core.c revision 8cbf811dfd027bde8504e541d0009c5722b98be5
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/slab.h>
20#include <linux/err.h>
21#include <linux/mutex.h>
22#include <linux/suspend.h>
23#include <linux/delay.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/driver.h>
26#include <linux/regulator/machine.h>
27
28#include "dummy.h"
29
30#define REGULATOR_VERSION "0.5"
31
32static DEFINE_MUTEX(regulator_list_mutex);
33static LIST_HEAD(regulator_list);
34static LIST_HEAD(regulator_map_list);
35static int has_full_constraints;
36static bool board_wants_dummy_regulator;
37
38/*
39 * struct regulator_map
40 *
41 * Used to provide symbolic supply names to devices.
42 */
43struct regulator_map {
44	struct list_head list;
45	const char *dev_name;   /* The dev_name() for the consumer */
46	const char *supply;
47	struct regulator_dev *regulator;
48};
49
50/*
51 * struct regulator
52 *
53 * One for each consumer device.
54 */
55struct regulator {
56	struct device *dev;
57	struct list_head list;
58	int uA_load;
59	int min_uV;
60	int max_uV;
61	char *supply_name;
62	struct device_attribute dev_attr;
63	struct regulator_dev *rdev;
64};
65
66static int _regulator_is_enabled(struct regulator_dev *rdev);
67static int _regulator_disable(struct regulator_dev *rdev,
68		struct regulator_dev **supply_rdev_ptr);
69static int _regulator_get_voltage(struct regulator_dev *rdev);
70static int _regulator_get_current_limit(struct regulator_dev *rdev);
71static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72static void _notifier_call_chain(struct regulator_dev *rdev,
73				  unsigned long event, void *data);
74
75static const char *rdev_get_name(struct regulator_dev *rdev)
76{
77	if (rdev->constraints && rdev->constraints->name)
78		return rdev->constraints->name;
79	else if (rdev->desc->name)
80		return rdev->desc->name;
81	else
82		return "";
83}
84
85/* gets the regulator for a given consumer device */
86static struct regulator *get_device_regulator(struct device *dev)
87{
88	struct regulator *regulator = NULL;
89	struct regulator_dev *rdev;
90
91	mutex_lock(&regulator_list_mutex);
92	list_for_each_entry(rdev, &regulator_list, list) {
93		mutex_lock(&rdev->mutex);
94		list_for_each_entry(regulator, &rdev->consumer_list, list) {
95			if (regulator->dev == dev) {
96				mutex_unlock(&rdev->mutex);
97				mutex_unlock(&regulator_list_mutex);
98				return regulator;
99			}
100		}
101		mutex_unlock(&rdev->mutex);
102	}
103	mutex_unlock(&regulator_list_mutex);
104	return NULL;
105}
106
107/* Platform voltage constraint check */
108static int regulator_check_voltage(struct regulator_dev *rdev,
109				   int *min_uV, int *max_uV)
110{
111	BUG_ON(*min_uV > *max_uV);
112
113	if (!rdev->constraints) {
114		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115		       rdev_get_name(rdev));
116		return -ENODEV;
117	}
118	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119		printk(KERN_ERR "%s: operation not allowed for %s\n",
120		       __func__, rdev_get_name(rdev));
121		return -EPERM;
122	}
123
124	if (*max_uV > rdev->constraints->max_uV)
125		*max_uV = rdev->constraints->max_uV;
126	if (*min_uV < rdev->constraints->min_uV)
127		*min_uV = rdev->constraints->min_uV;
128
129	if (*min_uV > *max_uV)
130		return -EINVAL;
131
132	return 0;
133}
134
135/* current constraint check */
136static int regulator_check_current_limit(struct regulator_dev *rdev,
137					int *min_uA, int *max_uA)
138{
139	BUG_ON(*min_uA > *max_uA);
140
141	if (!rdev->constraints) {
142		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143		       rdev_get_name(rdev));
144		return -ENODEV;
145	}
146	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147		printk(KERN_ERR "%s: operation not allowed for %s\n",
148		       __func__, rdev_get_name(rdev));
149		return -EPERM;
150	}
151
152	if (*max_uA > rdev->constraints->max_uA)
153		*max_uA = rdev->constraints->max_uA;
154	if (*min_uA < rdev->constraints->min_uA)
155		*min_uA = rdev->constraints->min_uA;
156
157	if (*min_uA > *max_uA)
158		return -EINVAL;
159
160	return 0;
161}
162
163/* operating mode constraint check */
164static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165{
166	switch (mode) {
167	case REGULATOR_MODE_FAST:
168	case REGULATOR_MODE_NORMAL:
169	case REGULATOR_MODE_IDLE:
170	case REGULATOR_MODE_STANDBY:
171		break;
172	default:
173		return -EINVAL;
174	}
175
176	if (!rdev->constraints) {
177		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178		       rdev_get_name(rdev));
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182		printk(KERN_ERR "%s: operation not allowed for %s\n",
183		       __func__, rdev_get_name(rdev));
184		return -EPERM;
185	}
186	if (!(rdev->constraints->valid_modes_mask & mode)) {
187		printk(KERN_ERR "%s: invalid mode %x for %s\n",
188		       __func__, mode, rdev_get_name(rdev));
189		return -EINVAL;
190	}
191	return 0;
192}
193
194/* dynamic regulator mode switching constraint check */
195static int regulator_check_drms(struct regulator_dev *rdev)
196{
197	if (!rdev->constraints) {
198		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199		       rdev_get_name(rdev));
200		return -ENODEV;
201	}
202	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203		printk(KERN_ERR "%s: operation not allowed for %s\n",
204		       __func__, rdev_get_name(rdev));
205		return -EPERM;
206	}
207	return 0;
208}
209
210static ssize_t device_requested_uA_show(struct device *dev,
211			     struct device_attribute *attr, char *buf)
212{
213	struct regulator *regulator;
214
215	regulator = get_device_regulator(dev);
216	if (regulator == NULL)
217		return 0;
218
219	return sprintf(buf, "%d\n", regulator->uA_load);
220}
221
222static ssize_t regulator_uV_show(struct device *dev,
223				struct device_attribute *attr, char *buf)
224{
225	struct regulator_dev *rdev = dev_get_drvdata(dev);
226	ssize_t ret;
227
228	mutex_lock(&rdev->mutex);
229	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230	mutex_unlock(&rdev->mutex);
231
232	return ret;
233}
234static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236static ssize_t regulator_uA_show(struct device *dev,
237				struct device_attribute *attr, char *buf)
238{
239	struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242}
243static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245static ssize_t regulator_name_show(struct device *dev,
246			     struct device_attribute *attr, char *buf)
247{
248	struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250	return sprintf(buf, "%s\n", rdev_get_name(rdev));
251}
252
253static ssize_t regulator_print_opmode(char *buf, int mode)
254{
255	switch (mode) {
256	case REGULATOR_MODE_FAST:
257		return sprintf(buf, "fast\n");
258	case REGULATOR_MODE_NORMAL:
259		return sprintf(buf, "normal\n");
260	case REGULATOR_MODE_IDLE:
261		return sprintf(buf, "idle\n");
262	case REGULATOR_MODE_STANDBY:
263		return sprintf(buf, "standby\n");
264	}
265	return sprintf(buf, "unknown\n");
266}
267
268static ssize_t regulator_opmode_show(struct device *dev,
269				    struct device_attribute *attr, char *buf)
270{
271	struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274}
275static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277static ssize_t regulator_print_state(char *buf, int state)
278{
279	if (state > 0)
280		return sprintf(buf, "enabled\n");
281	else if (state == 0)
282		return sprintf(buf, "disabled\n");
283	else
284		return sprintf(buf, "unknown\n");
285}
286
287static ssize_t regulator_state_show(struct device *dev,
288				   struct device_attribute *attr, char *buf)
289{
290	struct regulator_dev *rdev = dev_get_drvdata(dev);
291	ssize_t ret;
292
293	mutex_lock(&rdev->mutex);
294	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295	mutex_unlock(&rdev->mutex);
296
297	return ret;
298}
299static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301static ssize_t regulator_status_show(struct device *dev,
302				   struct device_attribute *attr, char *buf)
303{
304	struct regulator_dev *rdev = dev_get_drvdata(dev);
305	int status;
306	char *label;
307
308	status = rdev->desc->ops->get_status(rdev);
309	if (status < 0)
310		return status;
311
312	switch (status) {
313	case REGULATOR_STATUS_OFF:
314		label = "off";
315		break;
316	case REGULATOR_STATUS_ON:
317		label = "on";
318		break;
319	case REGULATOR_STATUS_ERROR:
320		label = "error";
321		break;
322	case REGULATOR_STATUS_FAST:
323		label = "fast";
324		break;
325	case REGULATOR_STATUS_NORMAL:
326		label = "normal";
327		break;
328	case REGULATOR_STATUS_IDLE:
329		label = "idle";
330		break;
331	case REGULATOR_STATUS_STANDBY:
332		label = "standby";
333		break;
334	default:
335		return -ERANGE;
336	}
337
338	return sprintf(buf, "%s\n", label);
339}
340static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342static ssize_t regulator_min_uA_show(struct device *dev,
343				    struct device_attribute *attr, char *buf)
344{
345	struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347	if (!rdev->constraints)
348		return sprintf(buf, "constraint not defined\n");
349
350	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351}
352static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354static ssize_t regulator_max_uA_show(struct device *dev,
355				    struct device_attribute *attr, char *buf)
356{
357	struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359	if (!rdev->constraints)
360		return sprintf(buf, "constraint not defined\n");
361
362	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363}
364static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366static ssize_t regulator_min_uV_show(struct device *dev,
367				    struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "constraint not defined\n");
373
374	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375}
376static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378static ssize_t regulator_max_uV_show(struct device *dev,
379				    struct device_attribute *attr, char *buf)
380{
381	struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383	if (!rdev->constraints)
384		return sprintf(buf, "constraint not defined\n");
385
386	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387}
388static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390static ssize_t regulator_total_uA_show(struct device *dev,
391				      struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	struct regulator *regulator;
395	int uA = 0;
396
397	mutex_lock(&rdev->mutex);
398	list_for_each_entry(regulator, &rdev->consumer_list, list)
399		uA += regulator->uA_load;
400	mutex_unlock(&rdev->mutex);
401	return sprintf(buf, "%d\n", uA);
402}
403static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405static ssize_t regulator_num_users_show(struct device *dev,
406				      struct device_attribute *attr, char *buf)
407{
408	struct regulator_dev *rdev = dev_get_drvdata(dev);
409	return sprintf(buf, "%d\n", rdev->use_count);
410}
411
412static ssize_t regulator_type_show(struct device *dev,
413				  struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	switch (rdev->desc->type) {
418	case REGULATOR_VOLTAGE:
419		return sprintf(buf, "voltage\n");
420	case REGULATOR_CURRENT:
421		return sprintf(buf, "current\n");
422	}
423	return sprintf(buf, "unknown\n");
424}
425
426static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427				struct device_attribute *attr, char *buf)
428{
429	struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432}
433static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434		regulator_suspend_mem_uV_show, NULL);
435
436static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437				struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442}
443static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444		regulator_suspend_disk_uV_show, NULL);
445
446static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447				struct device_attribute *attr, char *buf)
448{
449	struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452}
453static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454		regulator_suspend_standby_uV_show, NULL);
455
456static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457				struct device_attribute *attr, char *buf)
458{
459	struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461	return regulator_print_opmode(buf,
462		rdev->constraints->state_mem.mode);
463}
464static DEVICE_ATTR(suspend_mem_mode, 0444,
465		regulator_suspend_mem_mode_show, NULL);
466
467static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468				struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	return regulator_print_opmode(buf,
473		rdev->constraints->state_disk.mode);
474}
475static DEVICE_ATTR(suspend_disk_mode, 0444,
476		regulator_suspend_disk_mode_show, NULL);
477
478static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479				struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483	return regulator_print_opmode(buf,
484		rdev->constraints->state_standby.mode);
485}
486static DEVICE_ATTR(suspend_standby_mode, 0444,
487		regulator_suspend_standby_mode_show, NULL);
488
489static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490				   struct device_attribute *attr, char *buf)
491{
492	struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494	return regulator_print_state(buf,
495			rdev->constraints->state_mem.enabled);
496}
497static DEVICE_ATTR(suspend_mem_state, 0444,
498		regulator_suspend_mem_state_show, NULL);
499
500static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501				   struct device_attribute *attr, char *buf)
502{
503	struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505	return regulator_print_state(buf,
506			rdev->constraints->state_disk.enabled);
507}
508static DEVICE_ATTR(suspend_disk_state, 0444,
509		regulator_suspend_disk_state_show, NULL);
510
511static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512				   struct device_attribute *attr, char *buf)
513{
514	struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516	return regulator_print_state(buf,
517			rdev->constraints->state_standby.enabled);
518}
519static DEVICE_ATTR(suspend_standby_state, 0444,
520		regulator_suspend_standby_state_show, NULL);
521
522
523/*
524 * These are the only attributes are present for all regulators.
525 * Other attributes are a function of regulator functionality.
526 */
527static struct device_attribute regulator_dev_attrs[] = {
528	__ATTR(name, 0444, regulator_name_show, NULL),
529	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
530	__ATTR(type, 0444, regulator_type_show, NULL),
531	__ATTR_NULL,
532};
533
534static void regulator_dev_release(struct device *dev)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537	kfree(rdev);
538}
539
540static struct class regulator_class = {
541	.name = "regulator",
542	.dev_release = regulator_dev_release,
543	.dev_attrs = regulator_dev_attrs,
544};
545
546/* Calculate the new optimum regulator operating mode based on the new total
547 * consumer load. All locks held by caller */
548static void drms_uA_update(struct regulator_dev *rdev)
549{
550	struct regulator *sibling;
551	int current_uA = 0, output_uV, input_uV, err;
552	unsigned int mode;
553
554	err = regulator_check_drms(rdev);
555	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557		return;
558
559	/* get output voltage */
560	output_uV = rdev->desc->ops->get_voltage(rdev);
561	if (output_uV <= 0)
562		return;
563
564	/* get input voltage */
565	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567	else
568		input_uV = rdev->constraints->input_uV;
569	if (input_uV <= 0)
570		return;
571
572	/* calc total requested load */
573	list_for_each_entry(sibling, &rdev->consumer_list, list)
574		current_uA += sibling->uA_load;
575
576	/* now get the optimum mode for our new total regulator load */
577	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578						  output_uV, current_uA);
579
580	/* check the new mode is allowed */
581	err = regulator_check_mode(rdev, mode);
582	if (err == 0)
583		rdev->desc->ops->set_mode(rdev, mode);
584}
585
586static int suspend_set_state(struct regulator_dev *rdev,
587	struct regulator_state *rstate)
588{
589	int ret = 0;
590	bool can_set_state;
591
592	can_set_state = rdev->desc->ops->set_suspend_enable &&
593		rdev->desc->ops->set_suspend_disable;
594
595	/* If we have no suspend mode configration don't set anything;
596	 * only warn if the driver actually makes the suspend mode
597	 * configurable.
598	 */
599	if (!rstate->enabled && !rstate->disabled) {
600		if (can_set_state)
601			printk(KERN_WARNING "%s: No configuration for %s\n",
602			       __func__, rdev_get_name(rdev));
603		return 0;
604	}
605
606	if (rstate->enabled && rstate->disabled) {
607		printk(KERN_ERR "%s: invalid configuration for %s\n",
608		       __func__, rdev_get_name(rdev));
609		return -EINVAL;
610	}
611
612	if (!can_set_state) {
613		printk(KERN_ERR "%s: no way to set suspend state\n",
614			__func__);
615		return -EINVAL;
616	}
617
618	if (rstate->enabled)
619		ret = rdev->desc->ops->set_suspend_enable(rdev);
620	else
621		ret = rdev->desc->ops->set_suspend_disable(rdev);
622	if (ret < 0) {
623		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624		return ret;
625	}
626
627	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629		if (ret < 0) {
630			printk(KERN_ERR "%s: failed to set voltage\n",
631				__func__);
632			return ret;
633		}
634	}
635
636	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638		if (ret < 0) {
639			printk(KERN_ERR "%s: failed to set mode\n", __func__);
640			return ret;
641		}
642	}
643	return ret;
644}
645
646/* locks held by caller */
647static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648{
649	if (!rdev->constraints)
650		return -EINVAL;
651
652	switch (state) {
653	case PM_SUSPEND_STANDBY:
654		return suspend_set_state(rdev,
655			&rdev->constraints->state_standby);
656	case PM_SUSPEND_MEM:
657		return suspend_set_state(rdev,
658			&rdev->constraints->state_mem);
659	case PM_SUSPEND_MAX:
660		return suspend_set_state(rdev,
661			&rdev->constraints->state_disk);
662	default:
663		return -EINVAL;
664	}
665}
666
667static void print_constraints(struct regulator_dev *rdev)
668{
669	struct regulation_constraints *constraints = rdev->constraints;
670	char buf[80] = "";
671	int count = 0;
672	int ret;
673
674	if (constraints->min_uV && constraints->max_uV) {
675		if (constraints->min_uV == constraints->max_uV)
676			count += sprintf(buf + count, "%d mV ",
677					 constraints->min_uV / 1000);
678		else
679			count += sprintf(buf + count, "%d <--> %d mV ",
680					 constraints->min_uV / 1000,
681					 constraints->max_uV / 1000);
682	}
683
684	if (!constraints->min_uV ||
685	    constraints->min_uV != constraints->max_uV) {
686		ret = _regulator_get_voltage(rdev);
687		if (ret > 0)
688			count += sprintf(buf + count, "at %d mV ", ret / 1000);
689	}
690
691	if (constraints->min_uA && constraints->max_uA) {
692		if (constraints->min_uA == constraints->max_uA)
693			count += sprintf(buf + count, "%d mA ",
694					 constraints->min_uA / 1000);
695		else
696			count += sprintf(buf + count, "%d <--> %d mA ",
697					 constraints->min_uA / 1000,
698					 constraints->max_uA / 1000);
699	}
700
701	if (!constraints->min_uA ||
702	    constraints->min_uA != constraints->max_uA) {
703		ret = _regulator_get_current_limit(rdev);
704		if (ret > 0)
705			count += sprintf(buf + count, "at %d mA ", ret / 1000);
706	}
707
708	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709		count += sprintf(buf + count, "fast ");
710	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711		count += sprintf(buf + count, "normal ");
712	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713		count += sprintf(buf + count, "idle ");
714	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715		count += sprintf(buf + count, "standby");
716
717	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718}
719
720static int machine_constraints_voltage(struct regulator_dev *rdev,
721	struct regulation_constraints *constraints)
722{
723	struct regulator_ops *ops = rdev->desc->ops;
724	const char *name = rdev_get_name(rdev);
725	int ret;
726
727	/* do we need to apply the constraint voltage */
728	if (rdev->constraints->apply_uV &&
729		rdev->constraints->min_uV == rdev->constraints->max_uV &&
730		ops->set_voltage) {
731		ret = ops->set_voltage(rdev,
732			rdev->constraints->min_uV, rdev->constraints->max_uV);
733			if (ret < 0) {
734				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735				       __func__,
736				       rdev->constraints->min_uV, name);
737				rdev->constraints = NULL;
738				return ret;
739			}
740	}
741
742	/* constrain machine-level voltage specs to fit
743	 * the actual range supported by this regulator.
744	 */
745	if (ops->list_voltage && rdev->desc->n_voltages) {
746		int	count = rdev->desc->n_voltages;
747		int	i;
748		int	min_uV = INT_MAX;
749		int	max_uV = INT_MIN;
750		int	cmin = constraints->min_uV;
751		int	cmax = constraints->max_uV;
752
753		/* it's safe to autoconfigure fixed-voltage supplies
754		   and the constraints are used by list_voltage. */
755		if (count == 1 && !cmin) {
756			cmin = 1;
757			cmax = INT_MAX;
758			constraints->min_uV = cmin;
759			constraints->max_uV = cmax;
760		}
761
762		/* voltage constraints are optional */
763		if ((cmin == 0) && (cmax == 0))
764			return 0;
765
766		/* else require explicit machine-level constraints */
767		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768			pr_err("%s: %s '%s' voltage constraints\n",
769				       __func__, "invalid", name);
770			return -EINVAL;
771		}
772
773		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774		for (i = 0; i < count; i++) {
775			int	value;
776
777			value = ops->list_voltage(rdev, i);
778			if (value <= 0)
779				continue;
780
781			/* maybe adjust [min_uV..max_uV] */
782			if (value >= cmin && value < min_uV)
783				min_uV = value;
784			if (value <= cmax && value > max_uV)
785				max_uV = value;
786		}
787
788		/* final: [min_uV..max_uV] valid iff constraints valid */
789		if (max_uV < min_uV) {
790			pr_err("%s: %s '%s' voltage constraints\n",
791				       __func__, "unsupportable", name);
792			return -EINVAL;
793		}
794
795		/* use regulator's subset of machine constraints */
796		if (constraints->min_uV < min_uV) {
797			pr_debug("%s: override '%s' %s, %d -> %d\n",
798				       __func__, name, "min_uV",
799					constraints->min_uV, min_uV);
800			constraints->min_uV = min_uV;
801		}
802		if (constraints->max_uV > max_uV) {
803			pr_debug("%s: override '%s' %s, %d -> %d\n",
804				       __func__, name, "max_uV",
805					constraints->max_uV, max_uV);
806			constraints->max_uV = max_uV;
807		}
808	}
809
810	return 0;
811}
812
813/**
814 * set_machine_constraints - sets regulator constraints
815 * @rdev: regulator source
816 * @constraints: constraints to apply
817 *
818 * Allows platform initialisation code to define and constrain
819 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
820 * Constraints *must* be set by platform code in order for some
821 * regulator operations to proceed i.e. set_voltage, set_current_limit,
822 * set_mode.
823 */
824static int set_machine_constraints(struct regulator_dev *rdev,
825	struct regulation_constraints *constraints)
826{
827	int ret = 0;
828	const char *name;
829	struct regulator_ops *ops = rdev->desc->ops;
830
831	rdev->constraints = constraints;
832
833	name = rdev_get_name(rdev);
834
835	ret = machine_constraints_voltage(rdev, constraints);
836	if (ret != 0)
837		goto out;
838
839	/* do we need to setup our suspend state */
840	if (constraints->initial_state) {
841		ret = suspend_prepare(rdev, constraints->initial_state);
842		if (ret < 0) {
843			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844			       __func__, name);
845			rdev->constraints = NULL;
846			goto out;
847		}
848	}
849
850	if (constraints->initial_mode) {
851		if (!ops->set_mode) {
852			printk(KERN_ERR "%s: no set_mode operation for %s\n",
853			       __func__, name);
854			ret = -EINVAL;
855			goto out;
856		}
857
858		ret = ops->set_mode(rdev, constraints->initial_mode);
859		if (ret < 0) {
860			printk(KERN_ERR
861			       "%s: failed to set initial mode for %s: %d\n",
862			       __func__, name, ret);
863			goto out;
864		}
865	}
866
867	/* If the constraints say the regulator should be on at this point
868	 * and we have control then make sure it is enabled.
869	 */
870	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871		ret = ops->enable(rdev);
872		if (ret < 0) {
873			printk(KERN_ERR "%s: failed to enable %s\n",
874			       __func__, name);
875			rdev->constraints = NULL;
876			goto out;
877		}
878	}
879
880	print_constraints(rdev);
881out:
882	return ret;
883}
884
885/**
886 * set_supply - set regulator supply regulator
887 * @rdev: regulator name
888 * @supply_rdev: supply regulator name
889 *
890 * Called by platform initialisation code to set the supply regulator for this
891 * regulator. This ensures that a regulators supply will also be enabled by the
892 * core if it's child is enabled.
893 */
894static int set_supply(struct regulator_dev *rdev,
895	struct regulator_dev *supply_rdev)
896{
897	int err;
898
899	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900				"supply");
901	if (err) {
902		printk(KERN_ERR
903		       "%s: could not add device link %s err %d\n",
904		       __func__, supply_rdev->dev.kobj.name, err);
905		       goto out;
906	}
907	rdev->supply = supply_rdev;
908	list_add(&rdev->slist, &supply_rdev->supply_list);
909out:
910	return err;
911}
912
913/**
914 * set_consumer_device_supply: Bind a regulator to a symbolic supply
915 * @rdev:         regulator source
916 * @consumer_dev: device the supply applies to
917 * @consumer_dev_name: dev_name() string for device supply applies to
918 * @supply:       symbolic name for supply
919 *
920 * Allows platform initialisation code to map physical regulator
921 * sources to symbolic names for supplies for use by devices.  Devices
922 * should use these symbolic names to request regulators, avoiding the
923 * need to provide board-specific regulator names as platform data.
924 *
925 * Only one of consumer_dev and consumer_dev_name may be specified.
926 */
927static int set_consumer_device_supply(struct regulator_dev *rdev,
928	struct device *consumer_dev, const char *consumer_dev_name,
929	const char *supply)
930{
931	struct regulator_map *node;
932	int has_dev;
933
934	if (consumer_dev && consumer_dev_name)
935		return -EINVAL;
936
937	if (!consumer_dev_name && consumer_dev)
938		consumer_dev_name = dev_name(consumer_dev);
939
940	if (supply == NULL)
941		return -EINVAL;
942
943	if (consumer_dev_name != NULL)
944		has_dev = 1;
945	else
946		has_dev = 0;
947
948	list_for_each_entry(node, &regulator_map_list, list) {
949		if (node->dev_name && consumer_dev_name) {
950			if (strcmp(node->dev_name, consumer_dev_name) != 0)
951				continue;
952		} else if (node->dev_name || consumer_dev_name) {
953			continue;
954		}
955
956		if (strcmp(node->supply, supply) != 0)
957			continue;
958
959		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960				dev_name(&node->regulator->dev),
961				node->regulator->desc->name,
962				supply,
963				dev_name(&rdev->dev), rdev_get_name(rdev));
964		return -EBUSY;
965	}
966
967	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968	if (node == NULL)
969		return -ENOMEM;
970
971	node->regulator = rdev;
972	node->supply = supply;
973
974	if (has_dev) {
975		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976		if (node->dev_name == NULL) {
977			kfree(node);
978			return -ENOMEM;
979		}
980	}
981
982	list_add(&node->list, &regulator_map_list);
983	return 0;
984}
985
986static void unset_regulator_supplies(struct regulator_dev *rdev)
987{
988	struct regulator_map *node, *n;
989
990	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991		if (rdev == node->regulator) {
992			list_del(&node->list);
993			kfree(node->dev_name);
994			kfree(node);
995		}
996	}
997}
998
999#define REG_STR_SIZE	32
1000
1001static struct regulator *create_regulator(struct regulator_dev *rdev,
1002					  struct device *dev,
1003					  const char *supply_name)
1004{
1005	struct regulator *regulator;
1006	char buf[REG_STR_SIZE];
1007	int err, size;
1008
1009	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010	if (regulator == NULL)
1011		return NULL;
1012
1013	mutex_lock(&rdev->mutex);
1014	regulator->rdev = rdev;
1015	list_add(&regulator->list, &rdev->consumer_list);
1016
1017	if (dev) {
1018		/* create a 'requested_microamps_name' sysfs entry */
1019		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020			supply_name);
1021		if (size >= REG_STR_SIZE)
1022			goto overflow_err;
1023
1024		regulator->dev = dev;
1025		sysfs_attr_init(&regulator->dev_attr.attr);
1026		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027		if (regulator->dev_attr.attr.name == NULL)
1028			goto attr_name_err;
1029
1030		regulator->dev_attr.attr.mode = 0444;
1031		regulator->dev_attr.show = device_requested_uA_show;
1032		err = device_create_file(dev, &regulator->dev_attr);
1033		if (err < 0) {
1034			printk(KERN_WARNING "%s: could not add regulator_dev"
1035				" load sysfs\n", __func__);
1036			goto attr_name_err;
1037		}
1038
1039		/* also add a link to the device sysfs entry */
1040		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041				 dev->kobj.name, supply_name);
1042		if (size >= REG_STR_SIZE)
1043			goto attr_err;
1044
1045		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046		if (regulator->supply_name == NULL)
1047			goto attr_err;
1048
1049		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050					buf);
1051		if (err) {
1052			printk(KERN_WARNING
1053			       "%s: could not add device link %s err %d\n",
1054			       __func__, dev->kobj.name, err);
1055			device_remove_file(dev, &regulator->dev_attr);
1056			goto link_name_err;
1057		}
1058	}
1059	mutex_unlock(&rdev->mutex);
1060	return regulator;
1061link_name_err:
1062	kfree(regulator->supply_name);
1063attr_err:
1064	device_remove_file(regulator->dev, &regulator->dev_attr);
1065attr_name_err:
1066	kfree(regulator->dev_attr.attr.name);
1067overflow_err:
1068	list_del(&regulator->list);
1069	kfree(regulator);
1070	mutex_unlock(&rdev->mutex);
1071	return NULL;
1072}
1073
1074static int _regulator_get_enable_time(struct regulator_dev *rdev)
1075{
1076	if (!rdev->desc->ops->enable_time)
1077		return 0;
1078	return rdev->desc->ops->enable_time(rdev);
1079}
1080
1081/* Internal regulator request function */
1082static struct regulator *_regulator_get(struct device *dev, const char *id,
1083					int exclusive)
1084{
1085	struct regulator_dev *rdev;
1086	struct regulator_map *map;
1087	struct regulator *regulator = ERR_PTR(-ENODEV);
1088	const char *devname = NULL;
1089	int ret;
1090
1091	if (id == NULL) {
1092		printk(KERN_ERR "regulator: get() with no identifier\n");
1093		return regulator;
1094	}
1095
1096	if (dev)
1097		devname = dev_name(dev);
1098
1099	mutex_lock(&regulator_list_mutex);
1100
1101	list_for_each_entry(map, &regulator_map_list, list) {
1102		/* If the mapping has a device set up it must match */
1103		if (map->dev_name &&
1104		    (!devname || strcmp(map->dev_name, devname)))
1105			continue;
1106
1107		if (strcmp(map->supply, id) == 0) {
1108			rdev = map->regulator;
1109			goto found;
1110		}
1111	}
1112
1113	if (board_wants_dummy_regulator) {
1114		rdev = dummy_regulator_rdev;
1115		goto found;
1116	}
1117
1118#ifdef CONFIG_REGULATOR_DUMMY
1119	if (!devname)
1120		devname = "deviceless";
1121
1122	/* If the board didn't flag that it was fully constrained then
1123	 * substitute in a dummy regulator so consumers can continue.
1124	 */
1125	if (!has_full_constraints) {
1126		pr_warning("%s supply %s not found, using dummy regulator\n",
1127			   devname, id);
1128		rdev = dummy_regulator_rdev;
1129		goto found;
1130	}
1131#endif
1132
1133	mutex_unlock(&regulator_list_mutex);
1134	return regulator;
1135
1136found:
1137	if (rdev->exclusive) {
1138		regulator = ERR_PTR(-EPERM);
1139		goto out;
1140	}
1141
1142	if (exclusive && rdev->open_count) {
1143		regulator = ERR_PTR(-EBUSY);
1144		goto out;
1145	}
1146
1147	if (!try_module_get(rdev->owner))
1148		goto out;
1149
1150	regulator = create_regulator(rdev, dev, id);
1151	if (regulator == NULL) {
1152		regulator = ERR_PTR(-ENOMEM);
1153		module_put(rdev->owner);
1154	}
1155
1156	rdev->open_count++;
1157	if (exclusive) {
1158		rdev->exclusive = 1;
1159
1160		ret = _regulator_is_enabled(rdev);
1161		if (ret > 0)
1162			rdev->use_count = 1;
1163		else
1164			rdev->use_count = 0;
1165	}
1166
1167out:
1168	mutex_unlock(&regulator_list_mutex);
1169
1170	return regulator;
1171}
1172
1173/**
1174 * regulator_get - lookup and obtain a reference to a regulator.
1175 * @dev: device for regulator "consumer"
1176 * @id: Supply name or regulator ID.
1177 *
1178 * Returns a struct regulator corresponding to the regulator producer,
1179 * or IS_ERR() condition containing errno.
1180 *
1181 * Use of supply names configured via regulator_set_device_supply() is
1182 * strongly encouraged.  It is recommended that the supply name used
1183 * should match the name used for the supply and/or the relevant
1184 * device pins in the datasheet.
1185 */
1186struct regulator *regulator_get(struct device *dev, const char *id)
1187{
1188	return _regulator_get(dev, id, 0);
1189}
1190EXPORT_SYMBOL_GPL(regulator_get);
1191
1192/**
1193 * regulator_get_exclusive - obtain exclusive access to a regulator.
1194 * @dev: device for regulator "consumer"
1195 * @id: Supply name or regulator ID.
1196 *
1197 * Returns a struct regulator corresponding to the regulator producer,
1198 * or IS_ERR() condition containing errno.  Other consumers will be
1199 * unable to obtain this reference is held and the use count for the
1200 * regulator will be initialised to reflect the current state of the
1201 * regulator.
1202 *
1203 * This is intended for use by consumers which cannot tolerate shared
1204 * use of the regulator such as those which need to force the
1205 * regulator off for correct operation of the hardware they are
1206 * controlling.
1207 *
1208 * Use of supply names configured via regulator_set_device_supply() is
1209 * strongly encouraged.  It is recommended that the supply name used
1210 * should match the name used for the supply and/or the relevant
1211 * device pins in the datasheet.
1212 */
1213struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1214{
1215	return _regulator_get(dev, id, 1);
1216}
1217EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1218
1219/**
1220 * regulator_put - "free" the regulator source
1221 * @regulator: regulator source
1222 *
1223 * Note: drivers must ensure that all regulator_enable calls made on this
1224 * regulator source are balanced by regulator_disable calls prior to calling
1225 * this function.
1226 */
1227void regulator_put(struct regulator *regulator)
1228{
1229	struct regulator_dev *rdev;
1230
1231	if (regulator == NULL || IS_ERR(regulator))
1232		return;
1233
1234	mutex_lock(&regulator_list_mutex);
1235	rdev = regulator->rdev;
1236
1237	/* remove any sysfs entries */
1238	if (regulator->dev) {
1239		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1240		kfree(regulator->supply_name);
1241		device_remove_file(regulator->dev, &regulator->dev_attr);
1242		kfree(regulator->dev_attr.attr.name);
1243	}
1244	list_del(&regulator->list);
1245	kfree(regulator);
1246
1247	rdev->open_count--;
1248	rdev->exclusive = 0;
1249
1250	module_put(rdev->owner);
1251	mutex_unlock(&regulator_list_mutex);
1252}
1253EXPORT_SYMBOL_GPL(regulator_put);
1254
1255static int _regulator_can_change_status(struct regulator_dev *rdev)
1256{
1257	if (!rdev->constraints)
1258		return 0;
1259
1260	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1261		return 1;
1262	else
1263		return 0;
1264}
1265
1266/* locks held by regulator_enable() */
1267static int _regulator_enable(struct regulator_dev *rdev)
1268{
1269	int ret, delay;
1270
1271	/* do we need to enable the supply regulator first */
1272	if (rdev->supply) {
1273		ret = _regulator_enable(rdev->supply);
1274		if (ret < 0) {
1275			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1276			       __func__, rdev_get_name(rdev), ret);
1277			return ret;
1278		}
1279	}
1280
1281	/* check voltage and requested load before enabling */
1282	if (rdev->constraints &&
1283	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1284		drms_uA_update(rdev);
1285
1286	if (rdev->use_count == 0) {
1287		/* The regulator may on if it's not switchable or left on */
1288		ret = _regulator_is_enabled(rdev);
1289		if (ret == -EINVAL || ret == 0) {
1290			if (!_regulator_can_change_status(rdev))
1291				return -EPERM;
1292
1293			if (!rdev->desc->ops->enable)
1294				return -EINVAL;
1295
1296			/* Query before enabling in case configuration
1297			 * dependant.  */
1298			ret = _regulator_get_enable_time(rdev);
1299			if (ret >= 0) {
1300				delay = ret;
1301			} else {
1302				printk(KERN_WARNING
1303					"%s: enable_time() failed for %s: %d\n",
1304					__func__, rdev_get_name(rdev),
1305					ret);
1306				delay = 0;
1307			}
1308
1309			/* Allow the regulator to ramp; it would be useful
1310			 * to extend this for bulk operations so that the
1311			 * regulators can ramp together.  */
1312			ret = rdev->desc->ops->enable(rdev);
1313			if (ret < 0)
1314				return ret;
1315
1316			if (delay >= 1000)
1317				mdelay(delay / 1000);
1318			else if (delay)
1319				udelay(delay);
1320
1321		} else if (ret < 0) {
1322			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1323			       __func__, rdev_get_name(rdev), ret);
1324			return ret;
1325		}
1326		/* Fallthrough on positive return values - already enabled */
1327	}
1328
1329	rdev->use_count++;
1330
1331	return 0;
1332}
1333
1334/**
1335 * regulator_enable - enable regulator output
1336 * @regulator: regulator source
1337 *
1338 * Request that the regulator be enabled with the regulator output at
1339 * the predefined voltage or current value.  Calls to regulator_enable()
1340 * must be balanced with calls to regulator_disable().
1341 *
1342 * NOTE: the output value can be set by other drivers, boot loader or may be
1343 * hardwired in the regulator.
1344 */
1345int regulator_enable(struct regulator *regulator)
1346{
1347	struct regulator_dev *rdev = regulator->rdev;
1348	int ret = 0;
1349
1350	mutex_lock(&rdev->mutex);
1351	ret = _regulator_enable(rdev);
1352	mutex_unlock(&rdev->mutex);
1353	return ret;
1354}
1355EXPORT_SYMBOL_GPL(regulator_enable);
1356
1357/* locks held by regulator_disable() */
1358static int _regulator_disable(struct regulator_dev *rdev,
1359		struct regulator_dev **supply_rdev_ptr)
1360{
1361	int ret = 0;
1362
1363	if (WARN(rdev->use_count <= 0,
1364			"unbalanced disables for %s\n",
1365			rdev_get_name(rdev)))
1366		return -EIO;
1367
1368	/* are we the last user and permitted to disable ? */
1369	if (rdev->use_count == 1 &&
1370	    (rdev->constraints && !rdev->constraints->always_on)) {
1371
1372		/* we are last user */
1373		if (_regulator_can_change_status(rdev) &&
1374		    rdev->desc->ops->disable) {
1375			ret = rdev->desc->ops->disable(rdev);
1376			if (ret < 0) {
1377				printk(KERN_ERR "%s: failed to disable %s\n",
1378				       __func__, rdev_get_name(rdev));
1379				return ret;
1380			}
1381
1382			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1383					     NULL);
1384		}
1385
1386		/* decrease our supplies ref count and disable if required */
1387		*supply_rdev_ptr = rdev->supply;
1388
1389		rdev->use_count = 0;
1390	} else if (rdev->use_count > 1) {
1391
1392		if (rdev->constraints &&
1393			(rdev->constraints->valid_ops_mask &
1394			REGULATOR_CHANGE_DRMS))
1395			drms_uA_update(rdev);
1396
1397		rdev->use_count--;
1398	}
1399	return ret;
1400}
1401
1402/**
1403 * regulator_disable - disable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Disable the regulator output voltage or current.  Calls to
1407 * regulator_enable() must be balanced with calls to
1408 * regulator_disable().
1409 *
1410 * NOTE: this will only disable the regulator output if no other consumer
1411 * devices have it enabled, the regulator device supports disabling and
1412 * machine constraints permit this operation.
1413 */
1414int regulator_disable(struct regulator *regulator)
1415{
1416	struct regulator_dev *rdev = regulator->rdev;
1417	struct regulator_dev *supply_rdev = NULL;
1418	int ret = 0;
1419
1420	mutex_lock(&rdev->mutex);
1421	ret = _regulator_disable(rdev, &supply_rdev);
1422	mutex_unlock(&rdev->mutex);
1423
1424	/* decrease our supplies ref count and disable if required */
1425	while (supply_rdev != NULL) {
1426		rdev = supply_rdev;
1427
1428		mutex_lock(&rdev->mutex);
1429		_regulator_disable(rdev, &supply_rdev);
1430		mutex_unlock(&rdev->mutex);
1431	}
1432
1433	return ret;
1434}
1435EXPORT_SYMBOL_GPL(regulator_disable);
1436
1437/* locks held by regulator_force_disable() */
1438static int _regulator_force_disable(struct regulator_dev *rdev,
1439		struct regulator_dev **supply_rdev_ptr)
1440{
1441	int ret = 0;
1442
1443	/* force disable */
1444	if (rdev->desc->ops->disable) {
1445		/* ah well, who wants to live forever... */
1446		ret = rdev->desc->ops->disable(rdev);
1447		if (ret < 0) {
1448			printk(KERN_ERR "%s: failed to force disable %s\n",
1449			       __func__, rdev_get_name(rdev));
1450			return ret;
1451		}
1452		/* notify other consumers that power has been forced off */
1453		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1454			REGULATOR_EVENT_DISABLE, NULL);
1455	}
1456
1457	/* decrease our supplies ref count and disable if required */
1458	*supply_rdev_ptr = rdev->supply;
1459
1460	rdev->use_count = 0;
1461	return ret;
1462}
1463
1464/**
1465 * regulator_force_disable - force disable regulator output
1466 * @regulator: regulator source
1467 *
1468 * Forcibly disable the regulator output voltage or current.
1469 * NOTE: this *will* disable the regulator output even if other consumer
1470 * devices have it enabled. This should be used for situations when device
1471 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1472 */
1473int regulator_force_disable(struct regulator *regulator)
1474{
1475	struct regulator_dev *supply_rdev = NULL;
1476	int ret;
1477
1478	mutex_lock(&regulator->rdev->mutex);
1479	regulator->uA_load = 0;
1480	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1481	mutex_unlock(&regulator->rdev->mutex);
1482
1483	if (supply_rdev)
1484		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1485
1486	return ret;
1487}
1488EXPORT_SYMBOL_GPL(regulator_force_disable);
1489
1490static int _regulator_is_enabled(struct regulator_dev *rdev)
1491{
1492	/* If we don't know then assume that the regulator is always on */
1493	if (!rdev->desc->ops->is_enabled)
1494		return 1;
1495
1496	return rdev->desc->ops->is_enabled(rdev);
1497}
1498
1499/**
1500 * regulator_is_enabled - is the regulator output enabled
1501 * @regulator: regulator source
1502 *
1503 * Returns positive if the regulator driver backing the source/client
1504 * has requested that the device be enabled, zero if it hasn't, else a
1505 * negative errno code.
1506 *
1507 * Note that the device backing this regulator handle can have multiple
1508 * users, so it might be enabled even if regulator_enable() was never
1509 * called for this particular source.
1510 */
1511int regulator_is_enabled(struct regulator *regulator)
1512{
1513	int ret;
1514
1515	mutex_lock(&regulator->rdev->mutex);
1516	ret = _regulator_is_enabled(regulator->rdev);
1517	mutex_unlock(&regulator->rdev->mutex);
1518
1519	return ret;
1520}
1521EXPORT_SYMBOL_GPL(regulator_is_enabled);
1522
1523/**
1524 * regulator_count_voltages - count regulator_list_voltage() selectors
1525 * @regulator: regulator source
1526 *
1527 * Returns number of selectors, or negative errno.  Selectors are
1528 * numbered starting at zero, and typically correspond to bitfields
1529 * in hardware registers.
1530 */
1531int regulator_count_voltages(struct regulator *regulator)
1532{
1533	struct regulator_dev	*rdev = regulator->rdev;
1534
1535	return rdev->desc->n_voltages ? : -EINVAL;
1536}
1537EXPORT_SYMBOL_GPL(regulator_count_voltages);
1538
1539/**
1540 * regulator_list_voltage - enumerate supported voltages
1541 * @regulator: regulator source
1542 * @selector: identify voltage to list
1543 * Context: can sleep
1544 *
1545 * Returns a voltage that can be passed to @regulator_set_voltage(),
1546 * zero if this selector code can't be used on this system, or a
1547 * negative errno.
1548 */
1549int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1550{
1551	struct regulator_dev	*rdev = regulator->rdev;
1552	struct regulator_ops	*ops = rdev->desc->ops;
1553	int			ret;
1554
1555	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1556		return -EINVAL;
1557
1558	mutex_lock(&rdev->mutex);
1559	ret = ops->list_voltage(rdev, selector);
1560	mutex_unlock(&rdev->mutex);
1561
1562	if (ret > 0) {
1563		if (ret < rdev->constraints->min_uV)
1564			ret = 0;
1565		else if (ret > rdev->constraints->max_uV)
1566			ret = 0;
1567	}
1568
1569	return ret;
1570}
1571EXPORT_SYMBOL_GPL(regulator_list_voltage);
1572
1573/**
1574 * regulator_is_supported_voltage - check if a voltage range can be supported
1575 *
1576 * @regulator: Regulator to check.
1577 * @min_uV: Minimum required voltage in uV.
1578 * @max_uV: Maximum required voltage in uV.
1579 *
1580 * Returns a boolean or a negative error code.
1581 */
1582int regulator_is_supported_voltage(struct regulator *regulator,
1583				   int min_uV, int max_uV)
1584{
1585	int i, voltages, ret;
1586
1587	ret = regulator_count_voltages(regulator);
1588	if (ret < 0)
1589		return ret;
1590	voltages = ret;
1591
1592	for (i = 0; i < voltages; i++) {
1593		ret = regulator_list_voltage(regulator, i);
1594
1595		if (ret >= min_uV && ret <= max_uV)
1596			return 1;
1597	}
1598
1599	return 0;
1600}
1601
1602/**
1603 * regulator_set_voltage - set regulator output voltage
1604 * @regulator: regulator source
1605 * @min_uV: Minimum required voltage in uV
1606 * @max_uV: Maximum acceptable voltage in uV
1607 *
1608 * Sets a voltage regulator to the desired output voltage. This can be set
1609 * during any regulator state. IOW, regulator can be disabled or enabled.
1610 *
1611 * If the regulator is enabled then the voltage will change to the new value
1612 * immediately otherwise if the regulator is disabled the regulator will
1613 * output at the new voltage when enabled.
1614 *
1615 * NOTE: If the regulator is shared between several devices then the lowest
1616 * request voltage that meets the system constraints will be used.
1617 * Regulator system constraints must be set for this regulator before
1618 * calling this function otherwise this call will fail.
1619 */
1620int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1621{
1622	struct regulator_dev *rdev = regulator->rdev;
1623	int ret;
1624
1625	mutex_lock(&rdev->mutex);
1626
1627	/* sanity check */
1628	if (!rdev->desc->ops->set_voltage) {
1629		ret = -EINVAL;
1630		goto out;
1631	}
1632
1633	/* constraints check */
1634	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1635	if (ret < 0)
1636		goto out;
1637	regulator->min_uV = min_uV;
1638	regulator->max_uV = max_uV;
1639	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1640
1641out:
1642	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1643	mutex_unlock(&rdev->mutex);
1644	return ret;
1645}
1646EXPORT_SYMBOL_GPL(regulator_set_voltage);
1647
1648static int _regulator_get_voltage(struct regulator_dev *rdev)
1649{
1650	/* sanity check */
1651	if (rdev->desc->ops->get_voltage)
1652		return rdev->desc->ops->get_voltage(rdev);
1653	else
1654		return -EINVAL;
1655}
1656
1657/**
1658 * regulator_get_voltage - get regulator output voltage
1659 * @regulator: regulator source
1660 *
1661 * This returns the current regulator voltage in uV.
1662 *
1663 * NOTE: If the regulator is disabled it will return the voltage value. This
1664 * function should not be used to determine regulator state.
1665 */
1666int regulator_get_voltage(struct regulator *regulator)
1667{
1668	int ret;
1669
1670	mutex_lock(&regulator->rdev->mutex);
1671
1672	ret = _regulator_get_voltage(regulator->rdev);
1673
1674	mutex_unlock(&regulator->rdev->mutex);
1675
1676	return ret;
1677}
1678EXPORT_SYMBOL_GPL(regulator_get_voltage);
1679
1680/**
1681 * regulator_set_current_limit - set regulator output current limit
1682 * @regulator: regulator source
1683 * @min_uA: Minimuum supported current in uA
1684 * @max_uA: Maximum supported current in uA
1685 *
1686 * Sets current sink to the desired output current. This can be set during
1687 * any regulator state. IOW, regulator can be disabled or enabled.
1688 *
1689 * If the regulator is enabled then the current will change to the new value
1690 * immediately otherwise if the regulator is disabled the regulator will
1691 * output at the new current when enabled.
1692 *
1693 * NOTE: Regulator system constraints must be set for this regulator before
1694 * calling this function otherwise this call will fail.
1695 */
1696int regulator_set_current_limit(struct regulator *regulator,
1697			       int min_uA, int max_uA)
1698{
1699	struct regulator_dev *rdev = regulator->rdev;
1700	int ret;
1701
1702	mutex_lock(&rdev->mutex);
1703
1704	/* sanity check */
1705	if (!rdev->desc->ops->set_current_limit) {
1706		ret = -EINVAL;
1707		goto out;
1708	}
1709
1710	/* constraints check */
1711	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1712	if (ret < 0)
1713		goto out;
1714
1715	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1716out:
1717	mutex_unlock(&rdev->mutex);
1718	return ret;
1719}
1720EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1721
1722static int _regulator_get_current_limit(struct regulator_dev *rdev)
1723{
1724	int ret;
1725
1726	mutex_lock(&rdev->mutex);
1727
1728	/* sanity check */
1729	if (!rdev->desc->ops->get_current_limit) {
1730		ret = -EINVAL;
1731		goto out;
1732	}
1733
1734	ret = rdev->desc->ops->get_current_limit(rdev);
1735out:
1736	mutex_unlock(&rdev->mutex);
1737	return ret;
1738}
1739
1740/**
1741 * regulator_get_current_limit - get regulator output current
1742 * @regulator: regulator source
1743 *
1744 * This returns the current supplied by the specified current sink in uA.
1745 *
1746 * NOTE: If the regulator is disabled it will return the current value. This
1747 * function should not be used to determine regulator state.
1748 */
1749int regulator_get_current_limit(struct regulator *regulator)
1750{
1751	return _regulator_get_current_limit(regulator->rdev);
1752}
1753EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1754
1755/**
1756 * regulator_set_mode - set regulator operating mode
1757 * @regulator: regulator source
1758 * @mode: operating mode - one of the REGULATOR_MODE constants
1759 *
1760 * Set regulator operating mode to increase regulator efficiency or improve
1761 * regulation performance.
1762 *
1763 * NOTE: Regulator system constraints must be set for this regulator before
1764 * calling this function otherwise this call will fail.
1765 */
1766int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1767{
1768	struct regulator_dev *rdev = regulator->rdev;
1769	int ret;
1770	int regulator_curr_mode;
1771
1772	mutex_lock(&rdev->mutex);
1773
1774	/* sanity check */
1775	if (!rdev->desc->ops->set_mode) {
1776		ret = -EINVAL;
1777		goto out;
1778	}
1779
1780	/* return if the same mode is requested */
1781	if (rdev->desc->ops->get_mode) {
1782		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1783		if (regulator_curr_mode == mode) {
1784			ret = 0;
1785			goto out;
1786		}
1787	}
1788
1789	/* constraints check */
1790	ret = regulator_check_mode(rdev, mode);
1791	if (ret < 0)
1792		goto out;
1793
1794	ret = rdev->desc->ops->set_mode(rdev, mode);
1795out:
1796	mutex_unlock(&rdev->mutex);
1797	return ret;
1798}
1799EXPORT_SYMBOL_GPL(regulator_set_mode);
1800
1801static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1802{
1803	int ret;
1804
1805	mutex_lock(&rdev->mutex);
1806
1807	/* sanity check */
1808	if (!rdev->desc->ops->get_mode) {
1809		ret = -EINVAL;
1810		goto out;
1811	}
1812
1813	ret = rdev->desc->ops->get_mode(rdev);
1814out:
1815	mutex_unlock(&rdev->mutex);
1816	return ret;
1817}
1818
1819/**
1820 * regulator_get_mode - get regulator operating mode
1821 * @regulator: regulator source
1822 *
1823 * Get the current regulator operating mode.
1824 */
1825unsigned int regulator_get_mode(struct regulator *regulator)
1826{
1827	return _regulator_get_mode(regulator->rdev);
1828}
1829EXPORT_SYMBOL_GPL(regulator_get_mode);
1830
1831/**
1832 * regulator_set_optimum_mode - set regulator optimum operating mode
1833 * @regulator: regulator source
1834 * @uA_load: load current
1835 *
1836 * Notifies the regulator core of a new device load. This is then used by
1837 * DRMS (if enabled by constraints) to set the most efficient regulator
1838 * operating mode for the new regulator loading.
1839 *
1840 * Consumer devices notify their supply regulator of the maximum power
1841 * they will require (can be taken from device datasheet in the power
1842 * consumption tables) when they change operational status and hence power
1843 * state. Examples of operational state changes that can affect power
1844 * consumption are :-
1845 *
1846 *    o Device is opened / closed.
1847 *    o Device I/O is about to begin or has just finished.
1848 *    o Device is idling in between work.
1849 *
1850 * This information is also exported via sysfs to userspace.
1851 *
1852 * DRMS will sum the total requested load on the regulator and change
1853 * to the most efficient operating mode if platform constraints allow.
1854 *
1855 * Returns the new regulator mode or error.
1856 */
1857int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1858{
1859	struct regulator_dev *rdev = regulator->rdev;
1860	struct regulator *consumer;
1861	int ret, output_uV, input_uV, total_uA_load = 0;
1862	unsigned int mode;
1863
1864	mutex_lock(&rdev->mutex);
1865
1866	regulator->uA_load = uA_load;
1867	ret = regulator_check_drms(rdev);
1868	if (ret < 0)
1869		goto out;
1870	ret = -EINVAL;
1871
1872	/* sanity check */
1873	if (!rdev->desc->ops->get_optimum_mode)
1874		goto out;
1875
1876	/* get output voltage */
1877	output_uV = rdev->desc->ops->get_voltage(rdev);
1878	if (output_uV <= 0) {
1879		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1880			__func__, rdev_get_name(rdev));
1881		goto out;
1882	}
1883
1884	/* get input voltage */
1885	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1886		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1887	else
1888		input_uV = rdev->constraints->input_uV;
1889	if (input_uV <= 0) {
1890		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1891			__func__, rdev_get_name(rdev));
1892		goto out;
1893	}
1894
1895	/* calc total requested load for this regulator */
1896	list_for_each_entry(consumer, &rdev->consumer_list, list)
1897		total_uA_load += consumer->uA_load;
1898
1899	mode = rdev->desc->ops->get_optimum_mode(rdev,
1900						 input_uV, output_uV,
1901						 total_uA_load);
1902	ret = regulator_check_mode(rdev, mode);
1903	if (ret < 0) {
1904		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1905			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1906			total_uA_load, input_uV, output_uV);
1907		goto out;
1908	}
1909
1910	ret = rdev->desc->ops->set_mode(rdev, mode);
1911	if (ret < 0) {
1912		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1913			__func__, mode, rdev_get_name(rdev));
1914		goto out;
1915	}
1916	ret = mode;
1917out:
1918	mutex_unlock(&rdev->mutex);
1919	return ret;
1920}
1921EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1922
1923/**
1924 * regulator_register_notifier - register regulator event notifier
1925 * @regulator: regulator source
1926 * @nb: notifier block
1927 *
1928 * Register notifier block to receive regulator events.
1929 */
1930int regulator_register_notifier(struct regulator *regulator,
1931			      struct notifier_block *nb)
1932{
1933	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1934						nb);
1935}
1936EXPORT_SYMBOL_GPL(regulator_register_notifier);
1937
1938/**
1939 * regulator_unregister_notifier - unregister regulator event notifier
1940 * @regulator: regulator source
1941 * @nb: notifier block
1942 *
1943 * Unregister regulator event notifier block.
1944 */
1945int regulator_unregister_notifier(struct regulator *regulator,
1946				struct notifier_block *nb)
1947{
1948	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1949						  nb);
1950}
1951EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1952
1953/* notify regulator consumers and downstream regulator consumers.
1954 * Note mutex must be held by caller.
1955 */
1956static void _notifier_call_chain(struct regulator_dev *rdev,
1957				  unsigned long event, void *data)
1958{
1959	struct regulator_dev *_rdev;
1960
1961	/* call rdev chain first */
1962	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1963
1964	/* now notify regulator we supply */
1965	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1966		mutex_lock(&_rdev->mutex);
1967		_notifier_call_chain(_rdev, event, data);
1968		mutex_unlock(&_rdev->mutex);
1969	}
1970}
1971
1972/**
1973 * regulator_bulk_get - get multiple regulator consumers
1974 *
1975 * @dev:           Device to supply
1976 * @num_consumers: Number of consumers to register
1977 * @consumers:     Configuration of consumers; clients are stored here.
1978 *
1979 * @return 0 on success, an errno on failure.
1980 *
1981 * This helper function allows drivers to get several regulator
1982 * consumers in one operation.  If any of the regulators cannot be
1983 * acquired then any regulators that were allocated will be freed
1984 * before returning to the caller.
1985 */
1986int regulator_bulk_get(struct device *dev, int num_consumers,
1987		       struct regulator_bulk_data *consumers)
1988{
1989	int i;
1990	int ret;
1991
1992	for (i = 0; i < num_consumers; i++)
1993		consumers[i].consumer = NULL;
1994
1995	for (i = 0; i < num_consumers; i++) {
1996		consumers[i].consumer = regulator_get(dev,
1997						      consumers[i].supply);
1998		if (IS_ERR(consumers[i].consumer)) {
1999			ret = PTR_ERR(consumers[i].consumer);
2000			dev_err(dev, "Failed to get supply '%s': %d\n",
2001				consumers[i].supply, ret);
2002			consumers[i].consumer = NULL;
2003			goto err;
2004		}
2005	}
2006
2007	return 0;
2008
2009err:
2010	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2011		regulator_put(consumers[i].consumer);
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(regulator_bulk_get);
2016
2017/**
2018 * regulator_bulk_enable - enable multiple regulator consumers
2019 *
2020 * @num_consumers: Number of consumers
2021 * @consumers:     Consumer data; clients are stored here.
2022 * @return         0 on success, an errno on failure
2023 *
2024 * This convenience API allows consumers to enable multiple regulator
2025 * clients in a single API call.  If any consumers cannot be enabled
2026 * then any others that were enabled will be disabled again prior to
2027 * return.
2028 */
2029int regulator_bulk_enable(int num_consumers,
2030			  struct regulator_bulk_data *consumers)
2031{
2032	int i;
2033	int ret;
2034
2035	for (i = 0; i < num_consumers; i++) {
2036		ret = regulator_enable(consumers[i].consumer);
2037		if (ret != 0)
2038			goto err;
2039	}
2040
2041	return 0;
2042
2043err:
2044	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2045	for (--i; i >= 0; --i)
2046		regulator_disable(consumers[i].consumer);
2047
2048	return ret;
2049}
2050EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2051
2052/**
2053 * regulator_bulk_disable - disable multiple regulator consumers
2054 *
2055 * @num_consumers: Number of consumers
2056 * @consumers:     Consumer data; clients are stored here.
2057 * @return         0 on success, an errno on failure
2058 *
2059 * This convenience API allows consumers to disable multiple regulator
2060 * clients in a single API call.  If any consumers cannot be enabled
2061 * then any others that were disabled will be disabled again prior to
2062 * return.
2063 */
2064int regulator_bulk_disable(int num_consumers,
2065			   struct regulator_bulk_data *consumers)
2066{
2067	int i;
2068	int ret;
2069
2070	for (i = 0; i < num_consumers; i++) {
2071		ret = regulator_disable(consumers[i].consumer);
2072		if (ret != 0)
2073			goto err;
2074	}
2075
2076	return 0;
2077
2078err:
2079	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2080	       ret);
2081	for (--i; i >= 0; --i)
2082		regulator_enable(consumers[i].consumer);
2083
2084	return ret;
2085}
2086EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2087
2088/**
2089 * regulator_bulk_free - free multiple regulator consumers
2090 *
2091 * @num_consumers: Number of consumers
2092 * @consumers:     Consumer data; clients are stored here.
2093 *
2094 * This convenience API allows consumers to free multiple regulator
2095 * clients in a single API call.
2096 */
2097void regulator_bulk_free(int num_consumers,
2098			 struct regulator_bulk_data *consumers)
2099{
2100	int i;
2101
2102	for (i = 0; i < num_consumers; i++) {
2103		regulator_put(consumers[i].consumer);
2104		consumers[i].consumer = NULL;
2105	}
2106}
2107EXPORT_SYMBOL_GPL(regulator_bulk_free);
2108
2109/**
2110 * regulator_notifier_call_chain - call regulator event notifier
2111 * @rdev: regulator source
2112 * @event: notifier block
2113 * @data: callback-specific data.
2114 *
2115 * Called by regulator drivers to notify clients a regulator event has
2116 * occurred. We also notify regulator clients downstream.
2117 * Note lock must be held by caller.
2118 */
2119int regulator_notifier_call_chain(struct regulator_dev *rdev,
2120				  unsigned long event, void *data)
2121{
2122	_notifier_call_chain(rdev, event, data);
2123	return NOTIFY_DONE;
2124
2125}
2126EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2127
2128/**
2129 * regulator_mode_to_status - convert a regulator mode into a status
2130 *
2131 * @mode: Mode to convert
2132 *
2133 * Convert a regulator mode into a status.
2134 */
2135int regulator_mode_to_status(unsigned int mode)
2136{
2137	switch (mode) {
2138	case REGULATOR_MODE_FAST:
2139		return REGULATOR_STATUS_FAST;
2140	case REGULATOR_MODE_NORMAL:
2141		return REGULATOR_STATUS_NORMAL;
2142	case REGULATOR_MODE_IDLE:
2143		return REGULATOR_STATUS_IDLE;
2144	case REGULATOR_STATUS_STANDBY:
2145		return REGULATOR_STATUS_STANDBY;
2146	default:
2147		return 0;
2148	}
2149}
2150EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2151
2152/*
2153 * To avoid cluttering sysfs (and memory) with useless state, only
2154 * create attributes that can be meaningfully displayed.
2155 */
2156static int add_regulator_attributes(struct regulator_dev *rdev)
2157{
2158	struct device		*dev = &rdev->dev;
2159	struct regulator_ops	*ops = rdev->desc->ops;
2160	int			status = 0;
2161
2162	/* some attributes need specific methods to be displayed */
2163	if (ops->get_voltage) {
2164		status = device_create_file(dev, &dev_attr_microvolts);
2165		if (status < 0)
2166			return status;
2167	}
2168	if (ops->get_current_limit) {
2169		status = device_create_file(dev, &dev_attr_microamps);
2170		if (status < 0)
2171			return status;
2172	}
2173	if (ops->get_mode) {
2174		status = device_create_file(dev, &dev_attr_opmode);
2175		if (status < 0)
2176			return status;
2177	}
2178	if (ops->is_enabled) {
2179		status = device_create_file(dev, &dev_attr_state);
2180		if (status < 0)
2181			return status;
2182	}
2183	if (ops->get_status) {
2184		status = device_create_file(dev, &dev_attr_status);
2185		if (status < 0)
2186			return status;
2187	}
2188
2189	/* some attributes are type-specific */
2190	if (rdev->desc->type == REGULATOR_CURRENT) {
2191		status = device_create_file(dev, &dev_attr_requested_microamps);
2192		if (status < 0)
2193			return status;
2194	}
2195
2196	/* all the other attributes exist to support constraints;
2197	 * don't show them if there are no constraints, or if the
2198	 * relevant supporting methods are missing.
2199	 */
2200	if (!rdev->constraints)
2201		return status;
2202
2203	/* constraints need specific supporting methods */
2204	if (ops->set_voltage) {
2205		status = device_create_file(dev, &dev_attr_min_microvolts);
2206		if (status < 0)
2207			return status;
2208		status = device_create_file(dev, &dev_attr_max_microvolts);
2209		if (status < 0)
2210			return status;
2211	}
2212	if (ops->set_current_limit) {
2213		status = device_create_file(dev, &dev_attr_min_microamps);
2214		if (status < 0)
2215			return status;
2216		status = device_create_file(dev, &dev_attr_max_microamps);
2217		if (status < 0)
2218			return status;
2219	}
2220
2221	/* suspend mode constraints need multiple supporting methods */
2222	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2223		return status;
2224
2225	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2226	if (status < 0)
2227		return status;
2228	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2229	if (status < 0)
2230		return status;
2231	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2232	if (status < 0)
2233		return status;
2234
2235	if (ops->set_suspend_voltage) {
2236		status = device_create_file(dev,
2237				&dev_attr_suspend_standby_microvolts);
2238		if (status < 0)
2239			return status;
2240		status = device_create_file(dev,
2241				&dev_attr_suspend_mem_microvolts);
2242		if (status < 0)
2243			return status;
2244		status = device_create_file(dev,
2245				&dev_attr_suspend_disk_microvolts);
2246		if (status < 0)
2247			return status;
2248	}
2249
2250	if (ops->set_suspend_mode) {
2251		status = device_create_file(dev,
2252				&dev_attr_suspend_standby_mode);
2253		if (status < 0)
2254			return status;
2255		status = device_create_file(dev,
2256				&dev_attr_suspend_mem_mode);
2257		if (status < 0)
2258			return status;
2259		status = device_create_file(dev,
2260				&dev_attr_suspend_disk_mode);
2261		if (status < 0)
2262			return status;
2263	}
2264
2265	return status;
2266}
2267
2268/**
2269 * regulator_register - register regulator
2270 * @regulator_desc: regulator to register
2271 * @dev: struct device for the regulator
2272 * @init_data: platform provided init data, passed through by driver
2273 * @driver_data: private regulator data
2274 *
2275 * Called by regulator drivers to register a regulator.
2276 * Returns 0 on success.
2277 */
2278struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2279	struct device *dev, struct regulator_init_data *init_data,
2280	void *driver_data)
2281{
2282	static atomic_t regulator_no = ATOMIC_INIT(0);
2283	struct regulator_dev *rdev;
2284	int ret, i;
2285
2286	if (regulator_desc == NULL)
2287		return ERR_PTR(-EINVAL);
2288
2289	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2290		return ERR_PTR(-EINVAL);
2291
2292	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2293	    regulator_desc->type != REGULATOR_CURRENT)
2294		return ERR_PTR(-EINVAL);
2295
2296	if (!init_data)
2297		return ERR_PTR(-EINVAL);
2298
2299	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2300	if (rdev == NULL)
2301		return ERR_PTR(-ENOMEM);
2302
2303	mutex_lock(&regulator_list_mutex);
2304
2305	mutex_init(&rdev->mutex);
2306	rdev->reg_data = driver_data;
2307	rdev->owner = regulator_desc->owner;
2308	rdev->desc = regulator_desc;
2309	INIT_LIST_HEAD(&rdev->consumer_list);
2310	INIT_LIST_HEAD(&rdev->supply_list);
2311	INIT_LIST_HEAD(&rdev->list);
2312	INIT_LIST_HEAD(&rdev->slist);
2313	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2314
2315	/* preform any regulator specific init */
2316	if (init_data->regulator_init) {
2317		ret = init_data->regulator_init(rdev->reg_data);
2318		if (ret < 0)
2319			goto clean;
2320	}
2321
2322	/* register with sysfs */
2323	rdev->dev.class = &regulator_class;
2324	rdev->dev.parent = dev;
2325	dev_set_name(&rdev->dev, "regulator.%d",
2326		     atomic_inc_return(&regulator_no) - 1);
2327	ret = device_register(&rdev->dev);
2328	if (ret != 0) {
2329		put_device(&rdev->dev);
2330		goto clean;
2331	}
2332
2333	dev_set_drvdata(&rdev->dev, rdev);
2334
2335	/* set regulator constraints */
2336	ret = set_machine_constraints(rdev, &init_data->constraints);
2337	if (ret < 0)
2338		goto scrub;
2339
2340	/* add attributes supported by this regulator */
2341	ret = add_regulator_attributes(rdev);
2342	if (ret < 0)
2343		goto scrub;
2344
2345	/* set supply regulator if it exists */
2346	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2347		dev_err(dev,
2348			"Supply regulator specified by both name and dev\n");
2349		goto scrub;
2350	}
2351
2352	if (init_data->supply_regulator) {
2353		struct regulator_dev *r;
2354		int found = 0;
2355
2356		list_for_each_entry(r, &regulator_list, list) {
2357			if (strcmp(rdev_get_name(r),
2358				   init_data->supply_regulator) == 0) {
2359				found = 1;
2360				break;
2361			}
2362		}
2363
2364		if (!found) {
2365			dev_err(dev, "Failed to find supply %s\n",
2366				init_data->supply_regulator);
2367			goto scrub;
2368		}
2369
2370		ret = set_supply(rdev, r);
2371		if (ret < 0)
2372			goto scrub;
2373	}
2374
2375	if (init_data->supply_regulator_dev) {
2376		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2377		ret = set_supply(rdev,
2378			dev_get_drvdata(init_data->supply_regulator_dev));
2379		if (ret < 0)
2380			goto scrub;
2381	}
2382
2383	/* add consumers devices */
2384	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2385		ret = set_consumer_device_supply(rdev,
2386			init_data->consumer_supplies[i].dev,
2387			init_data->consumer_supplies[i].dev_name,
2388			init_data->consumer_supplies[i].supply);
2389		if (ret < 0)
2390			goto unset_supplies;
2391	}
2392
2393	list_add(&rdev->list, &regulator_list);
2394out:
2395	mutex_unlock(&regulator_list_mutex);
2396	return rdev;
2397
2398unset_supplies:
2399	unset_regulator_supplies(rdev);
2400
2401scrub:
2402	device_unregister(&rdev->dev);
2403	/* device core frees rdev */
2404	rdev = ERR_PTR(ret);
2405	goto out;
2406
2407clean:
2408	kfree(rdev);
2409	rdev = ERR_PTR(ret);
2410	goto out;
2411}
2412EXPORT_SYMBOL_GPL(regulator_register);
2413
2414/**
2415 * regulator_unregister - unregister regulator
2416 * @rdev: regulator to unregister
2417 *
2418 * Called by regulator drivers to unregister a regulator.
2419 */
2420void regulator_unregister(struct regulator_dev *rdev)
2421{
2422	if (rdev == NULL)
2423		return;
2424
2425	mutex_lock(&regulator_list_mutex);
2426	WARN_ON(rdev->open_count);
2427	unset_regulator_supplies(rdev);
2428	list_del(&rdev->list);
2429	if (rdev->supply)
2430		sysfs_remove_link(&rdev->dev.kobj, "supply");
2431	device_unregister(&rdev->dev);
2432	mutex_unlock(&regulator_list_mutex);
2433}
2434EXPORT_SYMBOL_GPL(regulator_unregister);
2435
2436/**
2437 * regulator_suspend_prepare - prepare regulators for system wide suspend
2438 * @state: system suspend state
2439 *
2440 * Configure each regulator with it's suspend operating parameters for state.
2441 * This will usually be called by machine suspend code prior to supending.
2442 */
2443int regulator_suspend_prepare(suspend_state_t state)
2444{
2445	struct regulator_dev *rdev;
2446	int ret = 0;
2447
2448	/* ON is handled by regulator active state */
2449	if (state == PM_SUSPEND_ON)
2450		return -EINVAL;
2451
2452	mutex_lock(&regulator_list_mutex);
2453	list_for_each_entry(rdev, &regulator_list, list) {
2454
2455		mutex_lock(&rdev->mutex);
2456		ret = suspend_prepare(rdev, state);
2457		mutex_unlock(&rdev->mutex);
2458
2459		if (ret < 0) {
2460			printk(KERN_ERR "%s: failed to prepare %s\n",
2461				__func__, rdev_get_name(rdev));
2462			goto out;
2463		}
2464	}
2465out:
2466	mutex_unlock(&regulator_list_mutex);
2467	return ret;
2468}
2469EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2470
2471/**
2472 * regulator_has_full_constraints - the system has fully specified constraints
2473 *
2474 * Calling this function will cause the regulator API to disable all
2475 * regulators which have a zero use count and don't have an always_on
2476 * constraint in a late_initcall.
2477 *
2478 * The intention is that this will become the default behaviour in a
2479 * future kernel release so users are encouraged to use this facility
2480 * now.
2481 */
2482void regulator_has_full_constraints(void)
2483{
2484	has_full_constraints = 1;
2485}
2486EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2487
2488/**
2489 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2490 *
2491 * Calling this function will cause the regulator API to provide a
2492 * dummy regulator to consumers if no physical regulator is found,
2493 * allowing most consumers to proceed as though a regulator were
2494 * configured.  This allows systems such as those with software
2495 * controllable regulators for the CPU core only to be brought up more
2496 * readily.
2497 */
2498void regulator_use_dummy_regulator(void)
2499{
2500	board_wants_dummy_regulator = true;
2501}
2502EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2503
2504/**
2505 * rdev_get_drvdata - get rdev regulator driver data
2506 * @rdev: regulator
2507 *
2508 * Get rdev regulator driver private data. This call can be used in the
2509 * regulator driver context.
2510 */
2511void *rdev_get_drvdata(struct regulator_dev *rdev)
2512{
2513	return rdev->reg_data;
2514}
2515EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2516
2517/**
2518 * regulator_get_drvdata - get regulator driver data
2519 * @regulator: regulator
2520 *
2521 * Get regulator driver private data. This call can be used in the consumer
2522 * driver context when non API regulator specific functions need to be called.
2523 */
2524void *regulator_get_drvdata(struct regulator *regulator)
2525{
2526	return regulator->rdev->reg_data;
2527}
2528EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2529
2530/**
2531 * regulator_set_drvdata - set regulator driver data
2532 * @regulator: regulator
2533 * @data: data
2534 */
2535void regulator_set_drvdata(struct regulator *regulator, void *data)
2536{
2537	regulator->rdev->reg_data = data;
2538}
2539EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2540
2541/**
2542 * regulator_get_id - get regulator ID
2543 * @rdev: regulator
2544 */
2545int rdev_get_id(struct regulator_dev *rdev)
2546{
2547	return rdev->desc->id;
2548}
2549EXPORT_SYMBOL_GPL(rdev_get_id);
2550
2551struct device *rdev_get_dev(struct regulator_dev *rdev)
2552{
2553	return &rdev->dev;
2554}
2555EXPORT_SYMBOL_GPL(rdev_get_dev);
2556
2557void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2558{
2559	return reg_init_data->driver_data;
2560}
2561EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2562
2563static int __init regulator_init(void)
2564{
2565	int ret;
2566
2567	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2568
2569	ret = class_register(&regulator_class);
2570
2571	regulator_dummy_init();
2572
2573	return ret;
2574}
2575
2576/* init early to allow our consumers to complete system booting */
2577core_initcall(regulator_init);
2578
2579static int __init regulator_init_complete(void)
2580{
2581	struct regulator_dev *rdev;
2582	struct regulator_ops *ops;
2583	struct regulation_constraints *c;
2584	int enabled, ret;
2585	const char *name;
2586
2587	mutex_lock(&regulator_list_mutex);
2588
2589	/* If we have a full configuration then disable any regulators
2590	 * which are not in use or always_on.  This will become the
2591	 * default behaviour in the future.
2592	 */
2593	list_for_each_entry(rdev, &regulator_list, list) {
2594		ops = rdev->desc->ops;
2595		c = rdev->constraints;
2596
2597		name = rdev_get_name(rdev);
2598
2599		if (!ops->disable || (c && c->always_on))
2600			continue;
2601
2602		mutex_lock(&rdev->mutex);
2603
2604		if (rdev->use_count)
2605			goto unlock;
2606
2607		/* If we can't read the status assume it's on. */
2608		if (ops->is_enabled)
2609			enabled = ops->is_enabled(rdev);
2610		else
2611			enabled = 1;
2612
2613		if (!enabled)
2614			goto unlock;
2615
2616		if (has_full_constraints) {
2617			/* We log since this may kill the system if it
2618			 * goes wrong. */
2619			printk(KERN_INFO "%s: disabling %s\n",
2620			       __func__, name);
2621			ret = ops->disable(rdev);
2622			if (ret != 0) {
2623				printk(KERN_ERR
2624				       "%s: couldn't disable %s: %d\n",
2625				       __func__, name, ret);
2626			}
2627		} else {
2628			/* The intention is that in future we will
2629			 * assume that full constraints are provided
2630			 * so warn even if we aren't going to do
2631			 * anything here.
2632			 */
2633			printk(KERN_WARNING
2634			       "%s: incomplete constraints, leaving %s on\n",
2635			       __func__, name);
2636		}
2637
2638unlock:
2639		mutex_unlock(&rdev->mutex);
2640	}
2641
2642	mutex_unlock(&regulator_list_mutex);
2643
2644	return 0;
2645}
2646late_initcall(regulator_init_complete);
2647