core.c revision 737f360d5bef5e01c6cfa755dca0b449a154c1e0
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/of.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57#ifdef CONFIG_DEBUG_FS
58static struct dentry *debugfs_root;
59#endif
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78struct regulator {
79	struct device *dev;
80	struct list_head list;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87#ifdef CONFIG_DEBUG_FS
88	struct dentry *debugfs;
89#endif
90};
91
92static int _regulator_is_enabled(struct regulator_dev *rdev);
93static int _regulator_disable(struct regulator_dev *rdev);
94static int _regulator_get_voltage(struct regulator_dev *rdev);
95static int _regulator_get_current_limit(struct regulator_dev *rdev);
96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97static void _notifier_call_chain(struct regulator_dev *rdev,
98				  unsigned long event, void *data);
99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100				     int min_uV, int max_uV);
101static struct regulator *create_regulator(struct regulator_dev *rdev,
102					  struct device *dev,
103					  const char *supply_name);
104
105static const char *rdev_get_name(struct regulator_dev *rdev)
106{
107	if (rdev->constraints && rdev->constraints->name)
108		return rdev->constraints->name;
109	else if (rdev->desc->name)
110		return rdev->desc->name;
111	else
112		return "";
113}
114
115/* gets the regulator for a given consumer device */
116static struct regulator *get_device_regulator(struct device *dev)
117{
118	struct regulator *regulator = NULL;
119	struct regulator_dev *rdev;
120
121	mutex_lock(&regulator_list_mutex);
122	list_for_each_entry(rdev, &regulator_list, list) {
123		mutex_lock(&rdev->mutex);
124		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125			if (regulator->dev == dev) {
126				mutex_unlock(&rdev->mutex);
127				mutex_unlock(&regulator_list_mutex);
128				return regulator;
129			}
130		}
131		mutex_unlock(&rdev->mutex);
132	}
133	mutex_unlock(&regulator_list_mutex);
134	return NULL;
135}
136
137/**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147{
148	struct device_node *regnode = NULL;
149	char prop_name[32]; /* 32 is max size of property name */
150
151	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153	snprintf(prop_name, 32, "%s-supply", supply);
154	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156	if (!regnode) {
157		dev_warn(dev, "%s property in node %s references invalid phandle",
158				prop_name, dev->of_node->full_name);
159		return NULL;
160	}
161	return regnode;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV)
216		return -EINVAL;
217
218	return 0;
219}
220
221/* current constraint check */
222static int regulator_check_current_limit(struct regulator_dev *rdev,
223					int *min_uA, int *max_uA)
224{
225	BUG_ON(*min_uA > *max_uA);
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	if (*max_uA > rdev->constraints->max_uA)
237		*max_uA = rdev->constraints->max_uA;
238	if (*min_uA < rdev->constraints->min_uA)
239		*min_uA = rdev->constraints->min_uA;
240
241	if (*min_uA > *max_uA) {
242		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243			 *min_uA, *max_uA);
244		return -EINVAL;
245	}
246
247	return 0;
248}
249
250/* operating mode constraint check */
251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252{
253	switch (*mode) {
254	case REGULATOR_MODE_FAST:
255	case REGULATOR_MODE_NORMAL:
256	case REGULATOR_MODE_IDLE:
257	case REGULATOR_MODE_STANDBY:
258		break;
259	default:
260		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261		return -EINVAL;
262	}
263
264	if (!rdev->constraints) {
265		rdev_err(rdev, "no constraints\n");
266		return -ENODEV;
267	}
268	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269		rdev_err(rdev, "operation not allowed\n");
270		return -EPERM;
271	}
272
273	/* The modes are bitmasks, the most power hungry modes having
274	 * the lowest values. If the requested mode isn't supported
275	 * try higher modes. */
276	while (*mode) {
277		if (rdev->constraints->valid_modes_mask & *mode)
278			return 0;
279		*mode /= 2;
280	}
281
282	return -EINVAL;
283}
284
285/* dynamic regulator mode switching constraint check */
286static int regulator_check_drms(struct regulator_dev *rdev)
287{
288	if (!rdev->constraints) {
289		rdev_err(rdev, "no constraints\n");
290		return -ENODEV;
291	}
292	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293		rdev_err(rdev, "operation not allowed\n");
294		return -EPERM;
295	}
296	return 0;
297}
298
299static ssize_t device_requested_uA_show(struct device *dev,
300			     struct device_attribute *attr, char *buf)
301{
302	struct regulator *regulator;
303
304	regulator = get_device_regulator(dev);
305	if (regulator == NULL)
306		return 0;
307
308	return sprintf(buf, "%d\n", regulator->uA_load);
309}
310
311static ssize_t regulator_uV_show(struct device *dev,
312				struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325static ssize_t regulator_uA_show(struct device *dev,
326				struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331}
332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334static ssize_t regulator_name_show(struct device *dev,
335			     struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340}
341
342static ssize_t regulator_print_opmode(char *buf, int mode)
343{
344	switch (mode) {
345	case REGULATOR_MODE_FAST:
346		return sprintf(buf, "fast\n");
347	case REGULATOR_MODE_NORMAL:
348		return sprintf(buf, "normal\n");
349	case REGULATOR_MODE_IDLE:
350		return sprintf(buf, "idle\n");
351	case REGULATOR_MODE_STANDBY:
352		return sprintf(buf, "standby\n");
353	}
354	return sprintf(buf, "unknown\n");
355}
356
357static ssize_t regulator_opmode_show(struct device *dev,
358				    struct device_attribute *attr, char *buf)
359{
360	struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363}
364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366static ssize_t regulator_print_state(char *buf, int state)
367{
368	if (state > 0)
369		return sprintf(buf, "enabled\n");
370	else if (state == 0)
371		return sprintf(buf, "disabled\n");
372	else
373		return sprintf(buf, "unknown\n");
374}
375
376static ssize_t regulator_state_show(struct device *dev,
377				   struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	ssize_t ret;
381
382	mutex_lock(&rdev->mutex);
383	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384	mutex_unlock(&rdev->mutex);
385
386	return ret;
387}
388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390static ssize_t regulator_status_show(struct device *dev,
391				   struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	int status;
395	char *label;
396
397	status = rdev->desc->ops->get_status(rdev);
398	if (status < 0)
399		return status;
400
401	switch (status) {
402	case REGULATOR_STATUS_OFF:
403		label = "off";
404		break;
405	case REGULATOR_STATUS_ON:
406		label = "on";
407		break;
408	case REGULATOR_STATUS_ERROR:
409		label = "error";
410		break;
411	case REGULATOR_STATUS_FAST:
412		label = "fast";
413		break;
414	case REGULATOR_STATUS_NORMAL:
415		label = "normal";
416		break;
417	case REGULATOR_STATUS_IDLE:
418		label = "idle";
419		break;
420	case REGULATOR_STATUS_STANDBY:
421		label = "standby";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t regulator_num_users_show(struct device *dev,
495				      struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500
501static ssize_t regulator_type_show(struct device *dev,
502				  struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611
612/*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616static struct device_attribute regulator_dev_attrs[] = {
617	__ATTR(name, 0444, regulator_name_show, NULL),
618	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619	__ATTR(type, 0444, regulator_type_show, NULL),
620	__ATTR_NULL,
621};
622
623static void regulator_dev_release(struct device *dev)
624{
625	struct regulator_dev *rdev = dev_get_drvdata(dev);
626	kfree(rdev);
627}
628
629static struct class regulator_class = {
630	.name = "regulator",
631	.dev_release = regulator_dev_release,
632	.dev_attrs = regulator_dev_attrs,
633};
634
635/* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637static void drms_uA_update(struct regulator_dev *rdev)
638{
639	struct regulator *sibling;
640	int current_uA = 0, output_uV, input_uV, err;
641	unsigned int mode;
642
643	err = regulator_check_drms(rdev);
644	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645	    (!rdev->desc->ops->get_voltage &&
646	     !rdev->desc->ops->get_voltage_sel) ||
647	    !rdev->desc->ops->set_mode)
648		return;
649
650	/* get output voltage */
651	output_uV = _regulator_get_voltage(rdev);
652	if (output_uV <= 0)
653		return;
654
655	/* get input voltage */
656	input_uV = 0;
657	if (rdev->supply)
658		input_uV = _regulator_get_voltage(rdev);
659	if (input_uV <= 0)
660		input_uV = rdev->constraints->input_uV;
661	if (input_uV <= 0)
662		return;
663
664	/* calc total requested load */
665	list_for_each_entry(sibling, &rdev->consumer_list, list)
666		current_uA += sibling->uA_load;
667
668	/* now get the optimum mode for our new total regulator load */
669	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670						  output_uV, current_uA);
671
672	/* check the new mode is allowed */
673	err = regulator_mode_constrain(rdev, &mode);
674	if (err == 0)
675		rdev->desc->ops->set_mode(rdev, mode);
676}
677
678static int suspend_set_state(struct regulator_dev *rdev,
679	struct regulator_state *rstate)
680{
681	int ret = 0;
682	bool can_set_state;
683
684	can_set_state = rdev->desc->ops->set_suspend_enable &&
685		rdev->desc->ops->set_suspend_disable;
686
687	/* If we have no suspend mode configration don't set anything;
688	 * only warn if the driver actually makes the suspend mode
689	 * configurable.
690	 */
691	if (!rstate->enabled && !rstate->disabled) {
692		if (can_set_state)
693			rdev_warn(rdev, "No configuration\n");
694		return 0;
695	}
696
697	if (rstate->enabled && rstate->disabled) {
698		rdev_err(rdev, "invalid configuration\n");
699		return -EINVAL;
700	}
701
702	if (!can_set_state) {
703		rdev_err(rdev, "no way to set suspend state\n");
704		return -EINVAL;
705	}
706
707	if (rstate->enabled)
708		ret = rdev->desc->ops->set_suspend_enable(rdev);
709	else
710		ret = rdev->desc->ops->set_suspend_disable(rdev);
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	rdev_info(rdev, "%s\n", buf);
810}
811
812static int machine_constraints_voltage(struct regulator_dev *rdev,
813	struct regulation_constraints *constraints)
814{
815	struct regulator_ops *ops = rdev->desc->ops;
816	int ret;
817
818	/* do we need to apply the constraint voltage */
819	if (rdev->constraints->apply_uV &&
820	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821		ret = _regulator_do_set_voltage(rdev,
822						rdev->constraints->min_uV,
823						rdev->constraints->max_uV);
824		if (ret < 0) {
825			rdev_err(rdev, "failed to apply %duV constraint\n",
826				 rdev->constraints->min_uV);
827			return ret;
828		}
829	}
830
831	/* constrain machine-level voltage specs to fit
832	 * the actual range supported by this regulator.
833	 */
834	if (ops->list_voltage && rdev->desc->n_voltages) {
835		int	count = rdev->desc->n_voltages;
836		int	i;
837		int	min_uV = INT_MAX;
838		int	max_uV = INT_MIN;
839		int	cmin = constraints->min_uV;
840		int	cmax = constraints->max_uV;
841
842		/* it's safe to autoconfigure fixed-voltage supplies
843		   and the constraints are used by list_voltage. */
844		if (count == 1 && !cmin) {
845			cmin = 1;
846			cmax = INT_MAX;
847			constraints->min_uV = cmin;
848			constraints->max_uV = cmax;
849		}
850
851		/* voltage constraints are optional */
852		if ((cmin == 0) && (cmax == 0))
853			return 0;
854
855		/* else require explicit machine-level constraints */
856		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857			rdev_err(rdev, "invalid voltage constraints\n");
858			return -EINVAL;
859		}
860
861		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862		for (i = 0; i < count; i++) {
863			int	value;
864
865			value = ops->list_voltage(rdev, i);
866			if (value <= 0)
867				continue;
868
869			/* maybe adjust [min_uV..max_uV] */
870			if (value >= cmin && value < min_uV)
871				min_uV = value;
872			if (value <= cmax && value > max_uV)
873				max_uV = value;
874		}
875
876		/* final: [min_uV..max_uV] valid iff constraints valid */
877		if (max_uV < min_uV) {
878			rdev_err(rdev, "unsupportable voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* use regulator's subset of machine constraints */
883		if (constraints->min_uV < min_uV) {
884			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885				 constraints->min_uV, min_uV);
886			constraints->min_uV = min_uV;
887		}
888		if (constraints->max_uV > max_uV) {
889			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890				 constraints->max_uV, max_uV);
891			constraints->max_uV = max_uV;
892		}
893	}
894
895	return 0;
896}
897
898/**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909static int set_machine_constraints(struct regulator_dev *rdev,
910	const struct regulation_constraints *constraints)
911{
912	int ret = 0;
913	struct regulator_ops *ops = rdev->desc->ops;
914
915	if (constraints)
916		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917					    GFP_KERNEL);
918	else
919		rdev->constraints = kzalloc(sizeof(*constraints),
920					    GFP_KERNEL);
921	if (!rdev->constraints)
922		return -ENOMEM;
923
924	ret = machine_constraints_voltage(rdev, rdev->constraints);
925	if (ret != 0)
926		goto out;
927
928	/* do we need to setup our suspend state */
929	if (rdev->constraints->initial_state) {
930		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931		if (ret < 0) {
932			rdev_err(rdev, "failed to set suspend state\n");
933			goto out;
934		}
935	}
936
937	if (rdev->constraints->initial_mode) {
938		if (!ops->set_mode) {
939			rdev_err(rdev, "no set_mode operation\n");
940			ret = -EINVAL;
941			goto out;
942		}
943
944		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945		if (ret < 0) {
946			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947			goto out;
948		}
949	}
950
951	/* If the constraints say the regulator should be on at this point
952	 * and we have control then make sure it is enabled.
953	 */
954	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955	    ops->enable) {
956		ret = ops->enable(rdev);
957		if (ret < 0) {
958			rdev_err(rdev, "failed to enable\n");
959			goto out;
960		}
961	}
962
963	print_constraints(rdev);
964	return 0;
965out:
966	kfree(rdev->constraints);
967	rdev->constraints = NULL;
968	return ret;
969}
970
971/**
972 * set_supply - set regulator supply regulator
973 * @rdev: regulator name
974 * @supply_rdev: supply regulator name
975 *
976 * Called by platform initialisation code to set the supply regulator for this
977 * regulator. This ensures that a regulators supply will also be enabled by the
978 * core if it's child is enabled.
979 */
980static int set_supply(struct regulator_dev *rdev,
981		      struct regulator_dev *supply_rdev)
982{
983	int err;
984
985	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988	if (rdev->supply == NULL) {
989		err = -ENOMEM;
990		return err;
991	}
992
993	return 0;
994}
995
996/**
997 * set_consumer_device_supply - Bind a regulator to a symbolic supply
998 * @rdev:         regulator source
999 * @consumer_dev_name: dev_name() string for device supply applies to
1000 * @supply:       symbolic name for supply
1001 *
1002 * Allows platform initialisation code to map physical regulator
1003 * sources to symbolic names for supplies for use by devices.  Devices
1004 * should use these symbolic names to request regulators, avoiding the
1005 * need to provide board-specific regulator names as platform data.
1006 *
1007 * Only one of consumer_dev and consumer_dev_name may be specified.
1008 */
1009static int set_consumer_device_supply(struct regulator_dev *rdev,
1010				      const char *consumer_dev_name,
1011				      const char *supply)
1012{
1013	struct regulator_map *node;
1014	int has_dev;
1015
1016	if (supply == NULL)
1017		return -EINVAL;
1018
1019	if (consumer_dev_name != NULL)
1020		has_dev = 1;
1021	else
1022		has_dev = 0;
1023
1024	list_for_each_entry(node, &regulator_map_list, list) {
1025		if (node->dev_name && consumer_dev_name) {
1026			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1027				continue;
1028		} else if (node->dev_name || consumer_dev_name) {
1029			continue;
1030		}
1031
1032		if (strcmp(node->supply, supply) != 0)
1033			continue;
1034
1035		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1036			 consumer_dev_name,
1037			 dev_name(&node->regulator->dev),
1038			 node->regulator->desc->name,
1039			 supply,
1040			 dev_name(&rdev->dev), rdev_get_name(rdev));
1041		return -EBUSY;
1042	}
1043
1044	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1045	if (node == NULL)
1046		return -ENOMEM;
1047
1048	node->regulator = rdev;
1049	node->supply = supply;
1050
1051	if (has_dev) {
1052		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1053		if (node->dev_name == NULL) {
1054			kfree(node);
1055			return -ENOMEM;
1056		}
1057	}
1058
1059	list_add(&node->list, &regulator_map_list);
1060	return 0;
1061}
1062
1063static void unset_regulator_supplies(struct regulator_dev *rdev)
1064{
1065	struct regulator_map *node, *n;
1066
1067	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1068		if (rdev == node->regulator) {
1069			list_del(&node->list);
1070			kfree(node->dev_name);
1071			kfree(node);
1072		}
1073	}
1074}
1075
1076#define REG_STR_SIZE	64
1077
1078static struct regulator *create_regulator(struct regulator_dev *rdev,
1079					  struct device *dev,
1080					  const char *supply_name)
1081{
1082	struct regulator *regulator;
1083	char buf[REG_STR_SIZE];
1084	int err, size;
1085
1086	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1087	if (regulator == NULL)
1088		return NULL;
1089
1090	mutex_lock(&rdev->mutex);
1091	regulator->rdev = rdev;
1092	list_add(&regulator->list, &rdev->consumer_list);
1093
1094	if (dev) {
1095		/* create a 'requested_microamps_name' sysfs entry */
1096		size = scnprintf(buf, REG_STR_SIZE,
1097				 "microamps_requested_%s-%s",
1098				 dev_name(dev), supply_name);
1099		if (size >= REG_STR_SIZE)
1100			goto overflow_err;
1101
1102		regulator->dev = dev;
1103		sysfs_attr_init(&regulator->dev_attr.attr);
1104		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1105		if (regulator->dev_attr.attr.name == NULL)
1106			goto attr_name_err;
1107
1108		regulator->dev_attr.attr.mode = 0444;
1109		regulator->dev_attr.show = device_requested_uA_show;
1110		err = device_create_file(dev, &regulator->dev_attr);
1111		if (err < 0) {
1112			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1113			goto attr_name_err;
1114		}
1115
1116		/* also add a link to the device sysfs entry */
1117		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1118				 dev->kobj.name, supply_name);
1119		if (size >= REG_STR_SIZE)
1120			goto attr_err;
1121
1122		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1123		if (regulator->supply_name == NULL)
1124			goto attr_err;
1125
1126		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1127					buf);
1128		if (err) {
1129			rdev_warn(rdev, "could not add device link %s err %d\n",
1130				  dev->kobj.name, err);
1131			goto link_name_err;
1132		}
1133	} else {
1134		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1135		if (regulator->supply_name == NULL)
1136			goto attr_err;
1137	}
1138
1139#ifdef CONFIG_DEBUG_FS
1140	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1141						rdev->debugfs);
1142	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1143		rdev_warn(rdev, "Failed to create debugfs directory\n");
1144		regulator->debugfs = NULL;
1145	} else {
1146		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1147				   &regulator->uA_load);
1148		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1149				   &regulator->min_uV);
1150		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1151				   &regulator->max_uV);
1152	}
1153#endif
1154
1155	mutex_unlock(&rdev->mutex);
1156	return regulator;
1157link_name_err:
1158	kfree(regulator->supply_name);
1159attr_err:
1160	device_remove_file(regulator->dev, &regulator->dev_attr);
1161attr_name_err:
1162	kfree(regulator->dev_attr.attr.name);
1163overflow_err:
1164	list_del(&regulator->list);
1165	kfree(regulator);
1166	mutex_unlock(&rdev->mutex);
1167	return NULL;
1168}
1169
1170static int _regulator_get_enable_time(struct regulator_dev *rdev)
1171{
1172	if (!rdev->desc->ops->enable_time)
1173		return 0;
1174	return rdev->desc->ops->enable_time(rdev);
1175}
1176
1177static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1178							 const char *supply)
1179{
1180	struct regulator_dev *r;
1181	struct device_node *node;
1182
1183	/* first do a dt based lookup */
1184	if (dev && dev->of_node) {
1185		node = of_get_regulator(dev, supply);
1186		if (node)
1187			list_for_each_entry(r, &regulator_list, list)
1188				if (r->dev.parent &&
1189					node == r->dev.of_node)
1190					return r;
1191	}
1192
1193	/* if not found, try doing it non-dt way */
1194	list_for_each_entry(r, &regulator_list, list)
1195		if (strcmp(rdev_get_name(r), supply) == 0)
1196			return r;
1197
1198	return NULL;
1199}
1200
1201/* Internal regulator request function */
1202static struct regulator *_regulator_get(struct device *dev, const char *id,
1203					int exclusive)
1204{
1205	struct regulator_dev *rdev;
1206	struct regulator_map *map;
1207	struct regulator *regulator = ERR_PTR(-ENODEV);
1208	const char *devname = NULL;
1209	int ret;
1210
1211	if (id == NULL) {
1212		pr_err("get() with no identifier\n");
1213		return regulator;
1214	}
1215
1216	if (dev)
1217		devname = dev_name(dev);
1218
1219	mutex_lock(&regulator_list_mutex);
1220
1221	rdev = regulator_dev_lookup(dev, id);
1222	if (rdev)
1223		goto found;
1224
1225	list_for_each_entry(map, &regulator_map_list, list) {
1226		/* If the mapping has a device set up it must match */
1227		if (map->dev_name &&
1228		    (!devname || strcmp(map->dev_name, devname)))
1229			continue;
1230
1231		if (strcmp(map->supply, id) == 0) {
1232			rdev = map->regulator;
1233			goto found;
1234		}
1235	}
1236
1237	if (board_wants_dummy_regulator) {
1238		rdev = dummy_regulator_rdev;
1239		goto found;
1240	}
1241
1242#ifdef CONFIG_REGULATOR_DUMMY
1243	if (!devname)
1244		devname = "deviceless";
1245
1246	/* If the board didn't flag that it was fully constrained then
1247	 * substitute in a dummy regulator so consumers can continue.
1248	 */
1249	if (!has_full_constraints) {
1250		pr_warn("%s supply %s not found, using dummy regulator\n",
1251			devname, id);
1252		rdev = dummy_regulator_rdev;
1253		goto found;
1254	}
1255#endif
1256
1257	mutex_unlock(&regulator_list_mutex);
1258	return regulator;
1259
1260found:
1261	if (rdev->exclusive) {
1262		regulator = ERR_PTR(-EPERM);
1263		goto out;
1264	}
1265
1266	if (exclusive && rdev->open_count) {
1267		regulator = ERR_PTR(-EBUSY);
1268		goto out;
1269	}
1270
1271	if (!try_module_get(rdev->owner))
1272		goto out;
1273
1274	regulator = create_regulator(rdev, dev, id);
1275	if (regulator == NULL) {
1276		regulator = ERR_PTR(-ENOMEM);
1277		module_put(rdev->owner);
1278		goto out;
1279	}
1280
1281	rdev->open_count++;
1282	if (exclusive) {
1283		rdev->exclusive = 1;
1284
1285		ret = _regulator_is_enabled(rdev);
1286		if (ret > 0)
1287			rdev->use_count = 1;
1288		else
1289			rdev->use_count = 0;
1290	}
1291
1292out:
1293	mutex_unlock(&regulator_list_mutex);
1294
1295	return regulator;
1296}
1297
1298/**
1299 * regulator_get - lookup and obtain a reference to a regulator.
1300 * @dev: device for regulator "consumer"
1301 * @id: Supply name or regulator ID.
1302 *
1303 * Returns a struct regulator corresponding to the regulator producer,
1304 * or IS_ERR() condition containing errno.
1305 *
1306 * Use of supply names configured via regulator_set_device_supply() is
1307 * strongly encouraged.  It is recommended that the supply name used
1308 * should match the name used for the supply and/or the relevant
1309 * device pins in the datasheet.
1310 */
1311struct regulator *regulator_get(struct device *dev, const char *id)
1312{
1313	return _regulator_get(dev, id, 0);
1314}
1315EXPORT_SYMBOL_GPL(regulator_get);
1316
1317/**
1318 * regulator_get_exclusive - obtain exclusive access to a regulator.
1319 * @dev: device for regulator "consumer"
1320 * @id: Supply name or regulator ID.
1321 *
1322 * Returns a struct regulator corresponding to the regulator producer,
1323 * or IS_ERR() condition containing errno.  Other consumers will be
1324 * unable to obtain this reference is held and the use count for the
1325 * regulator will be initialised to reflect the current state of the
1326 * regulator.
1327 *
1328 * This is intended for use by consumers which cannot tolerate shared
1329 * use of the regulator such as those which need to force the
1330 * regulator off for correct operation of the hardware they are
1331 * controlling.
1332 *
1333 * Use of supply names configured via regulator_set_device_supply() is
1334 * strongly encouraged.  It is recommended that the supply name used
1335 * should match the name used for the supply and/or the relevant
1336 * device pins in the datasheet.
1337 */
1338struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1339{
1340	return _regulator_get(dev, id, 1);
1341}
1342EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1343
1344/**
1345 * regulator_put - "free" the regulator source
1346 * @regulator: regulator source
1347 *
1348 * Note: drivers must ensure that all regulator_enable calls made on this
1349 * regulator source are balanced by regulator_disable calls prior to calling
1350 * this function.
1351 */
1352void regulator_put(struct regulator *regulator)
1353{
1354	struct regulator_dev *rdev;
1355
1356	if (regulator == NULL || IS_ERR(regulator))
1357		return;
1358
1359	mutex_lock(&regulator_list_mutex);
1360	rdev = regulator->rdev;
1361
1362#ifdef CONFIG_DEBUG_FS
1363	debugfs_remove_recursive(regulator->debugfs);
1364#endif
1365
1366	/* remove any sysfs entries */
1367	if (regulator->dev) {
1368		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1369		device_remove_file(regulator->dev, &regulator->dev_attr);
1370		kfree(regulator->dev_attr.attr.name);
1371	}
1372	kfree(regulator->supply_name);
1373	list_del(&regulator->list);
1374	kfree(regulator);
1375
1376	rdev->open_count--;
1377	rdev->exclusive = 0;
1378
1379	module_put(rdev->owner);
1380	mutex_unlock(&regulator_list_mutex);
1381}
1382EXPORT_SYMBOL_GPL(regulator_put);
1383
1384static int _regulator_can_change_status(struct regulator_dev *rdev)
1385{
1386	if (!rdev->constraints)
1387		return 0;
1388
1389	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1390		return 1;
1391	else
1392		return 0;
1393}
1394
1395/* locks held by regulator_enable() */
1396static int _regulator_enable(struct regulator_dev *rdev)
1397{
1398	int ret, delay;
1399
1400	/* check voltage and requested load before enabling */
1401	if (rdev->constraints &&
1402	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1403		drms_uA_update(rdev);
1404
1405	if (rdev->use_count == 0) {
1406		/* The regulator may on if it's not switchable or left on */
1407		ret = _regulator_is_enabled(rdev);
1408		if (ret == -EINVAL || ret == 0) {
1409			if (!_regulator_can_change_status(rdev))
1410				return -EPERM;
1411
1412			if (!rdev->desc->ops->enable)
1413				return -EINVAL;
1414
1415			/* Query before enabling in case configuration
1416			 * dependent.  */
1417			ret = _regulator_get_enable_time(rdev);
1418			if (ret >= 0) {
1419				delay = ret;
1420			} else {
1421				rdev_warn(rdev, "enable_time() failed: %d\n",
1422					   ret);
1423				delay = 0;
1424			}
1425
1426			trace_regulator_enable(rdev_get_name(rdev));
1427
1428			/* Allow the regulator to ramp; it would be useful
1429			 * to extend this for bulk operations so that the
1430			 * regulators can ramp together.  */
1431			ret = rdev->desc->ops->enable(rdev);
1432			if (ret < 0)
1433				return ret;
1434
1435			trace_regulator_enable_delay(rdev_get_name(rdev));
1436
1437			if (delay >= 1000) {
1438				mdelay(delay / 1000);
1439				udelay(delay % 1000);
1440			} else if (delay) {
1441				udelay(delay);
1442			}
1443
1444			trace_regulator_enable_complete(rdev_get_name(rdev));
1445
1446		} else if (ret < 0) {
1447			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1448			return ret;
1449		}
1450		/* Fallthrough on positive return values - already enabled */
1451	}
1452
1453	rdev->use_count++;
1454
1455	return 0;
1456}
1457
1458/**
1459 * regulator_enable - enable regulator output
1460 * @regulator: regulator source
1461 *
1462 * Request that the regulator be enabled with the regulator output at
1463 * the predefined voltage or current value.  Calls to regulator_enable()
1464 * must be balanced with calls to regulator_disable().
1465 *
1466 * NOTE: the output value can be set by other drivers, boot loader or may be
1467 * hardwired in the regulator.
1468 */
1469int regulator_enable(struct regulator *regulator)
1470{
1471	struct regulator_dev *rdev = regulator->rdev;
1472	int ret = 0;
1473
1474	if (rdev->supply) {
1475		ret = regulator_enable(rdev->supply);
1476		if (ret != 0)
1477			return ret;
1478	}
1479
1480	mutex_lock(&rdev->mutex);
1481	ret = _regulator_enable(rdev);
1482	mutex_unlock(&rdev->mutex);
1483
1484	if (ret != 0 && rdev->supply)
1485		regulator_disable(rdev->supply);
1486
1487	return ret;
1488}
1489EXPORT_SYMBOL_GPL(regulator_enable);
1490
1491/* locks held by regulator_disable() */
1492static int _regulator_disable(struct regulator_dev *rdev)
1493{
1494	int ret = 0;
1495
1496	if (WARN(rdev->use_count <= 0,
1497		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1498		return -EIO;
1499
1500	/* are we the last user and permitted to disable ? */
1501	if (rdev->use_count == 1 &&
1502	    (rdev->constraints && !rdev->constraints->always_on)) {
1503
1504		/* we are last user */
1505		if (_regulator_can_change_status(rdev) &&
1506		    rdev->desc->ops->disable) {
1507			trace_regulator_disable(rdev_get_name(rdev));
1508
1509			ret = rdev->desc->ops->disable(rdev);
1510			if (ret < 0) {
1511				rdev_err(rdev, "failed to disable\n");
1512				return ret;
1513			}
1514
1515			trace_regulator_disable_complete(rdev_get_name(rdev));
1516
1517			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1518					     NULL);
1519		}
1520
1521		rdev->use_count = 0;
1522	} else if (rdev->use_count > 1) {
1523
1524		if (rdev->constraints &&
1525			(rdev->constraints->valid_ops_mask &
1526			REGULATOR_CHANGE_DRMS))
1527			drms_uA_update(rdev);
1528
1529		rdev->use_count--;
1530	}
1531
1532	return ret;
1533}
1534
1535/**
1536 * regulator_disable - disable regulator output
1537 * @regulator: regulator source
1538 *
1539 * Disable the regulator output voltage or current.  Calls to
1540 * regulator_enable() must be balanced with calls to
1541 * regulator_disable().
1542 *
1543 * NOTE: this will only disable the regulator output if no other consumer
1544 * devices have it enabled, the regulator device supports disabling and
1545 * machine constraints permit this operation.
1546 */
1547int regulator_disable(struct regulator *regulator)
1548{
1549	struct regulator_dev *rdev = regulator->rdev;
1550	int ret = 0;
1551
1552	mutex_lock(&rdev->mutex);
1553	ret = _regulator_disable(rdev);
1554	mutex_unlock(&rdev->mutex);
1555
1556	if (ret == 0 && rdev->supply)
1557		regulator_disable(rdev->supply);
1558
1559	return ret;
1560}
1561EXPORT_SYMBOL_GPL(regulator_disable);
1562
1563/* locks held by regulator_force_disable() */
1564static int _regulator_force_disable(struct regulator_dev *rdev)
1565{
1566	int ret = 0;
1567
1568	/* force disable */
1569	if (rdev->desc->ops->disable) {
1570		/* ah well, who wants to live forever... */
1571		ret = rdev->desc->ops->disable(rdev);
1572		if (ret < 0) {
1573			rdev_err(rdev, "failed to force disable\n");
1574			return ret;
1575		}
1576		/* notify other consumers that power has been forced off */
1577		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1578			REGULATOR_EVENT_DISABLE, NULL);
1579	}
1580
1581	return ret;
1582}
1583
1584/**
1585 * regulator_force_disable - force disable regulator output
1586 * @regulator: regulator source
1587 *
1588 * Forcibly disable the regulator output voltage or current.
1589 * NOTE: this *will* disable the regulator output even if other consumer
1590 * devices have it enabled. This should be used for situations when device
1591 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1592 */
1593int regulator_force_disable(struct regulator *regulator)
1594{
1595	struct regulator_dev *rdev = regulator->rdev;
1596	int ret;
1597
1598	mutex_lock(&rdev->mutex);
1599	regulator->uA_load = 0;
1600	ret = _regulator_force_disable(regulator->rdev);
1601	mutex_unlock(&rdev->mutex);
1602
1603	if (rdev->supply)
1604		while (rdev->open_count--)
1605			regulator_disable(rdev->supply);
1606
1607	return ret;
1608}
1609EXPORT_SYMBOL_GPL(regulator_force_disable);
1610
1611static void regulator_disable_work(struct work_struct *work)
1612{
1613	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1614						  disable_work.work);
1615	int count, i, ret;
1616
1617	mutex_lock(&rdev->mutex);
1618
1619	BUG_ON(!rdev->deferred_disables);
1620
1621	count = rdev->deferred_disables;
1622	rdev->deferred_disables = 0;
1623
1624	for (i = 0; i < count; i++) {
1625		ret = _regulator_disable(rdev);
1626		if (ret != 0)
1627			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1628	}
1629
1630	mutex_unlock(&rdev->mutex);
1631
1632	if (rdev->supply) {
1633		for (i = 0; i < count; i++) {
1634			ret = regulator_disable(rdev->supply);
1635			if (ret != 0) {
1636				rdev_err(rdev,
1637					 "Supply disable failed: %d\n", ret);
1638			}
1639		}
1640	}
1641}
1642
1643/**
1644 * regulator_disable_deferred - disable regulator output with delay
1645 * @regulator: regulator source
1646 * @ms: miliseconds until the regulator is disabled
1647 *
1648 * Execute regulator_disable() on the regulator after a delay.  This
1649 * is intended for use with devices that require some time to quiesce.
1650 *
1651 * NOTE: this will only disable the regulator output if no other consumer
1652 * devices have it enabled, the regulator device supports disabling and
1653 * machine constraints permit this operation.
1654 */
1655int regulator_disable_deferred(struct regulator *regulator, int ms)
1656{
1657	struct regulator_dev *rdev = regulator->rdev;
1658	int ret;
1659
1660	mutex_lock(&rdev->mutex);
1661	rdev->deferred_disables++;
1662	mutex_unlock(&rdev->mutex);
1663
1664	ret = schedule_delayed_work(&rdev->disable_work,
1665				    msecs_to_jiffies(ms));
1666	if (ret < 0)
1667		return ret;
1668	else
1669		return 0;
1670}
1671EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1672
1673static int _regulator_is_enabled(struct regulator_dev *rdev)
1674{
1675	/* If we don't know then assume that the regulator is always on */
1676	if (!rdev->desc->ops->is_enabled)
1677		return 1;
1678
1679	return rdev->desc->ops->is_enabled(rdev);
1680}
1681
1682/**
1683 * regulator_is_enabled - is the regulator output enabled
1684 * @regulator: regulator source
1685 *
1686 * Returns positive if the regulator driver backing the source/client
1687 * has requested that the device be enabled, zero if it hasn't, else a
1688 * negative errno code.
1689 *
1690 * Note that the device backing this regulator handle can have multiple
1691 * users, so it might be enabled even if regulator_enable() was never
1692 * called for this particular source.
1693 */
1694int regulator_is_enabled(struct regulator *regulator)
1695{
1696	int ret;
1697
1698	mutex_lock(&regulator->rdev->mutex);
1699	ret = _regulator_is_enabled(regulator->rdev);
1700	mutex_unlock(&regulator->rdev->mutex);
1701
1702	return ret;
1703}
1704EXPORT_SYMBOL_GPL(regulator_is_enabled);
1705
1706/**
1707 * regulator_count_voltages - count regulator_list_voltage() selectors
1708 * @regulator: regulator source
1709 *
1710 * Returns number of selectors, or negative errno.  Selectors are
1711 * numbered starting at zero, and typically correspond to bitfields
1712 * in hardware registers.
1713 */
1714int regulator_count_voltages(struct regulator *regulator)
1715{
1716	struct regulator_dev	*rdev = regulator->rdev;
1717
1718	return rdev->desc->n_voltages ? : -EINVAL;
1719}
1720EXPORT_SYMBOL_GPL(regulator_count_voltages);
1721
1722/**
1723 * regulator_list_voltage - enumerate supported voltages
1724 * @regulator: regulator source
1725 * @selector: identify voltage to list
1726 * Context: can sleep
1727 *
1728 * Returns a voltage that can be passed to @regulator_set_voltage(),
1729 * zero if this selector code can't be used on this system, or a
1730 * negative errno.
1731 */
1732int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1733{
1734	struct regulator_dev	*rdev = regulator->rdev;
1735	struct regulator_ops	*ops = rdev->desc->ops;
1736	int			ret;
1737
1738	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1739		return -EINVAL;
1740
1741	mutex_lock(&rdev->mutex);
1742	ret = ops->list_voltage(rdev, selector);
1743	mutex_unlock(&rdev->mutex);
1744
1745	if (ret > 0) {
1746		if (ret < rdev->constraints->min_uV)
1747			ret = 0;
1748		else if (ret > rdev->constraints->max_uV)
1749			ret = 0;
1750	}
1751
1752	return ret;
1753}
1754EXPORT_SYMBOL_GPL(regulator_list_voltage);
1755
1756/**
1757 * regulator_is_supported_voltage - check if a voltage range can be supported
1758 *
1759 * @regulator: Regulator to check.
1760 * @min_uV: Minimum required voltage in uV.
1761 * @max_uV: Maximum required voltage in uV.
1762 *
1763 * Returns a boolean or a negative error code.
1764 */
1765int regulator_is_supported_voltage(struct regulator *regulator,
1766				   int min_uV, int max_uV)
1767{
1768	int i, voltages, ret;
1769
1770	ret = regulator_count_voltages(regulator);
1771	if (ret < 0)
1772		return ret;
1773	voltages = ret;
1774
1775	for (i = 0; i < voltages; i++) {
1776		ret = regulator_list_voltage(regulator, i);
1777
1778		if (ret >= min_uV && ret <= max_uV)
1779			return 1;
1780	}
1781
1782	return 0;
1783}
1784EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1785
1786static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1787				     int min_uV, int max_uV)
1788{
1789	int ret;
1790	int delay = 0;
1791	unsigned int selector;
1792
1793	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1794
1795	min_uV += rdev->constraints->uV_offset;
1796	max_uV += rdev->constraints->uV_offset;
1797
1798	if (rdev->desc->ops->set_voltage) {
1799		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1800						   &selector);
1801
1802		if (rdev->desc->ops->list_voltage)
1803			selector = rdev->desc->ops->list_voltage(rdev,
1804								 selector);
1805		else
1806			selector = -1;
1807	} else if (rdev->desc->ops->set_voltage_sel) {
1808		int best_val = INT_MAX;
1809		int i;
1810
1811		selector = 0;
1812
1813		/* Find the smallest voltage that falls within the specified
1814		 * range.
1815		 */
1816		for (i = 0; i < rdev->desc->n_voltages; i++) {
1817			ret = rdev->desc->ops->list_voltage(rdev, i);
1818			if (ret < 0)
1819				continue;
1820
1821			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1822				best_val = ret;
1823				selector = i;
1824			}
1825		}
1826
1827		/*
1828		 * If we can't obtain the old selector there is not enough
1829		 * info to call set_voltage_time_sel().
1830		 */
1831		if (rdev->desc->ops->set_voltage_time_sel &&
1832		    rdev->desc->ops->get_voltage_sel) {
1833			unsigned int old_selector = 0;
1834
1835			ret = rdev->desc->ops->get_voltage_sel(rdev);
1836			if (ret < 0)
1837				return ret;
1838			old_selector = ret;
1839			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1840						old_selector, selector);
1841		}
1842
1843		if (best_val != INT_MAX) {
1844			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1845			selector = best_val;
1846		} else {
1847			ret = -EINVAL;
1848		}
1849	} else {
1850		ret = -EINVAL;
1851	}
1852
1853	/* Insert any necessary delays */
1854	if (delay >= 1000) {
1855		mdelay(delay / 1000);
1856		udelay(delay % 1000);
1857	} else if (delay) {
1858		udelay(delay);
1859	}
1860
1861	if (ret == 0)
1862		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1863				     NULL);
1864
1865	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1866
1867	return ret;
1868}
1869
1870/**
1871 * regulator_set_voltage - set regulator output voltage
1872 * @regulator: regulator source
1873 * @min_uV: Minimum required voltage in uV
1874 * @max_uV: Maximum acceptable voltage in uV
1875 *
1876 * Sets a voltage regulator to the desired output voltage. This can be set
1877 * during any regulator state. IOW, regulator can be disabled or enabled.
1878 *
1879 * If the regulator is enabled then the voltage will change to the new value
1880 * immediately otherwise if the regulator is disabled the regulator will
1881 * output at the new voltage when enabled.
1882 *
1883 * NOTE: If the regulator is shared between several devices then the lowest
1884 * request voltage that meets the system constraints will be used.
1885 * Regulator system constraints must be set for this regulator before
1886 * calling this function otherwise this call will fail.
1887 */
1888int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1889{
1890	struct regulator_dev *rdev = regulator->rdev;
1891	int ret = 0;
1892
1893	mutex_lock(&rdev->mutex);
1894
1895	/* If we're setting the same range as last time the change
1896	 * should be a noop (some cpufreq implementations use the same
1897	 * voltage for multiple frequencies, for example).
1898	 */
1899	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1900		goto out;
1901
1902	/* sanity check */
1903	if (!rdev->desc->ops->set_voltage &&
1904	    !rdev->desc->ops->set_voltage_sel) {
1905		ret = -EINVAL;
1906		goto out;
1907	}
1908
1909	/* constraints check */
1910	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1911	if (ret < 0)
1912		goto out;
1913	regulator->min_uV = min_uV;
1914	regulator->max_uV = max_uV;
1915
1916	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1917	if (ret < 0)
1918		goto out;
1919
1920	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1921
1922out:
1923	mutex_unlock(&rdev->mutex);
1924	return ret;
1925}
1926EXPORT_SYMBOL_GPL(regulator_set_voltage);
1927
1928/**
1929 * regulator_set_voltage_time - get raise/fall time
1930 * @regulator: regulator source
1931 * @old_uV: starting voltage in microvolts
1932 * @new_uV: target voltage in microvolts
1933 *
1934 * Provided with the starting and ending voltage, this function attempts to
1935 * calculate the time in microseconds required to rise or fall to this new
1936 * voltage.
1937 */
1938int regulator_set_voltage_time(struct regulator *regulator,
1939			       int old_uV, int new_uV)
1940{
1941	struct regulator_dev	*rdev = regulator->rdev;
1942	struct regulator_ops	*ops = rdev->desc->ops;
1943	int old_sel = -1;
1944	int new_sel = -1;
1945	int voltage;
1946	int i;
1947
1948	/* Currently requires operations to do this */
1949	if (!ops->list_voltage || !ops->set_voltage_time_sel
1950	    || !rdev->desc->n_voltages)
1951		return -EINVAL;
1952
1953	for (i = 0; i < rdev->desc->n_voltages; i++) {
1954		/* We only look for exact voltage matches here */
1955		voltage = regulator_list_voltage(regulator, i);
1956		if (voltage < 0)
1957			return -EINVAL;
1958		if (voltage == 0)
1959			continue;
1960		if (voltage == old_uV)
1961			old_sel = i;
1962		if (voltage == new_uV)
1963			new_sel = i;
1964	}
1965
1966	if (old_sel < 0 || new_sel < 0)
1967		return -EINVAL;
1968
1969	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1970}
1971EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1972
1973/**
1974 * regulator_sync_voltage - re-apply last regulator output voltage
1975 * @regulator: regulator source
1976 *
1977 * Re-apply the last configured voltage.  This is intended to be used
1978 * where some external control source the consumer is cooperating with
1979 * has caused the configured voltage to change.
1980 */
1981int regulator_sync_voltage(struct regulator *regulator)
1982{
1983	struct regulator_dev *rdev = regulator->rdev;
1984	int ret, min_uV, max_uV;
1985
1986	mutex_lock(&rdev->mutex);
1987
1988	if (!rdev->desc->ops->set_voltage &&
1989	    !rdev->desc->ops->set_voltage_sel) {
1990		ret = -EINVAL;
1991		goto out;
1992	}
1993
1994	/* This is only going to work if we've had a voltage configured. */
1995	if (!regulator->min_uV && !regulator->max_uV) {
1996		ret = -EINVAL;
1997		goto out;
1998	}
1999
2000	min_uV = regulator->min_uV;
2001	max_uV = regulator->max_uV;
2002
2003	/* This should be a paranoia check... */
2004	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2005	if (ret < 0)
2006		goto out;
2007
2008	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2009	if (ret < 0)
2010		goto out;
2011
2012	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2013
2014out:
2015	mutex_unlock(&rdev->mutex);
2016	return ret;
2017}
2018EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2019
2020static int _regulator_get_voltage(struct regulator_dev *rdev)
2021{
2022	int sel, ret;
2023
2024	if (rdev->desc->ops->get_voltage_sel) {
2025		sel = rdev->desc->ops->get_voltage_sel(rdev);
2026		if (sel < 0)
2027			return sel;
2028		ret = rdev->desc->ops->list_voltage(rdev, sel);
2029	} else if (rdev->desc->ops->get_voltage) {
2030		ret = rdev->desc->ops->get_voltage(rdev);
2031	} else {
2032		return -EINVAL;
2033	}
2034
2035	if (ret < 0)
2036		return ret;
2037	return ret - rdev->constraints->uV_offset;
2038}
2039
2040/**
2041 * regulator_get_voltage - get regulator output voltage
2042 * @regulator: regulator source
2043 *
2044 * This returns the current regulator voltage in uV.
2045 *
2046 * NOTE: If the regulator is disabled it will return the voltage value. This
2047 * function should not be used to determine regulator state.
2048 */
2049int regulator_get_voltage(struct regulator *regulator)
2050{
2051	int ret;
2052
2053	mutex_lock(&regulator->rdev->mutex);
2054
2055	ret = _regulator_get_voltage(regulator->rdev);
2056
2057	mutex_unlock(&regulator->rdev->mutex);
2058
2059	return ret;
2060}
2061EXPORT_SYMBOL_GPL(regulator_get_voltage);
2062
2063/**
2064 * regulator_set_current_limit - set regulator output current limit
2065 * @regulator: regulator source
2066 * @min_uA: Minimuum supported current in uA
2067 * @max_uA: Maximum supported current in uA
2068 *
2069 * Sets current sink to the desired output current. This can be set during
2070 * any regulator state. IOW, regulator can be disabled or enabled.
2071 *
2072 * If the regulator is enabled then the current will change to the new value
2073 * immediately otherwise if the regulator is disabled the regulator will
2074 * output at the new current when enabled.
2075 *
2076 * NOTE: Regulator system constraints must be set for this regulator before
2077 * calling this function otherwise this call will fail.
2078 */
2079int regulator_set_current_limit(struct regulator *regulator,
2080			       int min_uA, int max_uA)
2081{
2082	struct regulator_dev *rdev = regulator->rdev;
2083	int ret;
2084
2085	mutex_lock(&rdev->mutex);
2086
2087	/* sanity check */
2088	if (!rdev->desc->ops->set_current_limit) {
2089		ret = -EINVAL;
2090		goto out;
2091	}
2092
2093	/* constraints check */
2094	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2095	if (ret < 0)
2096		goto out;
2097
2098	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2099out:
2100	mutex_unlock(&rdev->mutex);
2101	return ret;
2102}
2103EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2104
2105static int _regulator_get_current_limit(struct regulator_dev *rdev)
2106{
2107	int ret;
2108
2109	mutex_lock(&rdev->mutex);
2110
2111	/* sanity check */
2112	if (!rdev->desc->ops->get_current_limit) {
2113		ret = -EINVAL;
2114		goto out;
2115	}
2116
2117	ret = rdev->desc->ops->get_current_limit(rdev);
2118out:
2119	mutex_unlock(&rdev->mutex);
2120	return ret;
2121}
2122
2123/**
2124 * regulator_get_current_limit - get regulator output current
2125 * @regulator: regulator source
2126 *
2127 * This returns the current supplied by the specified current sink in uA.
2128 *
2129 * NOTE: If the regulator is disabled it will return the current value. This
2130 * function should not be used to determine regulator state.
2131 */
2132int regulator_get_current_limit(struct regulator *regulator)
2133{
2134	return _regulator_get_current_limit(regulator->rdev);
2135}
2136EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2137
2138/**
2139 * regulator_set_mode - set regulator operating mode
2140 * @regulator: regulator source
2141 * @mode: operating mode - one of the REGULATOR_MODE constants
2142 *
2143 * Set regulator operating mode to increase regulator efficiency or improve
2144 * regulation performance.
2145 *
2146 * NOTE: Regulator system constraints must be set for this regulator before
2147 * calling this function otherwise this call will fail.
2148 */
2149int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2150{
2151	struct regulator_dev *rdev = regulator->rdev;
2152	int ret;
2153	int regulator_curr_mode;
2154
2155	mutex_lock(&rdev->mutex);
2156
2157	/* sanity check */
2158	if (!rdev->desc->ops->set_mode) {
2159		ret = -EINVAL;
2160		goto out;
2161	}
2162
2163	/* return if the same mode is requested */
2164	if (rdev->desc->ops->get_mode) {
2165		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2166		if (regulator_curr_mode == mode) {
2167			ret = 0;
2168			goto out;
2169		}
2170	}
2171
2172	/* constraints check */
2173	ret = regulator_mode_constrain(rdev, &mode);
2174	if (ret < 0)
2175		goto out;
2176
2177	ret = rdev->desc->ops->set_mode(rdev, mode);
2178out:
2179	mutex_unlock(&rdev->mutex);
2180	return ret;
2181}
2182EXPORT_SYMBOL_GPL(regulator_set_mode);
2183
2184static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2185{
2186	int ret;
2187
2188	mutex_lock(&rdev->mutex);
2189
2190	/* sanity check */
2191	if (!rdev->desc->ops->get_mode) {
2192		ret = -EINVAL;
2193		goto out;
2194	}
2195
2196	ret = rdev->desc->ops->get_mode(rdev);
2197out:
2198	mutex_unlock(&rdev->mutex);
2199	return ret;
2200}
2201
2202/**
2203 * regulator_get_mode - get regulator operating mode
2204 * @regulator: regulator source
2205 *
2206 * Get the current regulator operating mode.
2207 */
2208unsigned int regulator_get_mode(struct regulator *regulator)
2209{
2210	return _regulator_get_mode(regulator->rdev);
2211}
2212EXPORT_SYMBOL_GPL(regulator_get_mode);
2213
2214/**
2215 * regulator_set_optimum_mode - set regulator optimum operating mode
2216 * @regulator: regulator source
2217 * @uA_load: load current
2218 *
2219 * Notifies the regulator core of a new device load. This is then used by
2220 * DRMS (if enabled by constraints) to set the most efficient regulator
2221 * operating mode for the new regulator loading.
2222 *
2223 * Consumer devices notify their supply regulator of the maximum power
2224 * they will require (can be taken from device datasheet in the power
2225 * consumption tables) when they change operational status and hence power
2226 * state. Examples of operational state changes that can affect power
2227 * consumption are :-
2228 *
2229 *    o Device is opened / closed.
2230 *    o Device I/O is about to begin or has just finished.
2231 *    o Device is idling in between work.
2232 *
2233 * This information is also exported via sysfs to userspace.
2234 *
2235 * DRMS will sum the total requested load on the regulator and change
2236 * to the most efficient operating mode if platform constraints allow.
2237 *
2238 * Returns the new regulator mode or error.
2239 */
2240int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2241{
2242	struct regulator_dev *rdev = regulator->rdev;
2243	struct regulator *consumer;
2244	int ret, output_uV, input_uV, total_uA_load = 0;
2245	unsigned int mode;
2246
2247	mutex_lock(&rdev->mutex);
2248
2249	/*
2250	 * first check to see if we can set modes at all, otherwise just
2251	 * tell the consumer everything is OK.
2252	 */
2253	regulator->uA_load = uA_load;
2254	ret = regulator_check_drms(rdev);
2255	if (ret < 0) {
2256		ret = 0;
2257		goto out;
2258	}
2259
2260	if (!rdev->desc->ops->get_optimum_mode)
2261		goto out;
2262
2263	/*
2264	 * we can actually do this so any errors are indicators of
2265	 * potential real failure.
2266	 */
2267	ret = -EINVAL;
2268
2269	/* get output voltage */
2270	output_uV = _regulator_get_voltage(rdev);
2271	if (output_uV <= 0) {
2272		rdev_err(rdev, "invalid output voltage found\n");
2273		goto out;
2274	}
2275
2276	/* get input voltage */
2277	input_uV = 0;
2278	if (rdev->supply)
2279		input_uV = regulator_get_voltage(rdev->supply);
2280	if (input_uV <= 0)
2281		input_uV = rdev->constraints->input_uV;
2282	if (input_uV <= 0) {
2283		rdev_err(rdev, "invalid input voltage found\n");
2284		goto out;
2285	}
2286
2287	/* calc total requested load for this regulator */
2288	list_for_each_entry(consumer, &rdev->consumer_list, list)
2289		total_uA_load += consumer->uA_load;
2290
2291	mode = rdev->desc->ops->get_optimum_mode(rdev,
2292						 input_uV, output_uV,
2293						 total_uA_load);
2294	ret = regulator_mode_constrain(rdev, &mode);
2295	if (ret < 0) {
2296		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2297			 total_uA_load, input_uV, output_uV);
2298		goto out;
2299	}
2300
2301	ret = rdev->desc->ops->set_mode(rdev, mode);
2302	if (ret < 0) {
2303		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2304		goto out;
2305	}
2306	ret = mode;
2307out:
2308	mutex_unlock(&rdev->mutex);
2309	return ret;
2310}
2311EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2312
2313/**
2314 * regulator_register_notifier - register regulator event notifier
2315 * @regulator: regulator source
2316 * @nb: notifier block
2317 *
2318 * Register notifier block to receive regulator events.
2319 */
2320int regulator_register_notifier(struct regulator *regulator,
2321			      struct notifier_block *nb)
2322{
2323	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2324						nb);
2325}
2326EXPORT_SYMBOL_GPL(regulator_register_notifier);
2327
2328/**
2329 * regulator_unregister_notifier - unregister regulator event notifier
2330 * @regulator: regulator source
2331 * @nb: notifier block
2332 *
2333 * Unregister regulator event notifier block.
2334 */
2335int regulator_unregister_notifier(struct regulator *regulator,
2336				struct notifier_block *nb)
2337{
2338	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2339						  nb);
2340}
2341EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2342
2343/* notify regulator consumers and downstream regulator consumers.
2344 * Note mutex must be held by caller.
2345 */
2346static void _notifier_call_chain(struct regulator_dev *rdev,
2347				  unsigned long event, void *data)
2348{
2349	/* call rdev chain first */
2350	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2351}
2352
2353/**
2354 * regulator_bulk_get - get multiple regulator consumers
2355 *
2356 * @dev:           Device to supply
2357 * @num_consumers: Number of consumers to register
2358 * @consumers:     Configuration of consumers; clients are stored here.
2359 *
2360 * @return 0 on success, an errno on failure.
2361 *
2362 * This helper function allows drivers to get several regulator
2363 * consumers in one operation.  If any of the regulators cannot be
2364 * acquired then any regulators that were allocated will be freed
2365 * before returning to the caller.
2366 */
2367int regulator_bulk_get(struct device *dev, int num_consumers,
2368		       struct regulator_bulk_data *consumers)
2369{
2370	int i;
2371	int ret;
2372
2373	for (i = 0; i < num_consumers; i++)
2374		consumers[i].consumer = NULL;
2375
2376	for (i = 0; i < num_consumers; i++) {
2377		consumers[i].consumer = regulator_get(dev,
2378						      consumers[i].supply);
2379		if (IS_ERR(consumers[i].consumer)) {
2380			ret = PTR_ERR(consumers[i].consumer);
2381			dev_err(dev, "Failed to get supply '%s': %d\n",
2382				consumers[i].supply, ret);
2383			consumers[i].consumer = NULL;
2384			goto err;
2385		}
2386	}
2387
2388	return 0;
2389
2390err:
2391	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2392		regulator_put(consumers[i].consumer);
2393
2394	return ret;
2395}
2396EXPORT_SYMBOL_GPL(regulator_bulk_get);
2397
2398static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2399{
2400	struct regulator_bulk_data *bulk = data;
2401
2402	bulk->ret = regulator_enable(bulk->consumer);
2403}
2404
2405/**
2406 * regulator_bulk_enable - enable multiple regulator consumers
2407 *
2408 * @num_consumers: Number of consumers
2409 * @consumers:     Consumer data; clients are stored here.
2410 * @return         0 on success, an errno on failure
2411 *
2412 * This convenience API allows consumers to enable multiple regulator
2413 * clients in a single API call.  If any consumers cannot be enabled
2414 * then any others that were enabled will be disabled again prior to
2415 * return.
2416 */
2417int regulator_bulk_enable(int num_consumers,
2418			  struct regulator_bulk_data *consumers)
2419{
2420	LIST_HEAD(async_domain);
2421	int i;
2422	int ret = 0;
2423
2424	for (i = 0; i < num_consumers; i++)
2425		async_schedule_domain(regulator_bulk_enable_async,
2426				      &consumers[i], &async_domain);
2427
2428	async_synchronize_full_domain(&async_domain);
2429
2430	/* If any consumer failed we need to unwind any that succeeded */
2431	for (i = 0; i < num_consumers; i++) {
2432		if (consumers[i].ret != 0) {
2433			ret = consumers[i].ret;
2434			goto err;
2435		}
2436	}
2437
2438	return 0;
2439
2440err:
2441	for (i = 0; i < num_consumers; i++)
2442		if (consumers[i].ret == 0)
2443			regulator_disable(consumers[i].consumer);
2444		else
2445			pr_err("Failed to enable %s: %d\n",
2446			       consumers[i].supply, consumers[i].ret);
2447
2448	return ret;
2449}
2450EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2451
2452/**
2453 * regulator_bulk_disable - disable multiple regulator consumers
2454 *
2455 * @num_consumers: Number of consumers
2456 * @consumers:     Consumer data; clients are stored here.
2457 * @return         0 on success, an errno on failure
2458 *
2459 * This convenience API allows consumers to disable multiple regulator
2460 * clients in a single API call.  If any consumers cannot be enabled
2461 * then any others that were disabled will be disabled again prior to
2462 * return.
2463 */
2464int regulator_bulk_disable(int num_consumers,
2465			   struct regulator_bulk_data *consumers)
2466{
2467	int i;
2468	int ret;
2469
2470	for (i = 0; i < num_consumers; i++) {
2471		ret = regulator_disable(consumers[i].consumer);
2472		if (ret != 0)
2473			goto err;
2474	}
2475
2476	return 0;
2477
2478err:
2479	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2480	for (--i; i >= 0; --i)
2481		regulator_enable(consumers[i].consumer);
2482
2483	return ret;
2484}
2485EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2486
2487/**
2488 * regulator_bulk_force_disable - force disable multiple regulator consumers
2489 *
2490 * @num_consumers: Number of consumers
2491 * @consumers:     Consumer data; clients are stored here.
2492 * @return         0 on success, an errno on failure
2493 *
2494 * This convenience API allows consumers to forcibly disable multiple regulator
2495 * clients in a single API call.
2496 * NOTE: This should be used for situations when device damage will
2497 * likely occur if the regulators are not disabled (e.g. over temp).
2498 * Although regulator_force_disable function call for some consumers can
2499 * return error numbers, the function is called for all consumers.
2500 */
2501int regulator_bulk_force_disable(int num_consumers,
2502			   struct regulator_bulk_data *consumers)
2503{
2504	int i;
2505	int ret;
2506
2507	for (i = 0; i < num_consumers; i++)
2508		consumers[i].ret =
2509			    regulator_force_disable(consumers[i].consumer);
2510
2511	for (i = 0; i < num_consumers; i++) {
2512		if (consumers[i].ret != 0) {
2513			ret = consumers[i].ret;
2514			goto out;
2515		}
2516	}
2517
2518	return 0;
2519out:
2520	return ret;
2521}
2522EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2523
2524/**
2525 * regulator_bulk_free - free multiple regulator consumers
2526 *
2527 * @num_consumers: Number of consumers
2528 * @consumers:     Consumer data; clients are stored here.
2529 *
2530 * This convenience API allows consumers to free multiple regulator
2531 * clients in a single API call.
2532 */
2533void regulator_bulk_free(int num_consumers,
2534			 struct regulator_bulk_data *consumers)
2535{
2536	int i;
2537
2538	for (i = 0; i < num_consumers; i++) {
2539		regulator_put(consumers[i].consumer);
2540		consumers[i].consumer = NULL;
2541	}
2542}
2543EXPORT_SYMBOL_GPL(regulator_bulk_free);
2544
2545/**
2546 * regulator_notifier_call_chain - call regulator event notifier
2547 * @rdev: regulator source
2548 * @event: notifier block
2549 * @data: callback-specific data.
2550 *
2551 * Called by regulator drivers to notify clients a regulator event has
2552 * occurred. We also notify regulator clients downstream.
2553 * Note lock must be held by caller.
2554 */
2555int regulator_notifier_call_chain(struct regulator_dev *rdev,
2556				  unsigned long event, void *data)
2557{
2558	_notifier_call_chain(rdev, event, data);
2559	return NOTIFY_DONE;
2560
2561}
2562EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2563
2564/**
2565 * regulator_mode_to_status - convert a regulator mode into a status
2566 *
2567 * @mode: Mode to convert
2568 *
2569 * Convert a regulator mode into a status.
2570 */
2571int regulator_mode_to_status(unsigned int mode)
2572{
2573	switch (mode) {
2574	case REGULATOR_MODE_FAST:
2575		return REGULATOR_STATUS_FAST;
2576	case REGULATOR_MODE_NORMAL:
2577		return REGULATOR_STATUS_NORMAL;
2578	case REGULATOR_MODE_IDLE:
2579		return REGULATOR_STATUS_IDLE;
2580	case REGULATOR_STATUS_STANDBY:
2581		return REGULATOR_STATUS_STANDBY;
2582	default:
2583		return 0;
2584	}
2585}
2586EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2587
2588/*
2589 * To avoid cluttering sysfs (and memory) with useless state, only
2590 * create attributes that can be meaningfully displayed.
2591 */
2592static int add_regulator_attributes(struct regulator_dev *rdev)
2593{
2594	struct device		*dev = &rdev->dev;
2595	struct regulator_ops	*ops = rdev->desc->ops;
2596	int			status = 0;
2597
2598	/* some attributes need specific methods to be displayed */
2599	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2600	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2601		status = device_create_file(dev, &dev_attr_microvolts);
2602		if (status < 0)
2603			return status;
2604	}
2605	if (ops->get_current_limit) {
2606		status = device_create_file(dev, &dev_attr_microamps);
2607		if (status < 0)
2608			return status;
2609	}
2610	if (ops->get_mode) {
2611		status = device_create_file(dev, &dev_attr_opmode);
2612		if (status < 0)
2613			return status;
2614	}
2615	if (ops->is_enabled) {
2616		status = device_create_file(dev, &dev_attr_state);
2617		if (status < 0)
2618			return status;
2619	}
2620	if (ops->get_status) {
2621		status = device_create_file(dev, &dev_attr_status);
2622		if (status < 0)
2623			return status;
2624	}
2625
2626	/* some attributes are type-specific */
2627	if (rdev->desc->type == REGULATOR_CURRENT) {
2628		status = device_create_file(dev, &dev_attr_requested_microamps);
2629		if (status < 0)
2630			return status;
2631	}
2632
2633	/* all the other attributes exist to support constraints;
2634	 * don't show them if there are no constraints, or if the
2635	 * relevant supporting methods are missing.
2636	 */
2637	if (!rdev->constraints)
2638		return status;
2639
2640	/* constraints need specific supporting methods */
2641	if (ops->set_voltage || ops->set_voltage_sel) {
2642		status = device_create_file(dev, &dev_attr_min_microvolts);
2643		if (status < 0)
2644			return status;
2645		status = device_create_file(dev, &dev_attr_max_microvolts);
2646		if (status < 0)
2647			return status;
2648	}
2649	if (ops->set_current_limit) {
2650		status = device_create_file(dev, &dev_attr_min_microamps);
2651		if (status < 0)
2652			return status;
2653		status = device_create_file(dev, &dev_attr_max_microamps);
2654		if (status < 0)
2655			return status;
2656	}
2657
2658	/* suspend mode constraints need multiple supporting methods */
2659	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2660		return status;
2661
2662	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2663	if (status < 0)
2664		return status;
2665	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2666	if (status < 0)
2667		return status;
2668	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2669	if (status < 0)
2670		return status;
2671
2672	if (ops->set_suspend_voltage) {
2673		status = device_create_file(dev,
2674				&dev_attr_suspend_standby_microvolts);
2675		if (status < 0)
2676			return status;
2677		status = device_create_file(dev,
2678				&dev_attr_suspend_mem_microvolts);
2679		if (status < 0)
2680			return status;
2681		status = device_create_file(dev,
2682				&dev_attr_suspend_disk_microvolts);
2683		if (status < 0)
2684			return status;
2685	}
2686
2687	if (ops->set_suspend_mode) {
2688		status = device_create_file(dev,
2689				&dev_attr_suspend_standby_mode);
2690		if (status < 0)
2691			return status;
2692		status = device_create_file(dev,
2693				&dev_attr_suspend_mem_mode);
2694		if (status < 0)
2695			return status;
2696		status = device_create_file(dev,
2697				&dev_attr_suspend_disk_mode);
2698		if (status < 0)
2699			return status;
2700	}
2701
2702	return status;
2703}
2704
2705static void rdev_init_debugfs(struct regulator_dev *rdev)
2706{
2707#ifdef CONFIG_DEBUG_FS
2708	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2709	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2710		rdev_warn(rdev, "Failed to create debugfs directory\n");
2711		rdev->debugfs = NULL;
2712		return;
2713	}
2714
2715	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2716			   &rdev->use_count);
2717	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2718			   &rdev->open_count);
2719#endif
2720}
2721
2722/**
2723 * regulator_register - register regulator
2724 * @regulator_desc: regulator to register
2725 * @dev: struct device for the regulator
2726 * @init_data: platform provided init data, passed through by driver
2727 * @driver_data: private regulator data
2728 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2729 *           NULL).
2730 *
2731 * Called by regulator drivers to register a regulator.
2732 * Returns 0 on success.
2733 */
2734struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2735	struct device *dev, const struct regulator_init_data *init_data,
2736	void *driver_data, struct device_node *of_node)
2737{
2738	const struct regulation_constraints *constraints = NULL;
2739	static atomic_t regulator_no = ATOMIC_INIT(0);
2740	struct regulator_dev *rdev;
2741	int ret, i;
2742	const char *supply = NULL;
2743
2744	if (regulator_desc == NULL)
2745		return ERR_PTR(-EINVAL);
2746
2747	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2748		return ERR_PTR(-EINVAL);
2749
2750	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2751	    regulator_desc->type != REGULATOR_CURRENT)
2752		return ERR_PTR(-EINVAL);
2753
2754	/* Only one of each should be implemented */
2755	WARN_ON(regulator_desc->ops->get_voltage &&
2756		regulator_desc->ops->get_voltage_sel);
2757	WARN_ON(regulator_desc->ops->set_voltage &&
2758		regulator_desc->ops->set_voltage_sel);
2759
2760	/* If we're using selectors we must implement list_voltage. */
2761	if (regulator_desc->ops->get_voltage_sel &&
2762	    !regulator_desc->ops->list_voltage) {
2763		return ERR_PTR(-EINVAL);
2764	}
2765	if (regulator_desc->ops->set_voltage_sel &&
2766	    !regulator_desc->ops->list_voltage) {
2767		return ERR_PTR(-EINVAL);
2768	}
2769
2770	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2771	if (rdev == NULL)
2772		return ERR_PTR(-ENOMEM);
2773
2774	mutex_lock(&regulator_list_mutex);
2775
2776	mutex_init(&rdev->mutex);
2777	rdev->reg_data = driver_data;
2778	rdev->owner = regulator_desc->owner;
2779	rdev->desc = regulator_desc;
2780	INIT_LIST_HEAD(&rdev->consumer_list);
2781	INIT_LIST_HEAD(&rdev->list);
2782	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2783	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2784
2785	/* preform any regulator specific init */
2786	if (init_data && init_data->regulator_init) {
2787		ret = init_data->regulator_init(rdev->reg_data);
2788		if (ret < 0)
2789			goto clean;
2790	}
2791
2792	/* register with sysfs */
2793	rdev->dev.class = &regulator_class;
2794	rdev->dev.of_node = of_node;
2795	rdev->dev.parent = dev;
2796	dev_set_name(&rdev->dev, "regulator.%d",
2797		     atomic_inc_return(&regulator_no) - 1);
2798	ret = device_register(&rdev->dev);
2799	if (ret != 0) {
2800		put_device(&rdev->dev);
2801		goto clean;
2802	}
2803
2804	dev_set_drvdata(&rdev->dev, rdev);
2805
2806	/* set regulator constraints */
2807	if (init_data)
2808		constraints = &init_data->constraints;
2809
2810	ret = set_machine_constraints(rdev, constraints);
2811	if (ret < 0)
2812		goto scrub;
2813
2814	/* add attributes supported by this regulator */
2815	ret = add_regulator_attributes(rdev);
2816	if (ret < 0)
2817		goto scrub;
2818
2819	if (init_data && init_data->supply_regulator)
2820		supply = init_data->supply_regulator;
2821	else if (regulator_desc->supply_name)
2822		supply = regulator_desc->supply_name;
2823
2824	if (supply) {
2825		struct regulator_dev *r;
2826
2827		r = regulator_dev_lookup(dev, supply);
2828
2829		if (!r) {
2830			dev_err(dev, "Failed to find supply %s\n", supply);
2831			ret = -ENODEV;
2832			goto scrub;
2833		}
2834
2835		ret = set_supply(rdev, r);
2836		if (ret < 0)
2837			goto scrub;
2838
2839		/* Enable supply if rail is enabled */
2840		if (rdev->desc->ops->is_enabled &&
2841				rdev->desc->ops->is_enabled(rdev)) {
2842			ret = regulator_enable(rdev->supply);
2843			if (ret < 0)
2844				goto scrub;
2845		}
2846	}
2847
2848	/* add consumers devices */
2849	if (init_data) {
2850		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2851			ret = set_consumer_device_supply(rdev,
2852				init_data->consumer_supplies[i].dev_name,
2853				init_data->consumer_supplies[i].supply);
2854			if (ret < 0) {
2855				dev_err(dev, "Failed to set supply %s\n",
2856					init_data->consumer_supplies[i].supply);
2857				goto unset_supplies;
2858			}
2859		}
2860	}
2861
2862	list_add(&rdev->list, &regulator_list);
2863
2864	rdev_init_debugfs(rdev);
2865out:
2866	mutex_unlock(&regulator_list_mutex);
2867	return rdev;
2868
2869unset_supplies:
2870	unset_regulator_supplies(rdev);
2871
2872scrub:
2873	kfree(rdev->constraints);
2874	device_unregister(&rdev->dev);
2875	/* device core frees rdev */
2876	rdev = ERR_PTR(ret);
2877	goto out;
2878
2879clean:
2880	kfree(rdev);
2881	rdev = ERR_PTR(ret);
2882	goto out;
2883}
2884EXPORT_SYMBOL_GPL(regulator_register);
2885
2886/**
2887 * regulator_unregister - unregister regulator
2888 * @rdev: regulator to unregister
2889 *
2890 * Called by regulator drivers to unregister a regulator.
2891 */
2892void regulator_unregister(struct regulator_dev *rdev)
2893{
2894	if (rdev == NULL)
2895		return;
2896
2897	mutex_lock(&regulator_list_mutex);
2898#ifdef CONFIG_DEBUG_FS
2899	debugfs_remove_recursive(rdev->debugfs);
2900#endif
2901	flush_work_sync(&rdev->disable_work.work);
2902	WARN_ON(rdev->open_count);
2903	unset_regulator_supplies(rdev);
2904	list_del(&rdev->list);
2905	if (rdev->supply)
2906		regulator_put(rdev->supply);
2907	kfree(rdev->constraints);
2908	device_unregister(&rdev->dev);
2909	mutex_unlock(&regulator_list_mutex);
2910}
2911EXPORT_SYMBOL_GPL(regulator_unregister);
2912
2913/**
2914 * regulator_suspend_prepare - prepare regulators for system wide suspend
2915 * @state: system suspend state
2916 *
2917 * Configure each regulator with it's suspend operating parameters for state.
2918 * This will usually be called by machine suspend code prior to supending.
2919 */
2920int regulator_suspend_prepare(suspend_state_t state)
2921{
2922	struct regulator_dev *rdev;
2923	int ret = 0;
2924
2925	/* ON is handled by regulator active state */
2926	if (state == PM_SUSPEND_ON)
2927		return -EINVAL;
2928
2929	mutex_lock(&regulator_list_mutex);
2930	list_for_each_entry(rdev, &regulator_list, list) {
2931
2932		mutex_lock(&rdev->mutex);
2933		ret = suspend_prepare(rdev, state);
2934		mutex_unlock(&rdev->mutex);
2935
2936		if (ret < 0) {
2937			rdev_err(rdev, "failed to prepare\n");
2938			goto out;
2939		}
2940	}
2941out:
2942	mutex_unlock(&regulator_list_mutex);
2943	return ret;
2944}
2945EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2946
2947/**
2948 * regulator_suspend_finish - resume regulators from system wide suspend
2949 *
2950 * Turn on regulators that might be turned off by regulator_suspend_prepare
2951 * and that should be turned on according to the regulators properties.
2952 */
2953int regulator_suspend_finish(void)
2954{
2955	struct regulator_dev *rdev;
2956	int ret = 0, error;
2957
2958	mutex_lock(&regulator_list_mutex);
2959	list_for_each_entry(rdev, &regulator_list, list) {
2960		struct regulator_ops *ops = rdev->desc->ops;
2961
2962		mutex_lock(&rdev->mutex);
2963		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2964				ops->enable) {
2965			error = ops->enable(rdev);
2966			if (error)
2967				ret = error;
2968		} else {
2969			if (!has_full_constraints)
2970				goto unlock;
2971			if (!ops->disable)
2972				goto unlock;
2973			if (ops->is_enabled && !ops->is_enabled(rdev))
2974				goto unlock;
2975
2976			error = ops->disable(rdev);
2977			if (error)
2978				ret = error;
2979		}
2980unlock:
2981		mutex_unlock(&rdev->mutex);
2982	}
2983	mutex_unlock(&regulator_list_mutex);
2984	return ret;
2985}
2986EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2987
2988/**
2989 * regulator_has_full_constraints - the system has fully specified constraints
2990 *
2991 * Calling this function will cause the regulator API to disable all
2992 * regulators which have a zero use count and don't have an always_on
2993 * constraint in a late_initcall.
2994 *
2995 * The intention is that this will become the default behaviour in a
2996 * future kernel release so users are encouraged to use this facility
2997 * now.
2998 */
2999void regulator_has_full_constraints(void)
3000{
3001	has_full_constraints = 1;
3002}
3003EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3004
3005/**
3006 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3007 *
3008 * Calling this function will cause the regulator API to provide a
3009 * dummy regulator to consumers if no physical regulator is found,
3010 * allowing most consumers to proceed as though a regulator were
3011 * configured.  This allows systems such as those with software
3012 * controllable regulators for the CPU core only to be brought up more
3013 * readily.
3014 */
3015void regulator_use_dummy_regulator(void)
3016{
3017	board_wants_dummy_regulator = true;
3018}
3019EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3020
3021/**
3022 * rdev_get_drvdata - get rdev regulator driver data
3023 * @rdev: regulator
3024 *
3025 * Get rdev regulator driver private data. This call can be used in the
3026 * regulator driver context.
3027 */
3028void *rdev_get_drvdata(struct regulator_dev *rdev)
3029{
3030	return rdev->reg_data;
3031}
3032EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3033
3034/**
3035 * regulator_get_drvdata - get regulator driver data
3036 * @regulator: regulator
3037 *
3038 * Get regulator driver private data. This call can be used in the consumer
3039 * driver context when non API regulator specific functions need to be called.
3040 */
3041void *regulator_get_drvdata(struct regulator *regulator)
3042{
3043	return regulator->rdev->reg_data;
3044}
3045EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3046
3047/**
3048 * regulator_set_drvdata - set regulator driver data
3049 * @regulator: regulator
3050 * @data: data
3051 */
3052void regulator_set_drvdata(struct regulator *regulator, void *data)
3053{
3054	regulator->rdev->reg_data = data;
3055}
3056EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3057
3058/**
3059 * regulator_get_id - get regulator ID
3060 * @rdev: regulator
3061 */
3062int rdev_get_id(struct regulator_dev *rdev)
3063{
3064	return rdev->desc->id;
3065}
3066EXPORT_SYMBOL_GPL(rdev_get_id);
3067
3068struct device *rdev_get_dev(struct regulator_dev *rdev)
3069{
3070	return &rdev->dev;
3071}
3072EXPORT_SYMBOL_GPL(rdev_get_dev);
3073
3074void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3075{
3076	return reg_init_data->driver_data;
3077}
3078EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3079
3080#ifdef CONFIG_DEBUG_FS
3081static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3082				    size_t count, loff_t *ppos)
3083{
3084	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3085	ssize_t len, ret = 0;
3086	struct regulator_map *map;
3087
3088	if (!buf)
3089		return -ENOMEM;
3090
3091	list_for_each_entry(map, &regulator_map_list, list) {
3092		len = snprintf(buf + ret, PAGE_SIZE - ret,
3093			       "%s -> %s.%s\n",
3094			       rdev_get_name(map->regulator), map->dev_name,
3095			       map->supply);
3096		if (len >= 0)
3097			ret += len;
3098		if (ret > PAGE_SIZE) {
3099			ret = PAGE_SIZE;
3100			break;
3101		}
3102	}
3103
3104	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3105
3106	kfree(buf);
3107
3108	return ret;
3109}
3110
3111static const struct file_operations supply_map_fops = {
3112	.read = supply_map_read_file,
3113	.llseek = default_llseek,
3114};
3115#endif
3116
3117static int __init regulator_init(void)
3118{
3119	int ret;
3120
3121	ret = class_register(&regulator_class);
3122
3123#ifdef CONFIG_DEBUG_FS
3124	debugfs_root = debugfs_create_dir("regulator", NULL);
3125	if (IS_ERR(debugfs_root) || !debugfs_root) {
3126		pr_warn("regulator: Failed to create debugfs directory\n");
3127		debugfs_root = NULL;
3128	}
3129
3130	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3131				       NULL, &supply_map_fops)))
3132		pr_warn("regulator: Failed to create supplies debugfs\n");
3133#endif
3134
3135	regulator_dummy_init();
3136
3137	return ret;
3138}
3139
3140/* init early to allow our consumers to complete system booting */
3141core_initcall(regulator_init);
3142
3143static int __init regulator_init_complete(void)
3144{
3145	struct regulator_dev *rdev;
3146	struct regulator_ops *ops;
3147	struct regulation_constraints *c;
3148	int enabled, ret;
3149
3150	mutex_lock(&regulator_list_mutex);
3151
3152	/* If we have a full configuration then disable any regulators
3153	 * which are not in use or always_on.  This will become the
3154	 * default behaviour in the future.
3155	 */
3156	list_for_each_entry(rdev, &regulator_list, list) {
3157		ops = rdev->desc->ops;
3158		c = rdev->constraints;
3159
3160		if (!ops->disable || (c && c->always_on))
3161			continue;
3162
3163		mutex_lock(&rdev->mutex);
3164
3165		if (rdev->use_count)
3166			goto unlock;
3167
3168		/* If we can't read the status assume it's on. */
3169		if (ops->is_enabled)
3170			enabled = ops->is_enabled(rdev);
3171		else
3172			enabled = 1;
3173
3174		if (!enabled)
3175			goto unlock;
3176
3177		if (has_full_constraints) {
3178			/* We log since this may kill the system if it
3179			 * goes wrong. */
3180			rdev_info(rdev, "disabling\n");
3181			ret = ops->disable(rdev);
3182			if (ret != 0) {
3183				rdev_err(rdev, "couldn't disable: %d\n", ret);
3184			}
3185		} else {
3186			/* The intention is that in future we will
3187			 * assume that full constraints are provided
3188			 * so warn even if we aren't going to do
3189			 * anything here.
3190			 */
3191			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3192		}
3193
3194unlock:
3195		mutex_unlock(&rdev->mutex);
3196	}
3197
3198	mutex_unlock(&regulator_list_mutex);
3199
3200	return 0;
3201}
3202late_initcall(regulator_init_complete);
3203