core.c revision 87b2841753e1694fc96fefb467f6aff9940b07af
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122static bool have_full_constraints(void)
123{
124	return has_full_constraints;
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327			 char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337	switch (mode) {
338	case REGULATOR_MODE_FAST:
339		return sprintf(buf, "fast\n");
340	case REGULATOR_MODE_NORMAL:
341		return sprintf(buf, "normal\n");
342	case REGULATOR_MODE_IDLE:
343		return sprintf(buf, "idle\n");
344	case REGULATOR_MODE_STANDBY:
345		return sprintf(buf, "standby\n");
346	}
347	return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351				    struct device_attribute *attr, char *buf)
352{
353	struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361	if (state > 0)
362		return sprintf(buf, "enabled\n");
363	else if (state == 0)
364		return sprintf(buf, "disabled\n");
365	else
366		return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370				   struct device_attribute *attr, char *buf)
371{
372	struct regulator_dev *rdev = dev_get_drvdata(dev);
373	ssize_t ret;
374
375	mutex_lock(&rdev->mutex);
376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377	mutex_unlock(&rdev->mutex);
378
379	return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	int status;
388	char *label;
389
390	status = rdev->desc->ops->get_status(rdev);
391	if (status < 0)
392		return status;
393
394	switch (status) {
395	case REGULATOR_STATUS_OFF:
396		label = "off";
397		break;
398	case REGULATOR_STATUS_ON:
399		label = "on";
400		break;
401	case REGULATOR_STATUS_ERROR:
402		label = "error";
403		break;
404	case REGULATOR_STATUS_FAST:
405		label = "fast";
406		break;
407	case REGULATOR_STATUS_NORMAL:
408		label = "normal";
409		break;
410	case REGULATOR_STATUS_IDLE:
411		label = "idle";
412		break;
413	case REGULATOR_STATUS_STANDBY:
414		label = "standby";
415		break;
416	case REGULATOR_STATUS_BYPASS:
417		label = "bypass";
418		break;
419	case REGULATOR_STATUS_UNDEFINED:
420		label = "undefined";
421		break;
422	default:
423		return -ERANGE;
424	}
425
426	return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431				    struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	if (!rdev->constraints)
436		return sprintf(buf, "constraint not defined\n");
437
438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443				    struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	if (!rdev->constraints)
448		return sprintf(buf, "constraint not defined\n");
449
450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455				    struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	if (!rdev->constraints)
460		return sprintf(buf, "constraint not defined\n");
461
462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467				    struct device_attribute *attr, char *buf)
468{
469	struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471	if (!rdev->constraints)
472		return sprintf(buf, "constraint not defined\n");
473
474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	struct regulator *regulator;
483	int uA = 0;
484
485	mutex_lock(&rdev->mutex);
486	list_for_each_entry(regulator, &rdev->consumer_list, list)
487		uA += regulator->uA_load;
488	mutex_unlock(&rdev->mutex);
489	return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494			      char *buf)
495{
496	struct regulator_dev *rdev = dev_get_drvdata(dev);
497	return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502			 char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524		regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534		regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537				struct device_attribute *attr, char *buf)
538{
539	struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544		regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547				struct device_attribute *attr, char *buf)
548{
549	struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551	return regulator_print_opmode(buf,
552		rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555		regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558				struct device_attribute *attr, char *buf)
559{
560	struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562	return regulator_print_opmode(buf,
563		rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566		regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569				struct device_attribute *attr, char *buf)
570{
571	struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573	return regulator_print_opmode(buf,
574		rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577		regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580				   struct device_attribute *attr, char *buf)
581{
582	struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584	return regulator_print_state(buf,
585			rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588		regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591				   struct device_attribute *attr, char *buf)
592{
593	struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595	return regulator_print_state(buf,
596			rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599		regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602				   struct device_attribute *attr, char *buf)
603{
604	struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606	return regulator_print_state(buf,
607			rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610		regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613				     struct device_attribute *attr, char *buf)
614{
615	struct regulator_dev *rdev = dev_get_drvdata(dev);
616	const char *report;
617	bool bypass;
618	int ret;
619
620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622	if (ret != 0)
623		report = "unknown";
624	else if (bypass)
625		report = "enabled";
626	else
627		report = "disabled";
628
629	return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632		   regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639	&dev_attr_name.attr,
640	&dev_attr_num_users.attr,
641	&dev_attr_type.attr,
642	NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648	struct regulator_dev *rdev = dev_get_drvdata(dev);
649	kfree(rdev);
650}
651
652static struct class regulator_class = {
653	.name = "regulator",
654	.dev_release = regulator_dev_release,
655	.dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662	struct regulator *sibling;
663	int current_uA = 0, output_uV, input_uV, err;
664	unsigned int mode;
665
666	err = regulator_check_drms(rdev);
667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668	    (!rdev->desc->ops->get_voltage &&
669	     !rdev->desc->ops->get_voltage_sel) ||
670	    !rdev->desc->ops->set_mode)
671		return;
672
673	/* get output voltage */
674	output_uV = _regulator_get_voltage(rdev);
675	if (output_uV <= 0)
676		return;
677
678	/* get input voltage */
679	input_uV = 0;
680	if (rdev->supply)
681		input_uV = regulator_get_voltage(rdev->supply);
682	if (input_uV <= 0)
683		input_uV = rdev->constraints->input_uV;
684	if (input_uV <= 0)
685		return;
686
687	/* calc total requested load */
688	list_for_each_entry(sibling, &rdev->consumer_list, list)
689		current_uA += sibling->uA_load;
690
691	/* now get the optimum mode for our new total regulator load */
692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693						  output_uV, current_uA);
694
695	/* check the new mode is allowed */
696	err = regulator_mode_constrain(rdev, &mode);
697	if (err == 0)
698		rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702	struct regulator_state *rstate)
703{
704	int ret = 0;
705
706	/* If we have no suspend mode configration don't set anything;
707	 * only warn if the driver implements set_suspend_voltage or
708	 * set_suspend_mode callback.
709	 */
710	if (!rstate->enabled && !rstate->disabled) {
711		if (rdev->desc->ops->set_suspend_voltage ||
712		    rdev->desc->ops->set_suspend_mode)
713			rdev_warn(rdev, "No configuration\n");
714		return 0;
715	}
716
717	if (rstate->enabled && rstate->disabled) {
718		rdev_err(rdev, "invalid configuration\n");
719		return -EINVAL;
720	}
721
722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723		ret = rdev->desc->ops->set_suspend_enable(rdev);
724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725		ret = rdev->desc->ops->set_suspend_disable(rdev);
726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727		ret = 0;
728
729	if (ret < 0) {
730		rdev_err(rdev, "failed to enabled/disable\n");
731		return ret;
732	}
733
734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736		if (ret < 0) {
737			rdev_err(rdev, "failed to set voltage\n");
738			return ret;
739		}
740	}
741
742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744		if (ret < 0) {
745			rdev_err(rdev, "failed to set mode\n");
746			return ret;
747		}
748	}
749	return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755	if (!rdev->constraints)
756		return -EINVAL;
757
758	switch (state) {
759	case PM_SUSPEND_STANDBY:
760		return suspend_set_state(rdev,
761			&rdev->constraints->state_standby);
762	case PM_SUSPEND_MEM:
763		return suspend_set_state(rdev,
764			&rdev->constraints->state_mem);
765	case PM_SUSPEND_MAX:
766		return suspend_set_state(rdev,
767			&rdev->constraints->state_disk);
768	default:
769		return -EINVAL;
770	}
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775	struct regulation_constraints *constraints = rdev->constraints;
776	char buf[80] = "";
777	int count = 0;
778	int ret;
779
780	if (constraints->min_uV && constraints->max_uV) {
781		if (constraints->min_uV == constraints->max_uV)
782			count += sprintf(buf + count, "%d mV ",
783					 constraints->min_uV / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mV ",
786					 constraints->min_uV / 1000,
787					 constraints->max_uV / 1000);
788	}
789
790	if (!constraints->min_uV ||
791	    constraints->min_uV != constraints->max_uV) {
792		ret = _regulator_get_voltage(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
795	}
796
797	if (constraints->uV_offset)
798		count += sprintf(buf, "%dmV offset ",
799				 constraints->uV_offset / 1000);
800
801	if (constraints->min_uA && constraints->max_uA) {
802		if (constraints->min_uA == constraints->max_uA)
803			count += sprintf(buf + count, "%d mA ",
804					 constraints->min_uA / 1000);
805		else
806			count += sprintf(buf + count, "%d <--> %d mA ",
807					 constraints->min_uA / 1000,
808					 constraints->max_uA / 1000);
809	}
810
811	if (!constraints->min_uA ||
812	    constraints->min_uA != constraints->max_uA) {
813		ret = _regulator_get_current_limit(rdev);
814		if (ret > 0)
815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816	}
817
818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819		count += sprintf(buf + count, "fast ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821		count += sprintf(buf + count, "normal ");
822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823		count += sprintf(buf + count, "idle ");
824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825		count += sprintf(buf + count, "standby");
826
827	if (!count)
828		sprintf(buf, "no parameters");
829
830	rdev_info(rdev, "%s\n", buf);
831
832	if ((constraints->min_uV != constraints->max_uV) &&
833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834		rdev_warn(rdev,
835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839	struct regulation_constraints *constraints)
840{
841	struct regulator_ops *ops = rdev->desc->ops;
842	int ret;
843
844	/* do we need to apply the constraint voltage */
845	if (rdev->constraints->apply_uV &&
846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847		ret = _regulator_do_set_voltage(rdev,
848						rdev->constraints->min_uV,
849						rdev->constraints->max_uV);
850		if (ret < 0) {
851			rdev_err(rdev, "failed to apply %duV constraint\n",
852				 rdev->constraints->min_uV);
853			return ret;
854		}
855	}
856
857	/* constrain machine-level voltage specs to fit
858	 * the actual range supported by this regulator.
859	 */
860	if (ops->list_voltage && rdev->desc->n_voltages) {
861		int	count = rdev->desc->n_voltages;
862		int	i;
863		int	min_uV = INT_MAX;
864		int	max_uV = INT_MIN;
865		int	cmin = constraints->min_uV;
866		int	cmax = constraints->max_uV;
867
868		/* it's safe to autoconfigure fixed-voltage supplies
869		   and the constraints are used by list_voltage. */
870		if (count == 1 && !cmin) {
871			cmin = 1;
872			cmax = INT_MAX;
873			constraints->min_uV = cmin;
874			constraints->max_uV = cmax;
875		}
876
877		/* voltage constraints are optional */
878		if ((cmin == 0) && (cmax == 0))
879			return 0;
880
881		/* else require explicit machine-level constraints */
882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883			rdev_err(rdev, "invalid voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888		for (i = 0; i < count; i++) {
889			int	value;
890
891			value = ops->list_voltage(rdev, i);
892			if (value <= 0)
893				continue;
894
895			/* maybe adjust [min_uV..max_uV] */
896			if (value >= cmin && value < min_uV)
897				min_uV = value;
898			if (value <= cmax && value > max_uV)
899				max_uV = value;
900		}
901
902		/* final: [min_uV..max_uV] valid iff constraints valid */
903		if (max_uV < min_uV) {
904			rdev_err(rdev,
905				 "unsupportable voltage constraints %u-%uuV\n",
906				 min_uV, max_uV);
907			return -EINVAL;
908		}
909
910		/* use regulator's subset of machine constraints */
911		if (constraints->min_uV < min_uV) {
912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913				 constraints->min_uV, min_uV);
914			constraints->min_uV = min_uV;
915		}
916		if (constraints->max_uV > max_uV) {
917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918				 constraints->max_uV, max_uV);
919			constraints->max_uV = max_uV;
920		}
921	}
922
923	return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927	struct regulation_constraints *constraints)
928{
929	struct regulator_ops *ops = rdev->desc->ops;
930	int ret;
931
932	if (!constraints->min_uA && !constraints->max_uA)
933		return 0;
934
935	if (constraints->min_uA > constraints->max_uA) {
936		rdev_err(rdev, "Invalid current constraints\n");
937		return -EINVAL;
938	}
939
940	if (!ops->set_current_limit || !ops->get_current_limit) {
941		rdev_warn(rdev, "Operation of current configuration missing\n");
942		return 0;
943	}
944
945	/* Set regulator current in constraints range */
946	ret = ops->set_current_limit(rdev, constraints->min_uA,
947			constraints->max_uA);
948	if (ret < 0) {
949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950		return ret;
951	}
952
953	return 0;
954}
955
956/**
957 * set_machine_constraints - sets regulator constraints
958 * @rdev: regulator source
959 * @constraints: constraints to apply
960 *
961 * Allows platform initialisation code to define and constrain
962 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
963 * Constraints *must* be set by platform code in order for some
964 * regulator operations to proceed i.e. set_voltage, set_current_limit,
965 * set_mode.
966 */
967static int set_machine_constraints(struct regulator_dev *rdev,
968	const struct regulation_constraints *constraints)
969{
970	int ret = 0;
971	struct regulator_ops *ops = rdev->desc->ops;
972
973	if (constraints)
974		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975					    GFP_KERNEL);
976	else
977		rdev->constraints = kzalloc(sizeof(*constraints),
978					    GFP_KERNEL);
979	if (!rdev->constraints)
980		return -ENOMEM;
981
982	ret = machine_constraints_voltage(rdev, rdev->constraints);
983	if (ret != 0)
984		goto out;
985
986	ret = machine_constraints_current(rdev, rdev->constraints);
987	if (ret != 0)
988		goto out;
989
990	/* do we need to setup our suspend state */
991	if (rdev->constraints->initial_state) {
992		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993		if (ret < 0) {
994			rdev_err(rdev, "failed to set suspend state\n");
995			goto out;
996		}
997	}
998
999	if (rdev->constraints->initial_mode) {
1000		if (!ops->set_mode) {
1001			rdev_err(rdev, "no set_mode operation\n");
1002			ret = -EINVAL;
1003			goto out;
1004		}
1005
1006		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007		if (ret < 0) {
1008			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009			goto out;
1010		}
1011	}
1012
1013	/* If the constraints say the regulator should be on at this point
1014	 * and we have control then make sure it is enabled.
1015	 */
1016	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017	    ops->enable) {
1018		ret = ops->enable(rdev);
1019		if (ret < 0) {
1020			rdev_err(rdev, "failed to enable\n");
1021			goto out;
1022		}
1023	}
1024
1025	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026		&& ops->set_ramp_delay) {
1027		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028		if (ret < 0) {
1029			rdev_err(rdev, "failed to set ramp_delay\n");
1030			goto out;
1031		}
1032	}
1033
1034	print_constraints(rdev);
1035	return 0;
1036out:
1037	kfree(rdev->constraints);
1038	rdev->constraints = NULL;
1039	return ret;
1040}
1041
1042/**
1043 * set_supply - set regulator supply regulator
1044 * @rdev: regulator name
1045 * @supply_rdev: supply regulator name
1046 *
1047 * Called by platform initialisation code to set the supply regulator for this
1048 * regulator. This ensures that a regulators supply will also be enabled by the
1049 * core if it's child is enabled.
1050 */
1051static int set_supply(struct regulator_dev *rdev,
1052		      struct regulator_dev *supply_rdev)
1053{
1054	int err;
1055
1056	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057
1058	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059	if (rdev->supply == NULL) {
1060		err = -ENOMEM;
1061		return err;
1062	}
1063	supply_rdev->open_count++;
1064
1065	return 0;
1066}
1067
1068/**
1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070 * @rdev:         regulator source
1071 * @consumer_dev_name: dev_name() string for device supply applies to
1072 * @supply:       symbolic name for supply
1073 *
1074 * Allows platform initialisation code to map physical regulator
1075 * sources to symbolic names for supplies for use by devices.  Devices
1076 * should use these symbolic names to request regulators, avoiding the
1077 * need to provide board-specific regulator names as platform data.
1078 */
1079static int set_consumer_device_supply(struct regulator_dev *rdev,
1080				      const char *consumer_dev_name,
1081				      const char *supply)
1082{
1083	struct regulator_map *node;
1084	int has_dev;
1085
1086	if (supply == NULL)
1087		return -EINVAL;
1088
1089	if (consumer_dev_name != NULL)
1090		has_dev = 1;
1091	else
1092		has_dev = 0;
1093
1094	list_for_each_entry(node, &regulator_map_list, list) {
1095		if (node->dev_name && consumer_dev_name) {
1096			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097				continue;
1098		} else if (node->dev_name || consumer_dev_name) {
1099			continue;
1100		}
1101
1102		if (strcmp(node->supply, supply) != 0)
1103			continue;
1104
1105		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106			 consumer_dev_name,
1107			 dev_name(&node->regulator->dev),
1108			 node->regulator->desc->name,
1109			 supply,
1110			 dev_name(&rdev->dev), rdev_get_name(rdev));
1111		return -EBUSY;
1112	}
1113
1114	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115	if (node == NULL)
1116		return -ENOMEM;
1117
1118	node->regulator = rdev;
1119	node->supply = supply;
1120
1121	if (has_dev) {
1122		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123		if (node->dev_name == NULL) {
1124			kfree(node);
1125			return -ENOMEM;
1126		}
1127	}
1128
1129	list_add(&node->list, &regulator_map_list);
1130	return 0;
1131}
1132
1133static void unset_regulator_supplies(struct regulator_dev *rdev)
1134{
1135	struct regulator_map *node, *n;
1136
1137	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138		if (rdev == node->regulator) {
1139			list_del(&node->list);
1140			kfree(node->dev_name);
1141			kfree(node);
1142		}
1143	}
1144}
1145
1146#define REG_STR_SIZE	64
1147
1148static struct regulator *create_regulator(struct regulator_dev *rdev,
1149					  struct device *dev,
1150					  const char *supply_name)
1151{
1152	struct regulator *regulator;
1153	char buf[REG_STR_SIZE];
1154	int err, size;
1155
1156	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157	if (regulator == NULL)
1158		return NULL;
1159
1160	mutex_lock(&rdev->mutex);
1161	regulator->rdev = rdev;
1162	list_add(&regulator->list, &rdev->consumer_list);
1163
1164	if (dev) {
1165		regulator->dev = dev;
1166
1167		/* Add a link to the device sysfs entry */
1168		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169				 dev->kobj.name, supply_name);
1170		if (size >= REG_STR_SIZE)
1171			goto overflow_err;
1172
1173		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174		if (regulator->supply_name == NULL)
1175			goto overflow_err;
1176
1177		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178					buf);
1179		if (err) {
1180			rdev_warn(rdev, "could not add device link %s err %d\n",
1181				  dev->kobj.name, err);
1182			/* non-fatal */
1183		}
1184	} else {
1185		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186		if (regulator->supply_name == NULL)
1187			goto overflow_err;
1188	}
1189
1190	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191						rdev->debugfs);
1192	if (!regulator->debugfs) {
1193		rdev_warn(rdev, "Failed to create debugfs directory\n");
1194	} else {
1195		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196				   &regulator->uA_load);
1197		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198				   &regulator->min_uV);
1199		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200				   &regulator->max_uV);
1201	}
1202
1203	/*
1204	 * Check now if the regulator is an always on regulator - if
1205	 * it is then we don't need to do nearly so much work for
1206	 * enable/disable calls.
1207	 */
1208	if (!_regulator_can_change_status(rdev) &&
1209	    _regulator_is_enabled(rdev))
1210		regulator->always_on = true;
1211
1212	mutex_unlock(&rdev->mutex);
1213	return regulator;
1214overflow_err:
1215	list_del(&regulator->list);
1216	kfree(regulator);
1217	mutex_unlock(&rdev->mutex);
1218	return NULL;
1219}
1220
1221static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222{
1223	if (rdev->constraints && rdev->constraints->enable_time)
1224		return rdev->constraints->enable_time;
1225	if (!rdev->desc->ops->enable_time)
1226		return rdev->desc->enable_time;
1227	return rdev->desc->ops->enable_time(rdev);
1228}
1229
1230static struct regulator_supply_alias *regulator_find_supply_alias(
1231		struct device *dev, const char *supply)
1232{
1233	struct regulator_supply_alias *map;
1234
1235	list_for_each_entry(map, &regulator_supply_alias_list, list)
1236		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237			return map;
1238
1239	return NULL;
1240}
1241
1242static void regulator_supply_alias(struct device **dev, const char **supply)
1243{
1244	struct regulator_supply_alias *map;
1245
1246	map = regulator_find_supply_alias(*dev, *supply);
1247	if (map) {
1248		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249				*supply, map->alias_supply,
1250				dev_name(map->alias_dev));
1251		*dev = map->alias_dev;
1252		*supply = map->alias_supply;
1253	}
1254}
1255
1256static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257						  const char *supply,
1258						  int *ret)
1259{
1260	struct regulator_dev *r;
1261	struct device_node *node;
1262	struct regulator_map *map;
1263	const char *devname = NULL;
1264
1265	regulator_supply_alias(&dev, &supply);
1266
1267	/* first do a dt based lookup */
1268	if (dev && dev->of_node) {
1269		node = of_get_regulator(dev, supply);
1270		if (node) {
1271			list_for_each_entry(r, &regulator_list, list)
1272				if (r->dev.parent &&
1273					node == r->dev.of_node)
1274					return r;
1275		} else {
1276			/*
1277			 * If we couldn't even get the node then it's
1278			 * not just that the device didn't register
1279			 * yet, there's no node and we'll never
1280			 * succeed.
1281			 */
1282			*ret = -ENODEV;
1283		}
1284	}
1285
1286	/* if not found, try doing it non-dt way */
1287	if (dev)
1288		devname = dev_name(dev);
1289
1290	list_for_each_entry(r, &regulator_list, list)
1291		if (strcmp(rdev_get_name(r), supply) == 0)
1292			return r;
1293
1294	list_for_each_entry(map, &regulator_map_list, list) {
1295		/* If the mapping has a device set up it must match */
1296		if (map->dev_name &&
1297		    (!devname || strcmp(map->dev_name, devname)))
1298			continue;
1299
1300		if (strcmp(map->supply, supply) == 0)
1301			return map->regulator;
1302	}
1303
1304
1305	return NULL;
1306}
1307
1308/* Internal regulator request function */
1309static struct regulator *_regulator_get(struct device *dev, const char *id,
1310					bool exclusive, bool allow_dummy)
1311{
1312	struct regulator_dev *rdev;
1313	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1314	const char *devname = NULL;
1315	int ret = -EPROBE_DEFER;
1316
1317	if (id == NULL) {
1318		pr_err("get() with no identifier\n");
1319		return ERR_PTR(-EINVAL);
1320	}
1321
1322	if (dev)
1323		devname = dev_name(dev);
1324
1325	mutex_lock(&regulator_list_mutex);
1326
1327	rdev = regulator_dev_lookup(dev, id, &ret);
1328	if (rdev)
1329		goto found;
1330
1331	regulator = ERR_PTR(ret);
1332
1333	/*
1334	 * If we have return value from dev_lookup fail, we do not expect to
1335	 * succeed, so, quit with appropriate error value
1336	 */
1337	if (ret && ret != -ENODEV) {
1338		goto out;
1339	}
1340
1341	if (!devname)
1342		devname = "deviceless";
1343
1344	/*
1345	 * Assume that a regulator is physically present and enabled
1346	 * even if it isn't hooked up and just provide a dummy.
1347	 */
1348	if (have_full_constraints() && allow_dummy) {
1349		pr_warn("%s supply %s not found, using dummy regulator\n",
1350			devname, id);
1351
1352		rdev = dummy_regulator_rdev;
1353		goto found;
1354	} else {
1355		dev_err(dev, "dummy supplies not allowed\n");
1356	}
1357
1358	mutex_unlock(&regulator_list_mutex);
1359	return regulator;
1360
1361found:
1362	if (rdev->exclusive) {
1363		regulator = ERR_PTR(-EPERM);
1364		goto out;
1365	}
1366
1367	if (exclusive && rdev->open_count) {
1368		regulator = ERR_PTR(-EBUSY);
1369		goto out;
1370	}
1371
1372	if (!try_module_get(rdev->owner))
1373		goto out;
1374
1375	regulator = create_regulator(rdev, dev, id);
1376	if (regulator == NULL) {
1377		regulator = ERR_PTR(-ENOMEM);
1378		module_put(rdev->owner);
1379		goto out;
1380	}
1381
1382	rdev->open_count++;
1383	if (exclusive) {
1384		rdev->exclusive = 1;
1385
1386		ret = _regulator_is_enabled(rdev);
1387		if (ret > 0)
1388			rdev->use_count = 1;
1389		else
1390			rdev->use_count = 0;
1391	}
1392
1393out:
1394	mutex_unlock(&regulator_list_mutex);
1395
1396	return regulator;
1397}
1398
1399/**
1400 * regulator_get - lookup and obtain a reference to a regulator.
1401 * @dev: device for regulator "consumer"
1402 * @id: Supply name or regulator ID.
1403 *
1404 * Returns a struct regulator corresponding to the regulator producer,
1405 * or IS_ERR() condition containing errno.
1406 *
1407 * Use of supply names configured via regulator_set_device_supply() is
1408 * strongly encouraged.  It is recommended that the supply name used
1409 * should match the name used for the supply and/or the relevant
1410 * device pins in the datasheet.
1411 */
1412struct regulator *regulator_get(struct device *dev, const char *id)
1413{
1414	return _regulator_get(dev, id, false, true);
1415}
1416EXPORT_SYMBOL_GPL(regulator_get);
1417
1418/**
1419 * regulator_get_exclusive - obtain exclusive access to a regulator.
1420 * @dev: device for regulator "consumer"
1421 * @id: Supply name or regulator ID.
1422 *
1423 * Returns a struct regulator corresponding to the regulator producer,
1424 * or IS_ERR() condition containing errno.  Other consumers will be
1425 * unable to obtain this reference is held and the use count for the
1426 * regulator will be initialised to reflect the current state of the
1427 * regulator.
1428 *
1429 * This is intended for use by consumers which cannot tolerate shared
1430 * use of the regulator such as those which need to force the
1431 * regulator off for correct operation of the hardware they are
1432 * controlling.
1433 *
1434 * Use of supply names configured via regulator_set_device_supply() is
1435 * strongly encouraged.  It is recommended that the supply name used
1436 * should match the name used for the supply and/or the relevant
1437 * device pins in the datasheet.
1438 */
1439struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1440{
1441	return _regulator_get(dev, id, true, false);
1442}
1443EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1444
1445/**
1446 * regulator_get_optional - obtain optional access to a regulator.
1447 * @dev: device for regulator "consumer"
1448 * @id: Supply name or regulator ID.
1449 *
1450 * Returns a struct regulator corresponding to the regulator producer,
1451 * or IS_ERR() condition containing errno.  Other consumers will be
1452 * unable to obtain this reference is held and the use count for the
1453 * regulator will be initialised to reflect the current state of the
1454 * regulator.
1455 *
1456 * This is intended for use by consumers for devices which can have
1457 * some supplies unconnected in normal use, such as some MMC devices.
1458 * It can allow the regulator core to provide stub supplies for other
1459 * supplies requested using normal regulator_get() calls without
1460 * disrupting the operation of drivers that can handle absent
1461 * supplies.
1462 *
1463 * Use of supply names configured via regulator_set_device_supply() is
1464 * strongly encouraged.  It is recommended that the supply name used
1465 * should match the name used for the supply and/or the relevant
1466 * device pins in the datasheet.
1467 */
1468struct regulator *regulator_get_optional(struct device *dev, const char *id)
1469{
1470	return _regulator_get(dev, id, false, false);
1471}
1472EXPORT_SYMBOL_GPL(regulator_get_optional);
1473
1474/* Locks held by regulator_put() */
1475static void _regulator_put(struct regulator *regulator)
1476{
1477	struct regulator_dev *rdev;
1478
1479	if (regulator == NULL || IS_ERR(regulator))
1480		return;
1481
1482	rdev = regulator->rdev;
1483
1484	debugfs_remove_recursive(regulator->debugfs);
1485
1486	/* remove any sysfs entries */
1487	if (regulator->dev)
1488		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1489	kfree(regulator->supply_name);
1490	list_del(&regulator->list);
1491	kfree(regulator);
1492
1493	rdev->open_count--;
1494	rdev->exclusive = 0;
1495
1496	module_put(rdev->owner);
1497}
1498
1499/**
1500 * regulator_put - "free" the regulator source
1501 * @regulator: regulator source
1502 *
1503 * Note: drivers must ensure that all regulator_enable calls made on this
1504 * regulator source are balanced by regulator_disable calls prior to calling
1505 * this function.
1506 */
1507void regulator_put(struct regulator *regulator)
1508{
1509	mutex_lock(&regulator_list_mutex);
1510	_regulator_put(regulator);
1511	mutex_unlock(&regulator_list_mutex);
1512}
1513EXPORT_SYMBOL_GPL(regulator_put);
1514
1515/**
1516 * regulator_register_supply_alias - Provide device alias for supply lookup
1517 *
1518 * @dev: device that will be given as the regulator "consumer"
1519 * @id: Supply name or regulator ID
1520 * @alias_dev: device that should be used to lookup the supply
1521 * @alias_id: Supply name or regulator ID that should be used to lookup the
1522 * supply
1523 *
1524 * All lookups for id on dev will instead be conducted for alias_id on
1525 * alias_dev.
1526 */
1527int regulator_register_supply_alias(struct device *dev, const char *id,
1528				    struct device *alias_dev,
1529				    const char *alias_id)
1530{
1531	struct regulator_supply_alias *map;
1532
1533	map = regulator_find_supply_alias(dev, id);
1534	if (map)
1535		return -EEXIST;
1536
1537	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1538	if (!map)
1539		return -ENOMEM;
1540
1541	map->src_dev = dev;
1542	map->src_supply = id;
1543	map->alias_dev = alias_dev;
1544	map->alias_supply = alias_id;
1545
1546	list_add(&map->list, &regulator_supply_alias_list);
1547
1548	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1549		id, dev_name(dev), alias_id, dev_name(alias_dev));
1550
1551	return 0;
1552}
1553EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1554
1555/**
1556 * regulator_unregister_supply_alias - Remove device alias
1557 *
1558 * @dev: device that will be given as the regulator "consumer"
1559 * @id: Supply name or regulator ID
1560 *
1561 * Remove a lookup alias if one exists for id on dev.
1562 */
1563void regulator_unregister_supply_alias(struct device *dev, const char *id)
1564{
1565	struct regulator_supply_alias *map;
1566
1567	map = regulator_find_supply_alias(dev, id);
1568	if (map) {
1569		list_del(&map->list);
1570		kfree(map);
1571	}
1572}
1573EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1574
1575/**
1576 * regulator_bulk_register_supply_alias - register multiple aliases
1577 *
1578 * @dev: device that will be given as the regulator "consumer"
1579 * @id: List of supply names or regulator IDs
1580 * @alias_dev: device that should be used to lookup the supply
1581 * @alias_id: List of supply names or regulator IDs that should be used to
1582 * lookup the supply
1583 * @num_id: Number of aliases to register
1584 *
1585 * @return 0 on success, an errno on failure.
1586 *
1587 * This helper function allows drivers to register several supply
1588 * aliases in one operation.  If any of the aliases cannot be
1589 * registered any aliases that were registered will be removed
1590 * before returning to the caller.
1591 */
1592int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1593					 struct device *alias_dev,
1594					 const char **alias_id,
1595					 int num_id)
1596{
1597	int i;
1598	int ret;
1599
1600	for (i = 0; i < num_id; ++i) {
1601		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1602						      alias_id[i]);
1603		if (ret < 0)
1604			goto err;
1605	}
1606
1607	return 0;
1608
1609err:
1610	dev_err(dev,
1611		"Failed to create supply alias %s,%s -> %s,%s\n",
1612		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1613
1614	while (--i >= 0)
1615		regulator_unregister_supply_alias(dev, id[i]);
1616
1617	return ret;
1618}
1619EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1620
1621/**
1622 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1623 *
1624 * @dev: device that will be given as the regulator "consumer"
1625 * @id: List of supply names or regulator IDs
1626 * @num_id: Number of aliases to unregister
1627 *
1628 * This helper function allows drivers to unregister several supply
1629 * aliases in one operation.
1630 */
1631void regulator_bulk_unregister_supply_alias(struct device *dev,
1632					    const char **id,
1633					    int num_id)
1634{
1635	int i;
1636
1637	for (i = 0; i < num_id; ++i)
1638		regulator_unregister_supply_alias(dev, id[i]);
1639}
1640EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1641
1642
1643/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1644static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1645				const struct regulator_config *config)
1646{
1647	struct regulator_enable_gpio *pin;
1648	int ret;
1649
1650	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1651		if (pin->gpio == config->ena_gpio) {
1652			rdev_dbg(rdev, "GPIO %d is already used\n",
1653				config->ena_gpio);
1654			goto update_ena_gpio_to_rdev;
1655		}
1656	}
1657
1658	ret = gpio_request_one(config->ena_gpio,
1659				GPIOF_DIR_OUT | config->ena_gpio_flags,
1660				rdev_get_name(rdev));
1661	if (ret)
1662		return ret;
1663
1664	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1665	if (pin == NULL) {
1666		gpio_free(config->ena_gpio);
1667		return -ENOMEM;
1668	}
1669
1670	pin->gpio = config->ena_gpio;
1671	pin->ena_gpio_invert = config->ena_gpio_invert;
1672	list_add(&pin->list, &regulator_ena_gpio_list);
1673
1674update_ena_gpio_to_rdev:
1675	pin->request_count++;
1676	rdev->ena_pin = pin;
1677	return 0;
1678}
1679
1680static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1681{
1682	struct regulator_enable_gpio *pin, *n;
1683
1684	if (!rdev->ena_pin)
1685		return;
1686
1687	/* Free the GPIO only in case of no use */
1688	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1689		if (pin->gpio == rdev->ena_pin->gpio) {
1690			if (pin->request_count <= 1) {
1691				pin->request_count = 0;
1692				gpio_free(pin->gpio);
1693				list_del(&pin->list);
1694				kfree(pin);
1695			} else {
1696				pin->request_count--;
1697			}
1698		}
1699	}
1700}
1701
1702/**
1703 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1704 * @rdev: regulator_dev structure
1705 * @enable: enable GPIO at initial use?
1706 *
1707 * GPIO is enabled in case of initial use. (enable_count is 0)
1708 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1709 */
1710static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1711{
1712	struct regulator_enable_gpio *pin = rdev->ena_pin;
1713
1714	if (!pin)
1715		return -EINVAL;
1716
1717	if (enable) {
1718		/* Enable GPIO at initial use */
1719		if (pin->enable_count == 0)
1720			gpio_set_value_cansleep(pin->gpio,
1721						!pin->ena_gpio_invert);
1722
1723		pin->enable_count++;
1724	} else {
1725		if (pin->enable_count > 1) {
1726			pin->enable_count--;
1727			return 0;
1728		}
1729
1730		/* Disable GPIO if not used */
1731		if (pin->enable_count <= 1) {
1732			gpio_set_value_cansleep(pin->gpio,
1733						pin->ena_gpio_invert);
1734			pin->enable_count = 0;
1735		}
1736	}
1737
1738	return 0;
1739}
1740
1741static int _regulator_do_enable(struct regulator_dev *rdev)
1742{
1743	int ret, delay;
1744
1745	/* Query before enabling in case configuration dependent.  */
1746	ret = _regulator_get_enable_time(rdev);
1747	if (ret >= 0) {
1748		delay = ret;
1749	} else {
1750		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1751		delay = 0;
1752	}
1753
1754	trace_regulator_enable(rdev_get_name(rdev));
1755
1756	if (rdev->ena_pin) {
1757		ret = regulator_ena_gpio_ctrl(rdev, true);
1758		if (ret < 0)
1759			return ret;
1760		rdev->ena_gpio_state = 1;
1761	} else if (rdev->desc->ops->enable) {
1762		ret = rdev->desc->ops->enable(rdev);
1763		if (ret < 0)
1764			return ret;
1765	} else {
1766		return -EINVAL;
1767	}
1768
1769	/* Allow the regulator to ramp; it would be useful to extend
1770	 * this for bulk operations so that the regulators can ramp
1771	 * together.  */
1772	trace_regulator_enable_delay(rdev_get_name(rdev));
1773
1774	/*
1775	 * Delay for the requested amount of time as per the guidelines in:
1776	 *
1777	 *     Documentation/timers/timers-howto.txt
1778	 *
1779	 * The assumption here is that regulators will never be enabled in
1780	 * atomic context and therefore sleeping functions can be used.
1781	 */
1782	if (delay) {
1783		unsigned int ms = delay / 1000;
1784		unsigned int us = delay % 1000;
1785
1786		if (ms > 0) {
1787			/*
1788			 * For small enough values, handle super-millisecond
1789			 * delays in the usleep_range() call below.
1790			 */
1791			if (ms < 20)
1792				us += ms * 1000;
1793			else
1794				msleep(ms);
1795		}
1796
1797		/*
1798		 * Give the scheduler some room to coalesce with any other
1799		 * wakeup sources. For delays shorter than 10 us, don't even
1800		 * bother setting up high-resolution timers and just busy-
1801		 * loop.
1802		 */
1803		if (us >= 10)
1804			usleep_range(us, us + 100);
1805		else
1806			udelay(us);
1807	}
1808
1809	trace_regulator_enable_complete(rdev_get_name(rdev));
1810
1811	return 0;
1812}
1813
1814/* locks held by regulator_enable() */
1815static int _regulator_enable(struct regulator_dev *rdev)
1816{
1817	int ret;
1818
1819	/* check voltage and requested load before enabling */
1820	if (rdev->constraints &&
1821	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1822		drms_uA_update(rdev);
1823
1824	if (rdev->use_count == 0) {
1825		/* The regulator may on if it's not switchable or left on */
1826		ret = _regulator_is_enabled(rdev);
1827		if (ret == -EINVAL || ret == 0) {
1828			if (!_regulator_can_change_status(rdev))
1829				return -EPERM;
1830
1831			ret = _regulator_do_enable(rdev);
1832			if (ret < 0)
1833				return ret;
1834
1835		} else if (ret < 0) {
1836			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1837			return ret;
1838		}
1839		/* Fallthrough on positive return values - already enabled */
1840	}
1841
1842	rdev->use_count++;
1843
1844	return 0;
1845}
1846
1847/**
1848 * regulator_enable - enable regulator output
1849 * @regulator: regulator source
1850 *
1851 * Request that the regulator be enabled with the regulator output at
1852 * the predefined voltage or current value.  Calls to regulator_enable()
1853 * must be balanced with calls to regulator_disable().
1854 *
1855 * NOTE: the output value can be set by other drivers, boot loader or may be
1856 * hardwired in the regulator.
1857 */
1858int regulator_enable(struct regulator *regulator)
1859{
1860	struct regulator_dev *rdev = regulator->rdev;
1861	int ret = 0;
1862
1863	if (regulator->always_on)
1864		return 0;
1865
1866	if (rdev->supply) {
1867		ret = regulator_enable(rdev->supply);
1868		if (ret != 0)
1869			return ret;
1870	}
1871
1872	mutex_lock(&rdev->mutex);
1873	ret = _regulator_enable(rdev);
1874	mutex_unlock(&rdev->mutex);
1875
1876	if (ret != 0 && rdev->supply)
1877		regulator_disable(rdev->supply);
1878
1879	return ret;
1880}
1881EXPORT_SYMBOL_GPL(regulator_enable);
1882
1883static int _regulator_do_disable(struct regulator_dev *rdev)
1884{
1885	int ret;
1886
1887	trace_regulator_disable(rdev_get_name(rdev));
1888
1889	if (rdev->ena_pin) {
1890		ret = regulator_ena_gpio_ctrl(rdev, false);
1891		if (ret < 0)
1892			return ret;
1893		rdev->ena_gpio_state = 0;
1894
1895	} else if (rdev->desc->ops->disable) {
1896		ret = rdev->desc->ops->disable(rdev);
1897		if (ret != 0)
1898			return ret;
1899	}
1900
1901	trace_regulator_disable_complete(rdev_get_name(rdev));
1902
1903	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1904			     NULL);
1905	return 0;
1906}
1907
1908/* locks held by regulator_disable() */
1909static int _regulator_disable(struct regulator_dev *rdev)
1910{
1911	int ret = 0;
1912
1913	if (WARN(rdev->use_count <= 0,
1914		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1915		return -EIO;
1916
1917	/* are we the last user and permitted to disable ? */
1918	if (rdev->use_count == 1 &&
1919	    (rdev->constraints && !rdev->constraints->always_on)) {
1920
1921		/* we are last user */
1922		if (_regulator_can_change_status(rdev)) {
1923			ret = _regulator_do_disable(rdev);
1924			if (ret < 0) {
1925				rdev_err(rdev, "failed to disable\n");
1926				return ret;
1927			}
1928		}
1929
1930		rdev->use_count = 0;
1931	} else if (rdev->use_count > 1) {
1932
1933		if (rdev->constraints &&
1934			(rdev->constraints->valid_ops_mask &
1935			REGULATOR_CHANGE_DRMS))
1936			drms_uA_update(rdev);
1937
1938		rdev->use_count--;
1939	}
1940
1941	return ret;
1942}
1943
1944/**
1945 * regulator_disable - disable regulator output
1946 * @regulator: regulator source
1947 *
1948 * Disable the regulator output voltage or current.  Calls to
1949 * regulator_enable() must be balanced with calls to
1950 * regulator_disable().
1951 *
1952 * NOTE: this will only disable the regulator output if no other consumer
1953 * devices have it enabled, the regulator device supports disabling and
1954 * machine constraints permit this operation.
1955 */
1956int regulator_disable(struct regulator *regulator)
1957{
1958	struct regulator_dev *rdev = regulator->rdev;
1959	int ret = 0;
1960
1961	if (regulator->always_on)
1962		return 0;
1963
1964	mutex_lock(&rdev->mutex);
1965	ret = _regulator_disable(rdev);
1966	mutex_unlock(&rdev->mutex);
1967
1968	if (ret == 0 && rdev->supply)
1969		regulator_disable(rdev->supply);
1970
1971	return ret;
1972}
1973EXPORT_SYMBOL_GPL(regulator_disable);
1974
1975/* locks held by regulator_force_disable() */
1976static int _regulator_force_disable(struct regulator_dev *rdev)
1977{
1978	int ret = 0;
1979
1980	/* force disable */
1981	if (rdev->desc->ops->disable) {
1982		/* ah well, who wants to live forever... */
1983		ret = rdev->desc->ops->disable(rdev);
1984		if (ret < 0) {
1985			rdev_err(rdev, "failed to force disable\n");
1986			return ret;
1987		}
1988		/* notify other consumers that power has been forced off */
1989		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1990			REGULATOR_EVENT_DISABLE, NULL);
1991	}
1992
1993	return ret;
1994}
1995
1996/**
1997 * regulator_force_disable - force disable regulator output
1998 * @regulator: regulator source
1999 *
2000 * Forcibly disable the regulator output voltage or current.
2001 * NOTE: this *will* disable the regulator output even if other consumer
2002 * devices have it enabled. This should be used for situations when device
2003 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2004 */
2005int regulator_force_disable(struct regulator *regulator)
2006{
2007	struct regulator_dev *rdev = regulator->rdev;
2008	int ret;
2009
2010	mutex_lock(&rdev->mutex);
2011	regulator->uA_load = 0;
2012	ret = _regulator_force_disable(regulator->rdev);
2013	mutex_unlock(&rdev->mutex);
2014
2015	if (rdev->supply)
2016		while (rdev->open_count--)
2017			regulator_disable(rdev->supply);
2018
2019	return ret;
2020}
2021EXPORT_SYMBOL_GPL(regulator_force_disable);
2022
2023static void regulator_disable_work(struct work_struct *work)
2024{
2025	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2026						  disable_work.work);
2027	int count, i, ret;
2028
2029	mutex_lock(&rdev->mutex);
2030
2031	BUG_ON(!rdev->deferred_disables);
2032
2033	count = rdev->deferred_disables;
2034	rdev->deferred_disables = 0;
2035
2036	for (i = 0; i < count; i++) {
2037		ret = _regulator_disable(rdev);
2038		if (ret != 0)
2039			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2040	}
2041
2042	mutex_unlock(&rdev->mutex);
2043
2044	if (rdev->supply) {
2045		for (i = 0; i < count; i++) {
2046			ret = regulator_disable(rdev->supply);
2047			if (ret != 0) {
2048				rdev_err(rdev,
2049					 "Supply disable failed: %d\n", ret);
2050			}
2051		}
2052	}
2053}
2054
2055/**
2056 * regulator_disable_deferred - disable regulator output with delay
2057 * @regulator: regulator source
2058 * @ms: miliseconds until the regulator is disabled
2059 *
2060 * Execute regulator_disable() on the regulator after a delay.  This
2061 * is intended for use with devices that require some time to quiesce.
2062 *
2063 * NOTE: this will only disable the regulator output if no other consumer
2064 * devices have it enabled, the regulator device supports disabling and
2065 * machine constraints permit this operation.
2066 */
2067int regulator_disable_deferred(struct regulator *regulator, int ms)
2068{
2069	struct regulator_dev *rdev = regulator->rdev;
2070	int ret;
2071
2072	if (regulator->always_on)
2073		return 0;
2074
2075	if (!ms)
2076		return regulator_disable(regulator);
2077
2078	mutex_lock(&rdev->mutex);
2079	rdev->deferred_disables++;
2080	mutex_unlock(&rdev->mutex);
2081
2082	ret = queue_delayed_work(system_power_efficient_wq,
2083				 &rdev->disable_work,
2084				 msecs_to_jiffies(ms));
2085	if (ret < 0)
2086		return ret;
2087	else
2088		return 0;
2089}
2090EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2091
2092static int _regulator_is_enabled(struct regulator_dev *rdev)
2093{
2094	/* A GPIO control always takes precedence */
2095	if (rdev->ena_pin)
2096		return rdev->ena_gpio_state;
2097
2098	/* If we don't know then assume that the regulator is always on */
2099	if (!rdev->desc->ops->is_enabled)
2100		return 1;
2101
2102	return rdev->desc->ops->is_enabled(rdev);
2103}
2104
2105/**
2106 * regulator_is_enabled - is the regulator output enabled
2107 * @regulator: regulator source
2108 *
2109 * Returns positive if the regulator driver backing the source/client
2110 * has requested that the device be enabled, zero if it hasn't, else a
2111 * negative errno code.
2112 *
2113 * Note that the device backing this regulator handle can have multiple
2114 * users, so it might be enabled even if regulator_enable() was never
2115 * called for this particular source.
2116 */
2117int regulator_is_enabled(struct regulator *regulator)
2118{
2119	int ret;
2120
2121	if (regulator->always_on)
2122		return 1;
2123
2124	mutex_lock(&regulator->rdev->mutex);
2125	ret = _regulator_is_enabled(regulator->rdev);
2126	mutex_unlock(&regulator->rdev->mutex);
2127
2128	return ret;
2129}
2130EXPORT_SYMBOL_GPL(regulator_is_enabled);
2131
2132/**
2133 * regulator_can_change_voltage - check if regulator can change voltage
2134 * @regulator: regulator source
2135 *
2136 * Returns positive if the regulator driver backing the source/client
2137 * can change its voltage, false otherwise. Usefull for detecting fixed
2138 * or dummy regulators and disabling voltage change logic in the client
2139 * driver.
2140 */
2141int regulator_can_change_voltage(struct regulator *regulator)
2142{
2143	struct regulator_dev	*rdev = regulator->rdev;
2144
2145	if (rdev->constraints &&
2146	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2147		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2148			return 1;
2149
2150		if (rdev->desc->continuous_voltage_range &&
2151		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2152		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2153			return 1;
2154	}
2155
2156	return 0;
2157}
2158EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2159
2160/**
2161 * regulator_count_voltages - count regulator_list_voltage() selectors
2162 * @regulator: regulator source
2163 *
2164 * Returns number of selectors, or negative errno.  Selectors are
2165 * numbered starting at zero, and typically correspond to bitfields
2166 * in hardware registers.
2167 */
2168int regulator_count_voltages(struct regulator *regulator)
2169{
2170	struct regulator_dev	*rdev = regulator->rdev;
2171
2172	return rdev->desc->n_voltages ? : -EINVAL;
2173}
2174EXPORT_SYMBOL_GPL(regulator_count_voltages);
2175
2176/**
2177 * regulator_list_voltage - enumerate supported voltages
2178 * @regulator: regulator source
2179 * @selector: identify voltage to list
2180 * Context: can sleep
2181 *
2182 * Returns a voltage that can be passed to @regulator_set_voltage(),
2183 * zero if this selector code can't be used on this system, or a
2184 * negative errno.
2185 */
2186int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2187{
2188	struct regulator_dev	*rdev = regulator->rdev;
2189	struct regulator_ops	*ops = rdev->desc->ops;
2190	int			ret;
2191
2192	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2193		return -EINVAL;
2194
2195	mutex_lock(&rdev->mutex);
2196	ret = ops->list_voltage(rdev, selector);
2197	mutex_unlock(&rdev->mutex);
2198
2199	if (ret > 0) {
2200		if (ret < rdev->constraints->min_uV)
2201			ret = 0;
2202		else if (ret > rdev->constraints->max_uV)
2203			ret = 0;
2204	}
2205
2206	return ret;
2207}
2208EXPORT_SYMBOL_GPL(regulator_list_voltage);
2209
2210/**
2211 * regulator_get_linear_step - return the voltage step size between VSEL values
2212 * @regulator: regulator source
2213 *
2214 * Returns the voltage step size between VSEL values for linear
2215 * regulators, or return 0 if the regulator isn't a linear regulator.
2216 */
2217unsigned int regulator_get_linear_step(struct regulator *regulator)
2218{
2219	struct regulator_dev *rdev = regulator->rdev;
2220
2221	return rdev->desc->uV_step;
2222}
2223EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2224
2225/**
2226 * regulator_is_supported_voltage - check if a voltage range can be supported
2227 *
2228 * @regulator: Regulator to check.
2229 * @min_uV: Minimum required voltage in uV.
2230 * @max_uV: Maximum required voltage in uV.
2231 *
2232 * Returns a boolean or a negative error code.
2233 */
2234int regulator_is_supported_voltage(struct regulator *regulator,
2235				   int min_uV, int max_uV)
2236{
2237	struct regulator_dev *rdev = regulator->rdev;
2238	int i, voltages, ret;
2239
2240	/* If we can't change voltage check the current voltage */
2241	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2242		ret = regulator_get_voltage(regulator);
2243		if (ret >= 0)
2244			return (min_uV <= ret && ret <= max_uV);
2245		else
2246			return ret;
2247	}
2248
2249	/* Any voltage within constrains range is fine? */
2250	if (rdev->desc->continuous_voltage_range)
2251		return min_uV >= rdev->constraints->min_uV &&
2252				max_uV <= rdev->constraints->max_uV;
2253
2254	ret = regulator_count_voltages(regulator);
2255	if (ret < 0)
2256		return ret;
2257	voltages = ret;
2258
2259	for (i = 0; i < voltages; i++) {
2260		ret = regulator_list_voltage(regulator, i);
2261
2262		if (ret >= min_uV && ret <= max_uV)
2263			return 1;
2264	}
2265
2266	return 0;
2267}
2268EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2269
2270static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2271				     int min_uV, int max_uV)
2272{
2273	int ret;
2274	int delay = 0;
2275	int best_val = 0;
2276	unsigned int selector;
2277	int old_selector = -1;
2278
2279	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2280
2281	min_uV += rdev->constraints->uV_offset;
2282	max_uV += rdev->constraints->uV_offset;
2283
2284	/*
2285	 * If we can't obtain the old selector there is not enough
2286	 * info to call set_voltage_time_sel().
2287	 */
2288	if (_regulator_is_enabled(rdev) &&
2289	    rdev->desc->ops->set_voltage_time_sel &&
2290	    rdev->desc->ops->get_voltage_sel) {
2291		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2292		if (old_selector < 0)
2293			return old_selector;
2294	}
2295
2296	if (rdev->desc->ops->set_voltage) {
2297		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2298						   &selector);
2299
2300		if (ret >= 0) {
2301			if (rdev->desc->ops->list_voltage)
2302				best_val = rdev->desc->ops->list_voltage(rdev,
2303									 selector);
2304			else
2305				best_val = _regulator_get_voltage(rdev);
2306		}
2307
2308	} else if (rdev->desc->ops->set_voltage_sel) {
2309		if (rdev->desc->ops->map_voltage) {
2310			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2311							   max_uV);
2312		} else {
2313			if (rdev->desc->ops->list_voltage ==
2314			    regulator_list_voltage_linear)
2315				ret = regulator_map_voltage_linear(rdev,
2316								min_uV, max_uV);
2317			else
2318				ret = regulator_map_voltage_iterate(rdev,
2319								min_uV, max_uV);
2320		}
2321
2322		if (ret >= 0) {
2323			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2324			if (min_uV <= best_val && max_uV >= best_val) {
2325				selector = ret;
2326				if (old_selector == selector)
2327					ret = 0;
2328				else
2329					ret = rdev->desc->ops->set_voltage_sel(
2330								rdev, ret);
2331			} else {
2332				ret = -EINVAL;
2333			}
2334		}
2335	} else {
2336		ret = -EINVAL;
2337	}
2338
2339	/* Call set_voltage_time_sel if successfully obtained old_selector */
2340	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2341		&& old_selector != selector) {
2342
2343		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2344						old_selector, selector);
2345		if (delay < 0) {
2346			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2347				  delay);
2348			delay = 0;
2349		}
2350
2351		/* Insert any necessary delays */
2352		if (delay >= 1000) {
2353			mdelay(delay / 1000);
2354			udelay(delay % 1000);
2355		} else if (delay) {
2356			udelay(delay);
2357		}
2358	}
2359
2360	if (ret == 0 && best_val >= 0) {
2361		unsigned long data = best_val;
2362
2363		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2364				     (void *)data);
2365	}
2366
2367	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2368
2369	return ret;
2370}
2371
2372/**
2373 * regulator_set_voltage - set regulator output voltage
2374 * @regulator: regulator source
2375 * @min_uV: Minimum required voltage in uV
2376 * @max_uV: Maximum acceptable voltage in uV
2377 *
2378 * Sets a voltage regulator to the desired output voltage. This can be set
2379 * during any regulator state. IOW, regulator can be disabled or enabled.
2380 *
2381 * If the regulator is enabled then the voltage will change to the new value
2382 * immediately otherwise if the regulator is disabled the regulator will
2383 * output at the new voltage when enabled.
2384 *
2385 * NOTE: If the regulator is shared between several devices then the lowest
2386 * request voltage that meets the system constraints will be used.
2387 * Regulator system constraints must be set for this regulator before
2388 * calling this function otherwise this call will fail.
2389 */
2390int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2391{
2392	struct regulator_dev *rdev = regulator->rdev;
2393	int ret = 0;
2394	int old_min_uV, old_max_uV;
2395
2396	mutex_lock(&rdev->mutex);
2397
2398	/* If we're setting the same range as last time the change
2399	 * should be a noop (some cpufreq implementations use the same
2400	 * voltage for multiple frequencies, for example).
2401	 */
2402	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2403		goto out;
2404
2405	/* sanity check */
2406	if (!rdev->desc->ops->set_voltage &&
2407	    !rdev->desc->ops->set_voltage_sel) {
2408		ret = -EINVAL;
2409		goto out;
2410	}
2411
2412	/* constraints check */
2413	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2414	if (ret < 0)
2415		goto out;
2416
2417	/* restore original values in case of error */
2418	old_min_uV = regulator->min_uV;
2419	old_max_uV = regulator->max_uV;
2420	regulator->min_uV = min_uV;
2421	regulator->max_uV = max_uV;
2422
2423	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2424	if (ret < 0)
2425		goto out2;
2426
2427	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2428	if (ret < 0)
2429		goto out2;
2430
2431out:
2432	mutex_unlock(&rdev->mutex);
2433	return ret;
2434out2:
2435	regulator->min_uV = old_min_uV;
2436	regulator->max_uV = old_max_uV;
2437	mutex_unlock(&rdev->mutex);
2438	return ret;
2439}
2440EXPORT_SYMBOL_GPL(regulator_set_voltage);
2441
2442/**
2443 * regulator_set_voltage_time - get raise/fall time
2444 * @regulator: regulator source
2445 * @old_uV: starting voltage in microvolts
2446 * @new_uV: target voltage in microvolts
2447 *
2448 * Provided with the starting and ending voltage, this function attempts to
2449 * calculate the time in microseconds required to rise or fall to this new
2450 * voltage.
2451 */
2452int regulator_set_voltage_time(struct regulator *regulator,
2453			       int old_uV, int new_uV)
2454{
2455	struct regulator_dev	*rdev = regulator->rdev;
2456	struct regulator_ops	*ops = rdev->desc->ops;
2457	int old_sel = -1;
2458	int new_sel = -1;
2459	int voltage;
2460	int i;
2461
2462	/* Currently requires operations to do this */
2463	if (!ops->list_voltage || !ops->set_voltage_time_sel
2464	    || !rdev->desc->n_voltages)
2465		return -EINVAL;
2466
2467	for (i = 0; i < rdev->desc->n_voltages; i++) {
2468		/* We only look for exact voltage matches here */
2469		voltage = regulator_list_voltage(regulator, i);
2470		if (voltage < 0)
2471			return -EINVAL;
2472		if (voltage == 0)
2473			continue;
2474		if (voltage == old_uV)
2475			old_sel = i;
2476		if (voltage == new_uV)
2477			new_sel = i;
2478	}
2479
2480	if (old_sel < 0 || new_sel < 0)
2481		return -EINVAL;
2482
2483	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2484}
2485EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2486
2487/**
2488 * regulator_set_voltage_time_sel - get raise/fall time
2489 * @rdev: regulator source device
2490 * @old_selector: selector for starting voltage
2491 * @new_selector: selector for target voltage
2492 *
2493 * Provided with the starting and target voltage selectors, this function
2494 * returns time in microseconds required to rise or fall to this new voltage
2495 *
2496 * Drivers providing ramp_delay in regulation_constraints can use this as their
2497 * set_voltage_time_sel() operation.
2498 */
2499int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2500				   unsigned int old_selector,
2501				   unsigned int new_selector)
2502{
2503	unsigned int ramp_delay = 0;
2504	int old_volt, new_volt;
2505
2506	if (rdev->constraints->ramp_delay)
2507		ramp_delay = rdev->constraints->ramp_delay;
2508	else if (rdev->desc->ramp_delay)
2509		ramp_delay = rdev->desc->ramp_delay;
2510
2511	if (ramp_delay == 0) {
2512		rdev_warn(rdev, "ramp_delay not set\n");
2513		return 0;
2514	}
2515
2516	/* sanity check */
2517	if (!rdev->desc->ops->list_voltage)
2518		return -EINVAL;
2519
2520	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2521	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2522
2523	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2524}
2525EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2526
2527/**
2528 * regulator_sync_voltage - re-apply last regulator output voltage
2529 * @regulator: regulator source
2530 *
2531 * Re-apply the last configured voltage.  This is intended to be used
2532 * where some external control source the consumer is cooperating with
2533 * has caused the configured voltage to change.
2534 */
2535int regulator_sync_voltage(struct regulator *regulator)
2536{
2537	struct regulator_dev *rdev = regulator->rdev;
2538	int ret, min_uV, max_uV;
2539
2540	mutex_lock(&rdev->mutex);
2541
2542	if (!rdev->desc->ops->set_voltage &&
2543	    !rdev->desc->ops->set_voltage_sel) {
2544		ret = -EINVAL;
2545		goto out;
2546	}
2547
2548	/* This is only going to work if we've had a voltage configured. */
2549	if (!regulator->min_uV && !regulator->max_uV) {
2550		ret = -EINVAL;
2551		goto out;
2552	}
2553
2554	min_uV = regulator->min_uV;
2555	max_uV = regulator->max_uV;
2556
2557	/* This should be a paranoia check... */
2558	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2559	if (ret < 0)
2560		goto out;
2561
2562	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2563	if (ret < 0)
2564		goto out;
2565
2566	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2567
2568out:
2569	mutex_unlock(&rdev->mutex);
2570	return ret;
2571}
2572EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2573
2574static int _regulator_get_voltage(struct regulator_dev *rdev)
2575{
2576	int sel, ret;
2577
2578	if (rdev->desc->ops->get_voltage_sel) {
2579		sel = rdev->desc->ops->get_voltage_sel(rdev);
2580		if (sel < 0)
2581			return sel;
2582		ret = rdev->desc->ops->list_voltage(rdev, sel);
2583	} else if (rdev->desc->ops->get_voltage) {
2584		ret = rdev->desc->ops->get_voltage(rdev);
2585	} else if (rdev->desc->ops->list_voltage) {
2586		ret = rdev->desc->ops->list_voltage(rdev, 0);
2587	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2588		ret = rdev->desc->fixed_uV;
2589	} else {
2590		return -EINVAL;
2591	}
2592
2593	if (ret < 0)
2594		return ret;
2595	return ret - rdev->constraints->uV_offset;
2596}
2597
2598/**
2599 * regulator_get_voltage - get regulator output voltage
2600 * @regulator: regulator source
2601 *
2602 * This returns the current regulator voltage in uV.
2603 *
2604 * NOTE: If the regulator is disabled it will return the voltage value. This
2605 * function should not be used to determine regulator state.
2606 */
2607int regulator_get_voltage(struct regulator *regulator)
2608{
2609	int ret;
2610
2611	mutex_lock(&regulator->rdev->mutex);
2612
2613	ret = _regulator_get_voltage(regulator->rdev);
2614
2615	mutex_unlock(&regulator->rdev->mutex);
2616
2617	return ret;
2618}
2619EXPORT_SYMBOL_GPL(regulator_get_voltage);
2620
2621/**
2622 * regulator_set_current_limit - set regulator output current limit
2623 * @regulator: regulator source
2624 * @min_uA: Minimum supported current in uA
2625 * @max_uA: Maximum supported current in uA
2626 *
2627 * Sets current sink to the desired output current. This can be set during
2628 * any regulator state. IOW, regulator can be disabled or enabled.
2629 *
2630 * If the regulator is enabled then the current will change to the new value
2631 * immediately otherwise if the regulator is disabled the regulator will
2632 * output at the new current when enabled.
2633 *
2634 * NOTE: Regulator system constraints must be set for this regulator before
2635 * calling this function otherwise this call will fail.
2636 */
2637int regulator_set_current_limit(struct regulator *regulator,
2638			       int min_uA, int max_uA)
2639{
2640	struct regulator_dev *rdev = regulator->rdev;
2641	int ret;
2642
2643	mutex_lock(&rdev->mutex);
2644
2645	/* sanity check */
2646	if (!rdev->desc->ops->set_current_limit) {
2647		ret = -EINVAL;
2648		goto out;
2649	}
2650
2651	/* constraints check */
2652	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2653	if (ret < 0)
2654		goto out;
2655
2656	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2657out:
2658	mutex_unlock(&rdev->mutex);
2659	return ret;
2660}
2661EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2662
2663static int _regulator_get_current_limit(struct regulator_dev *rdev)
2664{
2665	int ret;
2666
2667	mutex_lock(&rdev->mutex);
2668
2669	/* sanity check */
2670	if (!rdev->desc->ops->get_current_limit) {
2671		ret = -EINVAL;
2672		goto out;
2673	}
2674
2675	ret = rdev->desc->ops->get_current_limit(rdev);
2676out:
2677	mutex_unlock(&rdev->mutex);
2678	return ret;
2679}
2680
2681/**
2682 * regulator_get_current_limit - get regulator output current
2683 * @regulator: regulator source
2684 *
2685 * This returns the current supplied by the specified current sink in uA.
2686 *
2687 * NOTE: If the regulator is disabled it will return the current value. This
2688 * function should not be used to determine regulator state.
2689 */
2690int regulator_get_current_limit(struct regulator *regulator)
2691{
2692	return _regulator_get_current_limit(regulator->rdev);
2693}
2694EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2695
2696/**
2697 * regulator_set_mode - set regulator operating mode
2698 * @regulator: regulator source
2699 * @mode: operating mode - one of the REGULATOR_MODE constants
2700 *
2701 * Set regulator operating mode to increase regulator efficiency or improve
2702 * regulation performance.
2703 *
2704 * NOTE: Regulator system constraints must be set for this regulator before
2705 * calling this function otherwise this call will fail.
2706 */
2707int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2708{
2709	struct regulator_dev *rdev = regulator->rdev;
2710	int ret;
2711	int regulator_curr_mode;
2712
2713	mutex_lock(&rdev->mutex);
2714
2715	/* sanity check */
2716	if (!rdev->desc->ops->set_mode) {
2717		ret = -EINVAL;
2718		goto out;
2719	}
2720
2721	/* return if the same mode is requested */
2722	if (rdev->desc->ops->get_mode) {
2723		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2724		if (regulator_curr_mode == mode) {
2725			ret = 0;
2726			goto out;
2727		}
2728	}
2729
2730	/* constraints check */
2731	ret = regulator_mode_constrain(rdev, &mode);
2732	if (ret < 0)
2733		goto out;
2734
2735	ret = rdev->desc->ops->set_mode(rdev, mode);
2736out:
2737	mutex_unlock(&rdev->mutex);
2738	return ret;
2739}
2740EXPORT_SYMBOL_GPL(regulator_set_mode);
2741
2742static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2743{
2744	int ret;
2745
2746	mutex_lock(&rdev->mutex);
2747
2748	/* sanity check */
2749	if (!rdev->desc->ops->get_mode) {
2750		ret = -EINVAL;
2751		goto out;
2752	}
2753
2754	ret = rdev->desc->ops->get_mode(rdev);
2755out:
2756	mutex_unlock(&rdev->mutex);
2757	return ret;
2758}
2759
2760/**
2761 * regulator_get_mode - get regulator operating mode
2762 * @regulator: regulator source
2763 *
2764 * Get the current regulator operating mode.
2765 */
2766unsigned int regulator_get_mode(struct regulator *regulator)
2767{
2768	return _regulator_get_mode(regulator->rdev);
2769}
2770EXPORT_SYMBOL_GPL(regulator_get_mode);
2771
2772/**
2773 * regulator_set_optimum_mode - set regulator optimum operating mode
2774 * @regulator: regulator source
2775 * @uA_load: load current
2776 *
2777 * Notifies the regulator core of a new device load. This is then used by
2778 * DRMS (if enabled by constraints) to set the most efficient regulator
2779 * operating mode for the new regulator loading.
2780 *
2781 * Consumer devices notify their supply regulator of the maximum power
2782 * they will require (can be taken from device datasheet in the power
2783 * consumption tables) when they change operational status and hence power
2784 * state. Examples of operational state changes that can affect power
2785 * consumption are :-
2786 *
2787 *    o Device is opened / closed.
2788 *    o Device I/O is about to begin or has just finished.
2789 *    o Device is idling in between work.
2790 *
2791 * This information is also exported via sysfs to userspace.
2792 *
2793 * DRMS will sum the total requested load on the regulator and change
2794 * to the most efficient operating mode if platform constraints allow.
2795 *
2796 * Returns the new regulator mode or error.
2797 */
2798int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2799{
2800	struct regulator_dev *rdev = regulator->rdev;
2801	struct regulator *consumer;
2802	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2803	unsigned int mode;
2804
2805	if (rdev->supply)
2806		input_uV = regulator_get_voltage(rdev->supply);
2807
2808	mutex_lock(&rdev->mutex);
2809
2810	/*
2811	 * first check to see if we can set modes at all, otherwise just
2812	 * tell the consumer everything is OK.
2813	 */
2814	regulator->uA_load = uA_load;
2815	ret = regulator_check_drms(rdev);
2816	if (ret < 0) {
2817		ret = 0;
2818		goto out;
2819	}
2820
2821	if (!rdev->desc->ops->get_optimum_mode)
2822		goto out;
2823
2824	/*
2825	 * we can actually do this so any errors are indicators of
2826	 * potential real failure.
2827	 */
2828	ret = -EINVAL;
2829
2830	if (!rdev->desc->ops->set_mode)
2831		goto out;
2832
2833	/* get output voltage */
2834	output_uV = _regulator_get_voltage(rdev);
2835	if (output_uV <= 0) {
2836		rdev_err(rdev, "invalid output voltage found\n");
2837		goto out;
2838	}
2839
2840	/* No supply? Use constraint voltage */
2841	if (input_uV <= 0)
2842		input_uV = rdev->constraints->input_uV;
2843	if (input_uV <= 0) {
2844		rdev_err(rdev, "invalid input voltage found\n");
2845		goto out;
2846	}
2847
2848	/* calc total requested load for this regulator */
2849	list_for_each_entry(consumer, &rdev->consumer_list, list)
2850		total_uA_load += consumer->uA_load;
2851
2852	mode = rdev->desc->ops->get_optimum_mode(rdev,
2853						 input_uV, output_uV,
2854						 total_uA_load);
2855	ret = regulator_mode_constrain(rdev, &mode);
2856	if (ret < 0) {
2857		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2858			 total_uA_load, input_uV, output_uV);
2859		goto out;
2860	}
2861
2862	ret = rdev->desc->ops->set_mode(rdev, mode);
2863	if (ret < 0) {
2864		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2865		goto out;
2866	}
2867	ret = mode;
2868out:
2869	mutex_unlock(&rdev->mutex);
2870	return ret;
2871}
2872EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2873
2874/**
2875 * regulator_allow_bypass - allow the regulator to go into bypass mode
2876 *
2877 * @regulator: Regulator to configure
2878 * @enable: enable or disable bypass mode
2879 *
2880 * Allow the regulator to go into bypass mode if all other consumers
2881 * for the regulator also enable bypass mode and the machine
2882 * constraints allow this.  Bypass mode means that the regulator is
2883 * simply passing the input directly to the output with no regulation.
2884 */
2885int regulator_allow_bypass(struct regulator *regulator, bool enable)
2886{
2887	struct regulator_dev *rdev = regulator->rdev;
2888	int ret = 0;
2889
2890	if (!rdev->desc->ops->set_bypass)
2891		return 0;
2892
2893	if (rdev->constraints &&
2894	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2895		return 0;
2896
2897	mutex_lock(&rdev->mutex);
2898
2899	if (enable && !regulator->bypass) {
2900		rdev->bypass_count++;
2901
2902		if (rdev->bypass_count == rdev->open_count) {
2903			ret = rdev->desc->ops->set_bypass(rdev, enable);
2904			if (ret != 0)
2905				rdev->bypass_count--;
2906		}
2907
2908	} else if (!enable && regulator->bypass) {
2909		rdev->bypass_count--;
2910
2911		if (rdev->bypass_count != rdev->open_count) {
2912			ret = rdev->desc->ops->set_bypass(rdev, enable);
2913			if (ret != 0)
2914				rdev->bypass_count++;
2915		}
2916	}
2917
2918	if (ret == 0)
2919		regulator->bypass = enable;
2920
2921	mutex_unlock(&rdev->mutex);
2922
2923	return ret;
2924}
2925EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2926
2927/**
2928 * regulator_register_notifier - register regulator event notifier
2929 * @regulator: regulator source
2930 * @nb: notifier block
2931 *
2932 * Register notifier block to receive regulator events.
2933 */
2934int regulator_register_notifier(struct regulator *regulator,
2935			      struct notifier_block *nb)
2936{
2937	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2938						nb);
2939}
2940EXPORT_SYMBOL_GPL(regulator_register_notifier);
2941
2942/**
2943 * regulator_unregister_notifier - unregister regulator event notifier
2944 * @regulator: regulator source
2945 * @nb: notifier block
2946 *
2947 * Unregister regulator event notifier block.
2948 */
2949int regulator_unregister_notifier(struct regulator *regulator,
2950				struct notifier_block *nb)
2951{
2952	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2953						  nb);
2954}
2955EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2956
2957/* notify regulator consumers and downstream regulator consumers.
2958 * Note mutex must be held by caller.
2959 */
2960static void _notifier_call_chain(struct regulator_dev *rdev,
2961				  unsigned long event, void *data)
2962{
2963	/* call rdev chain first */
2964	blocking_notifier_call_chain(&rdev->notifier, event, data);
2965}
2966
2967/**
2968 * regulator_bulk_get - get multiple regulator consumers
2969 *
2970 * @dev:           Device to supply
2971 * @num_consumers: Number of consumers to register
2972 * @consumers:     Configuration of consumers; clients are stored here.
2973 *
2974 * @return 0 on success, an errno on failure.
2975 *
2976 * This helper function allows drivers to get several regulator
2977 * consumers in one operation.  If any of the regulators cannot be
2978 * acquired then any regulators that were allocated will be freed
2979 * before returning to the caller.
2980 */
2981int regulator_bulk_get(struct device *dev, int num_consumers,
2982		       struct regulator_bulk_data *consumers)
2983{
2984	int i;
2985	int ret;
2986
2987	for (i = 0; i < num_consumers; i++)
2988		consumers[i].consumer = NULL;
2989
2990	for (i = 0; i < num_consumers; i++) {
2991		consumers[i].consumer = regulator_get(dev,
2992						      consumers[i].supply);
2993		if (IS_ERR(consumers[i].consumer)) {
2994			ret = PTR_ERR(consumers[i].consumer);
2995			dev_err(dev, "Failed to get supply '%s': %d\n",
2996				consumers[i].supply, ret);
2997			consumers[i].consumer = NULL;
2998			goto err;
2999		}
3000	}
3001
3002	return 0;
3003
3004err:
3005	while (--i >= 0)
3006		regulator_put(consumers[i].consumer);
3007
3008	return ret;
3009}
3010EXPORT_SYMBOL_GPL(regulator_bulk_get);
3011
3012static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3013{
3014	struct regulator_bulk_data *bulk = data;
3015
3016	bulk->ret = regulator_enable(bulk->consumer);
3017}
3018
3019/**
3020 * regulator_bulk_enable - enable multiple regulator consumers
3021 *
3022 * @num_consumers: Number of consumers
3023 * @consumers:     Consumer data; clients are stored here.
3024 * @return         0 on success, an errno on failure
3025 *
3026 * This convenience API allows consumers to enable multiple regulator
3027 * clients in a single API call.  If any consumers cannot be enabled
3028 * then any others that were enabled will be disabled again prior to
3029 * return.
3030 */
3031int regulator_bulk_enable(int num_consumers,
3032			  struct regulator_bulk_data *consumers)
3033{
3034	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3035	int i;
3036	int ret = 0;
3037
3038	for (i = 0; i < num_consumers; i++) {
3039		if (consumers[i].consumer->always_on)
3040			consumers[i].ret = 0;
3041		else
3042			async_schedule_domain(regulator_bulk_enable_async,
3043					      &consumers[i], &async_domain);
3044	}
3045
3046	async_synchronize_full_domain(&async_domain);
3047
3048	/* If any consumer failed we need to unwind any that succeeded */
3049	for (i = 0; i < num_consumers; i++) {
3050		if (consumers[i].ret != 0) {
3051			ret = consumers[i].ret;
3052			goto err;
3053		}
3054	}
3055
3056	return 0;
3057
3058err:
3059	for (i = 0; i < num_consumers; i++) {
3060		if (consumers[i].ret < 0)
3061			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3062			       consumers[i].ret);
3063		else
3064			regulator_disable(consumers[i].consumer);
3065	}
3066
3067	return ret;
3068}
3069EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3070
3071/**
3072 * regulator_bulk_disable - disable multiple regulator consumers
3073 *
3074 * @num_consumers: Number of consumers
3075 * @consumers:     Consumer data; clients are stored here.
3076 * @return         0 on success, an errno on failure
3077 *
3078 * This convenience API allows consumers to disable multiple regulator
3079 * clients in a single API call.  If any consumers cannot be disabled
3080 * then any others that were disabled will be enabled again prior to
3081 * return.
3082 */
3083int regulator_bulk_disable(int num_consumers,
3084			   struct regulator_bulk_data *consumers)
3085{
3086	int i;
3087	int ret, r;
3088
3089	for (i = num_consumers - 1; i >= 0; --i) {
3090		ret = regulator_disable(consumers[i].consumer);
3091		if (ret != 0)
3092			goto err;
3093	}
3094
3095	return 0;
3096
3097err:
3098	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3099	for (++i; i < num_consumers; ++i) {
3100		r = regulator_enable(consumers[i].consumer);
3101		if (r != 0)
3102			pr_err("Failed to reename %s: %d\n",
3103			       consumers[i].supply, r);
3104	}
3105
3106	return ret;
3107}
3108EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3109
3110/**
3111 * regulator_bulk_force_disable - force disable multiple regulator consumers
3112 *
3113 * @num_consumers: Number of consumers
3114 * @consumers:     Consumer data; clients are stored here.
3115 * @return         0 on success, an errno on failure
3116 *
3117 * This convenience API allows consumers to forcibly disable multiple regulator
3118 * clients in a single API call.
3119 * NOTE: This should be used for situations when device damage will
3120 * likely occur if the regulators are not disabled (e.g. over temp).
3121 * Although regulator_force_disable function call for some consumers can
3122 * return error numbers, the function is called for all consumers.
3123 */
3124int regulator_bulk_force_disable(int num_consumers,
3125			   struct regulator_bulk_data *consumers)
3126{
3127	int i;
3128	int ret;
3129
3130	for (i = 0; i < num_consumers; i++)
3131		consumers[i].ret =
3132			    regulator_force_disable(consumers[i].consumer);
3133
3134	for (i = 0; i < num_consumers; i++) {
3135		if (consumers[i].ret != 0) {
3136			ret = consumers[i].ret;
3137			goto out;
3138		}
3139	}
3140
3141	return 0;
3142out:
3143	return ret;
3144}
3145EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3146
3147/**
3148 * regulator_bulk_free - free multiple regulator consumers
3149 *
3150 * @num_consumers: Number of consumers
3151 * @consumers:     Consumer data; clients are stored here.
3152 *
3153 * This convenience API allows consumers to free multiple regulator
3154 * clients in a single API call.
3155 */
3156void regulator_bulk_free(int num_consumers,
3157			 struct regulator_bulk_data *consumers)
3158{
3159	int i;
3160
3161	for (i = 0; i < num_consumers; i++) {
3162		regulator_put(consumers[i].consumer);
3163		consumers[i].consumer = NULL;
3164	}
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_free);
3167
3168/**
3169 * regulator_notifier_call_chain - call regulator event notifier
3170 * @rdev: regulator source
3171 * @event: notifier block
3172 * @data: callback-specific data.
3173 *
3174 * Called by regulator drivers to notify clients a regulator event has
3175 * occurred. We also notify regulator clients downstream.
3176 * Note lock must be held by caller.
3177 */
3178int regulator_notifier_call_chain(struct regulator_dev *rdev,
3179				  unsigned long event, void *data)
3180{
3181	_notifier_call_chain(rdev, event, data);
3182	return NOTIFY_DONE;
3183
3184}
3185EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3186
3187/**
3188 * regulator_mode_to_status - convert a regulator mode into a status
3189 *
3190 * @mode: Mode to convert
3191 *
3192 * Convert a regulator mode into a status.
3193 */
3194int regulator_mode_to_status(unsigned int mode)
3195{
3196	switch (mode) {
3197	case REGULATOR_MODE_FAST:
3198		return REGULATOR_STATUS_FAST;
3199	case REGULATOR_MODE_NORMAL:
3200		return REGULATOR_STATUS_NORMAL;
3201	case REGULATOR_MODE_IDLE:
3202		return REGULATOR_STATUS_IDLE;
3203	case REGULATOR_MODE_STANDBY:
3204		return REGULATOR_STATUS_STANDBY;
3205	default:
3206		return REGULATOR_STATUS_UNDEFINED;
3207	}
3208}
3209EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3210
3211/*
3212 * To avoid cluttering sysfs (and memory) with useless state, only
3213 * create attributes that can be meaningfully displayed.
3214 */
3215static int add_regulator_attributes(struct regulator_dev *rdev)
3216{
3217	struct device		*dev = &rdev->dev;
3218	struct regulator_ops	*ops = rdev->desc->ops;
3219	int			status = 0;
3220
3221	/* some attributes need specific methods to be displayed */
3222	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3223	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3224	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3225		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3226		status = device_create_file(dev, &dev_attr_microvolts);
3227		if (status < 0)
3228			return status;
3229	}
3230	if (ops->get_current_limit) {
3231		status = device_create_file(dev, &dev_attr_microamps);
3232		if (status < 0)
3233			return status;
3234	}
3235	if (ops->get_mode) {
3236		status = device_create_file(dev, &dev_attr_opmode);
3237		if (status < 0)
3238			return status;
3239	}
3240	if (rdev->ena_pin || ops->is_enabled) {
3241		status = device_create_file(dev, &dev_attr_state);
3242		if (status < 0)
3243			return status;
3244	}
3245	if (ops->get_status) {
3246		status = device_create_file(dev, &dev_attr_status);
3247		if (status < 0)
3248			return status;
3249	}
3250	if (ops->get_bypass) {
3251		status = device_create_file(dev, &dev_attr_bypass);
3252		if (status < 0)
3253			return status;
3254	}
3255
3256	/* some attributes are type-specific */
3257	if (rdev->desc->type == REGULATOR_CURRENT) {
3258		status = device_create_file(dev, &dev_attr_requested_microamps);
3259		if (status < 0)
3260			return status;
3261	}
3262
3263	/* all the other attributes exist to support constraints;
3264	 * don't show them if there are no constraints, or if the
3265	 * relevant supporting methods are missing.
3266	 */
3267	if (!rdev->constraints)
3268		return status;
3269
3270	/* constraints need specific supporting methods */
3271	if (ops->set_voltage || ops->set_voltage_sel) {
3272		status = device_create_file(dev, &dev_attr_min_microvolts);
3273		if (status < 0)
3274			return status;
3275		status = device_create_file(dev, &dev_attr_max_microvolts);
3276		if (status < 0)
3277			return status;
3278	}
3279	if (ops->set_current_limit) {
3280		status = device_create_file(dev, &dev_attr_min_microamps);
3281		if (status < 0)
3282			return status;
3283		status = device_create_file(dev, &dev_attr_max_microamps);
3284		if (status < 0)
3285			return status;
3286	}
3287
3288	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3289	if (status < 0)
3290		return status;
3291	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3292	if (status < 0)
3293		return status;
3294	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3295	if (status < 0)
3296		return status;
3297
3298	if (ops->set_suspend_voltage) {
3299		status = device_create_file(dev,
3300				&dev_attr_suspend_standby_microvolts);
3301		if (status < 0)
3302			return status;
3303		status = device_create_file(dev,
3304				&dev_attr_suspend_mem_microvolts);
3305		if (status < 0)
3306			return status;
3307		status = device_create_file(dev,
3308				&dev_attr_suspend_disk_microvolts);
3309		if (status < 0)
3310			return status;
3311	}
3312
3313	if (ops->set_suspend_mode) {
3314		status = device_create_file(dev,
3315				&dev_attr_suspend_standby_mode);
3316		if (status < 0)
3317			return status;
3318		status = device_create_file(dev,
3319				&dev_attr_suspend_mem_mode);
3320		if (status < 0)
3321			return status;
3322		status = device_create_file(dev,
3323				&dev_attr_suspend_disk_mode);
3324		if (status < 0)
3325			return status;
3326	}
3327
3328	return status;
3329}
3330
3331static void rdev_init_debugfs(struct regulator_dev *rdev)
3332{
3333	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3334	if (!rdev->debugfs) {
3335		rdev_warn(rdev, "Failed to create debugfs directory\n");
3336		return;
3337	}
3338
3339	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3340			   &rdev->use_count);
3341	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3342			   &rdev->open_count);
3343	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3344			   &rdev->bypass_count);
3345}
3346
3347/**
3348 * regulator_register - register regulator
3349 * @regulator_desc: regulator to register
3350 * @config: runtime configuration for regulator
3351 *
3352 * Called by regulator drivers to register a regulator.
3353 * Returns a valid pointer to struct regulator_dev on success
3354 * or an ERR_PTR() on error.
3355 */
3356struct regulator_dev *
3357regulator_register(const struct regulator_desc *regulator_desc,
3358		   const struct regulator_config *config)
3359{
3360	const struct regulation_constraints *constraints = NULL;
3361	const struct regulator_init_data *init_data;
3362	static atomic_t regulator_no = ATOMIC_INIT(0);
3363	struct regulator_dev *rdev;
3364	struct device *dev;
3365	int ret, i;
3366	const char *supply = NULL;
3367
3368	if (regulator_desc == NULL || config == NULL)
3369		return ERR_PTR(-EINVAL);
3370
3371	dev = config->dev;
3372	WARN_ON(!dev);
3373
3374	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3375		return ERR_PTR(-EINVAL);
3376
3377	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3378	    regulator_desc->type != REGULATOR_CURRENT)
3379		return ERR_PTR(-EINVAL);
3380
3381	/* Only one of each should be implemented */
3382	WARN_ON(regulator_desc->ops->get_voltage &&
3383		regulator_desc->ops->get_voltage_sel);
3384	WARN_ON(regulator_desc->ops->set_voltage &&
3385		regulator_desc->ops->set_voltage_sel);
3386
3387	/* If we're using selectors we must implement list_voltage. */
3388	if (regulator_desc->ops->get_voltage_sel &&
3389	    !regulator_desc->ops->list_voltage) {
3390		return ERR_PTR(-EINVAL);
3391	}
3392	if (regulator_desc->ops->set_voltage_sel &&
3393	    !regulator_desc->ops->list_voltage) {
3394		return ERR_PTR(-EINVAL);
3395	}
3396
3397	init_data = config->init_data;
3398
3399	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3400	if (rdev == NULL)
3401		return ERR_PTR(-ENOMEM);
3402
3403	mutex_lock(&regulator_list_mutex);
3404
3405	mutex_init(&rdev->mutex);
3406	rdev->reg_data = config->driver_data;
3407	rdev->owner = regulator_desc->owner;
3408	rdev->desc = regulator_desc;
3409	if (config->regmap)
3410		rdev->regmap = config->regmap;
3411	else if (dev_get_regmap(dev, NULL))
3412		rdev->regmap = dev_get_regmap(dev, NULL);
3413	else if (dev->parent)
3414		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3415	INIT_LIST_HEAD(&rdev->consumer_list);
3416	INIT_LIST_HEAD(&rdev->list);
3417	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3418	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3419
3420	/* preform any regulator specific init */
3421	if (init_data && init_data->regulator_init) {
3422		ret = init_data->regulator_init(rdev->reg_data);
3423		if (ret < 0)
3424			goto clean;
3425	}
3426
3427	/* register with sysfs */
3428	rdev->dev.class = &regulator_class;
3429	rdev->dev.of_node = config->of_node;
3430	rdev->dev.parent = dev;
3431	dev_set_name(&rdev->dev, "regulator.%d",
3432		     atomic_inc_return(&regulator_no) - 1);
3433	ret = device_register(&rdev->dev);
3434	if (ret != 0) {
3435		put_device(&rdev->dev);
3436		goto clean;
3437	}
3438
3439	dev_set_drvdata(&rdev->dev, rdev);
3440
3441	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3442		ret = regulator_ena_gpio_request(rdev, config);
3443		if (ret != 0) {
3444			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3445				 config->ena_gpio, ret);
3446			goto wash;
3447		}
3448
3449		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3450			rdev->ena_gpio_state = 1;
3451
3452		if (config->ena_gpio_invert)
3453			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3454	}
3455
3456	/* set regulator constraints */
3457	if (init_data)
3458		constraints = &init_data->constraints;
3459
3460	ret = set_machine_constraints(rdev, constraints);
3461	if (ret < 0)
3462		goto scrub;
3463
3464	/* add attributes supported by this regulator */
3465	ret = add_regulator_attributes(rdev);
3466	if (ret < 0)
3467		goto scrub;
3468
3469	if (init_data && init_data->supply_regulator)
3470		supply = init_data->supply_regulator;
3471	else if (regulator_desc->supply_name)
3472		supply = regulator_desc->supply_name;
3473
3474	if (supply) {
3475		struct regulator_dev *r;
3476
3477		r = regulator_dev_lookup(dev, supply, &ret);
3478
3479		if (ret == -ENODEV) {
3480			/*
3481			 * No supply was specified for this regulator and
3482			 * there will never be one.
3483			 */
3484			ret = 0;
3485			goto add_dev;
3486		} else if (!r) {
3487			dev_err(dev, "Failed to find supply %s\n", supply);
3488			ret = -EPROBE_DEFER;
3489			goto scrub;
3490		}
3491
3492		ret = set_supply(rdev, r);
3493		if (ret < 0)
3494			goto scrub;
3495
3496		/* Enable supply if rail is enabled */
3497		if (_regulator_is_enabled(rdev)) {
3498			ret = regulator_enable(rdev->supply);
3499			if (ret < 0)
3500				goto scrub;
3501		}
3502	}
3503
3504add_dev:
3505	/* add consumers devices */
3506	if (init_data) {
3507		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3508			ret = set_consumer_device_supply(rdev,
3509				init_data->consumer_supplies[i].dev_name,
3510				init_data->consumer_supplies[i].supply);
3511			if (ret < 0) {
3512				dev_err(dev, "Failed to set supply %s\n",
3513					init_data->consumer_supplies[i].supply);
3514				goto unset_supplies;
3515			}
3516		}
3517	}
3518
3519	list_add(&rdev->list, &regulator_list);
3520
3521	rdev_init_debugfs(rdev);
3522out:
3523	mutex_unlock(&regulator_list_mutex);
3524	return rdev;
3525
3526unset_supplies:
3527	unset_regulator_supplies(rdev);
3528
3529scrub:
3530	if (rdev->supply)
3531		_regulator_put(rdev->supply);
3532	regulator_ena_gpio_free(rdev);
3533	kfree(rdev->constraints);
3534wash:
3535	device_unregister(&rdev->dev);
3536	/* device core frees rdev */
3537	rdev = ERR_PTR(ret);
3538	goto out;
3539
3540clean:
3541	kfree(rdev);
3542	rdev = ERR_PTR(ret);
3543	goto out;
3544}
3545EXPORT_SYMBOL_GPL(regulator_register);
3546
3547/**
3548 * regulator_unregister - unregister regulator
3549 * @rdev: regulator to unregister
3550 *
3551 * Called by regulator drivers to unregister a regulator.
3552 */
3553void regulator_unregister(struct regulator_dev *rdev)
3554{
3555	if (rdev == NULL)
3556		return;
3557
3558	if (rdev->supply) {
3559		while (rdev->use_count--)
3560			regulator_disable(rdev->supply);
3561		regulator_put(rdev->supply);
3562	}
3563	mutex_lock(&regulator_list_mutex);
3564	debugfs_remove_recursive(rdev->debugfs);
3565	flush_work(&rdev->disable_work.work);
3566	WARN_ON(rdev->open_count);
3567	unset_regulator_supplies(rdev);
3568	list_del(&rdev->list);
3569	kfree(rdev->constraints);
3570	regulator_ena_gpio_free(rdev);
3571	device_unregister(&rdev->dev);
3572	mutex_unlock(&regulator_list_mutex);
3573}
3574EXPORT_SYMBOL_GPL(regulator_unregister);
3575
3576/**
3577 * regulator_suspend_prepare - prepare regulators for system wide suspend
3578 * @state: system suspend state
3579 *
3580 * Configure each regulator with it's suspend operating parameters for state.
3581 * This will usually be called by machine suspend code prior to supending.
3582 */
3583int regulator_suspend_prepare(suspend_state_t state)
3584{
3585	struct regulator_dev *rdev;
3586	int ret = 0;
3587
3588	/* ON is handled by regulator active state */
3589	if (state == PM_SUSPEND_ON)
3590		return -EINVAL;
3591
3592	mutex_lock(&regulator_list_mutex);
3593	list_for_each_entry(rdev, &regulator_list, list) {
3594
3595		mutex_lock(&rdev->mutex);
3596		ret = suspend_prepare(rdev, state);
3597		mutex_unlock(&rdev->mutex);
3598
3599		if (ret < 0) {
3600			rdev_err(rdev, "failed to prepare\n");
3601			goto out;
3602		}
3603	}
3604out:
3605	mutex_unlock(&regulator_list_mutex);
3606	return ret;
3607}
3608EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3609
3610/**
3611 * regulator_suspend_finish - resume regulators from system wide suspend
3612 *
3613 * Turn on regulators that might be turned off by regulator_suspend_prepare
3614 * and that should be turned on according to the regulators properties.
3615 */
3616int regulator_suspend_finish(void)
3617{
3618	struct regulator_dev *rdev;
3619	int ret = 0, error;
3620
3621	mutex_lock(&regulator_list_mutex);
3622	list_for_each_entry(rdev, &regulator_list, list) {
3623		struct regulator_ops *ops = rdev->desc->ops;
3624
3625		mutex_lock(&rdev->mutex);
3626		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3627				ops->enable) {
3628			error = ops->enable(rdev);
3629			if (error)
3630				ret = error;
3631		} else {
3632			if (!have_full_constraints())
3633				goto unlock;
3634			if (!ops->disable)
3635				goto unlock;
3636			if (!_regulator_is_enabled(rdev))
3637				goto unlock;
3638
3639			error = ops->disable(rdev);
3640			if (error)
3641				ret = error;
3642		}
3643unlock:
3644		mutex_unlock(&rdev->mutex);
3645	}
3646	mutex_unlock(&regulator_list_mutex);
3647	return ret;
3648}
3649EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3650
3651/**
3652 * regulator_has_full_constraints - the system has fully specified constraints
3653 *
3654 * Calling this function will cause the regulator API to disable all
3655 * regulators which have a zero use count and don't have an always_on
3656 * constraint in a late_initcall.
3657 *
3658 * The intention is that this will become the default behaviour in a
3659 * future kernel release so users are encouraged to use this facility
3660 * now.
3661 */
3662void regulator_has_full_constraints(void)
3663{
3664	has_full_constraints = 1;
3665}
3666EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3667
3668/**
3669 * rdev_get_drvdata - get rdev regulator driver data
3670 * @rdev: regulator
3671 *
3672 * Get rdev regulator driver private data. This call can be used in the
3673 * regulator driver context.
3674 */
3675void *rdev_get_drvdata(struct regulator_dev *rdev)
3676{
3677	return rdev->reg_data;
3678}
3679EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3680
3681/**
3682 * regulator_get_drvdata - get regulator driver data
3683 * @regulator: regulator
3684 *
3685 * Get regulator driver private data. This call can be used in the consumer
3686 * driver context when non API regulator specific functions need to be called.
3687 */
3688void *regulator_get_drvdata(struct regulator *regulator)
3689{
3690	return regulator->rdev->reg_data;
3691}
3692EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3693
3694/**
3695 * regulator_set_drvdata - set regulator driver data
3696 * @regulator: regulator
3697 * @data: data
3698 */
3699void regulator_set_drvdata(struct regulator *regulator, void *data)
3700{
3701	regulator->rdev->reg_data = data;
3702}
3703EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3704
3705/**
3706 * regulator_get_id - get regulator ID
3707 * @rdev: regulator
3708 */
3709int rdev_get_id(struct regulator_dev *rdev)
3710{
3711	return rdev->desc->id;
3712}
3713EXPORT_SYMBOL_GPL(rdev_get_id);
3714
3715struct device *rdev_get_dev(struct regulator_dev *rdev)
3716{
3717	return &rdev->dev;
3718}
3719EXPORT_SYMBOL_GPL(rdev_get_dev);
3720
3721void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3722{
3723	return reg_init_data->driver_data;
3724}
3725EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3726
3727#ifdef CONFIG_DEBUG_FS
3728static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3729				    size_t count, loff_t *ppos)
3730{
3731	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3732	ssize_t len, ret = 0;
3733	struct regulator_map *map;
3734
3735	if (!buf)
3736		return -ENOMEM;
3737
3738	list_for_each_entry(map, &regulator_map_list, list) {
3739		len = snprintf(buf + ret, PAGE_SIZE - ret,
3740			       "%s -> %s.%s\n",
3741			       rdev_get_name(map->regulator), map->dev_name,
3742			       map->supply);
3743		if (len >= 0)
3744			ret += len;
3745		if (ret > PAGE_SIZE) {
3746			ret = PAGE_SIZE;
3747			break;
3748		}
3749	}
3750
3751	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3752
3753	kfree(buf);
3754
3755	return ret;
3756}
3757#endif
3758
3759static const struct file_operations supply_map_fops = {
3760#ifdef CONFIG_DEBUG_FS
3761	.read = supply_map_read_file,
3762	.llseek = default_llseek,
3763#endif
3764};
3765
3766static int __init regulator_init(void)
3767{
3768	int ret;
3769
3770	ret = class_register(&regulator_class);
3771
3772	debugfs_root = debugfs_create_dir("regulator", NULL);
3773	if (!debugfs_root)
3774		pr_warn("regulator: Failed to create debugfs directory\n");
3775
3776	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3777			    &supply_map_fops);
3778
3779	regulator_dummy_init();
3780
3781	return ret;
3782}
3783
3784/* init early to allow our consumers to complete system booting */
3785core_initcall(regulator_init);
3786
3787static int __init regulator_init_complete(void)
3788{
3789	struct regulator_dev *rdev;
3790	struct regulator_ops *ops;
3791	struct regulation_constraints *c;
3792	int enabled, ret;
3793
3794	/*
3795	 * Since DT doesn't provide an idiomatic mechanism for
3796	 * enabling full constraints and since it's much more natural
3797	 * with DT to provide them just assume that a DT enabled
3798	 * system has full constraints.
3799	 */
3800	if (of_have_populated_dt())
3801		has_full_constraints = true;
3802
3803	mutex_lock(&regulator_list_mutex);
3804
3805	/* If we have a full configuration then disable any regulators
3806	 * which are not in use or always_on.  This will become the
3807	 * default behaviour in the future.
3808	 */
3809	list_for_each_entry(rdev, &regulator_list, list) {
3810		ops = rdev->desc->ops;
3811		c = rdev->constraints;
3812
3813		if (!ops->disable || (c && c->always_on))
3814			continue;
3815
3816		mutex_lock(&rdev->mutex);
3817
3818		if (rdev->use_count)
3819			goto unlock;
3820
3821		/* If we can't read the status assume it's on. */
3822		if (ops->is_enabled)
3823			enabled = ops->is_enabled(rdev);
3824		else
3825			enabled = 1;
3826
3827		if (!enabled)
3828			goto unlock;
3829
3830		if (have_full_constraints()) {
3831			/* We log since this may kill the system if it
3832			 * goes wrong. */
3833			rdev_info(rdev, "disabling\n");
3834			ret = ops->disable(rdev);
3835			if (ret != 0) {
3836				rdev_err(rdev, "couldn't disable: %d\n", ret);
3837			}
3838		} else {
3839			/* The intention is that in future we will
3840			 * assume that full constraints are provided
3841			 * so warn even if we aren't going to do
3842			 * anything here.
3843			 */
3844			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3845		}
3846
3847unlock:
3848		mutex_unlock(&rdev->mutex);
3849	}
3850
3851	mutex_unlock(&regulator_list_mutex);
3852
3853	return 0;
3854}
3855late_initcall(regulator_init_complete);
3856