core.c revision 77af1b2641faf45788a0d480db94082ebee931dc
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/err.h>
24#include <linux/mutex.h>
25#include <linux/suspend.h>
26#include <linux/delay.h>
27#include <linux/regulator/consumer.h>
28#include <linux/regulator/driver.h>
29#include <linux/regulator/machine.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35
36#define rdev_err(rdev, fmt, ...)					\
37	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_warn(rdev, fmt, ...)					\
39	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_info(rdev, fmt, ...)					\
41	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_dbg(rdev, fmt, ...)					\
43	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45static DEFINE_MUTEX(regulator_list_mutex);
46static LIST_HEAD(regulator_list);
47static LIST_HEAD(regulator_map_list);
48static bool has_full_constraints;
49static bool board_wants_dummy_regulator;
50
51#ifdef CONFIG_DEBUG_FS
52static struct dentry *debugfs_root;
53#endif
54
55/*
56 * struct regulator_map
57 *
58 * Used to provide symbolic supply names to devices.
59 */
60struct regulator_map {
61	struct list_head list;
62	const char *dev_name;   /* The dev_name() for the consumer */
63	const char *supply;
64	struct regulator_dev *regulator;
65};
66
67/*
68 * struct regulator
69 *
70 * One for each consumer device.
71 */
72struct regulator {
73	struct device *dev;
74	struct list_head list;
75	int uA_load;
76	int min_uV;
77	int max_uV;
78	char *supply_name;
79	struct device_attribute dev_attr;
80	struct regulator_dev *rdev;
81};
82
83static int _regulator_is_enabled(struct regulator_dev *rdev);
84static int _regulator_disable(struct regulator_dev *rdev,
85		struct regulator_dev **supply_rdev_ptr);
86static int _regulator_get_voltage(struct regulator_dev *rdev);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static void _notifier_call_chain(struct regulator_dev *rdev,
90				  unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92				     int min_uV, int max_uV);
93
94static const char *rdev_get_name(struct regulator_dev *rdev)
95{
96	if (rdev->constraints && rdev->constraints->name)
97		return rdev->constraints->name;
98	else if (rdev->desc->name)
99		return rdev->desc->name;
100	else
101		return "";
102}
103
104/* gets the regulator for a given consumer device */
105static struct regulator *get_device_regulator(struct device *dev)
106{
107	struct regulator *regulator = NULL;
108	struct regulator_dev *rdev;
109
110	mutex_lock(&regulator_list_mutex);
111	list_for_each_entry(rdev, &regulator_list, list) {
112		mutex_lock(&rdev->mutex);
113		list_for_each_entry(regulator, &rdev->consumer_list, list) {
114			if (regulator->dev == dev) {
115				mutex_unlock(&rdev->mutex);
116				mutex_unlock(&regulator_list_mutex);
117				return regulator;
118			}
119		}
120		mutex_unlock(&rdev->mutex);
121	}
122	mutex_unlock(&regulator_list_mutex);
123	return NULL;
124}
125
126/* Platform voltage constraint check */
127static int regulator_check_voltage(struct regulator_dev *rdev,
128				   int *min_uV, int *max_uV)
129{
130	BUG_ON(*min_uV > *max_uV);
131
132	if (!rdev->constraints) {
133		rdev_err(rdev, "no constraints\n");
134		return -ENODEV;
135	}
136	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137		rdev_err(rdev, "operation not allowed\n");
138		return -EPERM;
139	}
140
141	if (*max_uV > rdev->constraints->max_uV)
142		*max_uV = rdev->constraints->max_uV;
143	if (*min_uV < rdev->constraints->min_uV)
144		*min_uV = rdev->constraints->min_uV;
145
146	if (*min_uV > *max_uV)
147		return -EINVAL;
148
149	return 0;
150}
151
152/* Make sure we select a voltage that suits the needs of all
153 * regulator consumers
154 */
155static int regulator_check_consumers(struct regulator_dev *rdev,
156				     int *min_uV, int *max_uV)
157{
158	struct regulator *regulator;
159
160	list_for_each_entry(regulator, &rdev->consumer_list, list) {
161		if (*max_uV > regulator->max_uV)
162			*max_uV = regulator->max_uV;
163		if (*min_uV < regulator->min_uV)
164			*min_uV = regulator->min_uV;
165	}
166
167	if (*min_uV > *max_uV)
168		return -EINVAL;
169
170	return 0;
171}
172
173/* current constraint check */
174static int regulator_check_current_limit(struct regulator_dev *rdev,
175					int *min_uA, int *max_uA)
176{
177	BUG_ON(*min_uA > *max_uA);
178
179	if (!rdev->constraints) {
180		rdev_err(rdev, "no constraints\n");
181		return -ENODEV;
182	}
183	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184		rdev_err(rdev, "operation not allowed\n");
185		return -EPERM;
186	}
187
188	if (*max_uA > rdev->constraints->max_uA)
189		*max_uA = rdev->constraints->max_uA;
190	if (*min_uA < rdev->constraints->min_uA)
191		*min_uA = rdev->constraints->min_uA;
192
193	if (*min_uA > *max_uA)
194		return -EINVAL;
195
196	return 0;
197}
198
199/* operating mode constraint check */
200static int regulator_check_mode(struct regulator_dev *rdev, int mode)
201{
202	switch (mode) {
203	case REGULATOR_MODE_FAST:
204	case REGULATOR_MODE_NORMAL:
205	case REGULATOR_MODE_IDLE:
206	case REGULATOR_MODE_STANDBY:
207		break;
208	default:
209		return -EINVAL;
210	}
211
212	if (!rdev->constraints) {
213		rdev_err(rdev, "no constraints\n");
214		return -ENODEV;
215	}
216	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217		rdev_err(rdev, "operation not allowed\n");
218		return -EPERM;
219	}
220	if (!(rdev->constraints->valid_modes_mask & mode)) {
221		rdev_err(rdev, "invalid mode %x\n", mode);
222		return -EINVAL;
223	}
224	return 0;
225}
226
227/* dynamic regulator mode switching constraint check */
228static int regulator_check_drms(struct regulator_dev *rdev)
229{
230	if (!rdev->constraints) {
231		rdev_err(rdev, "no constraints\n");
232		return -ENODEV;
233	}
234	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
235		rdev_err(rdev, "operation not allowed\n");
236		return -EPERM;
237	}
238	return 0;
239}
240
241static ssize_t device_requested_uA_show(struct device *dev,
242			     struct device_attribute *attr, char *buf)
243{
244	struct regulator *regulator;
245
246	regulator = get_device_regulator(dev);
247	if (regulator == NULL)
248		return 0;
249
250	return sprintf(buf, "%d\n", regulator->uA_load);
251}
252
253static ssize_t regulator_uV_show(struct device *dev,
254				struct device_attribute *attr, char *buf)
255{
256	struct regulator_dev *rdev = dev_get_drvdata(dev);
257	ssize_t ret;
258
259	mutex_lock(&rdev->mutex);
260	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
261	mutex_unlock(&rdev->mutex);
262
263	return ret;
264}
265static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
266
267static ssize_t regulator_uA_show(struct device *dev,
268				struct device_attribute *attr, char *buf)
269{
270	struct regulator_dev *rdev = dev_get_drvdata(dev);
271
272	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
273}
274static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
275
276static ssize_t regulator_name_show(struct device *dev,
277			     struct device_attribute *attr, char *buf)
278{
279	struct regulator_dev *rdev = dev_get_drvdata(dev);
280
281	return sprintf(buf, "%s\n", rdev_get_name(rdev));
282}
283
284static ssize_t regulator_print_opmode(char *buf, int mode)
285{
286	switch (mode) {
287	case REGULATOR_MODE_FAST:
288		return sprintf(buf, "fast\n");
289	case REGULATOR_MODE_NORMAL:
290		return sprintf(buf, "normal\n");
291	case REGULATOR_MODE_IDLE:
292		return sprintf(buf, "idle\n");
293	case REGULATOR_MODE_STANDBY:
294		return sprintf(buf, "standby\n");
295	}
296	return sprintf(buf, "unknown\n");
297}
298
299static ssize_t regulator_opmode_show(struct device *dev,
300				    struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
305}
306static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
307
308static ssize_t regulator_print_state(char *buf, int state)
309{
310	if (state > 0)
311		return sprintf(buf, "enabled\n");
312	else if (state == 0)
313		return sprintf(buf, "disabled\n");
314	else
315		return sprintf(buf, "unknown\n");
316}
317
318static ssize_t regulator_state_show(struct device *dev,
319				   struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
331
332static ssize_t regulator_status_show(struct device *dev,
333				   struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336	int status;
337	char *label;
338
339	status = rdev->desc->ops->get_status(rdev);
340	if (status < 0)
341		return status;
342
343	switch (status) {
344	case REGULATOR_STATUS_OFF:
345		label = "off";
346		break;
347	case REGULATOR_STATUS_ON:
348		label = "on";
349		break;
350	case REGULATOR_STATUS_ERROR:
351		label = "error";
352		break;
353	case REGULATOR_STATUS_FAST:
354		label = "fast";
355		break;
356	case REGULATOR_STATUS_NORMAL:
357		label = "normal";
358		break;
359	case REGULATOR_STATUS_IDLE:
360		label = "idle";
361		break;
362	case REGULATOR_STATUS_STANDBY:
363		label = "standby";
364		break;
365	default:
366		return -ERANGE;
367	}
368
369	return sprintf(buf, "%s\n", label);
370}
371static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
372
373static ssize_t regulator_min_uA_show(struct device *dev,
374				    struct device_attribute *attr, char *buf)
375{
376	struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378	if (!rdev->constraints)
379		return sprintf(buf, "constraint not defined\n");
380
381	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
382}
383static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
384
385static ssize_t regulator_max_uA_show(struct device *dev,
386				    struct device_attribute *attr, char *buf)
387{
388	struct regulator_dev *rdev = dev_get_drvdata(dev);
389
390	if (!rdev->constraints)
391		return sprintf(buf, "constraint not defined\n");
392
393	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
394}
395static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
396
397static ssize_t regulator_min_uV_show(struct device *dev,
398				    struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402	if (!rdev->constraints)
403		return sprintf(buf, "constraint not defined\n");
404
405	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
406}
407static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
408
409static ssize_t regulator_max_uV_show(struct device *dev,
410				    struct device_attribute *attr, char *buf)
411{
412	struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414	if (!rdev->constraints)
415		return sprintf(buf, "constraint not defined\n");
416
417	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
418}
419static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
420
421static ssize_t regulator_total_uA_show(struct device *dev,
422				      struct device_attribute *attr, char *buf)
423{
424	struct regulator_dev *rdev = dev_get_drvdata(dev);
425	struct regulator *regulator;
426	int uA = 0;
427
428	mutex_lock(&rdev->mutex);
429	list_for_each_entry(regulator, &rdev->consumer_list, list)
430		uA += regulator->uA_load;
431	mutex_unlock(&rdev->mutex);
432	return sprintf(buf, "%d\n", uA);
433}
434static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
435
436static ssize_t regulator_num_users_show(struct device *dev,
437				      struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440	return sprintf(buf, "%d\n", rdev->use_count);
441}
442
443static ssize_t regulator_type_show(struct device *dev,
444				  struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	switch (rdev->desc->type) {
449	case REGULATOR_VOLTAGE:
450		return sprintf(buf, "voltage\n");
451	case REGULATOR_CURRENT:
452		return sprintf(buf, "current\n");
453	}
454	return sprintf(buf, "unknown\n");
455}
456
457static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
458				struct device_attribute *attr, char *buf)
459{
460	struct regulator_dev *rdev = dev_get_drvdata(dev);
461
462	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
463}
464static DEVICE_ATTR(suspend_mem_microvolts, 0444,
465		regulator_suspend_mem_uV_show, NULL);
466
467static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
468				struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
473}
474static DEVICE_ATTR(suspend_disk_microvolts, 0444,
475		regulator_suspend_disk_uV_show, NULL);
476
477static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
478				struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
483}
484static DEVICE_ATTR(suspend_standby_microvolts, 0444,
485		regulator_suspend_standby_uV_show, NULL);
486
487static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
488				struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_opmode(buf,
493		rdev->constraints->state_mem.mode);
494}
495static DEVICE_ATTR(suspend_mem_mode, 0444,
496		regulator_suspend_mem_mode_show, NULL);
497
498static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
499				struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_opmode(buf,
504		rdev->constraints->state_disk.mode);
505}
506static DEVICE_ATTR(suspend_disk_mode, 0444,
507		regulator_suspend_disk_mode_show, NULL);
508
509static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return regulator_print_opmode(buf,
515		rdev->constraints->state_standby.mode);
516}
517static DEVICE_ATTR(suspend_standby_mode, 0444,
518		regulator_suspend_standby_mode_show, NULL);
519
520static ssize_t regulator_suspend_mem_state_show(struct device *dev,
521				   struct device_attribute *attr, char *buf)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524
525	return regulator_print_state(buf,
526			rdev->constraints->state_mem.enabled);
527}
528static DEVICE_ATTR(suspend_mem_state, 0444,
529		regulator_suspend_mem_state_show, NULL);
530
531static ssize_t regulator_suspend_disk_state_show(struct device *dev,
532				   struct device_attribute *attr, char *buf)
533{
534	struct regulator_dev *rdev = dev_get_drvdata(dev);
535
536	return regulator_print_state(buf,
537			rdev->constraints->state_disk.enabled);
538}
539static DEVICE_ATTR(suspend_disk_state, 0444,
540		regulator_suspend_disk_state_show, NULL);
541
542static ssize_t regulator_suspend_standby_state_show(struct device *dev,
543				   struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return regulator_print_state(buf,
548			rdev->constraints->state_standby.enabled);
549}
550static DEVICE_ATTR(suspend_standby_state, 0444,
551		regulator_suspend_standby_state_show, NULL);
552
553
554/*
555 * These are the only attributes are present for all regulators.
556 * Other attributes are a function of regulator functionality.
557 */
558static struct device_attribute regulator_dev_attrs[] = {
559	__ATTR(name, 0444, regulator_name_show, NULL),
560	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
561	__ATTR(type, 0444, regulator_type_show, NULL),
562	__ATTR_NULL,
563};
564
565static void regulator_dev_release(struct device *dev)
566{
567	struct regulator_dev *rdev = dev_get_drvdata(dev);
568	kfree(rdev);
569}
570
571static struct class regulator_class = {
572	.name = "regulator",
573	.dev_release = regulator_dev_release,
574	.dev_attrs = regulator_dev_attrs,
575};
576
577/* Calculate the new optimum regulator operating mode based on the new total
578 * consumer load. All locks held by caller */
579static void drms_uA_update(struct regulator_dev *rdev)
580{
581	struct regulator *sibling;
582	int current_uA = 0, output_uV, input_uV, err;
583	unsigned int mode;
584
585	err = regulator_check_drms(rdev);
586	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
587	    (!rdev->desc->ops->get_voltage &&
588	     !rdev->desc->ops->get_voltage_sel) ||
589	    !rdev->desc->ops->set_mode)
590		return;
591
592	/* get output voltage */
593	output_uV = _regulator_get_voltage(rdev);
594	if (output_uV <= 0)
595		return;
596
597	/* get input voltage */
598	input_uV = 0;
599	if (rdev->supply)
600		input_uV = _regulator_get_voltage(rdev);
601	if (input_uV <= 0)
602		input_uV = rdev->constraints->input_uV;
603	if (input_uV <= 0)
604		return;
605
606	/* calc total requested load */
607	list_for_each_entry(sibling, &rdev->consumer_list, list)
608		current_uA += sibling->uA_load;
609
610	/* now get the optimum mode for our new total regulator load */
611	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
612						  output_uV, current_uA);
613
614	/* check the new mode is allowed */
615	err = regulator_check_mode(rdev, mode);
616	if (err == 0)
617		rdev->desc->ops->set_mode(rdev, mode);
618}
619
620static int suspend_set_state(struct regulator_dev *rdev,
621	struct regulator_state *rstate)
622{
623	int ret = 0;
624	bool can_set_state;
625
626	can_set_state = rdev->desc->ops->set_suspend_enable &&
627		rdev->desc->ops->set_suspend_disable;
628
629	/* If we have no suspend mode configration don't set anything;
630	 * only warn if the driver actually makes the suspend mode
631	 * configurable.
632	 */
633	if (!rstate->enabled && !rstate->disabled) {
634		if (can_set_state)
635			rdev_warn(rdev, "No configuration\n");
636		return 0;
637	}
638
639	if (rstate->enabled && rstate->disabled) {
640		rdev_err(rdev, "invalid configuration\n");
641		return -EINVAL;
642	}
643
644	if (!can_set_state) {
645		rdev_err(rdev, "no way to set suspend state\n");
646		return -EINVAL;
647	}
648
649	if (rstate->enabled)
650		ret = rdev->desc->ops->set_suspend_enable(rdev);
651	else
652		ret = rdev->desc->ops->set_suspend_disable(rdev);
653	if (ret < 0) {
654		rdev_err(rdev, "failed to enabled/disable\n");
655		return ret;
656	}
657
658	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
659		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
660		if (ret < 0) {
661			rdev_err(rdev, "failed to set voltage\n");
662			return ret;
663		}
664	}
665
666	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
667		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
668		if (ret < 0) {
669			rdev_err(rdev, "failed to set mode\n");
670			return ret;
671		}
672	}
673	return ret;
674}
675
676/* locks held by caller */
677static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
678{
679	if (!rdev->constraints)
680		return -EINVAL;
681
682	switch (state) {
683	case PM_SUSPEND_STANDBY:
684		return suspend_set_state(rdev,
685			&rdev->constraints->state_standby);
686	case PM_SUSPEND_MEM:
687		return suspend_set_state(rdev,
688			&rdev->constraints->state_mem);
689	case PM_SUSPEND_MAX:
690		return suspend_set_state(rdev,
691			&rdev->constraints->state_disk);
692	default:
693		return -EINVAL;
694	}
695}
696
697static void print_constraints(struct regulator_dev *rdev)
698{
699	struct regulation_constraints *constraints = rdev->constraints;
700	char buf[80] = "";
701	int count = 0;
702	int ret;
703
704	if (constraints->min_uV && constraints->max_uV) {
705		if (constraints->min_uV == constraints->max_uV)
706			count += sprintf(buf + count, "%d mV ",
707					 constraints->min_uV / 1000);
708		else
709			count += sprintf(buf + count, "%d <--> %d mV ",
710					 constraints->min_uV / 1000,
711					 constraints->max_uV / 1000);
712	}
713
714	if (!constraints->min_uV ||
715	    constraints->min_uV != constraints->max_uV) {
716		ret = _regulator_get_voltage(rdev);
717		if (ret > 0)
718			count += sprintf(buf + count, "at %d mV ", ret / 1000);
719	}
720
721	if (constraints->min_uA && constraints->max_uA) {
722		if (constraints->min_uA == constraints->max_uA)
723			count += sprintf(buf + count, "%d mA ",
724					 constraints->min_uA / 1000);
725		else
726			count += sprintf(buf + count, "%d <--> %d mA ",
727					 constraints->min_uA / 1000,
728					 constraints->max_uA / 1000);
729	}
730
731	if (!constraints->min_uA ||
732	    constraints->min_uA != constraints->max_uA) {
733		ret = _regulator_get_current_limit(rdev);
734		if (ret > 0)
735			count += sprintf(buf + count, "at %d mA ", ret / 1000);
736	}
737
738	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
739		count += sprintf(buf + count, "fast ");
740	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
741		count += sprintf(buf + count, "normal ");
742	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
743		count += sprintf(buf + count, "idle ");
744	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
745		count += sprintf(buf + count, "standby");
746
747	rdev_info(rdev, "%s\n", buf);
748}
749
750static int machine_constraints_voltage(struct regulator_dev *rdev,
751	struct regulation_constraints *constraints)
752{
753	struct regulator_ops *ops = rdev->desc->ops;
754	int ret;
755
756	/* do we need to apply the constraint voltage */
757	if (rdev->constraints->apply_uV &&
758	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
759		ret = _regulator_do_set_voltage(rdev,
760						rdev->constraints->min_uV,
761						rdev->constraints->max_uV);
762		if (ret < 0) {
763			rdev_err(rdev, "failed to apply %duV constraint\n",
764				 rdev->constraints->min_uV);
765			rdev->constraints = NULL;
766			return ret;
767		}
768	}
769
770	/* constrain machine-level voltage specs to fit
771	 * the actual range supported by this regulator.
772	 */
773	if (ops->list_voltage && rdev->desc->n_voltages) {
774		int	count = rdev->desc->n_voltages;
775		int	i;
776		int	min_uV = INT_MAX;
777		int	max_uV = INT_MIN;
778		int	cmin = constraints->min_uV;
779		int	cmax = constraints->max_uV;
780
781		/* it's safe to autoconfigure fixed-voltage supplies
782		   and the constraints are used by list_voltage. */
783		if (count == 1 && !cmin) {
784			cmin = 1;
785			cmax = INT_MAX;
786			constraints->min_uV = cmin;
787			constraints->max_uV = cmax;
788		}
789
790		/* voltage constraints are optional */
791		if ((cmin == 0) && (cmax == 0))
792			return 0;
793
794		/* else require explicit machine-level constraints */
795		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
796			rdev_err(rdev, "invalid voltage constraints\n");
797			return -EINVAL;
798		}
799
800		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
801		for (i = 0; i < count; i++) {
802			int	value;
803
804			value = ops->list_voltage(rdev, i);
805			if (value <= 0)
806				continue;
807
808			/* maybe adjust [min_uV..max_uV] */
809			if (value >= cmin && value < min_uV)
810				min_uV = value;
811			if (value <= cmax && value > max_uV)
812				max_uV = value;
813		}
814
815		/* final: [min_uV..max_uV] valid iff constraints valid */
816		if (max_uV < min_uV) {
817			rdev_err(rdev, "unsupportable voltage constraints\n");
818			return -EINVAL;
819		}
820
821		/* use regulator's subset of machine constraints */
822		if (constraints->min_uV < min_uV) {
823			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
824				 constraints->min_uV, min_uV);
825			constraints->min_uV = min_uV;
826		}
827		if (constraints->max_uV > max_uV) {
828			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
829				 constraints->max_uV, max_uV);
830			constraints->max_uV = max_uV;
831		}
832	}
833
834	return 0;
835}
836
837/**
838 * set_machine_constraints - sets regulator constraints
839 * @rdev: regulator source
840 * @constraints: constraints to apply
841 *
842 * Allows platform initialisation code to define and constrain
843 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
844 * Constraints *must* be set by platform code in order for some
845 * regulator operations to proceed i.e. set_voltage, set_current_limit,
846 * set_mode.
847 */
848static int set_machine_constraints(struct regulator_dev *rdev,
849	const struct regulation_constraints *constraints)
850{
851	int ret = 0;
852	struct regulator_ops *ops = rdev->desc->ops;
853
854	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
855				    GFP_KERNEL);
856	if (!rdev->constraints)
857		return -ENOMEM;
858
859	ret = machine_constraints_voltage(rdev, rdev->constraints);
860	if (ret != 0)
861		goto out;
862
863	/* do we need to setup our suspend state */
864	if (constraints->initial_state) {
865		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
866		if (ret < 0) {
867			rdev_err(rdev, "failed to set suspend state\n");
868			rdev->constraints = NULL;
869			goto out;
870		}
871	}
872
873	if (constraints->initial_mode) {
874		if (!ops->set_mode) {
875			rdev_err(rdev, "no set_mode operation\n");
876			ret = -EINVAL;
877			goto out;
878		}
879
880		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
881		if (ret < 0) {
882			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
883			goto out;
884		}
885	}
886
887	/* If the constraints say the regulator should be on at this point
888	 * and we have control then make sure it is enabled.
889	 */
890	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
891	    ops->enable) {
892		ret = ops->enable(rdev);
893		if (ret < 0) {
894			rdev_err(rdev, "failed to enable\n");
895			rdev->constraints = NULL;
896			goto out;
897		}
898	}
899
900	print_constraints(rdev);
901out:
902	return ret;
903}
904
905/**
906 * set_supply - set regulator supply regulator
907 * @rdev: regulator name
908 * @supply_rdev: supply regulator name
909 *
910 * Called by platform initialisation code to set the supply regulator for this
911 * regulator. This ensures that a regulators supply will also be enabled by the
912 * core if it's child is enabled.
913 */
914static int set_supply(struct regulator_dev *rdev,
915	struct regulator_dev *supply_rdev)
916{
917	int err;
918
919	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
920				"supply");
921	if (err) {
922		rdev_err(rdev, "could not add device link %s err %d\n",
923			 supply_rdev->dev.kobj.name, err);
924		       goto out;
925	}
926	rdev->supply = supply_rdev;
927	list_add(&rdev->slist, &supply_rdev->supply_list);
928out:
929	return err;
930}
931
932/**
933 * set_consumer_device_supply - Bind a regulator to a symbolic supply
934 * @rdev:         regulator source
935 * @consumer_dev: device the supply applies to
936 * @consumer_dev_name: dev_name() string for device supply applies to
937 * @supply:       symbolic name for supply
938 *
939 * Allows platform initialisation code to map physical regulator
940 * sources to symbolic names for supplies for use by devices.  Devices
941 * should use these symbolic names to request regulators, avoiding the
942 * need to provide board-specific regulator names as platform data.
943 *
944 * Only one of consumer_dev and consumer_dev_name may be specified.
945 */
946static int set_consumer_device_supply(struct regulator_dev *rdev,
947	struct device *consumer_dev, const char *consumer_dev_name,
948	const char *supply)
949{
950	struct regulator_map *node;
951	int has_dev;
952
953	if (consumer_dev && consumer_dev_name)
954		return -EINVAL;
955
956	if (!consumer_dev_name && consumer_dev)
957		consumer_dev_name = dev_name(consumer_dev);
958
959	if (supply == NULL)
960		return -EINVAL;
961
962	if (consumer_dev_name != NULL)
963		has_dev = 1;
964	else
965		has_dev = 0;
966
967	list_for_each_entry(node, &regulator_map_list, list) {
968		if (node->dev_name && consumer_dev_name) {
969			if (strcmp(node->dev_name, consumer_dev_name) != 0)
970				continue;
971		} else if (node->dev_name || consumer_dev_name) {
972			continue;
973		}
974
975		if (strcmp(node->supply, supply) != 0)
976			continue;
977
978		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
979			dev_name(&node->regulator->dev),
980			node->regulator->desc->name,
981			supply,
982			dev_name(&rdev->dev), rdev_get_name(rdev));
983		return -EBUSY;
984	}
985
986	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
987	if (node == NULL)
988		return -ENOMEM;
989
990	node->regulator = rdev;
991	node->supply = supply;
992
993	if (has_dev) {
994		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
995		if (node->dev_name == NULL) {
996			kfree(node);
997			return -ENOMEM;
998		}
999	}
1000
1001	list_add(&node->list, &regulator_map_list);
1002	return 0;
1003}
1004
1005static void unset_regulator_supplies(struct regulator_dev *rdev)
1006{
1007	struct regulator_map *node, *n;
1008
1009	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010		if (rdev == node->regulator) {
1011			list_del(&node->list);
1012			kfree(node->dev_name);
1013			kfree(node);
1014		}
1015	}
1016}
1017
1018#define REG_STR_SIZE	32
1019
1020static struct regulator *create_regulator(struct regulator_dev *rdev,
1021					  struct device *dev,
1022					  const char *supply_name)
1023{
1024	struct regulator *regulator;
1025	char buf[REG_STR_SIZE];
1026	int err, size;
1027
1028	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029	if (regulator == NULL)
1030		return NULL;
1031
1032	mutex_lock(&rdev->mutex);
1033	regulator->rdev = rdev;
1034	list_add(&regulator->list, &rdev->consumer_list);
1035
1036	if (dev) {
1037		/* create a 'requested_microamps_name' sysfs entry */
1038		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039			supply_name);
1040		if (size >= REG_STR_SIZE)
1041			goto overflow_err;
1042
1043		regulator->dev = dev;
1044		sysfs_attr_init(&regulator->dev_attr.attr);
1045		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046		if (regulator->dev_attr.attr.name == NULL)
1047			goto attr_name_err;
1048
1049		regulator->dev_attr.attr.mode = 0444;
1050		regulator->dev_attr.show = device_requested_uA_show;
1051		err = device_create_file(dev, &regulator->dev_attr);
1052		if (err < 0) {
1053			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054			goto attr_name_err;
1055		}
1056
1057		/* also add a link to the device sysfs entry */
1058		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059				 dev->kobj.name, supply_name);
1060		if (size >= REG_STR_SIZE)
1061			goto attr_err;
1062
1063		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064		if (regulator->supply_name == NULL)
1065			goto attr_err;
1066
1067		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068					buf);
1069		if (err) {
1070			rdev_warn(rdev, "could not add device link %s err %d\n",
1071				  dev->kobj.name, err);
1072			goto link_name_err;
1073		}
1074	}
1075	mutex_unlock(&rdev->mutex);
1076	return regulator;
1077link_name_err:
1078	kfree(regulator->supply_name);
1079attr_err:
1080	device_remove_file(regulator->dev, &regulator->dev_attr);
1081attr_name_err:
1082	kfree(regulator->dev_attr.attr.name);
1083overflow_err:
1084	list_del(&regulator->list);
1085	kfree(regulator);
1086	mutex_unlock(&rdev->mutex);
1087	return NULL;
1088}
1089
1090static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091{
1092	if (!rdev->desc->ops->enable_time)
1093		return 0;
1094	return rdev->desc->ops->enable_time(rdev);
1095}
1096
1097/* Internal regulator request function */
1098static struct regulator *_regulator_get(struct device *dev, const char *id,
1099					int exclusive)
1100{
1101	struct regulator_dev *rdev;
1102	struct regulator_map *map;
1103	struct regulator *regulator = ERR_PTR(-ENODEV);
1104	const char *devname = NULL;
1105	int ret;
1106
1107	if (id == NULL) {
1108		pr_err("get() with no identifier\n");
1109		return regulator;
1110	}
1111
1112	if (dev)
1113		devname = dev_name(dev);
1114
1115	mutex_lock(&regulator_list_mutex);
1116
1117	list_for_each_entry(map, &regulator_map_list, list) {
1118		/* If the mapping has a device set up it must match */
1119		if (map->dev_name &&
1120		    (!devname || strcmp(map->dev_name, devname)))
1121			continue;
1122
1123		if (strcmp(map->supply, id) == 0) {
1124			rdev = map->regulator;
1125			goto found;
1126		}
1127	}
1128
1129	if (board_wants_dummy_regulator) {
1130		rdev = dummy_regulator_rdev;
1131		goto found;
1132	}
1133
1134#ifdef CONFIG_REGULATOR_DUMMY
1135	if (!devname)
1136		devname = "deviceless";
1137
1138	/* If the board didn't flag that it was fully constrained then
1139	 * substitute in a dummy regulator so consumers can continue.
1140	 */
1141	if (!has_full_constraints) {
1142		pr_warn("%s supply %s not found, using dummy regulator\n",
1143			devname, id);
1144		rdev = dummy_regulator_rdev;
1145		goto found;
1146	}
1147#endif
1148
1149	mutex_unlock(&regulator_list_mutex);
1150	return regulator;
1151
1152found:
1153	if (rdev->exclusive) {
1154		regulator = ERR_PTR(-EPERM);
1155		goto out;
1156	}
1157
1158	if (exclusive && rdev->open_count) {
1159		regulator = ERR_PTR(-EBUSY);
1160		goto out;
1161	}
1162
1163	if (!try_module_get(rdev->owner))
1164		goto out;
1165
1166	regulator = create_regulator(rdev, dev, id);
1167	if (regulator == NULL) {
1168		regulator = ERR_PTR(-ENOMEM);
1169		module_put(rdev->owner);
1170	}
1171
1172	rdev->open_count++;
1173	if (exclusive) {
1174		rdev->exclusive = 1;
1175
1176		ret = _regulator_is_enabled(rdev);
1177		if (ret > 0)
1178			rdev->use_count = 1;
1179		else
1180			rdev->use_count = 0;
1181	}
1182
1183out:
1184	mutex_unlock(&regulator_list_mutex);
1185
1186	return regulator;
1187}
1188
1189/**
1190 * regulator_get - lookup and obtain a reference to a regulator.
1191 * @dev: device for regulator "consumer"
1192 * @id: Supply name or regulator ID.
1193 *
1194 * Returns a struct regulator corresponding to the regulator producer,
1195 * or IS_ERR() condition containing errno.
1196 *
1197 * Use of supply names configured via regulator_set_device_supply() is
1198 * strongly encouraged.  It is recommended that the supply name used
1199 * should match the name used for the supply and/or the relevant
1200 * device pins in the datasheet.
1201 */
1202struct regulator *regulator_get(struct device *dev, const char *id)
1203{
1204	return _regulator_get(dev, id, 0);
1205}
1206EXPORT_SYMBOL_GPL(regulator_get);
1207
1208/**
1209 * regulator_get_exclusive - obtain exclusive access to a regulator.
1210 * @dev: device for regulator "consumer"
1211 * @id: Supply name or regulator ID.
1212 *
1213 * Returns a struct regulator corresponding to the regulator producer,
1214 * or IS_ERR() condition containing errno.  Other consumers will be
1215 * unable to obtain this reference is held and the use count for the
1216 * regulator will be initialised to reflect the current state of the
1217 * regulator.
1218 *
1219 * This is intended for use by consumers which cannot tolerate shared
1220 * use of the regulator such as those which need to force the
1221 * regulator off for correct operation of the hardware they are
1222 * controlling.
1223 *
1224 * Use of supply names configured via regulator_set_device_supply() is
1225 * strongly encouraged.  It is recommended that the supply name used
1226 * should match the name used for the supply and/or the relevant
1227 * device pins in the datasheet.
1228 */
1229struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1230{
1231	return _regulator_get(dev, id, 1);
1232}
1233EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1234
1235/**
1236 * regulator_put - "free" the regulator source
1237 * @regulator: regulator source
1238 *
1239 * Note: drivers must ensure that all regulator_enable calls made on this
1240 * regulator source are balanced by regulator_disable calls prior to calling
1241 * this function.
1242 */
1243void regulator_put(struct regulator *regulator)
1244{
1245	struct regulator_dev *rdev;
1246
1247	if (regulator == NULL || IS_ERR(regulator))
1248		return;
1249
1250	mutex_lock(&regulator_list_mutex);
1251	rdev = regulator->rdev;
1252
1253	/* remove any sysfs entries */
1254	if (regulator->dev) {
1255		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256		kfree(regulator->supply_name);
1257		device_remove_file(regulator->dev, &regulator->dev_attr);
1258		kfree(regulator->dev_attr.attr.name);
1259	}
1260	list_del(&regulator->list);
1261	kfree(regulator);
1262
1263	rdev->open_count--;
1264	rdev->exclusive = 0;
1265
1266	module_put(rdev->owner);
1267	mutex_unlock(&regulator_list_mutex);
1268}
1269EXPORT_SYMBOL_GPL(regulator_put);
1270
1271static int _regulator_can_change_status(struct regulator_dev *rdev)
1272{
1273	if (!rdev->constraints)
1274		return 0;
1275
1276	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277		return 1;
1278	else
1279		return 0;
1280}
1281
1282/* locks held by regulator_enable() */
1283static int _regulator_enable(struct regulator_dev *rdev)
1284{
1285	int ret, delay;
1286
1287	if (rdev->use_count == 0) {
1288		/* do we need to enable the supply regulator first */
1289		if (rdev->supply) {
1290			mutex_lock(&rdev->supply->mutex);
1291			ret = _regulator_enable(rdev->supply);
1292			mutex_unlock(&rdev->supply->mutex);
1293			if (ret < 0) {
1294				rdev_err(rdev, "failed to enable: %d\n", ret);
1295				return ret;
1296			}
1297		}
1298	}
1299
1300	/* check voltage and requested load before enabling */
1301	if (rdev->constraints &&
1302	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303		drms_uA_update(rdev);
1304
1305	if (rdev->use_count == 0) {
1306		/* The regulator may on if it's not switchable or left on */
1307		ret = _regulator_is_enabled(rdev);
1308		if (ret == -EINVAL || ret == 0) {
1309			if (!_regulator_can_change_status(rdev))
1310				return -EPERM;
1311
1312			if (!rdev->desc->ops->enable)
1313				return -EINVAL;
1314
1315			/* Query before enabling in case configuration
1316			 * dependant.  */
1317			ret = _regulator_get_enable_time(rdev);
1318			if (ret >= 0) {
1319				delay = ret;
1320			} else {
1321				rdev_warn(rdev, "enable_time() failed: %d\n",
1322					   ret);
1323				delay = 0;
1324			}
1325
1326			trace_regulator_enable(rdev_get_name(rdev));
1327
1328			/* Allow the regulator to ramp; it would be useful
1329			 * to extend this for bulk operations so that the
1330			 * regulators can ramp together.  */
1331			ret = rdev->desc->ops->enable(rdev);
1332			if (ret < 0)
1333				return ret;
1334
1335			trace_regulator_enable_delay(rdev_get_name(rdev));
1336
1337			if (delay >= 1000) {
1338				mdelay(delay / 1000);
1339				udelay(delay % 1000);
1340			} else if (delay) {
1341				udelay(delay);
1342			}
1343
1344			trace_regulator_enable_complete(rdev_get_name(rdev));
1345
1346		} else if (ret < 0) {
1347			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348			return ret;
1349		}
1350		/* Fallthrough on positive return values - already enabled */
1351	}
1352
1353	rdev->use_count++;
1354
1355	return 0;
1356}
1357
1358/**
1359 * regulator_enable - enable regulator output
1360 * @regulator: regulator source
1361 *
1362 * Request that the regulator be enabled with the regulator output at
1363 * the predefined voltage or current value.  Calls to regulator_enable()
1364 * must be balanced with calls to regulator_disable().
1365 *
1366 * NOTE: the output value can be set by other drivers, boot loader or may be
1367 * hardwired in the regulator.
1368 */
1369int regulator_enable(struct regulator *regulator)
1370{
1371	struct regulator_dev *rdev = regulator->rdev;
1372	int ret = 0;
1373
1374	mutex_lock(&rdev->mutex);
1375	ret = _regulator_enable(rdev);
1376	mutex_unlock(&rdev->mutex);
1377	return ret;
1378}
1379EXPORT_SYMBOL_GPL(regulator_enable);
1380
1381/* locks held by regulator_disable() */
1382static int _regulator_disable(struct regulator_dev *rdev,
1383		struct regulator_dev **supply_rdev_ptr)
1384{
1385	int ret = 0;
1386	*supply_rdev_ptr = NULL;
1387
1388	if (WARN(rdev->use_count <= 0,
1389		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390		return -EIO;
1391
1392	/* are we the last user and permitted to disable ? */
1393	if (rdev->use_count == 1 &&
1394	    (rdev->constraints && !rdev->constraints->always_on)) {
1395
1396		/* we are last user */
1397		if (_regulator_can_change_status(rdev) &&
1398		    rdev->desc->ops->disable) {
1399			trace_regulator_disable(rdev_get_name(rdev));
1400
1401			ret = rdev->desc->ops->disable(rdev);
1402			if (ret < 0) {
1403				rdev_err(rdev, "failed to disable\n");
1404				return ret;
1405			}
1406
1407			trace_regulator_disable_complete(rdev_get_name(rdev));
1408
1409			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410					     NULL);
1411		}
1412
1413		/* decrease our supplies ref count and disable if required */
1414		*supply_rdev_ptr = rdev->supply;
1415
1416		rdev->use_count = 0;
1417	} else if (rdev->use_count > 1) {
1418
1419		if (rdev->constraints &&
1420			(rdev->constraints->valid_ops_mask &
1421			REGULATOR_CHANGE_DRMS))
1422			drms_uA_update(rdev);
1423
1424		rdev->use_count--;
1425	}
1426	return ret;
1427}
1428
1429/**
1430 * regulator_disable - disable regulator output
1431 * @regulator: regulator source
1432 *
1433 * Disable the regulator output voltage or current.  Calls to
1434 * regulator_enable() must be balanced with calls to
1435 * regulator_disable().
1436 *
1437 * NOTE: this will only disable the regulator output if no other consumer
1438 * devices have it enabled, the regulator device supports disabling and
1439 * machine constraints permit this operation.
1440 */
1441int regulator_disable(struct regulator *regulator)
1442{
1443	struct regulator_dev *rdev = regulator->rdev;
1444	struct regulator_dev *supply_rdev = NULL;
1445	int ret = 0;
1446
1447	mutex_lock(&rdev->mutex);
1448	ret = _regulator_disable(rdev, &supply_rdev);
1449	mutex_unlock(&rdev->mutex);
1450
1451	/* decrease our supplies ref count and disable if required */
1452	while (supply_rdev != NULL) {
1453		rdev = supply_rdev;
1454
1455		mutex_lock(&rdev->mutex);
1456		_regulator_disable(rdev, &supply_rdev);
1457		mutex_unlock(&rdev->mutex);
1458	}
1459
1460	return ret;
1461}
1462EXPORT_SYMBOL_GPL(regulator_disable);
1463
1464/* locks held by regulator_force_disable() */
1465static int _regulator_force_disable(struct regulator_dev *rdev,
1466		struct regulator_dev **supply_rdev_ptr)
1467{
1468	int ret = 0;
1469
1470	/* force disable */
1471	if (rdev->desc->ops->disable) {
1472		/* ah well, who wants to live forever... */
1473		ret = rdev->desc->ops->disable(rdev);
1474		if (ret < 0) {
1475			rdev_err(rdev, "failed to force disable\n");
1476			return ret;
1477		}
1478		/* notify other consumers that power has been forced off */
1479		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480			REGULATOR_EVENT_DISABLE, NULL);
1481	}
1482
1483	/* decrease our supplies ref count and disable if required */
1484	*supply_rdev_ptr = rdev->supply;
1485
1486	rdev->use_count = 0;
1487	return ret;
1488}
1489
1490/**
1491 * regulator_force_disable - force disable regulator output
1492 * @regulator: regulator source
1493 *
1494 * Forcibly disable the regulator output voltage or current.
1495 * NOTE: this *will* disable the regulator output even if other consumer
1496 * devices have it enabled. This should be used for situations when device
1497 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1498 */
1499int regulator_force_disable(struct regulator *regulator)
1500{
1501	struct regulator_dev *supply_rdev = NULL;
1502	int ret;
1503
1504	mutex_lock(&regulator->rdev->mutex);
1505	regulator->uA_load = 0;
1506	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507	mutex_unlock(&regulator->rdev->mutex);
1508
1509	if (supply_rdev)
1510		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1511
1512	return ret;
1513}
1514EXPORT_SYMBOL_GPL(regulator_force_disable);
1515
1516static int _regulator_is_enabled(struct regulator_dev *rdev)
1517{
1518	/* If we don't know then assume that the regulator is always on */
1519	if (!rdev->desc->ops->is_enabled)
1520		return 1;
1521
1522	return rdev->desc->ops->is_enabled(rdev);
1523}
1524
1525/**
1526 * regulator_is_enabled - is the regulator output enabled
1527 * @regulator: regulator source
1528 *
1529 * Returns positive if the regulator driver backing the source/client
1530 * has requested that the device be enabled, zero if it hasn't, else a
1531 * negative errno code.
1532 *
1533 * Note that the device backing this regulator handle can have multiple
1534 * users, so it might be enabled even if regulator_enable() was never
1535 * called for this particular source.
1536 */
1537int regulator_is_enabled(struct regulator *regulator)
1538{
1539	int ret;
1540
1541	mutex_lock(&regulator->rdev->mutex);
1542	ret = _regulator_is_enabled(regulator->rdev);
1543	mutex_unlock(&regulator->rdev->mutex);
1544
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(regulator_is_enabled);
1548
1549/**
1550 * regulator_count_voltages - count regulator_list_voltage() selectors
1551 * @regulator: regulator source
1552 *
1553 * Returns number of selectors, or negative errno.  Selectors are
1554 * numbered starting at zero, and typically correspond to bitfields
1555 * in hardware registers.
1556 */
1557int regulator_count_voltages(struct regulator *regulator)
1558{
1559	struct regulator_dev	*rdev = regulator->rdev;
1560
1561	return rdev->desc->n_voltages ? : -EINVAL;
1562}
1563EXPORT_SYMBOL_GPL(regulator_count_voltages);
1564
1565/**
1566 * regulator_list_voltage - enumerate supported voltages
1567 * @regulator: regulator source
1568 * @selector: identify voltage to list
1569 * Context: can sleep
1570 *
1571 * Returns a voltage that can be passed to @regulator_set_voltage(),
1572 * zero if this selector code can't be used on this system, or a
1573 * negative errno.
1574 */
1575int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1576{
1577	struct regulator_dev	*rdev = regulator->rdev;
1578	struct regulator_ops	*ops = rdev->desc->ops;
1579	int			ret;
1580
1581	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582		return -EINVAL;
1583
1584	mutex_lock(&rdev->mutex);
1585	ret = ops->list_voltage(rdev, selector);
1586	mutex_unlock(&rdev->mutex);
1587
1588	if (ret > 0) {
1589		if (ret < rdev->constraints->min_uV)
1590			ret = 0;
1591		else if (ret > rdev->constraints->max_uV)
1592			ret = 0;
1593	}
1594
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(regulator_list_voltage);
1598
1599/**
1600 * regulator_is_supported_voltage - check if a voltage range can be supported
1601 *
1602 * @regulator: Regulator to check.
1603 * @min_uV: Minimum required voltage in uV.
1604 * @max_uV: Maximum required voltage in uV.
1605 *
1606 * Returns a boolean or a negative error code.
1607 */
1608int regulator_is_supported_voltage(struct regulator *regulator,
1609				   int min_uV, int max_uV)
1610{
1611	int i, voltages, ret;
1612
1613	ret = regulator_count_voltages(regulator);
1614	if (ret < 0)
1615		return ret;
1616	voltages = ret;
1617
1618	for (i = 0; i < voltages; i++) {
1619		ret = regulator_list_voltage(regulator, i);
1620
1621		if (ret >= min_uV && ret <= max_uV)
1622			return 1;
1623	}
1624
1625	return 0;
1626}
1627
1628static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629				     int min_uV, int max_uV)
1630{
1631	int ret;
1632	int delay = 0;
1633	unsigned int selector;
1634
1635	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1636
1637	if (rdev->desc->ops->set_voltage) {
1638		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1639						   &selector);
1640
1641		if (rdev->desc->ops->list_voltage)
1642			selector = rdev->desc->ops->list_voltage(rdev,
1643								 selector);
1644		else
1645			selector = -1;
1646	} else if (rdev->desc->ops->set_voltage_sel) {
1647		int best_val = INT_MAX;
1648		int i;
1649
1650		selector = 0;
1651
1652		/* Find the smallest voltage that falls within the specified
1653		 * range.
1654		 */
1655		for (i = 0; i < rdev->desc->n_voltages; i++) {
1656			ret = rdev->desc->ops->list_voltage(rdev, i);
1657			if (ret < 0)
1658				continue;
1659
1660			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1661				best_val = ret;
1662				selector = i;
1663			}
1664		}
1665
1666		/*
1667		 * If we can't obtain the old selector there is not enough
1668		 * info to call set_voltage_time_sel().
1669		 */
1670		if (rdev->desc->ops->set_voltage_time_sel &&
1671		    rdev->desc->ops->get_voltage_sel) {
1672			unsigned int old_selector = 0;
1673
1674			ret = rdev->desc->ops->get_voltage_sel(rdev);
1675			if (ret < 0)
1676				return ret;
1677			old_selector = ret;
1678			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1679						old_selector, selector);
1680		}
1681
1682		if (best_val != INT_MAX) {
1683			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1684			selector = best_val;
1685		} else {
1686			ret = -EINVAL;
1687		}
1688	} else {
1689		ret = -EINVAL;
1690	}
1691
1692	/* Insert any necessary delays */
1693	if (delay >= 1000) {
1694		mdelay(delay / 1000);
1695		udelay(delay % 1000);
1696	} else if (delay) {
1697		udelay(delay);
1698	}
1699
1700	if (ret == 0)
1701		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1702				     NULL);
1703
1704	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1705
1706	return ret;
1707}
1708
1709/**
1710 * regulator_set_voltage - set regulator output voltage
1711 * @regulator: regulator source
1712 * @min_uV: Minimum required voltage in uV
1713 * @max_uV: Maximum acceptable voltage in uV
1714 *
1715 * Sets a voltage regulator to the desired output voltage. This can be set
1716 * during any regulator state. IOW, regulator can be disabled or enabled.
1717 *
1718 * If the regulator is enabled then the voltage will change to the new value
1719 * immediately otherwise if the regulator is disabled the regulator will
1720 * output at the new voltage when enabled.
1721 *
1722 * NOTE: If the regulator is shared between several devices then the lowest
1723 * request voltage that meets the system constraints will be used.
1724 * Regulator system constraints must be set for this regulator before
1725 * calling this function otherwise this call will fail.
1726 */
1727int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1728{
1729	struct regulator_dev *rdev = regulator->rdev;
1730	int ret = 0;
1731
1732	mutex_lock(&rdev->mutex);
1733
1734	/* If we're setting the same range as last time the change
1735	 * should be a noop (some cpufreq implementations use the same
1736	 * voltage for multiple frequencies, for example).
1737	 */
1738	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1739		goto out;
1740
1741	/* sanity check */
1742	if (!rdev->desc->ops->set_voltage &&
1743	    !rdev->desc->ops->set_voltage_sel) {
1744		ret = -EINVAL;
1745		goto out;
1746	}
1747
1748	/* constraints check */
1749	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1750	if (ret < 0)
1751		goto out;
1752	regulator->min_uV = min_uV;
1753	regulator->max_uV = max_uV;
1754
1755	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1756	if (ret < 0)
1757		goto out;
1758
1759	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1760
1761out:
1762	mutex_unlock(&rdev->mutex);
1763	return ret;
1764}
1765EXPORT_SYMBOL_GPL(regulator_set_voltage);
1766
1767/**
1768 * regulator_sync_voltage - re-apply last regulator output voltage
1769 * @regulator: regulator source
1770 *
1771 * Re-apply the last configured voltage.  This is intended to be used
1772 * where some external control source the consumer is cooperating with
1773 * has caused the configured voltage to change.
1774 */
1775int regulator_sync_voltage(struct regulator *regulator)
1776{
1777	struct regulator_dev *rdev = regulator->rdev;
1778	int ret, min_uV, max_uV;
1779
1780	mutex_lock(&rdev->mutex);
1781
1782	if (!rdev->desc->ops->set_voltage &&
1783	    !rdev->desc->ops->set_voltage_sel) {
1784		ret = -EINVAL;
1785		goto out;
1786	}
1787
1788	/* This is only going to work if we've had a voltage configured. */
1789	if (!regulator->min_uV && !regulator->max_uV) {
1790		ret = -EINVAL;
1791		goto out;
1792	}
1793
1794	min_uV = regulator->min_uV;
1795	max_uV = regulator->max_uV;
1796
1797	/* This should be a paranoia check... */
1798	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1799	if (ret < 0)
1800		goto out;
1801
1802	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1803	if (ret < 0)
1804		goto out;
1805
1806	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1807
1808out:
1809	mutex_unlock(&rdev->mutex);
1810	return ret;
1811}
1812EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1813
1814static int _regulator_get_voltage(struct regulator_dev *rdev)
1815{
1816	int sel;
1817
1818	if (rdev->desc->ops->get_voltage_sel) {
1819		sel = rdev->desc->ops->get_voltage_sel(rdev);
1820		if (sel < 0)
1821			return sel;
1822		return rdev->desc->ops->list_voltage(rdev, sel);
1823	}
1824	if (rdev->desc->ops->get_voltage)
1825		return rdev->desc->ops->get_voltage(rdev);
1826	else
1827		return -EINVAL;
1828}
1829
1830/**
1831 * regulator_get_voltage - get regulator output voltage
1832 * @regulator: regulator source
1833 *
1834 * This returns the current regulator voltage in uV.
1835 *
1836 * NOTE: If the regulator is disabled it will return the voltage value. This
1837 * function should not be used to determine regulator state.
1838 */
1839int regulator_get_voltage(struct regulator *regulator)
1840{
1841	int ret;
1842
1843	mutex_lock(&regulator->rdev->mutex);
1844
1845	ret = _regulator_get_voltage(regulator->rdev);
1846
1847	mutex_unlock(&regulator->rdev->mutex);
1848
1849	return ret;
1850}
1851EXPORT_SYMBOL_GPL(regulator_get_voltage);
1852
1853/**
1854 * regulator_set_current_limit - set regulator output current limit
1855 * @regulator: regulator source
1856 * @min_uA: Minimuum supported current in uA
1857 * @max_uA: Maximum supported current in uA
1858 *
1859 * Sets current sink to the desired output current. This can be set during
1860 * any regulator state. IOW, regulator can be disabled or enabled.
1861 *
1862 * If the regulator is enabled then the current will change to the new value
1863 * immediately otherwise if the regulator is disabled the regulator will
1864 * output at the new current when enabled.
1865 *
1866 * NOTE: Regulator system constraints must be set for this regulator before
1867 * calling this function otherwise this call will fail.
1868 */
1869int regulator_set_current_limit(struct regulator *regulator,
1870			       int min_uA, int max_uA)
1871{
1872	struct regulator_dev *rdev = regulator->rdev;
1873	int ret;
1874
1875	mutex_lock(&rdev->mutex);
1876
1877	/* sanity check */
1878	if (!rdev->desc->ops->set_current_limit) {
1879		ret = -EINVAL;
1880		goto out;
1881	}
1882
1883	/* constraints check */
1884	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1885	if (ret < 0)
1886		goto out;
1887
1888	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1889out:
1890	mutex_unlock(&rdev->mutex);
1891	return ret;
1892}
1893EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1894
1895static int _regulator_get_current_limit(struct regulator_dev *rdev)
1896{
1897	int ret;
1898
1899	mutex_lock(&rdev->mutex);
1900
1901	/* sanity check */
1902	if (!rdev->desc->ops->get_current_limit) {
1903		ret = -EINVAL;
1904		goto out;
1905	}
1906
1907	ret = rdev->desc->ops->get_current_limit(rdev);
1908out:
1909	mutex_unlock(&rdev->mutex);
1910	return ret;
1911}
1912
1913/**
1914 * regulator_get_current_limit - get regulator output current
1915 * @regulator: regulator source
1916 *
1917 * This returns the current supplied by the specified current sink in uA.
1918 *
1919 * NOTE: If the regulator is disabled it will return the current value. This
1920 * function should not be used to determine regulator state.
1921 */
1922int regulator_get_current_limit(struct regulator *regulator)
1923{
1924	return _regulator_get_current_limit(regulator->rdev);
1925}
1926EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1927
1928/**
1929 * regulator_set_mode - set regulator operating mode
1930 * @regulator: regulator source
1931 * @mode: operating mode - one of the REGULATOR_MODE constants
1932 *
1933 * Set regulator operating mode to increase regulator efficiency or improve
1934 * regulation performance.
1935 *
1936 * NOTE: Regulator system constraints must be set for this regulator before
1937 * calling this function otherwise this call will fail.
1938 */
1939int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1940{
1941	struct regulator_dev *rdev = regulator->rdev;
1942	int ret;
1943	int regulator_curr_mode;
1944
1945	mutex_lock(&rdev->mutex);
1946
1947	/* sanity check */
1948	if (!rdev->desc->ops->set_mode) {
1949		ret = -EINVAL;
1950		goto out;
1951	}
1952
1953	/* return if the same mode is requested */
1954	if (rdev->desc->ops->get_mode) {
1955		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1956		if (regulator_curr_mode == mode) {
1957			ret = 0;
1958			goto out;
1959		}
1960	}
1961
1962	/* constraints check */
1963	ret = regulator_check_mode(rdev, mode);
1964	if (ret < 0)
1965		goto out;
1966
1967	ret = rdev->desc->ops->set_mode(rdev, mode);
1968out:
1969	mutex_unlock(&rdev->mutex);
1970	return ret;
1971}
1972EXPORT_SYMBOL_GPL(regulator_set_mode);
1973
1974static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1975{
1976	int ret;
1977
1978	mutex_lock(&rdev->mutex);
1979
1980	/* sanity check */
1981	if (!rdev->desc->ops->get_mode) {
1982		ret = -EINVAL;
1983		goto out;
1984	}
1985
1986	ret = rdev->desc->ops->get_mode(rdev);
1987out:
1988	mutex_unlock(&rdev->mutex);
1989	return ret;
1990}
1991
1992/**
1993 * regulator_get_mode - get regulator operating mode
1994 * @regulator: regulator source
1995 *
1996 * Get the current regulator operating mode.
1997 */
1998unsigned int regulator_get_mode(struct regulator *regulator)
1999{
2000	return _regulator_get_mode(regulator->rdev);
2001}
2002EXPORT_SYMBOL_GPL(regulator_get_mode);
2003
2004/**
2005 * regulator_set_optimum_mode - set regulator optimum operating mode
2006 * @regulator: regulator source
2007 * @uA_load: load current
2008 *
2009 * Notifies the regulator core of a new device load. This is then used by
2010 * DRMS (if enabled by constraints) to set the most efficient regulator
2011 * operating mode for the new regulator loading.
2012 *
2013 * Consumer devices notify their supply regulator of the maximum power
2014 * they will require (can be taken from device datasheet in the power
2015 * consumption tables) when they change operational status and hence power
2016 * state. Examples of operational state changes that can affect power
2017 * consumption are :-
2018 *
2019 *    o Device is opened / closed.
2020 *    o Device I/O is about to begin or has just finished.
2021 *    o Device is idling in between work.
2022 *
2023 * This information is also exported via sysfs to userspace.
2024 *
2025 * DRMS will sum the total requested load on the regulator and change
2026 * to the most efficient operating mode if platform constraints allow.
2027 *
2028 * Returns the new regulator mode or error.
2029 */
2030int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	struct regulator *consumer;
2034	int ret, output_uV, input_uV, total_uA_load = 0;
2035	unsigned int mode;
2036
2037	mutex_lock(&rdev->mutex);
2038
2039	regulator->uA_load = uA_load;
2040	ret = regulator_check_drms(rdev);
2041	if (ret < 0)
2042		goto out;
2043	ret = -EINVAL;
2044
2045	/* sanity check */
2046	if (!rdev->desc->ops->get_optimum_mode)
2047		goto out;
2048
2049	/* get output voltage */
2050	output_uV = _regulator_get_voltage(rdev);
2051	if (output_uV <= 0) {
2052		rdev_err(rdev, "invalid output voltage found\n");
2053		goto out;
2054	}
2055
2056	/* get input voltage */
2057	input_uV = 0;
2058	if (rdev->supply)
2059		input_uV = _regulator_get_voltage(rdev->supply);
2060	if (input_uV <= 0)
2061		input_uV = rdev->constraints->input_uV;
2062	if (input_uV <= 0) {
2063		rdev_err(rdev, "invalid input voltage found\n");
2064		goto out;
2065	}
2066
2067	/* calc total requested load for this regulator */
2068	list_for_each_entry(consumer, &rdev->consumer_list, list)
2069		total_uA_load += consumer->uA_load;
2070
2071	mode = rdev->desc->ops->get_optimum_mode(rdev,
2072						 input_uV, output_uV,
2073						 total_uA_load);
2074	ret = regulator_check_mode(rdev, mode);
2075	if (ret < 0) {
2076		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2077			 total_uA_load, input_uV, output_uV);
2078		goto out;
2079	}
2080
2081	ret = rdev->desc->ops->set_mode(rdev, mode);
2082	if (ret < 0) {
2083		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2084		goto out;
2085	}
2086	ret = mode;
2087out:
2088	mutex_unlock(&rdev->mutex);
2089	return ret;
2090}
2091EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2092
2093/**
2094 * regulator_register_notifier - register regulator event notifier
2095 * @regulator: regulator source
2096 * @nb: notifier block
2097 *
2098 * Register notifier block to receive regulator events.
2099 */
2100int regulator_register_notifier(struct regulator *regulator,
2101			      struct notifier_block *nb)
2102{
2103	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2104						nb);
2105}
2106EXPORT_SYMBOL_GPL(regulator_register_notifier);
2107
2108/**
2109 * regulator_unregister_notifier - unregister regulator event notifier
2110 * @regulator: regulator source
2111 * @nb: notifier block
2112 *
2113 * Unregister regulator event notifier block.
2114 */
2115int regulator_unregister_notifier(struct regulator *regulator,
2116				struct notifier_block *nb)
2117{
2118	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2119						  nb);
2120}
2121EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2122
2123/* notify regulator consumers and downstream regulator consumers.
2124 * Note mutex must be held by caller.
2125 */
2126static void _notifier_call_chain(struct regulator_dev *rdev,
2127				  unsigned long event, void *data)
2128{
2129	struct regulator_dev *_rdev;
2130
2131	/* call rdev chain first */
2132	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2133
2134	/* now notify regulator we supply */
2135	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2136		mutex_lock(&_rdev->mutex);
2137		_notifier_call_chain(_rdev, event, data);
2138		mutex_unlock(&_rdev->mutex);
2139	}
2140}
2141
2142/**
2143 * regulator_bulk_get - get multiple regulator consumers
2144 *
2145 * @dev:           Device to supply
2146 * @num_consumers: Number of consumers to register
2147 * @consumers:     Configuration of consumers; clients are stored here.
2148 *
2149 * @return 0 on success, an errno on failure.
2150 *
2151 * This helper function allows drivers to get several regulator
2152 * consumers in one operation.  If any of the regulators cannot be
2153 * acquired then any regulators that were allocated will be freed
2154 * before returning to the caller.
2155 */
2156int regulator_bulk_get(struct device *dev, int num_consumers,
2157		       struct regulator_bulk_data *consumers)
2158{
2159	int i;
2160	int ret;
2161
2162	for (i = 0; i < num_consumers; i++)
2163		consumers[i].consumer = NULL;
2164
2165	for (i = 0; i < num_consumers; i++) {
2166		consumers[i].consumer = regulator_get(dev,
2167						      consumers[i].supply);
2168		if (IS_ERR(consumers[i].consumer)) {
2169			ret = PTR_ERR(consumers[i].consumer);
2170			dev_err(dev, "Failed to get supply '%s': %d\n",
2171				consumers[i].supply, ret);
2172			consumers[i].consumer = NULL;
2173			goto err;
2174		}
2175	}
2176
2177	return 0;
2178
2179err:
2180	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2181		regulator_put(consumers[i].consumer);
2182
2183	return ret;
2184}
2185EXPORT_SYMBOL_GPL(regulator_bulk_get);
2186
2187/**
2188 * regulator_bulk_enable - enable multiple regulator consumers
2189 *
2190 * @num_consumers: Number of consumers
2191 * @consumers:     Consumer data; clients are stored here.
2192 * @return         0 on success, an errno on failure
2193 *
2194 * This convenience API allows consumers to enable multiple regulator
2195 * clients in a single API call.  If any consumers cannot be enabled
2196 * then any others that were enabled will be disabled again prior to
2197 * return.
2198 */
2199int regulator_bulk_enable(int num_consumers,
2200			  struct regulator_bulk_data *consumers)
2201{
2202	int i;
2203	int ret;
2204
2205	for (i = 0; i < num_consumers; i++) {
2206		ret = regulator_enable(consumers[i].consumer);
2207		if (ret != 0)
2208			goto err;
2209	}
2210
2211	return 0;
2212
2213err:
2214	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2215	for (--i; i >= 0; --i)
2216		regulator_disable(consumers[i].consumer);
2217
2218	return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2221
2222/**
2223 * regulator_bulk_disable - disable multiple regulator consumers
2224 *
2225 * @num_consumers: Number of consumers
2226 * @consumers:     Consumer data; clients are stored here.
2227 * @return         0 on success, an errno on failure
2228 *
2229 * This convenience API allows consumers to disable multiple regulator
2230 * clients in a single API call.  If any consumers cannot be enabled
2231 * then any others that were disabled will be disabled again prior to
2232 * return.
2233 */
2234int regulator_bulk_disable(int num_consumers,
2235			   struct regulator_bulk_data *consumers)
2236{
2237	int i;
2238	int ret;
2239
2240	for (i = 0; i < num_consumers; i++) {
2241		ret = regulator_disable(consumers[i].consumer);
2242		if (ret != 0)
2243			goto err;
2244	}
2245
2246	return 0;
2247
2248err:
2249	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2250	for (--i; i >= 0; --i)
2251		regulator_enable(consumers[i].consumer);
2252
2253	return ret;
2254}
2255EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2256
2257/**
2258 * regulator_bulk_free - free multiple regulator consumers
2259 *
2260 * @num_consumers: Number of consumers
2261 * @consumers:     Consumer data; clients are stored here.
2262 *
2263 * This convenience API allows consumers to free multiple regulator
2264 * clients in a single API call.
2265 */
2266void regulator_bulk_free(int num_consumers,
2267			 struct regulator_bulk_data *consumers)
2268{
2269	int i;
2270
2271	for (i = 0; i < num_consumers; i++) {
2272		regulator_put(consumers[i].consumer);
2273		consumers[i].consumer = NULL;
2274	}
2275}
2276EXPORT_SYMBOL_GPL(regulator_bulk_free);
2277
2278/**
2279 * regulator_notifier_call_chain - call regulator event notifier
2280 * @rdev: regulator source
2281 * @event: notifier block
2282 * @data: callback-specific data.
2283 *
2284 * Called by regulator drivers to notify clients a regulator event has
2285 * occurred. We also notify regulator clients downstream.
2286 * Note lock must be held by caller.
2287 */
2288int regulator_notifier_call_chain(struct regulator_dev *rdev,
2289				  unsigned long event, void *data)
2290{
2291	_notifier_call_chain(rdev, event, data);
2292	return NOTIFY_DONE;
2293
2294}
2295EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2296
2297/**
2298 * regulator_mode_to_status - convert a regulator mode into a status
2299 *
2300 * @mode: Mode to convert
2301 *
2302 * Convert a regulator mode into a status.
2303 */
2304int regulator_mode_to_status(unsigned int mode)
2305{
2306	switch (mode) {
2307	case REGULATOR_MODE_FAST:
2308		return REGULATOR_STATUS_FAST;
2309	case REGULATOR_MODE_NORMAL:
2310		return REGULATOR_STATUS_NORMAL;
2311	case REGULATOR_MODE_IDLE:
2312		return REGULATOR_STATUS_IDLE;
2313	case REGULATOR_STATUS_STANDBY:
2314		return REGULATOR_STATUS_STANDBY;
2315	default:
2316		return 0;
2317	}
2318}
2319EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2320
2321/*
2322 * To avoid cluttering sysfs (and memory) with useless state, only
2323 * create attributes that can be meaningfully displayed.
2324 */
2325static int add_regulator_attributes(struct regulator_dev *rdev)
2326{
2327	struct device		*dev = &rdev->dev;
2328	struct regulator_ops	*ops = rdev->desc->ops;
2329	int			status = 0;
2330
2331	/* some attributes need specific methods to be displayed */
2332	if (ops->get_voltage || ops->get_voltage_sel) {
2333		status = device_create_file(dev, &dev_attr_microvolts);
2334		if (status < 0)
2335			return status;
2336	}
2337	if (ops->get_current_limit) {
2338		status = device_create_file(dev, &dev_attr_microamps);
2339		if (status < 0)
2340			return status;
2341	}
2342	if (ops->get_mode) {
2343		status = device_create_file(dev, &dev_attr_opmode);
2344		if (status < 0)
2345			return status;
2346	}
2347	if (ops->is_enabled) {
2348		status = device_create_file(dev, &dev_attr_state);
2349		if (status < 0)
2350			return status;
2351	}
2352	if (ops->get_status) {
2353		status = device_create_file(dev, &dev_attr_status);
2354		if (status < 0)
2355			return status;
2356	}
2357
2358	/* some attributes are type-specific */
2359	if (rdev->desc->type == REGULATOR_CURRENT) {
2360		status = device_create_file(dev, &dev_attr_requested_microamps);
2361		if (status < 0)
2362			return status;
2363	}
2364
2365	/* all the other attributes exist to support constraints;
2366	 * don't show them if there are no constraints, or if the
2367	 * relevant supporting methods are missing.
2368	 */
2369	if (!rdev->constraints)
2370		return status;
2371
2372	/* constraints need specific supporting methods */
2373	if (ops->set_voltage || ops->set_voltage_sel) {
2374		status = device_create_file(dev, &dev_attr_min_microvolts);
2375		if (status < 0)
2376			return status;
2377		status = device_create_file(dev, &dev_attr_max_microvolts);
2378		if (status < 0)
2379			return status;
2380	}
2381	if (ops->set_current_limit) {
2382		status = device_create_file(dev, &dev_attr_min_microamps);
2383		if (status < 0)
2384			return status;
2385		status = device_create_file(dev, &dev_attr_max_microamps);
2386		if (status < 0)
2387			return status;
2388	}
2389
2390	/* suspend mode constraints need multiple supporting methods */
2391	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2392		return status;
2393
2394	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2395	if (status < 0)
2396		return status;
2397	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2398	if (status < 0)
2399		return status;
2400	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2401	if (status < 0)
2402		return status;
2403
2404	if (ops->set_suspend_voltage) {
2405		status = device_create_file(dev,
2406				&dev_attr_suspend_standby_microvolts);
2407		if (status < 0)
2408			return status;
2409		status = device_create_file(dev,
2410				&dev_attr_suspend_mem_microvolts);
2411		if (status < 0)
2412			return status;
2413		status = device_create_file(dev,
2414				&dev_attr_suspend_disk_microvolts);
2415		if (status < 0)
2416			return status;
2417	}
2418
2419	if (ops->set_suspend_mode) {
2420		status = device_create_file(dev,
2421				&dev_attr_suspend_standby_mode);
2422		if (status < 0)
2423			return status;
2424		status = device_create_file(dev,
2425				&dev_attr_suspend_mem_mode);
2426		if (status < 0)
2427			return status;
2428		status = device_create_file(dev,
2429				&dev_attr_suspend_disk_mode);
2430		if (status < 0)
2431			return status;
2432	}
2433
2434	return status;
2435}
2436
2437static void rdev_init_debugfs(struct regulator_dev *rdev)
2438{
2439#ifdef CONFIG_DEBUG_FS
2440	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2441	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2442		rdev_warn(rdev, "Failed to create debugfs directory\n");
2443		rdev->debugfs = NULL;
2444		return;
2445	}
2446
2447	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2448			   &rdev->use_count);
2449	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2450			   &rdev->open_count);
2451#endif
2452}
2453
2454/**
2455 * regulator_register - register regulator
2456 * @regulator_desc: regulator to register
2457 * @dev: struct device for the regulator
2458 * @init_data: platform provided init data, passed through by driver
2459 * @driver_data: private regulator data
2460 *
2461 * Called by regulator drivers to register a regulator.
2462 * Returns 0 on success.
2463 */
2464struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2465	struct device *dev, const struct regulator_init_data *init_data,
2466	void *driver_data)
2467{
2468	static atomic_t regulator_no = ATOMIC_INIT(0);
2469	struct regulator_dev *rdev;
2470	int ret, i;
2471
2472	if (regulator_desc == NULL)
2473		return ERR_PTR(-EINVAL);
2474
2475	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2476		return ERR_PTR(-EINVAL);
2477
2478	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2479	    regulator_desc->type != REGULATOR_CURRENT)
2480		return ERR_PTR(-EINVAL);
2481
2482	if (!init_data)
2483		return ERR_PTR(-EINVAL);
2484
2485	/* Only one of each should be implemented */
2486	WARN_ON(regulator_desc->ops->get_voltage &&
2487		regulator_desc->ops->get_voltage_sel);
2488	WARN_ON(regulator_desc->ops->set_voltage &&
2489		regulator_desc->ops->set_voltage_sel);
2490
2491	/* If we're using selectors we must implement list_voltage. */
2492	if (regulator_desc->ops->get_voltage_sel &&
2493	    !regulator_desc->ops->list_voltage) {
2494		return ERR_PTR(-EINVAL);
2495	}
2496	if (regulator_desc->ops->set_voltage_sel &&
2497	    !regulator_desc->ops->list_voltage) {
2498		return ERR_PTR(-EINVAL);
2499	}
2500
2501	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2502	if (rdev == NULL)
2503		return ERR_PTR(-ENOMEM);
2504
2505	mutex_lock(&regulator_list_mutex);
2506
2507	mutex_init(&rdev->mutex);
2508	rdev->reg_data = driver_data;
2509	rdev->owner = regulator_desc->owner;
2510	rdev->desc = regulator_desc;
2511	INIT_LIST_HEAD(&rdev->consumer_list);
2512	INIT_LIST_HEAD(&rdev->supply_list);
2513	INIT_LIST_HEAD(&rdev->list);
2514	INIT_LIST_HEAD(&rdev->slist);
2515	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2516
2517	/* preform any regulator specific init */
2518	if (init_data->regulator_init) {
2519		ret = init_data->regulator_init(rdev->reg_data);
2520		if (ret < 0)
2521			goto clean;
2522	}
2523
2524	/* register with sysfs */
2525	rdev->dev.class = &regulator_class;
2526	rdev->dev.parent = dev;
2527	dev_set_name(&rdev->dev, "regulator.%d",
2528		     atomic_inc_return(&regulator_no) - 1);
2529	ret = device_register(&rdev->dev);
2530	if (ret != 0) {
2531		put_device(&rdev->dev);
2532		goto clean;
2533	}
2534
2535	dev_set_drvdata(&rdev->dev, rdev);
2536
2537	/* set regulator constraints */
2538	ret = set_machine_constraints(rdev, &init_data->constraints);
2539	if (ret < 0)
2540		goto scrub;
2541
2542	/* add attributes supported by this regulator */
2543	ret = add_regulator_attributes(rdev);
2544	if (ret < 0)
2545		goto scrub;
2546
2547	/* set supply regulator if it exists */
2548	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2549		dev_err(dev,
2550			"Supply regulator specified by both name and dev\n");
2551		ret = -EINVAL;
2552		goto scrub;
2553	}
2554
2555	if (init_data->supply_regulator) {
2556		struct regulator_dev *r;
2557		int found = 0;
2558
2559		list_for_each_entry(r, &regulator_list, list) {
2560			if (strcmp(rdev_get_name(r),
2561				   init_data->supply_regulator) == 0) {
2562				found = 1;
2563				break;
2564			}
2565		}
2566
2567		if (!found) {
2568			dev_err(dev, "Failed to find supply %s\n",
2569				init_data->supply_regulator);
2570			ret = -ENODEV;
2571			goto scrub;
2572		}
2573
2574		ret = set_supply(rdev, r);
2575		if (ret < 0)
2576			goto scrub;
2577	}
2578
2579	if (init_data->supply_regulator_dev) {
2580		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2581		ret = set_supply(rdev,
2582			dev_get_drvdata(init_data->supply_regulator_dev));
2583		if (ret < 0)
2584			goto scrub;
2585	}
2586
2587	/* add consumers devices */
2588	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2589		ret = set_consumer_device_supply(rdev,
2590			init_data->consumer_supplies[i].dev,
2591			init_data->consumer_supplies[i].dev_name,
2592			init_data->consumer_supplies[i].supply);
2593		if (ret < 0) {
2594			dev_err(dev, "Failed to set supply %s\n",
2595				init_data->consumer_supplies[i].supply);
2596			goto unset_supplies;
2597		}
2598	}
2599
2600	list_add(&rdev->list, &regulator_list);
2601
2602	rdev_init_debugfs(rdev);
2603out:
2604	mutex_unlock(&regulator_list_mutex);
2605	return rdev;
2606
2607unset_supplies:
2608	unset_regulator_supplies(rdev);
2609
2610scrub:
2611	device_unregister(&rdev->dev);
2612	/* device core frees rdev */
2613	rdev = ERR_PTR(ret);
2614	goto out;
2615
2616clean:
2617	kfree(rdev);
2618	rdev = ERR_PTR(ret);
2619	goto out;
2620}
2621EXPORT_SYMBOL_GPL(regulator_register);
2622
2623/**
2624 * regulator_unregister - unregister regulator
2625 * @rdev: regulator to unregister
2626 *
2627 * Called by regulator drivers to unregister a regulator.
2628 */
2629void regulator_unregister(struct regulator_dev *rdev)
2630{
2631	if (rdev == NULL)
2632		return;
2633
2634	mutex_lock(&regulator_list_mutex);
2635#ifdef CONFIG_DEBUG_FS
2636	debugfs_remove_recursive(rdev->debugfs);
2637#endif
2638	WARN_ON(rdev->open_count);
2639	unset_regulator_supplies(rdev);
2640	list_del(&rdev->list);
2641	if (rdev->supply)
2642		sysfs_remove_link(&rdev->dev.kobj, "supply");
2643	device_unregister(&rdev->dev);
2644	kfree(rdev->constraints);
2645	mutex_unlock(&regulator_list_mutex);
2646}
2647EXPORT_SYMBOL_GPL(regulator_unregister);
2648
2649/**
2650 * regulator_suspend_prepare - prepare regulators for system wide suspend
2651 * @state: system suspend state
2652 *
2653 * Configure each regulator with it's suspend operating parameters for state.
2654 * This will usually be called by machine suspend code prior to supending.
2655 */
2656int regulator_suspend_prepare(suspend_state_t state)
2657{
2658	struct regulator_dev *rdev;
2659	int ret = 0;
2660
2661	/* ON is handled by regulator active state */
2662	if (state == PM_SUSPEND_ON)
2663		return -EINVAL;
2664
2665	mutex_lock(&regulator_list_mutex);
2666	list_for_each_entry(rdev, &regulator_list, list) {
2667
2668		mutex_lock(&rdev->mutex);
2669		ret = suspend_prepare(rdev, state);
2670		mutex_unlock(&rdev->mutex);
2671
2672		if (ret < 0) {
2673			rdev_err(rdev, "failed to prepare\n");
2674			goto out;
2675		}
2676	}
2677out:
2678	mutex_unlock(&regulator_list_mutex);
2679	return ret;
2680}
2681EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2682
2683/**
2684 * regulator_suspend_finish - resume regulators from system wide suspend
2685 *
2686 * Turn on regulators that might be turned off by regulator_suspend_prepare
2687 * and that should be turned on according to the regulators properties.
2688 */
2689int regulator_suspend_finish(void)
2690{
2691	struct regulator_dev *rdev;
2692	int ret = 0, error;
2693
2694	mutex_lock(&regulator_list_mutex);
2695	list_for_each_entry(rdev, &regulator_list, list) {
2696		struct regulator_ops *ops = rdev->desc->ops;
2697
2698		mutex_lock(&rdev->mutex);
2699		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2700				ops->enable) {
2701			error = ops->enable(rdev);
2702			if (error)
2703				ret = error;
2704		} else {
2705			if (!has_full_constraints)
2706				goto unlock;
2707			if (!ops->disable)
2708				goto unlock;
2709			if (ops->is_enabled && !ops->is_enabled(rdev))
2710				goto unlock;
2711
2712			error = ops->disable(rdev);
2713			if (error)
2714				ret = error;
2715		}
2716unlock:
2717		mutex_unlock(&rdev->mutex);
2718	}
2719	mutex_unlock(&regulator_list_mutex);
2720	return ret;
2721}
2722EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2723
2724/**
2725 * regulator_has_full_constraints - the system has fully specified constraints
2726 *
2727 * Calling this function will cause the regulator API to disable all
2728 * regulators which have a zero use count and don't have an always_on
2729 * constraint in a late_initcall.
2730 *
2731 * The intention is that this will become the default behaviour in a
2732 * future kernel release so users are encouraged to use this facility
2733 * now.
2734 */
2735void regulator_has_full_constraints(void)
2736{
2737	has_full_constraints = 1;
2738}
2739EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2740
2741/**
2742 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2743 *
2744 * Calling this function will cause the regulator API to provide a
2745 * dummy regulator to consumers if no physical regulator is found,
2746 * allowing most consumers to proceed as though a regulator were
2747 * configured.  This allows systems such as those with software
2748 * controllable regulators for the CPU core only to be brought up more
2749 * readily.
2750 */
2751void regulator_use_dummy_regulator(void)
2752{
2753	board_wants_dummy_regulator = true;
2754}
2755EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2756
2757/**
2758 * rdev_get_drvdata - get rdev regulator driver data
2759 * @rdev: regulator
2760 *
2761 * Get rdev regulator driver private data. This call can be used in the
2762 * regulator driver context.
2763 */
2764void *rdev_get_drvdata(struct regulator_dev *rdev)
2765{
2766	return rdev->reg_data;
2767}
2768EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2769
2770/**
2771 * regulator_get_drvdata - get regulator driver data
2772 * @regulator: regulator
2773 *
2774 * Get regulator driver private data. This call can be used in the consumer
2775 * driver context when non API regulator specific functions need to be called.
2776 */
2777void *regulator_get_drvdata(struct regulator *regulator)
2778{
2779	return regulator->rdev->reg_data;
2780}
2781EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2782
2783/**
2784 * regulator_set_drvdata - set regulator driver data
2785 * @regulator: regulator
2786 * @data: data
2787 */
2788void regulator_set_drvdata(struct regulator *regulator, void *data)
2789{
2790	regulator->rdev->reg_data = data;
2791}
2792EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2793
2794/**
2795 * regulator_get_id - get regulator ID
2796 * @rdev: regulator
2797 */
2798int rdev_get_id(struct regulator_dev *rdev)
2799{
2800	return rdev->desc->id;
2801}
2802EXPORT_SYMBOL_GPL(rdev_get_id);
2803
2804struct device *rdev_get_dev(struct regulator_dev *rdev)
2805{
2806	return &rdev->dev;
2807}
2808EXPORT_SYMBOL_GPL(rdev_get_dev);
2809
2810void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2811{
2812	return reg_init_data->driver_data;
2813}
2814EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2815
2816static int __init regulator_init(void)
2817{
2818	int ret;
2819
2820	ret = class_register(&regulator_class);
2821
2822#ifdef CONFIG_DEBUG_FS
2823	debugfs_root = debugfs_create_dir("regulator", NULL);
2824	if (IS_ERR(debugfs_root) || !debugfs_root) {
2825		pr_warn("regulator: Failed to create debugfs directory\n");
2826		debugfs_root = NULL;
2827	}
2828#endif
2829
2830	regulator_dummy_init();
2831
2832	return ret;
2833}
2834
2835/* init early to allow our consumers to complete system booting */
2836core_initcall(regulator_init);
2837
2838static int __init regulator_init_complete(void)
2839{
2840	struct regulator_dev *rdev;
2841	struct regulator_ops *ops;
2842	struct regulation_constraints *c;
2843	int enabled, ret;
2844
2845	mutex_lock(&regulator_list_mutex);
2846
2847	/* If we have a full configuration then disable any regulators
2848	 * which are not in use or always_on.  This will become the
2849	 * default behaviour in the future.
2850	 */
2851	list_for_each_entry(rdev, &regulator_list, list) {
2852		ops = rdev->desc->ops;
2853		c = rdev->constraints;
2854
2855		if (!ops->disable || (c && c->always_on))
2856			continue;
2857
2858		mutex_lock(&rdev->mutex);
2859
2860		if (rdev->use_count)
2861			goto unlock;
2862
2863		/* If we can't read the status assume it's on. */
2864		if (ops->is_enabled)
2865			enabled = ops->is_enabled(rdev);
2866		else
2867			enabled = 1;
2868
2869		if (!enabled)
2870			goto unlock;
2871
2872		if (has_full_constraints) {
2873			/* We log since this may kill the system if it
2874			 * goes wrong. */
2875			rdev_info(rdev, "disabling\n");
2876			ret = ops->disable(rdev);
2877			if (ret != 0) {
2878				rdev_err(rdev, "couldn't disable: %d\n", ret);
2879			}
2880		} else {
2881			/* The intention is that in future we will
2882			 * assume that full constraints are provided
2883			 * so warn even if we aren't going to do
2884			 * anything here.
2885			 */
2886			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2887		}
2888
2889unlock:
2890		mutex_unlock(&rdev->mutex);
2891	}
2892
2893	mutex_unlock(&regulator_list_mutex);
2894
2895	return 0;
2896}
2897late_initcall(regulator_init_complete);
2898