SIZE)
1133			goto attr_err;
1134
1135		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136		if (regulator->supply_name == NULL)
1137			goto attr_err;
1138
1139		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140					buf);
1141		if (err) {
1142			rdev_warn(rdev, "could not add device link %s err %d\n",
1143				  dev->kobj.name, err);
1144			goto link_name_err;
1145		}
1146	} else {
1147		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148		if (regulator->supply_name == NULL)
1149			goto attr_err;
1150	}
1151
1152	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153						rdev->debugfs);
1154	if (!regulator->debugfs) {
1155		rdev_warn(rdev, "Failed to create debugfs directory\n");
1156	} else {
1157		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158				   &regulator->uA_load);
1159		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160				   &regulator->min_uV);
1161		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162				   &regulator->max_uV);
1163	}
1164
1165	/*
1166	 * Check now if the regulator is an always on regulator - if
1167	 * it is then we don't need to do nearly so much work for
1168	 * enable/disable calls.
1169	 */
1170	if (!_regulator_can_change_status(rdev) &&
1171	    _regulator_is_enabled(rdev))
1172		regulator->always_on = true;
1173
1174	mutex_unlock(&rdev->mutex);
1175	return regulator;
1176link_name_err:
1177	kfree(regulator->supply_name);
1178attr_err:
1179	device_remove_file(regulator->dev, &regulator->dev_attr);
1180attr_name_err:
1181	kfree(regulator->dev_attr.attr.name);
1182overflow_err:
1183	list_del(&regulator->list);
1184	kfree(regulator);
1185	mutex_unlock(&rdev->mutex);
1186	return NULL;
1187}
1188
1189static int _regulator_get_enable_time(struct regulator_dev *rdev)
1190{
1191	if (!rdev->desc->ops->enable_time)
1192		return 0;
1193	return rdev->desc->ops->enable_time(rdev);
1194}
1195
1196static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1197						  const char *supply,
1198						  int *ret)
1199{
1200	struct regulator_dev *r;
1201	struct device_node *node;
1202	struct regulator_map *map;
1203	const char *devname = NULL;
1204
1205	/* first do a dt based lookup */
1206	if (dev && dev->of_node) {
1207		node = of_get_regulator(dev, supply);
1208		if (node) {
1209			list_for_each_entry(r, &regulator_list, list)
1210				if (r->dev.parent &&
1211					node == r->dev.of_node)
1212					return r;
1213		} else {
1214			/*
1215			 * If we couldn't even get the node then it's
1216			 * not just that the device didn't register
1217			 * yet, there's no node and we'll never
1218			 * succeed.
1219			 */
1220			*ret = -ENODEV;
1221		}
1222	}
1223
1224	/* if not found, try doing it non-dt way */
1225	if (dev)
1226		devname = dev_name(dev);
1227
1228	list_for_each_entry(r, &regulator_list, list)
1229		if (strcmp(rdev_get_name(r), supply) == 0)
1230			return r;
1231
1232	list_for_each_entry(map, &regulator_map_list, list) {
1233		/* If the mapping has a device set up it must match */
1234		if (map->dev_name &&
1235		    (!devname || strcmp(map->dev_name, devname)))
1236			continue;
1237
1238		if (strcmp(map->supply, supply) == 0)
1239			return map->regulator;
1240	}
1241
1242
1243	return NULL;
1244}
1245
1246/* Internal regulator request function */
1247static struct regulator *_regulator_get(struct device *dev, const char *id,
1248					int exclusive)
1249{
1250	struct regulator_dev *rdev;
1251	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1252	const char *devname = NULL;
1253	int ret;
1254
1255	if (id == NULL) {
1256		pr_err("get() with no identifier\n");
1257		return regulator;
1258	}
1259
1260	if (dev)
1261		devname = dev_name(dev);
1262
1263	mutex_lock(&regulator_list_mutex);
1264
1265	rdev = regulator_dev_lookup(dev, id, &ret);
1266	if (rdev)
1267		goto found;
1268
1269	if (board_wants_dummy_regulator) {
1270		rdev = dummy_regulator_rdev;
1271		goto found;
1272	}
1273
1274#ifdef CONFIG_REGULATOR_DUMMY
1275	if (!devname)
1276		devname = "deviceless";
1277
1278	/* If the board didn't flag that it was fully constrained then
1279	 * substitute in a dummy regulator so consumers can continue.
1280	 */
1281	if (!has_full_constraints) {
1282		pr_warn("%s supply %s not found, using dummy regulator\n",
1283			devname, id);
1284		rdev = dummy_regulator_rdev;
1285		goto found;
1286	}
1287#endif
1288
1289	mutex_unlock(&regulator_list_mutex);
1290	return regulator;
1291
1292found:
1293	if (rdev->exclusive) {
1294		regulator = ERR_PTR(-EPERM);
1295		goto out;
1296	}
1297
1298	if (exclusive && rdev->open_count) {
1299		regulator = ERR_PTR(-EBUSY);
1300		goto out;
1301	}
1302
1303	if (!try_module_get(rdev->owner))
1304		goto out;
1305
1306	regulator = create_regulator(rdev, dev, id);
1307	if (regulator == NULL) {
1308		regulator = ERR_PTR(-ENOMEM);
1309		module_put(rdev->owner);
1310		goto out;
1311	}
1312
1313	rdev->open_count++;
1314	if (exclusive) {
1315		rdev->exclusive = 1;
1316
1317		ret = _regulator_is_enabled(rdev);
1318		if (ret > 0)
1319			rdev->use_count = 1;
1320		else
1321			rdev->use_count = 0;
1322	}
1323
1324out:
1325	mutex_unlock(&regulator_list_mutex);
1326
1327	return regulator;
1328}
1329
1330/**
1331 * regulator_get - lookup and obtain a reference to a regulator.
1332 * @dev: device for regulator "consumer"
1333 * @id: Supply name or regulator ID.
1334 *
1335 * Returns a struct regulator corresponding to the regulator producer,
1336 * or IS_ERR() condition containing errno.
1337 *
1338 * Use of supply names configured via regulator_set_device_supply() is
1339 * strongly encouraged.  It is recommended that the supply name used
1340 * should match the name used for the supply and/or the relevant
1341 * device pins in the datasheet.
1342 */
1343struct regulator *regulator_get(struct device *dev, const char *id)
1344{
1345	return _regulator_get(dev, id, 0);
1346}
1347EXPORT_SYMBOL_GPL(regulator_get);
1348
1349static void devm_regulator_release(struct device *dev, void *res)
1350{
1351	regulator_put(*(struct regulator **)res);
1352}
1353
1354/**
1355 * devm_regulator_get - Resource managed regulator_get()
1356 * @dev: device for regulator "consumer"
1357 * @id: Supply name or regulator ID.
1358 *
1359 * Managed regulator_get(). Regulators returned from this function are
1360 * automatically regulator_put() on driver detach. See regulator_get() for more
1361 * information.
1362 */
1363struct regulator *devm_regulator_get(struct device *dev, const char *id)
1364{
1365	struct regulator **ptr, *regulator;
1366
1367	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1368	if (!ptr)
1369		return ERR_PTR(-ENOMEM);
1370
1371	regulator = regulator_get(dev, id);
1372	if (!IS_ERR(regulator)) {
1373		*ptr = regulator;
1374		devres_add(dev, ptr);
1375	} else {
1376		devres_free(ptr);
1377	}
1378
1379	return regulator;
1380}
1381EXPORT_SYMBOL_GPL(devm_regulator_get);
1382
1383/**
1384 * regulator_get_exclusive - obtain exclusive access to a regulator.
1385 * @dev: device for regulator "consumer"
1386 * @id: Supply name or regulator ID.
1387 *
1388 * Returns a struct regulator corresponding to the regulator producer,
1389 * or IS_ERR() condition containing errno.  Other consumers will be
1390 * unable to obtain this reference is held and the use count for the
1391 * regulator will be initialised to reflect the current state of the
1392 * regulator.
1393 *
1394 * This is intended for use by consumers which cannot tolerate shared
1395 * use of the regulator such as those which need to force the
1396 * regulator off for correct operation of the hardware they are
1397 * controlling.
1398 *
1399 * Use of supply names configured via regulator_set_device_supply() is
1400 * strongly encouraged.  It is recommended that the supply name used
1401 * should match the name used for the supply and/or the relevant
1402 * device pins in the datasheet.
1403 */
1404struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1405{
1406	return _regulator_get(dev, id, 1);
1407}
1408EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1409
1410/**
1411 * regulator_put - "free" the regulator source
1412 * @regulator: regulator source
1413 *
1414 * Note: drivers must ensure that all regulator_enable calls made on this
1415 * regulator source are balanced by regulator_disable calls prior to calling
1416 * this function.
1417 */
1418void regulator_put(struct regulator *regulator)
1419{
1420	struct regulator_dev *rdev;
1421
1422	if (regulator == NULL || IS_ERR(regulator))
1423		return;
1424
1425	mutex_lock(&regulator_list_mutex);
1426	rdev = regulator->rdev;
1427
1428	debugfs_remove_recursive(regulator->debugfs);
1429
1430	/* remove any sysfs entries */
1431	if (regulator->dev) {
1432		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1433		device_remove_file(regulator->dev, &regulator->dev_attr);
1434		kfree(regulator->dev_attr.attr.name);
1435	}
1436	kfree(regulator->supply_name);
1437	list_del(&regulator->list);
1438	kfree(regulator);
1439
1440	rdev->open_count--;
1441	rdev->exclusive = 0;
1442
1443	module_put(rdev->owner);
1444	mutex_unlock(&regulator_list_mutex);
1445}
1446EXPORT_SYMBOL_GPL(regulator_put);
1447
1448static int devm_regulator_match(struct device *dev, void *res, void *data)
1449{
1450	struct regulator **r = res;
1451	if (!r || !*r) {
1452		WARN_ON(!r || !*r);
1453		return 0;
1454	}
1455	return *r == data;
1456}
1457
1458/**
1459 * devm_regulator_put - Resource managed regulator_put()
1460 * @regulator: regulator to free
1461 *
1462 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1463 * this function will not need to be called and the resource management
1464 * code will ensure that the resource is freed.
1465 */
1466void devm_regulator_put(struct regulator *regulator)
1467{
1468	int rc;
1469
1470	rc = devres_release(regulator->dev, devm_regulator_release,
1471			    devm_regulator_match, regulator);
1472	if (rc == 0)
1473		regulator_put(regulator);
1474	else
1475		WARN_ON(rc);
1476}
1477EXPORT_SYMBOL_GPL(devm_regulator_put);
1478
1479/* locks held by regulator_enable() */
1480static int _regulator_enable(struct regulator_dev *rdev)
1481{
1482	int ret, delay;
1483
1484	/* check voltage and requested load before enabling */
1485	if (rdev->constraints &&
1486	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1487		drms_uA_update(rdev);
1488
1489	if (rdev->use_count == 0) {
1490		/* The regulator may on if it's not switchable or left on */
1491		ret = _regulator_is_enabled(rdev);
1492		if (ret == -EINVAL || ret == 0) {
1493			if (!_regulator_can_change_status(rdev))
1494				return -EPERM;
1495
1496			if (!rdev->desc->ops->enable)
1497				return -EINVAL;
1498
1499			/* Query before enabling in case configuration
1500			 * dependent.  */
1501			ret = _regulator_get_enable_time(rdev);
1502			if (ret >= 0) {
1503				delay = ret;
1504			} else {
1505				rdev_warn(rdev, "enable_time() failed: %d\n",
1506					   ret);
1507				delay = 0;
1508			}
1509
1510			trace_regulator_enable(rdev_get_name(rdev));
1511
1512			/* Allow the regulator to ramp; it would be useful
1513			 * to extend this for bulk operations so that the
1514			 * regulators can ramp together.  */
1515			ret = rdev->desc->ops->enable(rdev);
1516			if (ret < 0)
1517				return ret;
1518
1519			trace_regulator_enable_delay(rdev_get_name(rdev));
1520
1521			if (delay >= 1000) {
1522				mdelay(delay / 1000);
1523				udelay(delay % 1000);
1524			} else if (delay) {
1525				udelay(delay);
1526			}
1527
1528			trace_regulator_enable_complete(rdev_get_name(rdev));
1529
1530		} else if (ret < 0) {
1531			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1532			return ret;
1533		}
1534		/* Fallthrough on positive return values - already enabled */
1535	}
1536
1537	rdev->use_count++;
1538
1539	return 0;
1540}
1541
1542/**
1543 * regulator_enable - enable regulator output
1544 * @regulator: regulator source
1545 *
1546 * Request that the regulator be enabled with the regulator output at
1547 * the predefined voltage or current value.  Calls to regulator_enable()
1548 * must be balanced with calls to regulator_disable().
1549 *
1550 * NOTE: the output value can be set by other drivers, boot loader or may be
1551 * hardwired in the regulator.
1552 */
1553int regulator_enable(struct regulator *regulator)
1554{
1555	struct regulator_dev *rdev = regulator->rdev;
1556	int ret = 0;
1557
1558	if (regulator->always_on)
1559		return 0;
1560
1561	if (rdev->supply) {
1562		ret = regulator_enable(rdev->supply);
1563		if (ret != 0)
1564			return ret;
1565	}
1566
1567	mutex_lock(&rdev->mutex);
1568	ret = _regulator_enable(rdev);
1569	mutex_unlock(&rdev->mutex);
1570
1571	if (ret != 0 && rdev->supply)
1572		regulator_disable(rdev->supply);
1573
1574	return ret;
1575}
1576EXPORT_SYMBOL_GPL(regulator_enable);
1577
1578/* locks held by regulator_disable() */
1579static int _regulator_disable(struct regulator_dev *rdev)
1580{
1581	int ret = 0;
1582
1583	if (WARN(rdev->use_count <= 0,
1584		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1585		return -EIO;
1586
1587	/* are we the last user and permitted to disable ? */
1588	if (rdev->use_count == 1 &&
1589	    (rdev->constraints && !rdev->constraints->always_on)) {
1590
1591		/* we are last user */
1592		if (_regulator_can_change_status(rdev) &&
1593		    rdev->desc->ops->disable) {
1594			trace_regulator_disable(rdev_get_name(rdev));
1595
1596			ret = rdev->desc->ops->disable(rdev);
1597			if (ret < 0) {
1598				rdev_err(rdev, "failed to disable\n");
1599				return ret;
1600			}
1601
1602			trace_regulator_disable_complete(rdev_get_name(rdev));
1603
1604			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1605					     NULL);
1606		}
1607
1608		rdev->use_count = 0;
1609	} else if (rdev->use_count > 1) {
1610
1611		if (rdev->constraints &&
1612			(rdev->constraints->valid_ops_mask &
1613			REGULATOR_CHANGE_DRMS))
1614			drms_uA_update(rdev);
1615
1616		rdev->use_count--;
1617	}
1618
1619	return ret;
1620}
1621
1622/**
1623 * regulator_disable - disable regulator output
1624 * @regulator: regulator source
1625 *
1626 * Disable the regulator output voltage or current.  Calls to
1627 * regulator_enable() must be balanced with calls to
1628 * regulator_disable().
1629 *
1630 * NOTE: this will only disable the regulator output if no other consumer
1631 * devices have it enabled, the regulator device supports disabling and
1632 * machine constraints permit this operation.
1633 */
1634int regulator_disable(struct regulator *regulator)
1635{
1636	struct regulator_dev *rdev = regulator->rdev;
1637	int ret = 0;
1638
1639	if (regulator->always_on)
1640		return 0;
1641
1642	mutex_lock(&rdev->mutex);
1643	ret = _regulator_disable(rdev);
1644	mutex_unlock(&rdev->mutex);
1645
1646	if (ret == 0 && rdev->supply)
1647		regulator_disable(rdev->supply);
1648
1649	return ret;
1650}
1651EXPORT_SYMBOL_GPL(regulator_disable);
1652
1653/* locks held by regulator_force_disable() */
1654static int _regulator_force_disable(struct regulator_dev *rdev)
1655{
1656	int ret = 0;
1657
1658	/* force disable */
1659	if (rdev->desc->ops->disable) {
1660		/* ah well, who wants to live forever... */
1661		ret = rdev->desc->ops->disable(rdev);
1662		if (ret < 0) {
1663			rdev_err(rdev, "failed to force disable\n");
1664			return ret;
1665		}
1666		/* notify other consumers that power has been forced off */
1667		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1668			REGULATOR_EVENT_DISABLE, NULL);
1669	}
1670
1671	return ret;
1672}
1673
1674/**
1675 * regulator_force_disable - force disable regulator output
1676 * @regulator: regulator source
1677 *
1678 * Forcibly disable the regulator output voltage or current.
1679 * NOTE: this *will* disable the regulator output even if other consumer
1680 * devices have it enabled. This should be used for situations when device
1681 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1682 */
1683int regulator_force_disable(struct regulator *regulator)
1684{
1685	struct regulator_dev *rdev = regulator->rdev;
1686	int ret;
1687
1688	mutex_lock(&rdev->mutex);
1689	regulator->uA_load = 0;
1690	ret = _regulator_force_disable(regulator->rdev);
1691	mutex_unlock(&rdev->mutex);
1692
1693	if (rdev->supply)
1694		while (rdev->open_count--)
1695			regulator_disable(rdev->supply);
1696
1697	return ret;
1698}
1699EXPORT_SYMBOL_GPL(regulator_force_disable);
1700
1701static void regulator_disable_work(struct work_struct *work)
1702{
1703	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1704						  disable_work.work);
1705	int count, i, ret;
1706
1707	mutex_lock(&rdev->mutex);
1708
1709	BUG_ON(!rdev->deferred_disables);
1710
1711	count = rdev->deferred_disables;
1712	rdev->deferred_disables = 0;
1713
1714	for (i = 0; i < count; i++) {
1715		ret = _regulator_disable(rdev);
1716		if (ret != 0)
1717			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1718	}
1719
1720	mutex_unlock(&rdev->mutex);
1721
1722	if (rdev->supply) {
1723		for (i = 0; i < count; i++) {
1724			ret = regulator_disable(rdev->supply);
1725			if (ret != 0) {
1726				rdev_err(rdev,
1727					 "Supply disable failed: %d\n", ret);
1728			}
1729		}
1730	}
1731}
1732
1733/**
1734 * regulator_disable_deferred - disable regulator output with delay
1735 * @regulator: regulator source
1736 * @ms: miliseconds until the regulator is disabled
1737 *
1738 * Execute regulator_disable() on the regulator after a delay.  This
1739 * is intended for use with devices that require some time to quiesce.
1740 *
1741 * NOTE: this will only disable the regulator output if no other consumer
1742 * devices have it enabled, the regulator device supports disabling and
1743 * machine constraints permit this operation.
1744 */
1745int regulator_disable_deferred(struct regulator *regulator, int ms)
1746{
1747	struct regulator_dev *rdev = regulator->rdev;
1748	int ret;
1749
1750	if (regulator->always_on)
1751		return 0;
1752
1753	mutex_lock(&rdev->mutex);
1754	rdev->deferred_disables++;
1755	mutex_unlock(&rdev->mutex);
1756
1757	ret = schedule_delayed_work(&rdev->disable_work,
1758				    msecs_to_jiffies(ms));
1759	if (ret < 0)
1760		return ret;
1761	else
1762		return 0;
1763}
1764EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1765
1766/**
1767 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1768 *
1769 * @rdev: regulator to operate on
1770 *
1771 * Regulators that use regmap for their register I/O can set the
1772 * enable_reg and enable_mask fields in their descriptor and then use
1773 * this as their is_enabled operation, saving some code.
1774 */
1775int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1776{
1777	unsigned int val;
1778	int ret;
1779
1780	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1781	if (ret != 0)
1782		return ret;
1783
1784	return (val & rdev->desc->enable_mask) != 0;
1785}
1786EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1787
1788/**
1789 * regulator_enable_regmap - standard enable() for regmap users
1790 *
1791 * @rdev: regulator to operate on
1792 *
1793 * Regulators that use regmap for their register I/O can set the
1794 * enable_reg and enable_mask fields in their descriptor and then use
1795 * this as their enable() operation, saving some code.
1796 */
1797int regulator_enable_regmap(struct regulator_dev *rdev)
1798{
1799	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1800				  rdev->desc->enable_mask,
1801				  rdev->desc->enable_mask);
1802}
1803EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1804
1805/**
1806 * regulator_disable_regmap - standard disable() for regmap users
1807 *
1808 * @rdev: regulator to operate on
1809 *
1810 * Regulators that use regmap for their register I/O can set the
1811 * enable_reg and enable_mask fields in their descriptor and then use
1812 * this as their disable() operation, saving some code.
1813 */
1814int regulator_disable_regmap(struct regulator_dev *rdev)
1815{
1816	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1817				  rdev->desc->enable_mask, 0);
1818}
1819EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1820
1821static int _regulator_is_enabled(struct regulator_dev *rdev)
1822{
1823	/* If we don't know then assume that the regulator is always on */
1824	if (!rdev->desc->ops->is_enabled)
1825		return 1;
1826
1827	return rdev->desc->ops->is_enabled(rdev);
1828}
1829
1830/**
1831 * regulator_is_enabled - is the regulator output enabled
1832 * @regulator: regulator source
1833 *
1834 * Returns positive if the regulator driver backing the source/client
1835 * has requested that the device be enabled, zero if it hasn't, else a
1836 * negative errno code.
1837 *
1838 * Note that the device backing this regulator handle can have multiple
1839 * users, so it might be enabled even if regulator_enable() was never
1840 * called for this particular source.
1841 */
1842int regulator_is_enabled(struct regulator *regulator)
1843{
1844	int ret;
1845
1846	if (regulator->always_on)
1847		return 1;
1848
1849	mutex_lock(&regulator->rdev->mutex);
1850	ret = _regulator_is_enabled(regulator->rdev);
1851	mutex_unlock(&regulator->rdev->mutex);
1852
1853	return ret;
1854}
1855EXPORT_SYMBOL_GPL(regulator_is_enabled);
1856
1857/**
1858 * regulator_count_voltages - count regulator_list_voltage() selectors
1859 * @regulator: regulator source
1860 *
1861 * Returns number of selectors, or negative errno.  Selectors are
1862 * numbered starting at zero, and typically correspond to bitfields
1863 * in hardware registers.
1864 */
1865int regulator_count_voltages(struct regulator *regulator)
1866{
1867	struct regulator_dev	*rdev = regulator->rdev;
1868
1869	return rdev->desc->n_voltages ? : -EINVAL;
1870}
1871EXPORT_SYMBOL_GPL(regulator_count_voltages);
1872
1873/**
1874 * regulator_list_voltage_linear - List voltages with simple calculation
1875 *
1876 * @rdev: Regulator device
1877 * @selector: Selector to convert into a voltage
1878 *
1879 * Regulators with a simple linear mapping between voltages and
1880 * selectors can set min_uV and uV_step in the regulator descriptor
1881 * and then use this function as their list_voltage() operation,
1882 */
1883int regulator_list_voltage_linear(struct regulator_dev *rdev,
1884				  unsigned int selector)
1885{
1886	if (selector >= rdev->desc->n_voltages)
1887		return -EINVAL;
1888
1889	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1890}
1891EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1892
1893/**
1894 * regulator_list_voltage_table - List voltages with table based mapping
1895 *
1896 * @rdev: Regulator device
1897 * @selector: Selector to convert into a voltage
1898 *
1899 * Regulators with table based mapping between voltages and
1900 * selectors can set volt_table in the regulator descriptor
1901 * and then use this function as their list_voltage() operation.
1902 */
1903int regulator_list_voltage_table(struct regulator_dev *rdev,
1904				 unsigned int selector)
1905{
1906	if (!rdev->desc->volt_table) {
1907		BUG_ON(!rdev->desc->volt_table);
1908		return -EINVAL;
1909	}
1910
1911	if (selector >= rdev->desc->n_voltages)
1912		return -EINVAL;
1913
1914	return rdev->desc->volt_table[selector];
1915}
1916EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1917
1918/**
1919 * regulator_list_voltage - enumerate supported voltages
1920 * @regulator: regulator source
1921 * @selector: identify voltage to list
1922 * Context: can sleep
1923 *
1924 * Returns a voltage that can be passed to @regulator_set_voltage(),
1925 * zero if this selector code can't be used on this system, or a
1926 * negative errno.
1927 */
1928int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1929{
1930	struct regulator_dev	*rdev = regulator->rdev;
1931	struct regulator_ops	*ops = rdev->desc->ops;
1932	int			ret;
1933
1934	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1935		return -EINVAL;
1936
1937	mutex_lock(&rdev->mutex);
1938	ret = ops->list_voltage(rdev, selector);
1939	mutex_unlock(&rdev->mutex);
1940
1941	if (ret > 0) {
1942		if (ret < rdev->constraints->min_uV)
1943			ret = 0;
1944		else if (ret > rdev->constraints->max_uV)
1945			ret = 0;
1946	}
1947
1948	return ret;
1949}
1950EXPORT_SYMBOL_GPL(regulator_list_voltage);
1951
1952/**
1953 * regulator_is_supported_voltage - check if a voltage range can be supported
1954 *
1955 * @regulator: Regulator to check.
1956 * @min_uV: Minimum required voltage in uV.
1957 * @max_uV: Maximum required voltage in uV.
1958 *
1959 * Returns a boolean or a negative error code.
1960 */
1961int regulator_is_supported_voltage(struct regulator *regulator,
1962				   int min_uV, int max_uV)
1963{
1964	int i, voltages, ret;
1965
1966	ret = regulator_count_voltages(regulator);
1967	if (ret < 0)
1968		return ret;
1969	voltages = ret;
1970
1971	for (i = 0; i < voltages; i++) {
1972		ret = regulator_list_voltage(regulator, i);
1973
1974		if (ret >= min_uV && ret <= max_uV)
1975			return 1;
1976	}
1977
1978	return 0;
1979}
1980EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1981
1982/**
1983 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1984 *
1985 * @rdev: regulator to operate on
1986 *
1987 * Regulators that use regmap for their register I/O can set the
1988 * vsel_reg and vsel_mask fields in their descriptor and then use this
1989 * as their get_voltage_vsel operation, saving some code.
1990 */
1991int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1992{
1993	unsigned int val;
1994	int ret;
1995
1996	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1997	if (ret != 0)
1998		return ret;
1999
2000	val &= rdev->desc->vsel_mask;
2001	val >>= ffs(rdev->desc->vsel_mask) - 1;
2002
2003	return val;
2004}
2005EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2006
2007/**
2008 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2009 *
2010 * @rdev: regulator to operate on
2011 * @sel: Selector to set
2012 *
2013 * Regulators that use regmap for their register I/O can set the
2014 * vsel_reg and vsel_mask fields in their descriptor and then use this
2015 * as their set_voltage_vsel operation, saving some code.
2016 */
2017int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2018{
2019	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2020
2021	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2022				  rdev->desc->vsel_mask, sel);
2023}
2024EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2025
2026/**
2027 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2028 *
2029 * @rdev: Regulator to operate on
2030 * @min_uV: Lower bound for voltage
2031 * @max_uV: Upper bound for voltage
2032 *
2033 * Drivers implementing set_voltage_sel() and list_voltage() can use
2034 * this as their map_voltage() operation.  It will find a suitable
2035 * voltage by calling list_voltage() until it gets something in bounds
2036 * for the requested voltages.
2037 */
2038int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2039				  int min_uV, int max_uV)
2040{
2041	int best_val = INT_MAX;
2042	int selector = 0;
2043	int i, ret;
2044
2045	/* Find the smallest voltage that falls within the specified
2046	 * range.
2047	 */
2048	for (i = 0; i < rdev->desc->n_voltages; i++) {
2049		ret = rdev->desc->ops->list_voltage(rdev, i);
2050		if (ret < 0)
2051			continue;
2052
2053		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2054			best_val = ret;
2055			selector = i;
2056		}
2057	}
2058
2059	if (best_val != INT_MAX)
2060		return selector;
2061	else
2062		return -EINVAL;
2063}
2064EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2065
2066/**
2067 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2068 *
2069 * @rdev: Regulator to operate on
2070 * @min_uV: Lower bound for voltage
2071 * @max_uV: Upper bound for voltage
2072 *
2073 * Drivers providing min_uV and uV_step in their regulator_desc can
2074 * use this as their map_voltage() operation.
2075 */
2076int regulator_map_voltage_linear(struct regulator_dev *rdev,
2077				 int min_uV, int max_uV)
2078{
2079	int ret, voltage;
2080
2081	/* Allow uV_step to be 0 for fixed voltage */
2082	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2083		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2084			return 0;
2085		else
2086			return -EINVAL;
2087	}
2088
2089	if (!rdev->desc->uV_step) {
2090		BUG_ON(!rdev->desc->uV_step);
2091		return -EINVAL;
2092	}
2093
2094	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2095	if (ret < 0)
2096		return ret;
2097
2098	/* Map back into a voltage to verify we're still in bounds */
2099	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2100	if (voltage < min_uV || voltage > max_uV)
2101		return -EINVAL;
2102
2103	return ret;
2104}
2105EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2106
2107static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2108				     int min_uV, int max_uV)
2109{
2110	int ret;
2111	int delay = 0;
2112	int best_val;
2113	unsigned int selector;
2114	int old_selector = -1;
2115
2116	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2117
2118	min_uV += rdev->constraints->uV_offset;
2119	max_uV += rdev->constraints->uV_offset;
2120
2121	/*
2122	 * If we can't obtain the old selector there is not enough
2123	 * info to call set_voltage_time_sel().
2124	 */
2125	if (_regulator_is_enabled(rdev) &&
2126	    rdev->desc->ops->set_voltage_time_sel &&
2127	    rdev->desc->ops->get_voltage_sel) {
2128		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2129		if (old_selector < 0)
2130			return old_selector;
2131	}
2132
2133	if (rdev->desc->ops->set_voltage) {
2134		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2135						   &selector);
2136	} else if (rdev->desc->ops->set_voltage_sel) {
2137		if (rdev->desc->ops->map_voltage)
2138			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2139							   max_uV);
2140		else
2141			ret = regulator_map_voltage_iterate(rdev, min_uV,
2142							    max_uV);
2143
2144		if (ret >= 0) {
2145			selector = ret;
2146			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2147		}
2148	} else {
2149		ret = -EINVAL;
2150	}
2151
2152	if (rdev->desc->ops->list_voltage)
2153		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2154	else
2155		best_val = -1;
2156
2157	/* Call set_voltage_time_sel if successfully obtained old_selector */
2158	if (_regulator_is_enabled(rdev) && ret == 0 && old_selector >= 0 &&
2159	    rdev->desc->ops->set_voltage_time_sel) {
2160
2161		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2162						old_selector, selector);
2163		if (delay < 0) {
2164			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2165				  delay);
2166			delay = 0;
2167		}
2168	}
2169
2170	/* Insert any necessary delays */
2171	if (delay >= 1000) {
2172		mdelay(delay / 1000);
2173		udelay(delay % 1000);
2174	} else if (delay) {
2175		udelay(delay);
2176	}
2177
2178	if (ret == 0)
2179		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2180				     NULL);
2181
2182	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2183
2184	return ret;
2185}
2186
2187/**
2188 * regulator_set_voltage - set regulator output voltage
2189 * @regulator: regulator source
2190 * @min_uV: Minimum required voltage in uV
2191 * @max_uV: Maximum acceptable voltage in uV
2192 *
2193 * Sets a voltage regulator to the desired output voltage. This can be set
2194 * during any regulator state. IOW, regulator can be disabled or enabled.
2195 *
2196 * If the regulator is enabled then the voltage will change to the new value
2197 * immediately otherwise if the regulator is disabled the regulator will
2198 * output at the new voltage when enabled.
2199 *
2200 * NOTE: If the regulator is shared between several devices then the lowest
2201 * request voltage that meets the system constraints will be used.
2202 * Regulator system constraints must be set for this regulator before
2203 * calling this function otherwise this call will fail.
2204 */
2205int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2206{
2207	struct regulator_dev *rdev = regulator->rdev;
2208	int ret = 0;
2209
2210	mutex_lock(&rdev->mutex);
2211
2212	/* If we're setting the same range as last time the change
2213	 * should be a noop (some cpufreq implementations use the same
2214	 * voltage for multiple frequencies, for example).
2215	 */
2216	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2217		goto out;
2218
2219	/* sanity check */
2220	if (!rdev->desc->ops->set_voltage &&
2221	    !rdev->desc->ops->set_voltage_sel) {
2222		ret = -EINVAL;
2223		goto out;
2224	}
2225
2226	/* constraints check */
2227	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2228	if (ret < 0)
2229		goto out;
2230	regulator->min_uV = min_uV;
2231	regulator->max_uV = max_uV;
2232
2233	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2234	if (ret < 0)
2235		goto out;
2236
2237	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2238
2239out:
2240	mutex_unlock(&rdev->mutex);
2241	return ret;
2242}
2243EXPORT_SYMBOL_GPL(regulator_set_voltage);
2244
2245/**
2246 * regulator_set_voltage_time - get raise/fall time
2247 * @regulator: regulator source
2248 * @old_uV: starting voltage in microvolts
2249 * @new_uV: target voltage in microvolts
2250 *
2251 * Provided with the starting and ending voltage, this function attempts to
2252 * calculate the time in microseconds required to rise or fall to this new
2253 * voltage.
2254 */
2255int regulator_set_voltage_time(struct regulator *regulator,
2256			       int old_uV, int new_uV)
2257{
2258	struct regulator_dev	*rdev = regulator->rdev;
2259	struct regulator_ops	*ops = rdev->desc->ops;
2260	int old_sel = -1;
2261	int new_sel = -1;
2262	int voltage;
2263	int i;
2264
2265	/* Currently requires operations to do this */
2266	if (!ops->list_voltage || !ops->set_voltage_time_sel
2267	    || !rdev->desc->n_voltages)
2268		return -EINVAL;
2269
2270	for (i = 0; i < rdev->desc->n_voltages; i++) {
2271		/* We only look for exact voltage matches here */
2272		voltage = regulator_list_voltage(regulator, i);
2273		if (voltage < 0)
2274			return -EINVAL;
2275		if (voltage == 0)
2276			continue;
2277		if (voltage == old_uV)
2278			old_sel = i;
2279		if (voltage == new_uV)
2280			new_sel = i;
2281	}
2282
2283	if (old_sel < 0 || new_sel < 0)
2284		return -EINVAL;
2285
2286	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2287}
2288EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2289
2290/**
2291 *regulator_set_voltage_time_sel - get raise/fall time
2292 * @regulator: regulator source
2293 * @old_selector: selector for starting voltage
2294 * @new_selector: selector for target voltage
2295 *
2296 * Provided with the starting and target voltage selectors, this function
2297 * returns time in microseconds required to rise or fall to this new voltage
2298 *
2299 * Drivers providing uV_step in their regulator_desc and ramp_delay in
2300 * regulation_constraints can use this as their set_voltage_time_sel()
2301 * operation.
2302 */
2303int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2304				   unsigned int old_selector,
2305				   unsigned int new_selector)
2306{
2307	if (rdev->desc->uV_step) {
2308		if (rdev->constraints->ramp_delay)
2309			return DIV_ROUND_UP(rdev->desc->uV_step *
2310				abs(new_selector - old_selector),
2311				rdev->constraints->ramp_delay * 1000);
2312		if (rdev->desc->ramp_delay)
2313			return DIV_ROUND_UP(rdev->desc->uV_step *
2314				abs(new_selector - old_selector),
2315				rdev->desc->ramp_delay * 1000);
2316		rdev_warn(rdev, "ramp_delay not set\n");
2317	}
2318	return 0;
2319}
2320
2321/**
2322 * regulator_sync_voltage - re-apply last regulator output voltage
2323 * @regulator: regulator source
2324 *
2325 * Re-apply the last configured voltage.  This is intended to be used
2326 * where some external control source the consumer is cooperating with
2327 * has caused the configured voltage to change.
2328 */
2329int regulator_sync_voltage(struct regulator *regulator)
2330{
2331	struct regulator_dev *rdev = regulator->rdev;
2332	int ret, min_uV, max_uV;
2333
2334	mutex_lock(&rdev->mutex);
2335
2336	if (!rdev->desc->ops->set_voltage &&
2337	    !rdev->desc->ops->set_voltage_sel) {
2338		ret = -EINVAL;
2339		goto out;
2340	}
2341
2342	/* This is only going to work if we've had a voltage configured. */
2343	if (!regulator->min_uV && !regulator->max_uV) {
2344		ret = -EINVAL;
2345		goto out;
2346	}
2347
2348	min_uV = regulator->min_uV;
2349	max_uV = regulator->max_uV;
2350
2351	/* This should be a paranoia check... */
2352	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2353	if (ret < 0)
2354		goto out;
2355
2356	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2357	if (ret < 0)
2358		goto out;
2359
2360	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2361
2362out:
2363	mutex_unlock(&rdev->mutex);
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2367
2368static int _regulator_get_voltage(struct regulator_dev *rdev)
2369{
2370	int sel, ret;
2371
2372	if (rdev->desc->ops->get_voltage_sel) {
2373		sel = rdev->desc->ops->get_voltage_sel(rdev);
2374		if (sel < 0)
2375			return sel;
2376		ret = rdev->desc->ops->list_voltage(rdev, sel);
2377	} else if (rdev->desc->ops->get_voltage) {
2378		ret = rdev->desc->ops->get_voltage(rdev);
2379	} else {
2380		return -EINVAL;
2381	}
2382
2383	if (ret < 0)
2384		return ret;
2385	return ret - rdev->constraints->uV_offset;
2386}
2387
2388/**
2389 * regulator_get_voltage - get regulator output voltage
2390 * @regulator: regulator source
2391 *
2392 * This returns the current regulator voltage in uV.
2393 *
2394 * NOTE: If the regulator is disabled it will return the voltage value. This
2395 * function should not be used to determine regulator state.
2396 */
2397int regulator_get_voltage(struct regulator *regulator)
2398{
2399	int ret;
2400
2401	mutex_lock(&regulator->rdev->mutex);
2402
2403	ret = _regulator_get_voltage(regulator->rdev);
2404
2405	mutex_unlock(&regulator->rdev->mutex);
2406
2407	return ret;
2408}
2409EXPORT_SYMBOL_GPL(regulator_get_voltage);
2410
2411/**
2412 * regulator_set_current_limit - set regulator output current limit
2413 * @regulator: regulator source
2414 * @min_uA: Minimuum supported current in uA
2415 * @max_uA: Maximum supported current in uA
2416 *
2417 * Sets current sink to the desired output current. This can be set during
2418 * any regulator state. IOW, regulator can be disabled or enabled.
2419 *
2420 * If the regulator is enabled then the current will change to the new value
2421 * immediately otherwise if the regulator is disabled the regulator will
2422 * output at the new current when enabled.
2423 *
2424 * NOTE: Regulator system constraints must be set for this regulator before
2425 * calling this function otherwise this call will fail.
2426 */
2427int regulator_set_current_limit(struct regulator *regulator,
2428			       int min_uA, int max_uA)
2429{
2430	struct regulator_dev *rdev = regulator->rdev;
2431	int ret;
2432
2433	mutex_lock(&rdev->mutex);
2434
2435	/* sanity check */
2436	if (!rdev->desc->ops->set_current_limit) {
2437		ret = -EINVAL;
2438		goto out;
2439	}
2440
2441	/* constraints check */
2442	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2443	if (ret < 0)
2444		goto out;
2445
2446	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2447out:
2448	mutex_unlock(&rdev->mutex);
2449	return ret;
2450}
2451EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2452
2453static int _regulator_get_current_limit(struct regulator_dev *rdev)
2454{
2455	int ret;
2456
2457	mutex_lock(&rdev->mutex);
2458
2459	/* sanity check */
2460	if (!rdev->desc->ops->get_current_limit) {
2461		ret = -EINVAL;
2462		goto out;
2463	}
2464
2465	ret = rdev->desc->ops->get_current_limit(rdev);
2466out:
2467	mutex_unlock(&rdev->mutex);
2468	return ret;
2469}
2470
2471/**
2472 * regulator_get_current_limit - get regulator output current
2473 * @regulator: regulator source
2474 *
2475 * This returns the current supplied by the specified current sink in uA.
2476 *
2477 * NOTE: If the regulator is disabled it will return the current value. This
2478 * function should not be used to determine regulator state.
2479 */
2480int regulator_get_current_limit(struct regulator *regulator)
2481{
2482	return _regulator_get_current_limit(regulator->rdev);
2483}
2484EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2485
2486/**
2487 * regulator_set_mode - set regulator operating mode
2488 * @regulator: regulator source
2489 * @mode: operating mode - one of the REGULATOR_MODE constants
2490 *
2491 * Set regulator operating mode to increase regulator efficiency or improve
2492 * regulation performance.
2493 *
2494 * NOTE: Regulator system constraints must be set for this regulator before
2495 * calling this function otherwise this call will fail.
2496 */
2497int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2498{
2499	struct regulator_dev *rdev = regulator->rdev;
2500	int ret;
2501	int regulator_curr_mode;
2502
2503	mutex_lock(&rdev->mutex);
2504
2505	/* sanity check */
2506	if (!rdev->desc->ops->set_mode) {
2507		ret = -EINVAL;
2508		goto out;
2509	}
2510
2511	/* return if the same mode is requested */
2512	if (rdev->desc->ops->get_mode) {
2513		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2514		if (regulator_curr_mode == mode) {
2515			ret = 0;
2516			goto out;
2517		}
2518	}
2519
2520	/* constraints check */
2521	ret = regulator_mode_constrain(rdev, &mode);
2522	if (ret < 0)
2523		goto out;
2524
2525	ret = rdev->desc->ops->set_mode(rdev, mode);
2526out:
2527	mutex_unlock(&rdev->mutex);
2528	return ret;
2529}
2530EXPORT_SYMBOL_GPL(regulator_set_mode);
2531
2532static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2533{
2534	int ret;
2535
2536	mutex_lock(&rdev->mutex);
2537
2538	/* sanity check */
2539	if (!rdev->desc->ops->get_mode) {
2540		ret = -EINVAL;
2541		goto out;
2542	}
2543
2544	ret = rdev->desc->ops->get_mode(rdev);
2545out:
2546	mutex_unlock(&rdev->mutex);
2547	return ret;
2548}
2549
2550/**
2551 * regulator_get_mode - get regulator operating mode
2552 * @regulator: regulator source
2553 *
2554 * Get the current regulator operating mode.
2555 */
2556unsigned int regulator_get_mode(struct regulator *regulator)
2557{
2558	return _regulator_get_mode(regulator->rdev);
2559}
2560EXPORT_SYMBOL_GPL(regulator_get_mode);
2561
2562/**
2563 * regulator_set_optimum_mode - set regulator optimum operating mode
2564 * @regulator: regulator source
2565 * @uA_load: load current
2566 *
2567 * Notifies the regulator core of a new device load. This is then used by
2568 * DRMS (if enabled by constraints) to set the most efficient regulator
2569 * operating mode for the new regulator loading.
2570 *
2571 * Consumer devices notify their supply regulator of the maximum power
2572 * they will require (can be taken from device datasheet in the power
2573 * consumption tables) when they change operational status and hence power
2574 * state. Examples of operational state changes that can affect power
2575 * consumption are :-
2576 *
2577 *    o Device is opened / closed.
2578 *    o Device I/O is about to begin or has just finished.
2579 *    o Device is idling in between work.
2580 *
2581 * This information is also exported via sysfs to userspace.
2582 *
2583 * DRMS will sum the total requested load on the regulator and change
2584 * to the most efficient operating mode if platform constraints allow.
2585 *
2586 * Returns the new regulator mode or error.
2587 */
2588int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2589{
2590	struct regulator_dev *rdev = regulator->rdev;
2591	struct regulator *consumer;
2592	int ret, output_uV, input_uV, total_uA_load = 0;
2593	unsigned int mode;
2594
2595	mutex_lock(&rdev->mutex);
2596
2597	/*
2598	 * first check to see if we can set modes at all, otherwise just
2599	 * tell the consumer everything is OK.
2600	 */
2601	regulator->uA_load = uA_load;
2602	ret = regulator_check_drms(rdev);
2603	if (ret < 0) {
2604		ret = 0;
2605		goto out;
2606	}
2607
2608	if (!rdev->desc->ops->get_optimum_mode)
2609		goto out;
2610
2611	/*
2612	 * we can actually do this so any errors are indicators of
2613	 * potential real failure.
2614	 */
2615	ret = -EINVAL;
2616
2617	if (!rdev->desc->ops->set_mode)
2618		goto out;
2619
2620	/* get output voltage */
2621	output_uV = _regulator_get_voltage(rdev);
2622	if (output_uV <= 0) {
2623		rdev_err(rdev, "invalid output voltage found\n");
2624		goto out;
2625	}
2626
2627	/* get input voltage */
2628	input_uV = 0;
2629	if (rdev->supply)
2630		input_uV = regulator_get_voltage(rdev->supply);
2631	if (input_uV <= 0)
2632		input_uV = rdev->constraints->input_uV;
2633	if (input_uV <= 0) {
2634		rdev_err(rdev, "invalid input voltage found\n");
2635		goto out;
2636	}
2637
2638	/* calc total requested load for this regulator */
2639	list_for_each_entry(consumer, &rdev->consumer_list, list)
2640		total_uA_load += consumer->uA_load;
2641
2642	mode = rdev->desc->ops->get_optimum_mode(rdev,
2643						 input_uV, output_uV,
2644						 total_uA_load);
2645	ret = regulator_mode_constrain(rdev, &mode);
2646	if (ret < 0) {
2647		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2648			 total_uA_load, input_uV, output_uV);
2649		goto out;
2650	}
2651
2652	ret = rdev->desc->ops->set_mode(rdev, mode);
2653	if (ret < 0) {
2654		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2655		goto out;
2656	}
2657	ret = mode;
2658out:
2659	mutex_unlock(&rdev->mutex);
2660	return ret;
2661}
2662EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2663
2664/**
2665 * regulator_register_notifier - register regulator event notifier
2666 * @regulator: regulator source
2667 * @nb: notifier block
2668 *
2669 * Register notifier block to receive regulator events.
2670 */
2671int regulator_register_notifier(struct regulator *regulator,
2672			      struct notifier_block *nb)
2673{
2674	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2675						nb);
2676}
2677EXPORT_SYMBOL_GPL(regulator_register_notifier);
2678
2679/**
2680 * regulator_unregister_notifier - unregister regulator event notifier
2681 * @regulator: regulator source
2682 * @nb: notifier block
2683 *
2684 * Unregister regulator event notifier block.
2685 */
2686int regulator_unregister_notifier(struct regulator *regulator,
2687				struct notifier_block *nb)
2688{
2689	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2690						  nb);
2691}
2692EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2693
2694/* notify regulator consumers and downstream regulator consumers.
2695 * Note mutex must be held by caller.
2696 */
2697static void _notifier_call_chain(struct regulator_dev *rdev,
2698				  unsigned long event, void *data)
2699{
2700	/* call rdev chain first */
2701	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2702}
2703
2704/**
2705 * regulator_bulk_get - get multiple regulator consumers
2706 *
2707 * @dev:           Device to supply
2708 * @num_consumers: Number of consumers to register
2709 * @consumers:     Configuration of consumers; clients are stored here.
2710 *
2711 * @return 0 on success, an errno on failure.
2712 *
2713 * This helper function allows drivers to get several regulator
2714 * consumers in one operation.  If any of the regulators cannot be
2715 * acquired then any regulators that were allocated will be freed
2716 * before returning to the caller.
2717 */
2718int regulator_bulk_get(struct device *dev, int num_consumers,
2719		       struct regulator_bulk_data *consumers)
2720{
2721	int i;
2722	int ret;
2723
2724	for (i = 0; i < num_consumers; i++)
2725		consumers[i].consumer = NULL;
2726
2727	for (i = 0; i < num_consumers; i++) {
2728		consumers[i].consumer = regulator_get(dev,
2729						      consumers[i].supply);
2730		if (IS_ERR(consumers[i].consumer)) {
2731			ret = PTR_ERR(consumers[i].consumer);
2732			dev_err(dev, "Failed to get supply '%s': %d\n",
2733				consumers[i].supply, ret);
2734			consumers[i].consumer = NULL;
2735			goto err;
2736		}
2737	}
2738
2739	return 0;
2740
2741err:
2742	while (--i >= 0)
2743		regulator_put(consumers[i].consumer);
2744
2745	return ret;
2746}
2747EXPORT_SYMBOL_GPL(regulator_bulk_get);
2748
2749/**
2750 * devm_regulator_bulk_get - managed get multiple regulator consumers
2751 *
2752 * @dev:           Device to supply
2753 * @num_consumers: Number of consumers to register
2754 * @consumers:     Configuration of consumers; clients are stored here.
2755 *
2756 * @return 0 on success, an errno on failure.
2757 *
2758 * This helper function allows drivers to get several regulator
2759 * consumers in one operation with management, the regulators will
2760 * automatically be freed when the device is unbound.  If any of the
2761 * regulators cannot be acquired then any regulators that were
2762 * allocated will be freed before returning to the caller.
2763 */
2764int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2765			    struct regulator_bulk_data *consumers)
2766{
2767	int i;
2768	int ret;
2769
2770	for (i = 0; i < num_consumers; i++)
2771		consumers[i].consumer = NULL;
2772
2773	for (i = 0; i < num_consumers; i++) {
2774		consumers[i].consumer = devm_regulator_get(dev,
2775							   consumers[i].supply);
2776		if (IS_ERR(consumers[i].consumer)) {
2777			ret = PTR_ERR(consumers[i].consumer);
2778			dev_err(dev, "Failed to get supply '%s': %d\n",
2779				consumers[i].supply, ret);
2780			consumers[i].consumer = NULL;
2781			goto err;
2782		}
2783	}
2784
2785	return 0;
2786
2787err:
2788	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2789		devm_regulator_put(consumers[i].consumer);
2790
2791	return ret;
2792}
2793EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2794
2795static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2796{
2797	struct regulator_bulk_data *bulk = data;
2798
2799	bulk->ret = regulator_enable(bulk->consumer);
2800}
2801
2802/**
2803 * regulator_bulk_enable - enable multiple regulator consumers
2804 *
2805 * @num_consumers: Number of consumers
2806 * @consumers:     Consumer data; clients are stored here.
2807 * @return         0 on success, an errno on failure
2808 *
2809 * This convenience API allows consumers to enable multiple regulator
2810 * clients in a single API call.  If any consumers cannot be enabled
2811 * then any others that were enabled will be disabled again prior to
2812 * return.
2813 */
2814int regulator_bulk_enable(int num_consumers,
2815			  struct regulator_bulk_data *consumers)
2816{
2817	LIST_HEAD(async_domain);
2818	int i;
2819	int ret = 0;
2820
2821	for (i = 0; i < num_consumers; i++) {
2822		if (consumers[i].consumer->always_on)
2823			consumers[i].ret = 0;
2824		else
2825			async_schedule_domain(regulator_bulk_enable_async,
2826					      &consumers[i], &async_domain);
2827	}
2828
2829	async_synchronize_full_domain(&async_domain);
2830
2831	/* If any consumer failed we need to unwind any that succeeded */
2832	for (i = 0; i < num_consumers; i++) {
2833		if (consumers[i].ret != 0) {
2834			ret = consumers[i].ret;
2835			goto err;
2836		}
2837	}
2838
2839	return 0;
2840
2841err:
2842	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2843	while (--i >= 0)
2844		regulator_disable(consumers[i].consumer);
2845
2846	return ret;
2847}
2848EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2849
2850/**
2851 * regulator_bulk_disable - disable multiple regulator consumers
2852 *
2853 * @num_consumers: Number of consumers
2854 * @consumers:     Consumer data; clients are stored here.
2855 * @return         0 on success, an errno on failure
2856 *
2857 * This convenience API allows consumers to disable multiple regulator
2858 * clients in a single API call.  If any consumers cannot be disabled
2859 * then any others that were disabled will be enabled again prior to
2860 * return.
2861 */
2862int regulator_bulk_disable(int num_consumers,
2863			   struct regulator_bulk_data *consumers)
2864{
2865	int i;
2866	int ret, r;
2867
2868	for (i = num_consumers - 1; i >= 0; --i) {
2869		ret = regulator_disable(consumers[i].consumer);
2870		if (ret != 0)
2871			goto err;
2872	}
2873
2874	return 0;
2875
2876err:
2877	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2878	for (++i; i < num_consumers; ++i) {
2879		r = regulator_enable(consumers[i].consumer);
2880		if (r != 0)
2881			pr_err("Failed to reename %s: %d\n",
2882			       consumers[i].supply, r);
2883	}
2884
2885	return ret;
2886}
2887EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2888
2889/**
2890 * regulator_bulk_force_disable - force disable multiple regulator consumers
2891 *
2892 * @num_consumers: Number of consumers
2893 * @consumers:     Consumer data; clients are stored here.
2894 * @return         0 on success, an errno on failure
2895 *
2896 * This convenience API allows consumers to forcibly disable multiple regulator
2897 * clients in a single API call.
2898 * NOTE: This should be used for situations when device damage will
2899 * likely occur if the regulators are not disabled (e.g. over temp).
2900 * Although regulator_force_disable function call for some consumers can
2901 * return error numbers, the function is called for all consumers.
2902 */
2903int regulator_bulk_force_disable(int num_consumers,
2904			   struct regulator_bulk_data *consumers)
2905{
2906	int i;
2907	int ret;
2908
2909	for (i = 0; i < num_consumers; i++)
2910		consumers[i].ret =
2911			    regulator_force_disable(consumers[i].consumer);
2912
2913	for (i = 0; i < num_consumers; i++) {
2914		if (consumers[i].ret != 0) {
2915			ret = consumers[i].ret;
2916			goto out;
2917		}
2918	}
2919
2920	return 0;
2921out:
2922	return ret;
2923}
2924EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2925
2926/**
2927 * regulator_bulk_free - free multiple regulator consumers
2928 *
2929 * @num_consumers: Number of consumers
2930 * @consumers:     Consumer data; clients are stored here.
2931 *
2932 * This convenience API allows consumers to free multiple regulator
2933 * clients in a single API call.
2934 */
2935void regulator_bulk_free(int num_consumers,
2936			 struct regulator_bulk_data *consumers)
2937{
2938	int i;
2939
2940	for (i = 0; i < num_consumers; i++) {
2941		regulator_put(consumers[i].consumer);
2942		consumers[i].consumer = NULL;
2943	}
2944}
2945EXPORT_SYMBOL_GPL(regulator_bulk_free);
2946
2947/**
2948 * regulator_notifier_call_chain - call regulator event notifier
2949 * @rdev: regulator source
2950 * @event: notifier block
2951 * @data: callback-specific data.
2952 *
2953 * Called by regulator drivers to notify clients a regulator event has
2954 * occurred. We also notify regulator clients downstream.
2955 * Note lock must be held by caller.
2956 */
2957int regulator_notifier_call_chain(struct regulator_dev *rdev,
2958				  unsigned long event, void *data)
2959{
2960	_notifier_call_chain(rdev, event, data);
2961	return NOTIFY_DONE;
2962
2963}
2964EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2965
2966/**
2967 * regulator_mode_to_status - convert a regulator mode into a status
2968 *
2969 * @mode: Mode to convert
2970 *
2971 * Convert a regulator mode into a status.
2972 */
2973int regulator_mode_to_status(unsigned int mode)
2974{
2975	switch (mode) {
2976	case REGULATOR_MODE_FAST:
2977		return REGULATOR_STATUS_FAST;
2978	case REGULATOR_MODE_NORMAL:
2979		return REGULATOR_STATUS_NORMAL;
2980	case REGULATOR_MODE_IDLE:
2981		return REGULATOR_STATUS_IDLE;
2982	case REGULATOR_STATUS_STANDBY:
2983		return REGULATOR_STATUS_STANDBY;
2984	default:
2985		return 0;
2986	}
2987}
2988EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2989
2990/*
2991 * To avoid cluttering sysfs (and memory) with useless state, only
2992 * create attributes that can be meaningfully displayed.
2993 */
2994static int add_regulator_attributes(struct regulator_dev *rdev)
2995{
2996	struct device		*dev = &rdev->dev;
2997	struct regulator_ops	*ops = rdev->desc->ops;
2998	int			status = 0;
2999
3000	/* some attributes need specific methods to be displayed */
3001	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3002	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3003		status = device_create_file(dev, &dev_attr_microvolts);
3004		if (status < 0)
3005			return status;
3006	}
3007	if (ops->get_current_limit) {
3008		status = device_create_file(dev, &dev_attr_microamps);
3009		if (status < 0)
3010			return status;
3011	}
3012	if (ops->get_mode) {
3013		status = device_create_file(dev, &dev_attr_opmode);
3014		if (status < 0)
3015			return status;
3016	}
3017	if (ops->is_enabled) {
3018		status = device_create_file(dev, &dev_attr_state);
3019		if (status < 0)
3020			return status;
3021	}
3022	if (ops->get_status) {
3023		status = device_create_file(dev, &dev_attr_status);
3024		if (status < 0)
3025			return status;
3026	}
3027
3028	/* some attributes are type-specific */
3029	if (rdev->desc->type == REGULATOR_CURRENT) {
3030		status = device_create_file(dev, &dev_attr_requested_microamps);
3031		if (status < 0)
3032			return status;
3033	}
3034
3035	/* all the other attributes exist to support constraints;
3036	 * don't show them if there are no constraints, or if the
3037	 * relevant supporting methods are missing.
3038	 */
3039	if (!rdev->constraints)
3040		return status;
3041
3042	/* constraints need specific supporting methods */
3043	if (ops->set_voltage || ops->set_voltage_sel) {
3044		status = device_create_file(dev, &dev_attr_min_microvolts);
3045		if (status < 0)
3046			return status;
3047		status = device_create_file(dev, &dev_attr_max_microvolts);
3048		if (status < 0)
3049			return status;
3050	}
3051	if (ops->set_current_limit) {
3052		status = device_create_file(dev, &dev_attr_min_microamps);
3053		if (status < 0)
3054			return status;
3055		status = device_create_file(dev, &dev_attr_max_microamps);
3056		if (status < 0)
3057			return status;
3058	}
3059
3060	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3061	if (status < 0)
3062		return status;
3063	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3064	if (status < 0)
3065		return status;
3066	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3067	if (status < 0)
3068		return status;
3069
3070	if (ops->set_suspend_voltage) {
3071		status = device_create_file(dev,
3072				&dev_attr_suspend_standby_microvolts);
3073		if (status < 0)
3074			return status;
3075		status = device_create_file(dev,
3076				&dev_attr_suspend_mem_microvolts);
3077		if (status < 0)
3078			return status;
3079		status = device_create_file(dev,
3080				&dev_attr_suspend_disk_microvolts);
3081		if (status < 0)
3082			return status;
3083	}
3084
3085	if (ops->set_suspend_mode) {
3086		status = device_create_file(dev,
3087				&dev_attr_suspend_standby_mode);
3088		if (status < 0)
3089			return status;
3090		status = device_create_file(dev,
3091				&dev_attr_suspend_mem_mode);
3092		if (status < 0)
3093			return status;
3094		status = device_create_file(dev,
3095				&dev_attr_suspend_disk_mode);
3096		if (status < 0)
3097			return status;
3098	}
3099
3100	return status;
3101}
3102
3103static void rdev_init_debugfs(struct regulator_dev *rdev)
3104{
3105	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3106	if (!rdev->debugfs) {
3107		rdev_warn(rdev, "Failed to create debugfs directory\n");
3108		return;
3109	}
3110
3111	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3112			   &rdev->use_count);
3113	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3114			   &rdev->open_count);
3115}
3116
3117/**
3118 * regulator_register - register regulator
3119 * @regulator_desc: regulator to register
3120 * @config: runtime configuration for regulator
3121 *
3122 * Called by regulator drivers to register a regulator.
3123 * Returns 0 on success.
3124 */
3125struct regulator_dev *
3126regulator_register(const struct regulator_desc *regulator_desc,
3127		   const struct regulator_config *config)
3128{
3129	const struct regulation_constraints *constraints = NULL;
3130	const struct regulator_init_data *init_data;
3131	static atomic_t regulator_no = ATOMIC_INIT(0);
3132	struct regulator_dev *rdev;
3133	struct device *dev;
3134	int ret, i;
3135	const char *supply = NULL;
3136
3137	if (regulator_desc == NULL || config == NULL)
3138		return ERR_PTR(-EINVAL);
3139
3140	dev = config->dev;
3141	WARN_ON(!dev);
3142
3143	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3144		return ERR_PTR(-EINVAL);
3145
3146	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3147	    regulator_desc->type != REGULATOR_CURRENT)
3148		return ERR_PTR(-EINVAL);
3149
3150	/* Only one of each should be implemented */
3151	WARN_ON(regulator_desc->ops->get_voltage &&
3152		regulator_desc->ops->get_voltage_sel);
3153	WARN_ON(regulator_desc->ops->set_voltage &&
3154		regulator_desc->ops->set_voltage_sel);
3155
3156	/* If we're using selectors we must implement list_voltage. */
3157	if (regulator_desc->ops->get_voltage_sel &&
3158	    !regulator_desc->ops->list_voltage) {
3159		return ERR_PTR(-EINVAL);
3160	}
3161	if (regulator_desc->ops->set_voltage_sel &&
3162	    !regulator_desc->ops->list_voltage) {
3163		return ERR_PTR(-EINVAL);
3164	}
3165
3166	init_data = config->init_data;
3167
3168	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3169	if (rdev == NULL)
3170		return ERR_PTR(-ENOMEM);
3171
3172	mutex_lock(&regulator_list_mutex);
3173
3174	mutex_init(&rdev->mutex);
3175	rdev->reg_data = config->driver_data;
3176	rdev->owner = regulator_desc->owner;
3177	rdev->desc = regulator_desc;
3178	if (config->regmap)
3179		rdev->regmap = config->regmap;
3180	else
3181		rdev->regmap = dev_get_regmap(dev, NULL);
3182	INIT_LIST_HEAD(&rdev->consumer_list);
3183	INIT_LIST_HEAD(&rdev->list);
3184	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3185	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3186
3187	/* preform any regulator specific init */
3188	if (init_data && init_data->regulator_init) {
3189		ret = init_data->regulator_init(rdev->reg_data);
3190		if (ret < 0)
3191			goto clean;
3192	}
3193
3194	/* register with sysfs */
3195	rdev->dev.class = &regulator_class;
3196	rdev->dev.of_node = config->of_node;
3197	rdev->dev.parent = dev;
3198	dev_set_name(&rdev->dev, "regulator.%d",
3199		     atomic_inc_return(&regulator_no) - 1);
3200	ret = device_register(&rdev->dev);
3201	if (ret != 0) {
3202		put_device(&rdev->dev);
3203		goto clean;
3204	}
3205
3206	dev_set_drvdata(&rdev->dev, rdev);
3207
3208	/* set regulator constraints */
3209	if (init_data)
3210		constraints = &init_data->constraints;
3211
3212	ret = set_machine_constraints(rdev, constraints);
3213	if (ret < 0)
3214		goto scrub;
3215
3216	/* add attributes supported by this regulator */
3217	ret = add_regulator_attributes(rdev);
3218	if (ret < 0)
3219		goto scrub;
3220
3221	if (init_data && init_data->supply_regulator)
3222		supply = init_data->supply_regulator;
3223	else if (regulator_desc->supply_name)
3224		supply = regulator_desc->supply_name;
3225
3226	if (supply) {
3227		struct regulator_dev *r;
3228
3229		r = regulator_dev_lookup(dev, supply, &ret);
3230
3231		if (!r) {
3232			dev_err(dev, "Failed to find supply %s\n", supply);
3233			ret = -EPROBE_DEFER;
3234			goto scrub;
3235		}
3236
3237		ret = set_supply(rdev, r);
3238		if (ret < 0)
3239			goto scrub;
3240
3241		/* Enable supply if rail is enabled */
3242		if (_regulator_is_enabled(rdev)) {
3243			ret = regulator_enable(rdev->supply);
3244			if (ret < 0)
3245				goto scrub;
3246		}
3247	}
3248
3249	/* add consumers devices */
3250	if (init_data) {
3251		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3252			ret = set_consumer_device_supply(rdev,
3253				init_data->consumer_supplies[i].dev_name,
3254				init_data->consumer_supplies[i].supply);
3255			if (ret < 0) {
3256				dev_err(dev, "Failed to set supply %s\n",
3257					init_data->consumer_supplies[i].supply);
3258				goto unset_supplies;
3259			}
3260		}
3261	}
3262
3263	list_add(&rdev->list, &regulator_list);
3264
3265	rdev_init_debugfs(rdev);
3266out:
3267	mutex_unlock(&regulator_list_mutex);
3268	return rdev;
3269
3270unset_supplies:
3271	unset_regulator_supplies(rdev);
3272
3273scrub:
3274	if (rdev->supply)
3275		regulator_put(rdev->supply);
3276	kfree(rdev->constraints);
3277	device_unregister(&rdev->dev);
3278	/* device core frees rdev */
3279	rdev = ERR_PTR(ret);
3280	goto out;
3281
3282clean:
3283	kfree(rdev);
3284	rdev = ERR_PTR(ret);
3285	goto out;
3286}
3287EXPORT_SYMBOL_GPL(regulator_register);
3288
3289/**
3290 * regulator_unregister - unregister regulator
3291 * @rdev: regulator to unregister
3292 *
3293 * Called by regulator drivers to unregister a regulator.
3294 */
3295void regulator_unregister(struct regulator_dev *rdev)
3296{
3297	if (rdev == NULL)
3298		return;
3299
3300	if (rdev->supply)
3301		regulator_put(rdev->supply);
3302	mutex_lock(&regulator_list_mutex);
3303	debugfs_remove_recursive(rdev->debugfs);
3304	flush_work_sync(&rdev->disable_work.work);
3305	WARN_ON(rdev->open_count);
3306	unset_regulator_supplies(rdev);
3307	list_del(&rdev->list);
3308	kfree(rdev->constraints);
3309	device_unregister(&rdev->dev);
3310	mutex_unlock(&regulator_list_mutex);
3311}
3312EXPORT_SYMBOL_GPL(regulator_unregister);
3313
3314/**
3315 * regulator_suspend_prepare - prepare regulators for system wide suspend
3316 * @state: system suspend state
3317 *
3318 * Configure each regulator with it's suspend operating parameters for state.
3319 * This will usually be called by machine suspend code prior to supending.
3320 */
3321int regulator_suspend_prepare(suspend_state_t state)
3322{
3323	struct regulator_dev *rdev;
3324	int ret = 0;
3325
3326	/* ON is handled by regulator active state */
3327	if (state == PM_SUSPEND_ON)
3328		return -EINVAL;
3329
3330	mutex_lock(&regulator_list_mutex);
3331	list_for_each_entry(rdev, &regulator_list, list) {
3332
3333		mutex_lock(&rdev->mutex);
3334		ret = suspend_prepare(rdev, state);
3335		mutex_unlock(&rdev->mutex);
3336
3337		if (ret < 0) {
3338			rdev_err(rdev, "failed to prepare\n");
3339			goto out;
3340		}
3341	}
3342out:
3343	mutex_unlock(&regulator_list_mutex);
3344	return ret;
3345}
3346EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3347
3348/**
3349 * regulator_suspend_finish - resume regulators from system wide suspend
3350 *
3351 * Turn on regulators that might be turned off by regulator_suspend_prepare
3352 * and that should be turned on according to the regulators properties.
3353 */
3354int regulator_suspend_finish(void)
3355{
3356	struct regulator_dev *rdev;
3357	int ret = 0, error;
3358
3359	mutex_lock(&regulator_list_mutex);
3360	list_for_each_entry(rdev, &regulator_list, list) {
3361		struct regulator_ops *ops = rdev->desc->ops;
3362
3363		mutex_lock(&rdev->mutex);
3364		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3365				ops->enable) {
3366			error = ops->enable(rdev);
3367			if (error)
3368				ret = error;
3369		} else {
3370			if (!has_full_constraints)
3371				goto unlock;
3372			if (!ops->disable)
3373				goto unlock;
3374			if (!_regulator_is_enabled(rdev))
3375				goto unlock;
3376
3377			error = ops->disable(rdev);
3378			if (error)
3379				ret = error;
3380		}
3381unlock:
3382		mutex_unlock(&rdev->mutex);
3383	}
3384	mutex_unlock(&regulator_list_mutex);
3385	return ret;
3386}
3387EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3388
3389/**
3390 * regulator_has_full_constraints - the system has fully specified constraints
3391 *
3392 * Calling this function will cause the regulator API to disable all
3393 * regulators which have a zero use count and don't have an always_on
3394 * constraint in a late_initcall.
3395 *
3396 * The intention is that this will become the default behaviour in a
3397 * future kernel release so users are encouraged to use this facility
3398 * now.
3399 */
3400void regulator_has_full_constraints(void)
3401{
3402	has_full_constraints = 1;
3403}
3404EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3405
3406/**
3407 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3408 *
3409 * Calling this function will cause the regulator API to provide a
3410 * dummy regulator to consumers if no physical regulator is found,
3411 * allowing most consumers to proceed as though a regulator were
3412 * configured.  This allows systems such as those with software
3413 * controllable regulators for the CPU core only to be brought up more
3414 * readily.
3415 */
3416void regulator_use_dummy_regulator(void)
3417{
3418	board_wants_dummy_regulator = true;
3419}
3420EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3421
3422/**
3423 * rdev_get_drvdata - get rdev regulator driver data
3424 * @rdev: regulator
3425 *
3426 * Get rdev regulator driver private data. This call can be used in the
3427 * regulator driver context.
3428 */
3429void *rdev_get_drvdata(struct regulator_dev *rdev)
3430{
3431	return rdev->reg_data;
3432}
3433EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3434
3435/**
3436 * regulator_get_drvdata - get regulator driver data
3437 * @regulator: regulator
3438 *
3439 * Get regulator driver private data. This call can be used in the consumer
3440 * driver context when non API regulator specific functions need to be called.
3441 */
3442void *regulator_get_drvdata(struct regulator *regulator)
3443{
3444	return regulator->rdev->reg_data;
3445}
3446EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3447
3448/**
3449 * regulator_set_drvdata - set regulator driver data
3450 * @regulator: regulator
3451 * @data: data
3452 */
3453void regulator_set_drvdata(struct regulator *regulator, void *data)
3454{
3455	regulator->rdev->reg_data = data;
3456}
3457EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3458
3459/**
3460 * regulator_get_id - get regulator ID
3461 * @rdev: regulator
3462 */
3463int rdev_get_id(struct regulator_dev *rdev)
3464{
3465	return rdev->desc->id;
3466}
3467EXPORT_SYMBOL_GPL(rdev_get_id);
3468
3469struct device *rdev_get_dev(struct regulator_dev *rdev)
3470{
3471	return &rdev->dev;
3472}
3473EXPORT_SYMBOL_GPL(rdev_get_dev);
3474
3475void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3476{
3477	return reg_init_data->driver_data;
3478}
3479EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3480
3481#ifdef CONFIG_DEBUG_FS
3482static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3483				    size_t count, loff_t *ppos)
3484{
3485	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3486	ssize_t len, ret = 0;
3487	struct regulator_map *map;
3488
3489	if (!buf)
3490		return -ENOMEM;
3491
3492	list_for_each_entry(map, &regulator_map_list, list) {
3493		len = snprintf(buf + ret, PAGE_SIZE - ret,
3494			       "%s -> %s.%s\n",
3495			       rdev_get_name(map->regulator), map->dev_name,
3496			       map->supply);
3497		if (len >= 0)
3498			ret += len;
3499		if (ret > PAGE_SIZE) {
3500			ret = PAGE_SIZE;
3501			break;
3502		}
3503	}
3504
3505	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3506
3507	kfree(buf);
3508
3509	return ret;
3510}
3511#endif
3512
3513static const struct file_operations supply_map_fops = {
3514#ifdef CONFIG_DEBUG_FS
3515	.read = supply_map_read_file,
3516	.llseek = default_llseek,
3517#endif
3518};
3519
3520static int __init regulator_init(void)
3521{
3522	int ret;
3523
3524	ret = class_register(&regulator_class);
3525
3526	debugfs_root = debugfs_create_dir("regulator", NULL);
3527	if (!debugfs_root)
3528		pr_warn("regulator: Failed to create debugfs directory\n");
3529
3530	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3531			    &supply_map_fops);
3532
3533	regulator_dummy_init();
3534
3535	return ret;
3536}
3537
3538/* init early to allow our consumers to complete system booting */
3539core_initcall(regulator_init);
3540
3541static int __init regulator_init_complete(void)
3542{
3543	struct regulator_dev *rdev;
3544	struct regulator_ops *ops;
3545	struct regulation_constraints *c;
3546	int enabled, ret;
3547
3548	mutex_lock(&regulator_list_mutex);
3549
3550	/* If we have a full configuration then disable any regulators
3551	 * which are not in use or always_on.  This will become the
3552	 * default behaviour in the future.
3553	 */
3554	list_for_each_entry(rdev, &regulator_list, list) {
3555		ops = rdev->desc->ops;
3556		c = rdev->constraints;
3557
3558		if (!ops->disable || (c && c->always_on))
3559			continue;
3560
3561		mutex_lock(&rdev->mutex);
3562
3563		if (rdev->use_count)
3564			goto unlock;
3565
3566		/* If we can't read the status assume it's on. */
3567		if (ops->is_enabled)
3568			enabled = ops->is_enabled(rdev);
3569		else
3570			enabled = 1;
3571
3572		if (!enabled)
3573			goto unlock;
3574
3575		if (has_full_constraints) {
3576			/* We log since this may kill the system if it
3577			 * goes wrong. */
3578			rdev_info(rdev, "disabling\n");
3579			ret = ops->disable(rdev);
3580			if (ret != 0) {
3581				rdev_err(rdev, "couldn't disable: %d\n", ret);
3582			}
3583		} else {
3584			/* The intention is that in future we will
3585			 * assume that full constraints are provided
3586			 * so warn even if we aren't going to do
3587			 * anything here.
3588			 */
3589			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3590		}
3591
3592unlock:
3593		mutex_unlock(&rdev->mutex);
3594	}
3595
3596	mutex_unlock(&regulator_list_mutex);
3597
3598	return 0;
3599}
3600late_initcall(regulator_init_complete);
3601