core.c revision 92d7a55879c01b30349045501108e775655a4b92
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV)
203		return -EINVAL;
204
205	return 0;
206}
207
208/* current constraint check */
209static int regulator_check_current_limit(struct regulator_dev *rdev,
210					int *min_uA, int *max_uA)
211{
212	BUG_ON(*min_uA > *max_uA);
213
214	if (!rdev->constraints) {
215		rdev_err(rdev, "no constraints\n");
216		return -ENODEV;
217	}
218	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219		rdev_err(rdev, "operation not allowed\n");
220		return -EPERM;
221	}
222
223	if (*max_uA > rdev->constraints->max_uA)
224		*max_uA = rdev->constraints->max_uA;
225	if (*min_uA < rdev->constraints->min_uA)
226		*min_uA = rdev->constraints->min_uA;
227
228	if (*min_uA > *max_uA) {
229		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230			 *min_uA, *max_uA);
231		return -EINVAL;
232	}
233
234	return 0;
235}
236
237/* operating mode constraint check */
238static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239{
240	switch (*mode) {
241	case REGULATOR_MODE_FAST:
242	case REGULATOR_MODE_NORMAL:
243	case REGULATOR_MODE_IDLE:
244	case REGULATOR_MODE_STANDBY:
245		break;
246	default:
247		rdev_err(rdev, "invalid mode %x specified\n", *mode);
248		return -EINVAL;
249	}
250
251	if (!rdev->constraints) {
252		rdev_err(rdev, "no constraints\n");
253		return -ENODEV;
254	}
255	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256		rdev_err(rdev, "operation not allowed\n");
257		return -EPERM;
258	}
259
260	/* The modes are bitmasks, the most power hungry modes having
261	 * the lowest values. If the requested mode isn't supported
262	 * try higher modes. */
263	while (*mode) {
264		if (rdev->constraints->valid_modes_mask & *mode)
265			return 0;
266		*mode /= 2;
267	}
268
269	return -EINVAL;
270}
271
272/* dynamic regulator mode switching constraint check */
273static int regulator_check_drms(struct regulator_dev *rdev)
274{
275	if (!rdev->constraints) {
276		rdev_err(rdev, "no constraints\n");
277		return -ENODEV;
278	}
279	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280		rdev_err(rdev, "operation not allowed\n");
281		return -EPERM;
282	}
283	return 0;
284}
285
286static ssize_t regulator_uV_show(struct device *dev,
287				struct device_attribute *attr, char *buf)
288{
289	struct regulator_dev *rdev = dev_get_drvdata(dev);
290	ssize_t ret;
291
292	mutex_lock(&rdev->mutex);
293	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294	mutex_unlock(&rdev->mutex);
295
296	return ret;
297}
298static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300static ssize_t regulator_uA_show(struct device *dev,
301				struct device_attribute *attr, char *buf)
302{
303	struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306}
307static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309static ssize_t regulator_name_show(struct device *dev,
310			     struct device_attribute *attr, char *buf)
311{
312	struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314	return sprintf(buf, "%s\n", rdev_get_name(rdev));
315}
316
317static ssize_t regulator_print_opmode(char *buf, int mode)
318{
319	switch (mode) {
320	case REGULATOR_MODE_FAST:
321		return sprintf(buf, "fast\n");
322	case REGULATOR_MODE_NORMAL:
323		return sprintf(buf, "normal\n");
324	case REGULATOR_MODE_IDLE:
325		return sprintf(buf, "idle\n");
326	case REGULATOR_MODE_STANDBY:
327		return sprintf(buf, "standby\n");
328	}
329	return sprintf(buf, "unknown\n");
330}
331
332static ssize_t regulator_opmode_show(struct device *dev,
333				    struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338}
339static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341static ssize_t regulator_print_state(char *buf, int state)
342{
343	if (state > 0)
344		return sprintf(buf, "enabled\n");
345	else if (state == 0)
346		return sprintf(buf, "disabled\n");
347	else
348		return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_state_show(struct device *dev,
352				   struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355	ssize_t ret;
356
357	mutex_lock(&rdev->mutex);
358	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359	mutex_unlock(&rdev->mutex);
360
361	return ret;
362}
363static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365static ssize_t regulator_status_show(struct device *dev,
366				   struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369	int status;
370	char *label;
371
372	status = rdev->desc->ops->get_status(rdev);
373	if (status < 0)
374		return status;
375
376	switch (status) {
377	case REGULATOR_STATUS_OFF:
378		label = "off";
379		break;
380	case REGULATOR_STATUS_ON:
381		label = "on";
382		break;
383	case REGULATOR_STATUS_ERROR:
384		label = "error";
385		break;
386	case REGULATOR_STATUS_FAST:
387		label = "fast";
388		break;
389	case REGULATOR_STATUS_NORMAL:
390		label = "normal";
391		break;
392	case REGULATOR_STATUS_IDLE:
393		label = "idle";
394		break;
395	case REGULATOR_STATUS_STANDBY:
396		label = "standby";
397		break;
398	case REGULATOR_STATUS_BYPASS:
399		label = "bypass";
400		break;
401	case REGULATOR_STATUS_UNDEFINED:
402		label = "undefined";
403		break;
404	default:
405		return -ERANGE;
406	}
407
408	return sprintf(buf, "%s\n", label);
409}
410static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412static ssize_t regulator_min_uA_show(struct device *dev,
413				    struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	if (!rdev->constraints)
418		return sprintf(buf, "constraint not defined\n");
419
420	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421}
422static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424static ssize_t regulator_max_uA_show(struct device *dev,
425				    struct device_attribute *attr, char *buf)
426{
427	struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429	if (!rdev->constraints)
430		return sprintf(buf, "constraint not defined\n");
431
432	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433}
434static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436static ssize_t regulator_min_uV_show(struct device *dev,
437				    struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	if (!rdev->constraints)
442		return sprintf(buf, "constraint not defined\n");
443
444	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445}
446static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448static ssize_t regulator_max_uV_show(struct device *dev,
449				    struct device_attribute *attr, char *buf)
450{
451	struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453	if (!rdev->constraints)
454		return sprintf(buf, "constraint not defined\n");
455
456	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457}
458static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460static ssize_t regulator_total_uA_show(struct device *dev,
461				      struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464	struct regulator *regulator;
465	int uA = 0;
466
467	mutex_lock(&rdev->mutex);
468	list_for_each_entry(regulator, &rdev->consumer_list, list)
469		uA += regulator->uA_load;
470	mutex_unlock(&rdev->mutex);
471	return sprintf(buf, "%d\n", uA);
472}
473static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475static ssize_t regulator_num_users_show(struct device *dev,
476				      struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479	return sprintf(buf, "%d\n", rdev->use_count);
480}
481
482static ssize_t regulator_type_show(struct device *dev,
483				  struct device_attribute *attr, char *buf)
484{
485	struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487	switch (rdev->desc->type) {
488	case REGULATOR_VOLTAGE:
489		return sprintf(buf, "voltage\n");
490	case REGULATOR_CURRENT:
491		return sprintf(buf, "current\n");
492	}
493	return sprintf(buf, "unknown\n");
494}
495
496static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497				struct device_attribute *attr, char *buf)
498{
499	struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502}
503static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504		regulator_suspend_mem_uV_show, NULL);
505
506static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507				struct device_attribute *attr, char *buf)
508{
509	struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512}
513static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514		regulator_suspend_disk_uV_show, NULL);
515
516static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522}
523static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524		regulator_suspend_standby_uV_show, NULL);
525
526static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return regulator_print_opmode(buf,
532		rdev->constraints->state_mem.mode);
533}
534static DEVICE_ATTR(suspend_mem_mode, 0444,
535		regulator_suspend_mem_mode_show, NULL);
536
537static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538				struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return regulator_print_opmode(buf,
543		rdev->constraints->state_disk.mode);
544}
545static DEVICE_ATTR(suspend_disk_mode, 0444,
546		regulator_suspend_disk_mode_show, NULL);
547
548static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549				struct device_attribute *attr, char *buf)
550{
551	struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553	return regulator_print_opmode(buf,
554		rdev->constraints->state_standby.mode);
555}
556static DEVICE_ATTR(suspend_standby_mode, 0444,
557		regulator_suspend_standby_mode_show, NULL);
558
559static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560				   struct device_attribute *attr, char *buf)
561{
562	struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564	return regulator_print_state(buf,
565			rdev->constraints->state_mem.enabled);
566}
567static DEVICE_ATTR(suspend_mem_state, 0444,
568		regulator_suspend_mem_state_show, NULL);
569
570static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571				   struct device_attribute *attr, char *buf)
572{
573	struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575	return regulator_print_state(buf,
576			rdev->constraints->state_disk.enabled);
577}
578static DEVICE_ATTR(suspend_disk_state, 0444,
579		regulator_suspend_disk_state_show, NULL);
580
581static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582				   struct device_attribute *attr, char *buf)
583{
584	struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586	return regulator_print_state(buf,
587			rdev->constraints->state_standby.enabled);
588}
589static DEVICE_ATTR(suspend_standby_state, 0444,
590		regulator_suspend_standby_state_show, NULL);
591
592static ssize_t regulator_bypass_show(struct device *dev,
593				     struct device_attribute *attr, char *buf)
594{
595	struct regulator_dev *rdev = dev_get_drvdata(dev);
596	const char *report;
597	bool bypass;
598	int ret;
599
600	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602	if (ret != 0)
603		report = "unknown";
604	else if (bypass)
605		report = "enabled";
606	else
607		report = "disabled";
608
609	return sprintf(buf, "%s\n", report);
610}
611static DEVICE_ATTR(bypass, 0444,
612		   regulator_bypass_show, NULL);
613
614/*
615 * These are the only attributes are present for all regulators.
616 * Other attributes are a function of regulator functionality.
617 */
618static struct device_attribute regulator_dev_attrs[] = {
619	__ATTR(name, 0444, regulator_name_show, NULL),
620	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
621	__ATTR(type, 0444, regulator_type_show, NULL),
622	__ATTR_NULL,
623};
624
625static void regulator_dev_release(struct device *dev)
626{
627	struct regulator_dev *rdev = dev_get_drvdata(dev);
628	kfree(rdev);
629}
630
631static struct class regulator_class = {
632	.name = "regulator",
633	.dev_release = regulator_dev_release,
634	.dev_attrs = regulator_dev_attrs,
635};
636
637/* Calculate the new optimum regulator operating mode based on the new total
638 * consumer load. All locks held by caller */
639static void drms_uA_update(struct regulator_dev *rdev)
640{
641	struct regulator *sibling;
642	int current_uA = 0, output_uV, input_uV, err;
643	unsigned int mode;
644
645	err = regulator_check_drms(rdev);
646	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647	    (!rdev->desc->ops->get_voltage &&
648	     !rdev->desc->ops->get_voltage_sel) ||
649	    !rdev->desc->ops->set_mode)
650		return;
651
652	/* get output voltage */
653	output_uV = _regulator_get_voltage(rdev);
654	if (output_uV <= 0)
655		return;
656
657	/* get input voltage */
658	input_uV = 0;
659	if (rdev->supply)
660		input_uV = regulator_get_voltage(rdev->supply);
661	if (input_uV <= 0)
662		input_uV = rdev->constraints->input_uV;
663	if (input_uV <= 0)
664		return;
665
666	/* calc total requested load */
667	list_for_each_entry(sibling, &rdev->consumer_list, list)
668		current_uA += sibling->uA_load;
669
670	/* now get the optimum mode for our new total regulator load */
671	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672						  output_uV, current_uA);
673
674	/* check the new mode is allowed */
675	err = regulator_mode_constrain(rdev, &mode);
676	if (err == 0)
677		rdev->desc->ops->set_mode(rdev, mode);
678}
679
680static int suspend_set_state(struct regulator_dev *rdev,
681	struct regulator_state *rstate)
682{
683	int ret = 0;
684
685	/* If we have no suspend mode configration don't set anything;
686	 * only warn if the driver implements set_suspend_voltage or
687	 * set_suspend_mode callback.
688	 */
689	if (!rstate->enabled && !rstate->disabled) {
690		if (rdev->desc->ops->set_suspend_voltage ||
691		    rdev->desc->ops->set_suspend_mode)
692			rdev_warn(rdev, "No configuration\n");
693		return 0;
694	}
695
696	if (rstate->enabled && rstate->disabled) {
697		rdev_err(rdev, "invalid configuration\n");
698		return -EINVAL;
699	}
700
701	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702		ret = rdev->desc->ops->set_suspend_enable(rdev);
703	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704		ret = rdev->desc->ops->set_suspend_disable(rdev);
705	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706		ret = 0;
707
708	if (ret < 0) {
709		rdev_err(rdev, "failed to enabled/disable\n");
710		return ret;
711	}
712
713	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715		if (ret < 0) {
716			rdev_err(rdev, "failed to set voltage\n");
717			return ret;
718		}
719	}
720
721	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723		if (ret < 0) {
724			rdev_err(rdev, "failed to set mode\n");
725			return ret;
726		}
727	}
728	return ret;
729}
730
731/* locks held by caller */
732static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733{
734	if (!rdev->constraints)
735		return -EINVAL;
736
737	switch (state) {
738	case PM_SUSPEND_STANDBY:
739		return suspend_set_state(rdev,
740			&rdev->constraints->state_standby);
741	case PM_SUSPEND_MEM:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_mem);
744	case PM_SUSPEND_MAX:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_disk);
747	default:
748		return -EINVAL;
749	}
750}
751
752static void print_constraints(struct regulator_dev *rdev)
753{
754	struct regulation_constraints *constraints = rdev->constraints;
755	char buf[80] = "";
756	int count = 0;
757	int ret;
758
759	if (constraints->min_uV && constraints->max_uV) {
760		if (constraints->min_uV == constraints->max_uV)
761			count += sprintf(buf + count, "%d mV ",
762					 constraints->min_uV / 1000);
763		else
764			count += sprintf(buf + count, "%d <--> %d mV ",
765					 constraints->min_uV / 1000,
766					 constraints->max_uV / 1000);
767	}
768
769	if (!constraints->min_uV ||
770	    constraints->min_uV != constraints->max_uV) {
771		ret = _regulator_get_voltage(rdev);
772		if (ret > 0)
773			count += sprintf(buf + count, "at %d mV ", ret / 1000);
774	}
775
776	if (constraints->uV_offset)
777		count += sprintf(buf, "%dmV offset ",
778				 constraints->uV_offset / 1000);
779
780	if (constraints->min_uA && constraints->max_uA) {
781		if (constraints->min_uA == constraints->max_uA)
782			count += sprintf(buf + count, "%d mA ",
783					 constraints->min_uA / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mA ",
786					 constraints->min_uA / 1000,
787					 constraints->max_uA / 1000);
788	}
789
790	if (!constraints->min_uA ||
791	    constraints->min_uA != constraints->max_uA) {
792		ret = _regulator_get_current_limit(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mA ", ret / 1000);
795	}
796
797	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798		count += sprintf(buf + count, "fast ");
799	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800		count += sprintf(buf + count, "normal ");
801	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802		count += sprintf(buf + count, "idle ");
803	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804		count += sprintf(buf + count, "standby");
805
806	if (!count)
807		sprintf(buf, "no parameters");
808
809	rdev_info(rdev, "%s\n", buf);
810
811	if ((constraints->min_uV != constraints->max_uV) &&
812	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813		rdev_warn(rdev,
814			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815}
816
817static int machine_constraints_voltage(struct regulator_dev *rdev,
818	struct regulation_constraints *constraints)
819{
820	struct regulator_ops *ops = rdev->desc->ops;
821	int ret;
822
823	/* do we need to apply the constraint voltage */
824	if (rdev->constraints->apply_uV &&
825	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
826		ret = _regulator_do_set_voltage(rdev,
827						rdev->constraints->min_uV,
828						rdev->constraints->max_uV);
829		if (ret < 0) {
830			rdev_err(rdev, "failed to apply %duV constraint\n",
831				 rdev->constraints->min_uV);
832			return ret;
833		}
834	}
835
836	/* constrain machine-level voltage specs to fit
837	 * the actual range supported by this regulator.
838	 */
839	if (ops->list_voltage && rdev->desc->n_voltages) {
840		int	count = rdev->desc->n_voltages;
841		int	i;
842		int	min_uV = INT_MAX;
843		int	max_uV = INT_MIN;
844		int	cmin = constraints->min_uV;
845		int	cmax = constraints->max_uV;
846
847		/* it's safe to autoconfigure fixed-voltage supplies
848		   and the constraints are used by list_voltage. */
849		if (count == 1 && !cmin) {
850			cmin = 1;
851			cmax = INT_MAX;
852			constraints->min_uV = cmin;
853			constraints->max_uV = cmax;
854		}
855
856		/* voltage constraints are optional */
857		if ((cmin == 0) && (cmax == 0))
858			return 0;
859
860		/* else require explicit machine-level constraints */
861		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862			rdev_err(rdev, "invalid voltage constraints\n");
863			return -EINVAL;
864		}
865
866		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867		for (i = 0; i < count; i++) {
868			int	value;
869
870			value = ops->list_voltage(rdev, i);
871			if (value <= 0)
872				continue;
873
874			/* maybe adjust [min_uV..max_uV] */
875			if (value >= cmin && value < min_uV)
876				min_uV = value;
877			if (value <= cmax && value > max_uV)
878				max_uV = value;
879		}
880
881		/* final: [min_uV..max_uV] valid iff constraints valid */
882		if (max_uV < min_uV) {
883			rdev_err(rdev, "unsupportable voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* use regulator's subset of machine constraints */
888		if (constraints->min_uV < min_uV) {
889			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890				 constraints->min_uV, min_uV);
891			constraints->min_uV = min_uV;
892		}
893		if (constraints->max_uV > max_uV) {
894			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895				 constraints->max_uV, max_uV);
896			constraints->max_uV = max_uV;
897		}
898	}
899
900	return 0;
901}
902
903/**
904 * set_machine_constraints - sets regulator constraints
905 * @rdev: regulator source
906 * @constraints: constraints to apply
907 *
908 * Allows platform initialisation code to define and constrain
909 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
910 * Constraints *must* be set by platform code in order for some
911 * regulator operations to proceed i.e. set_voltage, set_current_limit,
912 * set_mode.
913 */
914static int set_machine_constraints(struct regulator_dev *rdev,
915	const struct regulation_constraints *constraints)
916{
917	int ret = 0;
918	struct regulator_ops *ops = rdev->desc->ops;
919
920	if (constraints)
921		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922					    GFP_KERNEL);
923	else
924		rdev->constraints = kzalloc(sizeof(*constraints),
925					    GFP_KERNEL);
926	if (!rdev->constraints)
927		return -ENOMEM;
928
929	ret = machine_constraints_voltage(rdev, rdev->constraints);
930	if (ret != 0)
931		goto out;
932
933	/* do we need to setup our suspend state */
934	if (rdev->constraints->initial_state) {
935		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936		if (ret < 0) {
937			rdev_err(rdev, "failed to set suspend state\n");
938			goto out;
939		}
940	}
941
942	if (rdev->constraints->initial_mode) {
943		if (!ops->set_mode) {
944			rdev_err(rdev, "no set_mode operation\n");
945			ret = -EINVAL;
946			goto out;
947		}
948
949		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950		if (ret < 0) {
951			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952			goto out;
953		}
954	}
955
956	/* If the constraints say the regulator should be on at this point
957	 * and we have control then make sure it is enabled.
958	 */
959	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960	    ops->enable) {
961		ret = ops->enable(rdev);
962		if (ret < 0) {
963			rdev_err(rdev, "failed to enable\n");
964			goto out;
965		}
966	}
967
968	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970		if (ret < 0) {
971			rdev_err(rdev, "failed to set ramp_delay\n");
972			goto out;
973		}
974	}
975
976	print_constraints(rdev);
977	return 0;
978out:
979	kfree(rdev->constraints);
980	rdev->constraints = NULL;
981	return ret;
982}
983
984/**
985 * set_supply - set regulator supply regulator
986 * @rdev: regulator name
987 * @supply_rdev: supply regulator name
988 *
989 * Called by platform initialisation code to set the supply regulator for this
990 * regulator. This ensures that a regulators supply will also be enabled by the
991 * core if it's child is enabled.
992 */
993static int set_supply(struct regulator_dev *rdev,
994		      struct regulator_dev *supply_rdev)
995{
996	int err;
997
998	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999
1000	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001	if (rdev->supply == NULL) {
1002		err = -ENOMEM;
1003		return err;
1004	}
1005	supply_rdev->open_count++;
1006
1007	return 0;
1008}
1009
1010/**
1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012 * @rdev:         regulator source
1013 * @consumer_dev_name: dev_name() string for device supply applies to
1014 * @supply:       symbolic name for supply
1015 *
1016 * Allows platform initialisation code to map physical regulator
1017 * sources to symbolic names for supplies for use by devices.  Devices
1018 * should use these symbolic names to request regulators, avoiding the
1019 * need to provide board-specific regulator names as platform data.
1020 */
1021static int set_consumer_device_supply(struct regulator_dev *rdev,
1022				      const char *consumer_dev_name,
1023				      const char *supply)
1024{
1025	struct regulator_map *node;
1026	int has_dev;
1027
1028	if (supply == NULL)
1029		return -EINVAL;
1030
1031	if (consumer_dev_name != NULL)
1032		has_dev = 1;
1033	else
1034		has_dev = 0;
1035
1036	list_for_each_entry(node, &regulator_map_list, list) {
1037		if (node->dev_name && consumer_dev_name) {
1038			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039				continue;
1040		} else if (node->dev_name || consumer_dev_name) {
1041			continue;
1042		}
1043
1044		if (strcmp(node->supply, supply) != 0)
1045			continue;
1046
1047		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048			 consumer_dev_name,
1049			 dev_name(&node->regulator->dev),
1050			 node->regulator->desc->name,
1051			 supply,
1052			 dev_name(&rdev->dev), rdev_get_name(rdev));
1053		return -EBUSY;
1054	}
1055
1056	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057	if (node == NULL)
1058		return -ENOMEM;
1059
1060	node->regulator = rdev;
1061	node->supply = supply;
1062
1063	if (has_dev) {
1064		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065		if (node->dev_name == NULL) {
1066			kfree(node);
1067			return -ENOMEM;
1068		}
1069	}
1070
1071	list_add(&node->list, &regulator_map_list);
1072	return 0;
1073}
1074
1075static void unset_regulator_supplies(struct regulator_dev *rdev)
1076{
1077	struct regulator_map *node, *n;
1078
1079	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080		if (rdev == node->regulator) {
1081			list_del(&node->list);
1082			kfree(node->dev_name);
1083			kfree(node);
1084		}
1085	}
1086}
1087
1088#define REG_STR_SIZE	64
1089
1090static struct regulator *create_regulator(struct regulator_dev *rdev,
1091					  struct device *dev,
1092					  const char *supply_name)
1093{
1094	struct regulator *regulator;
1095	char buf[REG_STR_SIZE];
1096	int err, size;
1097
1098	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099	if (regulator == NULL)
1100		return NULL;
1101
1102	mutex_lock(&rdev->mutex);
1103	regulator->rdev = rdev;
1104	list_add(&regulator->list, &rdev->consumer_list);
1105
1106	if (dev) {
1107		regulator->dev = dev;
1108
1109		/* Add a link to the device sysfs entry */
1110		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111				 dev->kobj.name, supply_name);
1112		if (size >= REG_STR_SIZE)
1113			goto overflow_err;
1114
1115		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116		if (regulator->supply_name == NULL)
1117			goto overflow_err;
1118
1119		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120					buf);
1121		if (err) {
1122			rdev_warn(rdev, "could not add device link %s err %d\n",
1123				  dev->kobj.name, err);
1124			/* non-fatal */
1125		}
1126	} else {
1127		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto overflow_err;
1130	}
1131
1132	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133						rdev->debugfs);
1134	if (!regulator->debugfs) {
1135		rdev_warn(rdev, "Failed to create debugfs directory\n");
1136	} else {
1137		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138				   &regulator->uA_load);
1139		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140				   &regulator->min_uV);
1141		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142				   &regulator->max_uV);
1143	}
1144
1145	/*
1146	 * Check now if the regulator is an always on regulator - if
1147	 * it is then we don't need to do nearly so much work for
1148	 * enable/disable calls.
1149	 */
1150	if (!_regulator_can_change_status(rdev) &&
1151	    _regulator_is_enabled(rdev))
1152		regulator->always_on = true;
1153
1154	mutex_unlock(&rdev->mutex);
1155	return regulator;
1156overflow_err:
1157	list_del(&regulator->list);
1158	kfree(regulator);
1159	mutex_unlock(&rdev->mutex);
1160	return NULL;
1161}
1162
1163static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164{
1165	if (!rdev->desc->ops->enable_time)
1166		return rdev->desc->enable_time;
1167	return rdev->desc->ops->enable_time(rdev);
1168}
1169
1170static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171						  const char *supply,
1172						  int *ret)
1173{
1174	struct regulator_dev *r;
1175	struct device_node *node;
1176	struct regulator_map *map;
1177	const char *devname = NULL;
1178
1179	/* first do a dt based lookup */
1180	if (dev && dev->of_node) {
1181		node = of_get_regulator(dev, supply);
1182		if (node) {
1183			list_for_each_entry(r, &regulator_list, list)
1184				if (r->dev.parent &&
1185					node == r->dev.of_node)
1186					return r;
1187		} else {
1188			/*
1189			 * If we couldn't even get the node then it's
1190			 * not just that the device didn't register
1191			 * yet, there's no node and we'll never
1192			 * succeed.
1193			 */
1194			*ret = -ENODEV;
1195		}
1196	}
1197
1198	/* if not found, try doing it non-dt way */
1199	if (dev)
1200		devname = dev_name(dev);
1201
1202	list_for_each_entry(r, &regulator_list, list)
1203		if (strcmp(rdev_get_name(r), supply) == 0)
1204			return r;
1205
1206	list_for_each_entry(map, &regulator_map_list, list) {
1207		/* If the mapping has a device set up it must match */
1208		if (map->dev_name &&
1209		    (!devname || strcmp(map->dev_name, devname)))
1210			continue;
1211
1212		if (strcmp(map->supply, supply) == 0)
1213			return map->regulator;
1214	}
1215
1216
1217	return NULL;
1218}
1219
1220/* Internal regulator request function */
1221static struct regulator *_regulator_get(struct device *dev, const char *id,
1222					int exclusive)
1223{
1224	struct regulator_dev *rdev;
1225	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226	const char *devname = NULL;
1227	int ret;
1228
1229	if (id == NULL) {
1230		pr_err("get() with no identifier\n");
1231		return regulator;
1232	}
1233
1234	if (dev)
1235		devname = dev_name(dev);
1236
1237	mutex_lock(&regulator_list_mutex);
1238
1239	rdev = regulator_dev_lookup(dev, id, &ret);
1240	if (rdev)
1241		goto found;
1242
1243	if (board_wants_dummy_regulator) {
1244		rdev = dummy_regulator_rdev;
1245		goto found;
1246	}
1247
1248#ifdef CONFIG_REGULATOR_DUMMY
1249	if (!devname)
1250		devname = "deviceless";
1251
1252	/* If the board didn't flag that it was fully constrained then
1253	 * substitute in a dummy regulator so consumers can continue.
1254	 */
1255	if (!has_full_constraints) {
1256		pr_warn("%s supply %s not found, using dummy regulator\n",
1257			devname, id);
1258		rdev = dummy_regulator_rdev;
1259		goto found;
1260	}
1261#endif
1262
1263	mutex_unlock(&regulator_list_mutex);
1264	return regulator;
1265
1266found:
1267	if (rdev->exclusive) {
1268		regulator = ERR_PTR(-EPERM);
1269		goto out;
1270	}
1271
1272	if (exclusive && rdev->open_count) {
1273		regulator = ERR_PTR(-EBUSY);
1274		goto out;
1275	}
1276
1277	if (!try_module_get(rdev->owner))
1278		goto out;
1279
1280	regulator = create_regulator(rdev, dev, id);
1281	if (regulator == NULL) {
1282		regulator = ERR_PTR(-ENOMEM);
1283		module_put(rdev->owner);
1284		goto out;
1285	}
1286
1287	rdev->open_count++;
1288	if (exclusive) {
1289		rdev->exclusive = 1;
1290
1291		ret = _regulator_is_enabled(rdev);
1292		if (ret > 0)
1293			rdev->use_count = 1;
1294		else
1295			rdev->use_count = 0;
1296	}
1297
1298out:
1299	mutex_unlock(&regulator_list_mutex);
1300
1301	return regulator;
1302}
1303
1304/**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged.  It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317struct regulator *regulator_get(struct device *dev, const char *id)
1318{
1319	return _regulator_get(dev, id, 0);
1320}
1321EXPORT_SYMBOL_GPL(regulator_get);
1322
1323static void devm_regulator_release(struct device *dev, void *res)
1324{
1325	regulator_put(*(struct regulator **)res);
1326}
1327
1328/**
1329 * devm_regulator_get - Resource managed regulator_get()
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Managed regulator_get(). Regulators returned from this function are
1334 * automatically regulator_put() on driver detach. See regulator_get() for more
1335 * information.
1336 */
1337struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338{
1339	struct regulator **ptr, *regulator;
1340
1341	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342	if (!ptr)
1343		return ERR_PTR(-ENOMEM);
1344
1345	regulator = regulator_get(dev, id);
1346	if (!IS_ERR(regulator)) {
1347		*ptr = regulator;
1348		devres_add(dev, ptr);
1349	} else {
1350		devres_free(ptr);
1351	}
1352
1353	return regulator;
1354}
1355EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357/**
1358 * regulator_get_exclusive - obtain exclusive access to a regulator.
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Returns a struct regulator corresponding to the regulator producer,
1363 * or IS_ERR() condition containing errno.  Other consumers will be
1364 * unable to obtain this reference is held and the use count for the
1365 * regulator will be initialised to reflect the current state of the
1366 * regulator.
1367 *
1368 * This is intended for use by consumers which cannot tolerate shared
1369 * use of the regulator such as those which need to force the
1370 * regulator off for correct operation of the hardware they are
1371 * controlling.
1372 *
1373 * Use of supply names configured via regulator_set_device_supply() is
1374 * strongly encouraged.  It is recommended that the supply name used
1375 * should match the name used for the supply and/or the relevant
1376 * device pins in the datasheet.
1377 */
1378struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379{
1380	return _regulator_get(dev, id, 1);
1381}
1382EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384/* Locks held by regulator_put() */
1385static void _regulator_put(struct regulator *regulator)
1386{
1387	struct regulator_dev *rdev;
1388
1389	if (regulator == NULL || IS_ERR(regulator))
1390		return;
1391
1392	rdev = regulator->rdev;
1393
1394	debugfs_remove_recursive(regulator->debugfs);
1395
1396	/* remove any sysfs entries */
1397	if (regulator->dev)
1398		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1399	kfree(regulator->supply_name);
1400	list_del(&regulator->list);
1401	kfree(regulator);
1402
1403	rdev->open_count--;
1404	rdev->exclusive = 0;
1405
1406	module_put(rdev->owner);
1407}
1408
1409/**
1410 * regulator_put - "free" the regulator source
1411 * @regulator: regulator source
1412 *
1413 * Note: drivers must ensure that all regulator_enable calls made on this
1414 * regulator source are balanced by regulator_disable calls prior to calling
1415 * this function.
1416 */
1417void regulator_put(struct regulator *regulator)
1418{
1419	mutex_lock(&regulator_list_mutex);
1420	_regulator_put(regulator);
1421	mutex_unlock(&regulator_list_mutex);
1422}
1423EXPORT_SYMBOL_GPL(regulator_put);
1424
1425static int devm_regulator_match(struct device *dev, void *res, void *data)
1426{
1427	struct regulator **r = res;
1428	if (!r || !*r) {
1429		WARN_ON(!r || !*r);
1430		return 0;
1431	}
1432	return *r == data;
1433}
1434
1435/**
1436 * devm_regulator_put - Resource managed regulator_put()
1437 * @regulator: regulator to free
1438 *
1439 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1440 * this function will not need to be called and the resource management
1441 * code will ensure that the resource is freed.
1442 */
1443void devm_regulator_put(struct regulator *regulator)
1444{
1445	int rc;
1446
1447	rc = devres_release(regulator->dev, devm_regulator_release,
1448			    devm_regulator_match, regulator);
1449	if (rc != 0)
1450		WARN_ON(rc);
1451}
1452EXPORT_SYMBOL_GPL(devm_regulator_put);
1453
1454static int _regulator_do_enable(struct regulator_dev *rdev)
1455{
1456	int ret, delay;
1457
1458	/* Query before enabling in case configuration dependent.  */
1459	ret = _regulator_get_enable_time(rdev);
1460	if (ret >= 0) {
1461		delay = ret;
1462	} else {
1463		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1464		delay = 0;
1465	}
1466
1467	trace_regulator_enable(rdev_get_name(rdev));
1468
1469	if (rdev->ena_gpio) {
1470		gpio_set_value_cansleep(rdev->ena_gpio,
1471					!rdev->ena_gpio_invert);
1472		rdev->ena_gpio_state = 1;
1473	} else if (rdev->desc->ops->enable) {
1474		ret = rdev->desc->ops->enable(rdev);
1475		if (ret < 0)
1476			return ret;
1477	} else {
1478		return -EINVAL;
1479	}
1480
1481	/* Allow the regulator to ramp; it would be useful to extend
1482	 * this for bulk operations so that the regulators can ramp
1483	 * together.  */
1484	trace_regulator_enable_delay(rdev_get_name(rdev));
1485
1486	if (delay >= 1000) {
1487		mdelay(delay / 1000);
1488		udelay(delay % 1000);
1489	} else if (delay) {
1490		udelay(delay);
1491	}
1492
1493	trace_regulator_enable_complete(rdev_get_name(rdev));
1494
1495	return 0;
1496}
1497
1498/* locks held by regulator_enable() */
1499static int _regulator_enable(struct regulator_dev *rdev)
1500{
1501	int ret;
1502
1503	/* check voltage and requested load before enabling */
1504	if (rdev->constraints &&
1505	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1506		drms_uA_update(rdev);
1507
1508	if (rdev->use_count == 0) {
1509		/* The regulator may on if it's not switchable or left on */
1510		ret = _regulator_is_enabled(rdev);
1511		if (ret == -EINVAL || ret == 0) {
1512			if (!_regulator_can_change_status(rdev))
1513				return -EPERM;
1514
1515			ret = _regulator_do_enable(rdev);
1516			if (ret < 0)
1517				return ret;
1518
1519		} else if (ret < 0) {
1520			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521			return ret;
1522		}
1523		/* Fallthrough on positive return values - already enabled */
1524	}
1525
1526	rdev->use_count++;
1527
1528	return 0;
1529}
1530
1531/**
1532 * regulator_enable - enable regulator output
1533 * @regulator: regulator source
1534 *
1535 * Request that the regulator be enabled with the regulator output at
1536 * the predefined voltage or current value.  Calls to regulator_enable()
1537 * must be balanced with calls to regulator_disable().
1538 *
1539 * NOTE: the output value can be set by other drivers, boot loader or may be
1540 * hardwired in the regulator.
1541 */
1542int regulator_enable(struct regulator *regulator)
1543{
1544	struct regulator_dev *rdev = regulator->rdev;
1545	int ret = 0;
1546
1547	if (regulator->always_on)
1548		return 0;
1549
1550	if (rdev->supply) {
1551		ret = regulator_enable(rdev->supply);
1552		if (ret != 0)
1553			return ret;
1554	}
1555
1556	mutex_lock(&rdev->mutex);
1557	ret = _regulator_enable(rdev);
1558	mutex_unlock(&rdev->mutex);
1559
1560	if (ret != 0 && rdev->supply)
1561		regulator_disable(rdev->supply);
1562
1563	return ret;
1564}
1565EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567static int _regulator_do_disable(struct regulator_dev *rdev)
1568{
1569	int ret;
1570
1571	trace_regulator_disable(rdev_get_name(rdev));
1572
1573	if (rdev->ena_gpio) {
1574		gpio_set_value_cansleep(rdev->ena_gpio,
1575					rdev->ena_gpio_invert);
1576		rdev->ena_gpio_state = 0;
1577
1578	} else if (rdev->desc->ops->disable) {
1579		ret = rdev->desc->ops->disable(rdev);
1580		if (ret != 0)
1581			return ret;
1582	}
1583
1584	trace_regulator_disable_complete(rdev_get_name(rdev));
1585
1586	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1587			     NULL);
1588	return 0;
1589}
1590
1591/* locks held by regulator_disable() */
1592static int _regulator_disable(struct regulator_dev *rdev)
1593{
1594	int ret = 0;
1595
1596	if (WARN(rdev->use_count <= 0,
1597		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1598		return -EIO;
1599
1600	/* are we the last user and permitted to disable ? */
1601	if (rdev->use_count == 1 &&
1602	    (rdev->constraints && !rdev->constraints->always_on)) {
1603
1604		/* we are last user */
1605		if (_regulator_can_change_status(rdev)) {
1606			ret = _regulator_do_disable(rdev);
1607			if (ret < 0) {
1608				rdev_err(rdev, "failed to disable\n");
1609				return ret;
1610			}
1611		}
1612
1613		rdev->use_count = 0;
1614	} else if (rdev->use_count > 1) {
1615
1616		if (rdev->constraints &&
1617			(rdev->constraints->valid_ops_mask &
1618			REGULATOR_CHANGE_DRMS))
1619			drms_uA_update(rdev);
1620
1621		rdev->use_count--;
1622	}
1623
1624	return ret;
1625}
1626
1627/**
1628 * regulator_disable - disable regulator output
1629 * @regulator: regulator source
1630 *
1631 * Disable the regulator output voltage or current.  Calls to
1632 * regulator_enable() must be balanced with calls to
1633 * regulator_disable().
1634 *
1635 * NOTE: this will only disable the regulator output if no other consumer
1636 * devices have it enabled, the regulator device supports disabling and
1637 * machine constraints permit this operation.
1638 */
1639int regulator_disable(struct regulator *regulator)
1640{
1641	struct regulator_dev *rdev = regulator->rdev;
1642	int ret = 0;
1643
1644	if (regulator->always_on)
1645		return 0;
1646
1647	mutex_lock(&rdev->mutex);
1648	ret = _regulator_disable(rdev);
1649	mutex_unlock(&rdev->mutex);
1650
1651	if (ret == 0 && rdev->supply)
1652		regulator_disable(rdev->supply);
1653
1654	return ret;
1655}
1656EXPORT_SYMBOL_GPL(regulator_disable);
1657
1658/* locks held by regulator_force_disable() */
1659static int _regulator_force_disable(struct regulator_dev *rdev)
1660{
1661	int ret = 0;
1662
1663	/* force disable */
1664	if (rdev->desc->ops->disable) {
1665		/* ah well, who wants to live forever... */
1666		ret = rdev->desc->ops->disable(rdev);
1667		if (ret < 0) {
1668			rdev_err(rdev, "failed to force disable\n");
1669			return ret;
1670		}
1671		/* notify other consumers that power has been forced off */
1672		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1673			REGULATOR_EVENT_DISABLE, NULL);
1674	}
1675
1676	return ret;
1677}
1678
1679/**
1680 * regulator_force_disable - force disable regulator output
1681 * @regulator: regulator source
1682 *
1683 * Forcibly disable the regulator output voltage or current.
1684 * NOTE: this *will* disable the regulator output even if other consumer
1685 * devices have it enabled. This should be used for situations when device
1686 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1687 */
1688int regulator_force_disable(struct regulator *regulator)
1689{
1690	struct regulator_dev *rdev = regulator->rdev;
1691	int ret;
1692
1693	mutex_lock(&rdev->mutex);
1694	regulator->uA_load = 0;
1695	ret = _regulator_force_disable(regulator->rdev);
1696	mutex_unlock(&rdev->mutex);
1697
1698	if (rdev->supply)
1699		while (rdev->open_count--)
1700			regulator_disable(rdev->supply);
1701
1702	return ret;
1703}
1704EXPORT_SYMBOL_GPL(regulator_force_disable);
1705
1706static void regulator_disable_work(struct work_struct *work)
1707{
1708	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1709						  disable_work.work);
1710	int count, i, ret;
1711
1712	mutex_lock(&rdev->mutex);
1713
1714	BUG_ON(!rdev->deferred_disables);
1715
1716	count = rdev->deferred_disables;
1717	rdev->deferred_disables = 0;
1718
1719	for (i = 0; i < count; i++) {
1720		ret = _regulator_disable(rdev);
1721		if (ret != 0)
1722			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1723	}
1724
1725	mutex_unlock(&rdev->mutex);
1726
1727	if (rdev->supply) {
1728		for (i = 0; i < count; i++) {
1729			ret = regulator_disable(rdev->supply);
1730			if (ret != 0) {
1731				rdev_err(rdev,
1732					 "Supply disable failed: %d\n", ret);
1733			}
1734		}
1735	}
1736}
1737
1738/**
1739 * regulator_disable_deferred - disable regulator output with delay
1740 * @regulator: regulator source
1741 * @ms: miliseconds until the regulator is disabled
1742 *
1743 * Execute regulator_disable() on the regulator after a delay.  This
1744 * is intended for use with devices that require some time to quiesce.
1745 *
1746 * NOTE: this will only disable the regulator output if no other consumer
1747 * devices have it enabled, the regulator device supports disabling and
1748 * machine constraints permit this operation.
1749 */
1750int regulator_disable_deferred(struct regulator *regulator, int ms)
1751{
1752	struct regulator_dev *rdev = regulator->rdev;
1753	int ret;
1754
1755	if (regulator->always_on)
1756		return 0;
1757
1758	if (!ms)
1759		return regulator_disable(regulator);
1760
1761	mutex_lock(&rdev->mutex);
1762	rdev->deferred_disables++;
1763	mutex_unlock(&rdev->mutex);
1764
1765	ret = schedule_delayed_work(&rdev->disable_work,
1766				    msecs_to_jiffies(ms));
1767	if (ret < 0)
1768		return ret;
1769	else
1770		return 0;
1771}
1772EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1773
1774/**
1775 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1776 *
1777 * @rdev: regulator to operate on
1778 *
1779 * Regulators that use regmap for their register I/O can set the
1780 * enable_reg and enable_mask fields in their descriptor and then use
1781 * this as their is_enabled operation, saving some code.
1782 */
1783int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1784{
1785	unsigned int val;
1786	int ret;
1787
1788	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1789	if (ret != 0)
1790		return ret;
1791
1792	return (val & rdev->desc->enable_mask) != 0;
1793}
1794EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1795
1796/**
1797 * regulator_enable_regmap - standard enable() for regmap users
1798 *
1799 * @rdev: regulator to operate on
1800 *
1801 * Regulators that use regmap for their register I/O can set the
1802 * enable_reg and enable_mask fields in their descriptor and then use
1803 * this as their enable() operation, saving some code.
1804 */
1805int regulator_enable_regmap(struct regulator_dev *rdev)
1806{
1807	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1808				  rdev->desc->enable_mask,
1809				  rdev->desc->enable_mask);
1810}
1811EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1812
1813/**
1814 * regulator_disable_regmap - standard disable() for regmap users
1815 *
1816 * @rdev: regulator to operate on
1817 *
1818 * Regulators that use regmap for their register I/O can set the
1819 * enable_reg and enable_mask fields in their descriptor and then use
1820 * this as their disable() operation, saving some code.
1821 */
1822int regulator_disable_regmap(struct regulator_dev *rdev)
1823{
1824	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1825				  rdev->desc->enable_mask, 0);
1826}
1827EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1828
1829static int _regulator_is_enabled(struct regulator_dev *rdev)
1830{
1831	/* A GPIO control always takes precedence */
1832	if (rdev->ena_gpio)
1833		return rdev->ena_gpio_state;
1834
1835	/* If we don't know then assume that the regulator is always on */
1836	if (!rdev->desc->ops->is_enabled)
1837		return 1;
1838
1839	return rdev->desc->ops->is_enabled(rdev);
1840}
1841
1842/**
1843 * regulator_is_enabled - is the regulator output enabled
1844 * @regulator: regulator source
1845 *
1846 * Returns positive if the regulator driver backing the source/client
1847 * has requested that the device be enabled, zero if it hasn't, else a
1848 * negative errno code.
1849 *
1850 * Note that the device backing this regulator handle can have multiple
1851 * users, so it might be enabled even if regulator_enable() was never
1852 * called for this particular source.
1853 */
1854int regulator_is_enabled(struct regulator *regulator)
1855{
1856	int ret;
1857
1858	if (regulator->always_on)
1859		return 1;
1860
1861	mutex_lock(&regulator->rdev->mutex);
1862	ret = _regulator_is_enabled(regulator->rdev);
1863	mutex_unlock(&regulator->rdev->mutex);
1864
1865	return ret;
1866}
1867EXPORT_SYMBOL_GPL(regulator_is_enabled);
1868
1869/**
1870 * regulator_count_voltages - count regulator_list_voltage() selectors
1871 * @regulator: regulator source
1872 *
1873 * Returns number of selectors, or negative errno.  Selectors are
1874 * numbered starting at zero, and typically correspond to bitfields
1875 * in hardware registers.
1876 */
1877int regulator_count_voltages(struct regulator *regulator)
1878{
1879	struct regulator_dev	*rdev = regulator->rdev;
1880
1881	return rdev->desc->n_voltages ? : -EINVAL;
1882}
1883EXPORT_SYMBOL_GPL(regulator_count_voltages);
1884
1885/**
1886 * regulator_list_voltage_linear - List voltages with simple calculation
1887 *
1888 * @rdev: Regulator device
1889 * @selector: Selector to convert into a voltage
1890 *
1891 * Regulators with a simple linear mapping between voltages and
1892 * selectors can set min_uV and uV_step in the regulator descriptor
1893 * and then use this function as their list_voltage() operation,
1894 */
1895int regulator_list_voltage_linear(struct regulator_dev *rdev,
1896				  unsigned int selector)
1897{
1898	if (selector >= rdev->desc->n_voltages)
1899		return -EINVAL;
1900
1901	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1902}
1903EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1904
1905/**
1906 * regulator_list_voltage_table - List voltages with table based mapping
1907 *
1908 * @rdev: Regulator device
1909 * @selector: Selector to convert into a voltage
1910 *
1911 * Regulators with table based mapping between voltages and
1912 * selectors can set volt_table in the regulator descriptor
1913 * and then use this function as their list_voltage() operation.
1914 */
1915int regulator_list_voltage_table(struct regulator_dev *rdev,
1916				 unsigned int selector)
1917{
1918	if (!rdev->desc->volt_table) {
1919		BUG_ON(!rdev->desc->volt_table);
1920		return -EINVAL;
1921	}
1922
1923	if (selector >= rdev->desc->n_voltages)
1924		return -EINVAL;
1925
1926	return rdev->desc->volt_table[selector];
1927}
1928EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1929
1930/**
1931 * regulator_list_voltage - enumerate supported voltages
1932 * @regulator: regulator source
1933 * @selector: identify voltage to list
1934 * Context: can sleep
1935 *
1936 * Returns a voltage that can be passed to @regulator_set_voltage(),
1937 * zero if this selector code can't be used on this system, or a
1938 * negative errno.
1939 */
1940int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1941{
1942	struct regulator_dev	*rdev = regulator->rdev;
1943	struct regulator_ops	*ops = rdev->desc->ops;
1944	int			ret;
1945
1946	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1947		return -EINVAL;
1948
1949	mutex_lock(&rdev->mutex);
1950	ret = ops->list_voltage(rdev, selector);
1951	mutex_unlock(&rdev->mutex);
1952
1953	if (ret > 0) {
1954		if (ret < rdev->constraints->min_uV)
1955			ret = 0;
1956		else if (ret > rdev->constraints->max_uV)
1957			ret = 0;
1958	}
1959
1960	return ret;
1961}
1962EXPORT_SYMBOL_GPL(regulator_list_voltage);
1963
1964/**
1965 * regulator_is_supported_voltage - check if a voltage range can be supported
1966 *
1967 * @regulator: Regulator to check.
1968 * @min_uV: Minimum required voltage in uV.
1969 * @max_uV: Maximum required voltage in uV.
1970 *
1971 * Returns a boolean or a negative error code.
1972 */
1973int regulator_is_supported_voltage(struct regulator *regulator,
1974				   int min_uV, int max_uV)
1975{
1976	struct regulator_dev *rdev = regulator->rdev;
1977	int i, voltages, ret;
1978
1979	/* If we can't change voltage check the current voltage */
1980	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1981		ret = regulator_get_voltage(regulator);
1982		if (ret >= 0)
1983			return (min_uV <= ret && ret <= max_uV);
1984		else
1985			return ret;
1986	}
1987
1988	ret = regulator_count_voltages(regulator);
1989	if (ret < 0)
1990		return ret;
1991	voltages = ret;
1992
1993	for (i = 0; i < voltages; i++) {
1994		ret = regulator_list_voltage(regulator, i);
1995
1996		if (ret >= min_uV && ret <= max_uV)
1997			return 1;
1998	}
1999
2000	return 0;
2001}
2002EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2003
2004/**
2005 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2006 *
2007 * @rdev: regulator to operate on
2008 *
2009 * Regulators that use regmap for their register I/O can set the
2010 * vsel_reg and vsel_mask fields in their descriptor and then use this
2011 * as their get_voltage_vsel operation, saving some code.
2012 */
2013int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2014{
2015	unsigned int val;
2016	int ret;
2017
2018	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2019	if (ret != 0)
2020		return ret;
2021
2022	val &= rdev->desc->vsel_mask;
2023	val >>= ffs(rdev->desc->vsel_mask) - 1;
2024
2025	return val;
2026}
2027EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2028
2029/**
2030 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2031 *
2032 * @rdev: regulator to operate on
2033 * @sel: Selector to set
2034 *
2035 * Regulators that use regmap for their register I/O can set the
2036 * vsel_reg and vsel_mask fields in their descriptor and then use this
2037 * as their set_voltage_vsel operation, saving some code.
2038 */
2039int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2040{
2041	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2042
2043	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2044				  rdev->desc->vsel_mask, sel);
2045}
2046EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2047
2048/**
2049 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2050 *
2051 * @rdev: Regulator to operate on
2052 * @min_uV: Lower bound for voltage
2053 * @max_uV: Upper bound for voltage
2054 *
2055 * Drivers implementing set_voltage_sel() and list_voltage() can use
2056 * this as their map_voltage() operation.  It will find a suitable
2057 * voltage by calling list_voltage() until it gets something in bounds
2058 * for the requested voltages.
2059 */
2060int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2061				  int min_uV, int max_uV)
2062{
2063	int best_val = INT_MAX;
2064	int selector = 0;
2065	int i, ret;
2066
2067	/* Find the smallest voltage that falls within the specified
2068	 * range.
2069	 */
2070	for (i = 0; i < rdev->desc->n_voltages; i++) {
2071		ret = rdev->desc->ops->list_voltage(rdev, i);
2072		if (ret < 0)
2073			continue;
2074
2075		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2076			best_val = ret;
2077			selector = i;
2078		}
2079	}
2080
2081	if (best_val != INT_MAX)
2082		return selector;
2083	else
2084		return -EINVAL;
2085}
2086EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2087
2088/**
2089 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2090 *
2091 * @rdev: Regulator to operate on
2092 * @min_uV: Lower bound for voltage
2093 * @max_uV: Upper bound for voltage
2094 *
2095 * Drivers providing min_uV and uV_step in their regulator_desc can
2096 * use this as their map_voltage() operation.
2097 */
2098int regulator_map_voltage_linear(struct regulator_dev *rdev,
2099				 int min_uV, int max_uV)
2100{
2101	int ret, voltage;
2102
2103	/* Allow uV_step to be 0 for fixed voltage */
2104	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2105		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2106			return 0;
2107		else
2108			return -EINVAL;
2109	}
2110
2111	if (!rdev->desc->uV_step) {
2112		BUG_ON(!rdev->desc->uV_step);
2113		return -EINVAL;
2114	}
2115
2116	if (min_uV < rdev->desc->min_uV)
2117		min_uV = rdev->desc->min_uV;
2118
2119	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2120	if (ret < 0)
2121		return ret;
2122
2123	/* Map back into a voltage to verify we're still in bounds */
2124	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2125	if (voltage < min_uV || voltage > max_uV)
2126		return -EINVAL;
2127
2128	return ret;
2129}
2130EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2131
2132static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2133				     int min_uV, int max_uV)
2134{
2135	int ret;
2136	int delay = 0;
2137	int best_val = 0;
2138	unsigned int selector;
2139	int old_selector = -1;
2140
2141	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2142
2143	min_uV += rdev->constraints->uV_offset;
2144	max_uV += rdev->constraints->uV_offset;
2145
2146	/*
2147	 * If we can't obtain the old selector there is not enough
2148	 * info to call set_voltage_time_sel().
2149	 */
2150	if (_regulator_is_enabled(rdev) &&
2151	    rdev->desc->ops->set_voltage_time_sel &&
2152	    rdev->desc->ops->get_voltage_sel) {
2153		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2154		if (old_selector < 0)
2155			return old_selector;
2156	}
2157
2158	if (rdev->desc->ops->set_voltage) {
2159		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2160						   &selector);
2161
2162		if (ret >= 0) {
2163			if (rdev->desc->ops->list_voltage)
2164				best_val = rdev->desc->ops->list_voltage(rdev,
2165									 selector);
2166			else
2167				best_val = _regulator_get_voltage(rdev);
2168		}
2169
2170	} else if (rdev->desc->ops->set_voltage_sel) {
2171		if (rdev->desc->ops->map_voltage) {
2172			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2173							   max_uV);
2174		} else {
2175			if (rdev->desc->ops->list_voltage ==
2176			    regulator_list_voltage_linear)
2177				ret = regulator_map_voltage_linear(rdev,
2178								min_uV, max_uV);
2179			else
2180				ret = regulator_map_voltage_iterate(rdev,
2181								min_uV, max_uV);
2182		}
2183
2184		if (ret >= 0) {
2185			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2186			if (min_uV <= best_val && max_uV >= best_val) {
2187				selector = ret;
2188				ret = rdev->desc->ops->set_voltage_sel(rdev,
2189								       ret);
2190			} else {
2191				ret = -EINVAL;
2192			}
2193		}
2194	} else {
2195		ret = -EINVAL;
2196	}
2197
2198	/* Call set_voltage_time_sel if successfully obtained old_selector */
2199	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2200	    rdev->desc->ops->set_voltage_time_sel) {
2201
2202		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2203						old_selector, selector);
2204		if (delay < 0) {
2205			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2206				  delay);
2207			delay = 0;
2208		}
2209
2210		/* Insert any necessary delays */
2211		if (delay >= 1000) {
2212			mdelay(delay / 1000);
2213			udelay(delay % 1000);
2214		} else if (delay) {
2215			udelay(delay);
2216		}
2217	}
2218
2219	if (ret == 0 && best_val >= 0) {
2220		unsigned long data = best_val;
2221
2222		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2223				     (void *)data);
2224	}
2225
2226	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2227
2228	return ret;
2229}
2230
2231/**
2232 * regulator_set_voltage - set regulator output voltage
2233 * @regulator: regulator source
2234 * @min_uV: Minimum required voltage in uV
2235 * @max_uV: Maximum acceptable voltage in uV
2236 *
2237 * Sets a voltage regulator to the desired output voltage. This can be set
2238 * during any regulator state. IOW, regulator can be disabled or enabled.
2239 *
2240 * If the regulator is enabled then the voltage will change to the new value
2241 * immediately otherwise if the regulator is disabled the regulator will
2242 * output at the new voltage when enabled.
2243 *
2244 * NOTE: If the regulator is shared between several devices then the lowest
2245 * request voltage that meets the system constraints will be used.
2246 * Regulator system constraints must be set for this regulator before
2247 * calling this function otherwise this call will fail.
2248 */
2249int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2250{
2251	struct regulator_dev *rdev = regulator->rdev;
2252	int ret = 0;
2253	int old_min_uV, old_max_uV;
2254
2255	mutex_lock(&rdev->mutex);
2256
2257	/* If we're setting the same range as last time the change
2258	 * should be a noop (some cpufreq implementations use the same
2259	 * voltage for multiple frequencies, for example).
2260	 */
2261	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2262		goto out;
2263
2264	/* sanity check */
2265	if (!rdev->desc->ops->set_voltage &&
2266	    !rdev->desc->ops->set_voltage_sel) {
2267		ret = -EINVAL;
2268		goto out;
2269	}
2270
2271	/* constraints check */
2272	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2273	if (ret < 0)
2274		goto out;
2275
2276	/* restore original values in case of error */
2277	old_min_uV = regulator->min_uV;
2278	old_max_uV = regulator->max_uV;
2279	regulator->min_uV = min_uV;
2280	regulator->max_uV = max_uV;
2281
2282	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2283	if (ret < 0)
2284		goto out2;
2285
2286	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2287	if (ret < 0)
2288		goto out2;
2289
2290out:
2291	mutex_unlock(&rdev->mutex);
2292	return ret;
2293out2:
2294	regulator->min_uV = old_min_uV;
2295	regulator->max_uV = old_max_uV;
2296	mutex_unlock(&rdev->mutex);
2297	return ret;
2298}
2299EXPORT_SYMBOL_GPL(regulator_set_voltage);
2300
2301/**
2302 * regulator_set_voltage_time - get raise/fall time
2303 * @regulator: regulator source
2304 * @old_uV: starting voltage in microvolts
2305 * @new_uV: target voltage in microvolts
2306 *
2307 * Provided with the starting and ending voltage, this function attempts to
2308 * calculate the time in microseconds required to rise or fall to this new
2309 * voltage.
2310 */
2311int regulator_set_voltage_time(struct regulator *regulator,
2312			       int old_uV, int new_uV)
2313{
2314	struct regulator_dev	*rdev = regulator->rdev;
2315	struct regulator_ops	*ops = rdev->desc->ops;
2316	int old_sel = -1;
2317	int new_sel = -1;
2318	int voltage;
2319	int i;
2320
2321	/* Currently requires operations to do this */
2322	if (!ops->list_voltage || !ops->set_voltage_time_sel
2323	    || !rdev->desc->n_voltages)
2324		return -EINVAL;
2325
2326	for (i = 0; i < rdev->desc->n_voltages; i++) {
2327		/* We only look for exact voltage matches here */
2328		voltage = regulator_list_voltage(regulator, i);
2329		if (voltage < 0)
2330			return -EINVAL;
2331		if (voltage == 0)
2332			continue;
2333		if (voltage == old_uV)
2334			old_sel = i;
2335		if (voltage == new_uV)
2336			new_sel = i;
2337	}
2338
2339	if (old_sel < 0 || new_sel < 0)
2340		return -EINVAL;
2341
2342	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2343}
2344EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2345
2346/**
2347 * regulator_set_voltage_time_sel - get raise/fall time
2348 * @rdev: regulator source device
2349 * @old_selector: selector for starting voltage
2350 * @new_selector: selector for target voltage
2351 *
2352 * Provided with the starting and target voltage selectors, this function
2353 * returns time in microseconds required to rise or fall to this new voltage
2354 *
2355 * Drivers providing ramp_delay in regulation_constraints can use this as their
2356 * set_voltage_time_sel() operation.
2357 */
2358int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2359				   unsigned int old_selector,
2360				   unsigned int new_selector)
2361{
2362	unsigned int ramp_delay = 0;
2363	int old_volt, new_volt;
2364
2365	if (rdev->constraints->ramp_delay)
2366		ramp_delay = rdev->constraints->ramp_delay;
2367	else if (rdev->desc->ramp_delay)
2368		ramp_delay = rdev->desc->ramp_delay;
2369
2370	if (ramp_delay == 0) {
2371		rdev_warn(rdev, "ramp_delay not set\n");
2372		return 0;
2373	}
2374
2375	/* sanity check */
2376	if (!rdev->desc->ops->list_voltage)
2377		return -EINVAL;
2378
2379	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2380	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2381
2382	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2383}
2384EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2385
2386/**
2387 * regulator_sync_voltage - re-apply last regulator output voltage
2388 * @regulator: regulator source
2389 *
2390 * Re-apply the last configured voltage.  This is intended to be used
2391 * where some external control source the consumer is cooperating with
2392 * has caused the configured voltage to change.
2393 */
2394int regulator_sync_voltage(struct regulator *regulator)
2395{
2396	struct regulator_dev *rdev = regulator->rdev;
2397	int ret, min_uV, max_uV;
2398
2399	mutex_lock(&rdev->mutex);
2400
2401	if (!rdev->desc->ops->set_voltage &&
2402	    !rdev->desc->ops->set_voltage_sel) {
2403		ret = -EINVAL;
2404		goto out;
2405	}
2406
2407	/* This is only going to work if we've had a voltage configured. */
2408	if (!regulator->min_uV && !regulator->max_uV) {
2409		ret = -EINVAL;
2410		goto out;
2411	}
2412
2413	min_uV = regulator->min_uV;
2414	max_uV = regulator->max_uV;
2415
2416	/* This should be a paranoia check... */
2417	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2418	if (ret < 0)
2419		goto out;
2420
2421	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2422	if (ret < 0)
2423		goto out;
2424
2425	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2426
2427out:
2428	mutex_unlock(&rdev->mutex);
2429	return ret;
2430}
2431EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2432
2433static int _regulator_get_voltage(struct regulator_dev *rdev)
2434{
2435	int sel, ret;
2436
2437	if (rdev->desc->ops->get_voltage_sel) {
2438		sel = rdev->desc->ops->get_voltage_sel(rdev);
2439		if (sel < 0)
2440			return sel;
2441		ret = rdev->desc->ops->list_voltage(rdev, sel);
2442	} else if (rdev->desc->ops->get_voltage) {
2443		ret = rdev->desc->ops->get_voltage(rdev);
2444	} else if (rdev->desc->ops->list_voltage) {
2445		ret = rdev->desc->ops->list_voltage(rdev, 0);
2446	} else {
2447		return -EINVAL;
2448	}
2449
2450	if (ret < 0)
2451		return ret;
2452	return ret - rdev->constraints->uV_offset;
2453}
2454
2455/**
2456 * regulator_get_voltage - get regulator output voltage
2457 * @regulator: regulator source
2458 *
2459 * This returns the current regulator voltage in uV.
2460 *
2461 * NOTE: If the regulator is disabled it will return the voltage value. This
2462 * function should not be used to determine regulator state.
2463 */
2464int regulator_get_voltage(struct regulator *regulator)
2465{
2466	int ret;
2467
2468	mutex_lock(&regulator->rdev->mutex);
2469
2470	ret = _regulator_get_voltage(regulator->rdev);
2471
2472	mutex_unlock(&regulator->rdev->mutex);
2473
2474	return ret;
2475}
2476EXPORT_SYMBOL_GPL(regulator_get_voltage);
2477
2478/**
2479 * regulator_set_current_limit - set regulator output current limit
2480 * @regulator: regulator source
2481 * @min_uA: Minimuum supported current in uA
2482 * @max_uA: Maximum supported current in uA
2483 *
2484 * Sets current sink to the desired output current. This can be set during
2485 * any regulator state. IOW, regulator can be disabled or enabled.
2486 *
2487 * If the regulator is enabled then the current will change to the new value
2488 * immediately otherwise if the regulator is disabled the regulator will
2489 * output at the new current when enabled.
2490 *
2491 * NOTE: Regulator system constraints must be set for this regulator before
2492 * calling this function otherwise this call will fail.
2493 */
2494int regulator_set_current_limit(struct regulator *regulator,
2495			       int min_uA, int max_uA)
2496{
2497	struct regulator_dev *rdev = regulator->rdev;
2498	int ret;
2499
2500	mutex_lock(&rdev->mutex);
2501
2502	/* sanity check */
2503	if (!rdev->desc->ops->set_current_limit) {
2504		ret = -EINVAL;
2505		goto out;
2506	}
2507
2508	/* constraints check */
2509	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2510	if (ret < 0)
2511		goto out;
2512
2513	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2514out:
2515	mutex_unlock(&rdev->mutex);
2516	return ret;
2517}
2518EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2519
2520static int _regulator_get_current_limit(struct regulator_dev *rdev)
2521{
2522	int ret;
2523
2524	mutex_lock(&rdev->mutex);
2525
2526	/* sanity check */
2527	if (!rdev->desc->ops->get_current_limit) {
2528		ret = -EINVAL;
2529		goto out;
2530	}
2531
2532	ret = rdev->desc->ops->get_current_limit(rdev);
2533out:
2534	mutex_unlock(&rdev->mutex);
2535	return ret;
2536}
2537
2538/**
2539 * regulator_get_current_limit - get regulator output current
2540 * @regulator: regulator source
2541 *
2542 * This returns the current supplied by the specified current sink in uA.
2543 *
2544 * NOTE: If the regulator is disabled it will return the current value. This
2545 * function should not be used to determine regulator state.
2546 */
2547int regulator_get_current_limit(struct regulator *regulator)
2548{
2549	return _regulator_get_current_limit(regulator->rdev);
2550}
2551EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2552
2553/**
2554 * regulator_set_mode - set regulator operating mode
2555 * @regulator: regulator source
2556 * @mode: operating mode - one of the REGULATOR_MODE constants
2557 *
2558 * Set regulator operating mode to increase regulator efficiency or improve
2559 * regulation performance.
2560 *
2561 * NOTE: Regulator system constraints must be set for this regulator before
2562 * calling this function otherwise this call will fail.
2563 */
2564int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2565{
2566	struct regulator_dev *rdev = regulator->rdev;
2567	int ret;
2568	int regulator_curr_mode;
2569
2570	mutex_lock(&rdev->mutex);
2571
2572	/* sanity check */
2573	if (!rdev->desc->ops->set_mode) {
2574		ret = -EINVAL;
2575		goto out;
2576	}
2577
2578	/* return if the same mode is requested */
2579	if (rdev->desc->ops->get_mode) {
2580		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2581		if (regulator_curr_mode == mode) {
2582			ret = 0;
2583			goto out;
2584		}
2585	}
2586
2587	/* constraints check */
2588	ret = regulator_mode_constrain(rdev, &mode);
2589	if (ret < 0)
2590		goto out;
2591
2592	ret = rdev->desc->ops->set_mode(rdev, mode);
2593out:
2594	mutex_unlock(&rdev->mutex);
2595	return ret;
2596}
2597EXPORT_SYMBOL_GPL(regulator_set_mode);
2598
2599static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2600{
2601	int ret;
2602
2603	mutex_lock(&rdev->mutex);
2604
2605	/* sanity check */
2606	if (!rdev->desc->ops->get_mode) {
2607		ret = -EINVAL;
2608		goto out;
2609	}
2610
2611	ret = rdev->desc->ops->get_mode(rdev);
2612out:
2613	mutex_unlock(&rdev->mutex);
2614	return ret;
2615}
2616
2617/**
2618 * regulator_get_mode - get regulator operating mode
2619 * @regulator: regulator source
2620 *
2621 * Get the current regulator operating mode.
2622 */
2623unsigned int regulator_get_mode(struct regulator *regulator)
2624{
2625	return _regulator_get_mode(regulator->rdev);
2626}
2627EXPORT_SYMBOL_GPL(regulator_get_mode);
2628
2629/**
2630 * regulator_set_optimum_mode - set regulator optimum operating mode
2631 * @regulator: regulator source
2632 * @uA_load: load current
2633 *
2634 * Notifies the regulator core of a new device load. This is then used by
2635 * DRMS (if enabled by constraints) to set the most efficient regulator
2636 * operating mode for the new regulator loading.
2637 *
2638 * Consumer devices notify their supply regulator of the maximum power
2639 * they will require (can be taken from device datasheet in the power
2640 * consumption tables) when they change operational status and hence power
2641 * state. Examples of operational state changes that can affect power
2642 * consumption are :-
2643 *
2644 *    o Device is opened / closed.
2645 *    o Device I/O is about to begin or has just finished.
2646 *    o Device is idling in between work.
2647 *
2648 * This information is also exported via sysfs to userspace.
2649 *
2650 * DRMS will sum the total requested load on the regulator and change
2651 * to the most efficient operating mode if platform constraints allow.
2652 *
2653 * Returns the new regulator mode or error.
2654 */
2655int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2656{
2657	struct regulator_dev *rdev = regulator->rdev;
2658	struct regulator *consumer;
2659	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2660	unsigned int mode;
2661
2662	if (rdev->supply)
2663		input_uV = regulator_get_voltage(rdev->supply);
2664
2665	mutex_lock(&rdev->mutex);
2666
2667	/*
2668	 * first check to see if we can set modes at all, otherwise just
2669	 * tell the consumer everything is OK.
2670	 */
2671	regulator->uA_load = uA_load;
2672	ret = regulator_check_drms(rdev);
2673	if (ret < 0) {
2674		ret = 0;
2675		goto out;
2676	}
2677
2678	if (!rdev->desc->ops->get_optimum_mode)
2679		goto out;
2680
2681	/*
2682	 * we can actually do this so any errors are indicators of
2683	 * potential real failure.
2684	 */
2685	ret = -EINVAL;
2686
2687	if (!rdev->desc->ops->set_mode)
2688		goto out;
2689
2690	/* get output voltage */
2691	output_uV = _regulator_get_voltage(rdev);
2692	if (output_uV <= 0) {
2693		rdev_err(rdev, "invalid output voltage found\n");
2694		goto out;
2695	}
2696
2697	/* No supply? Use constraint voltage */
2698	if (input_uV <= 0)
2699		input_uV = rdev->constraints->input_uV;
2700	if (input_uV <= 0) {
2701		rdev_err(rdev, "invalid input voltage found\n");
2702		goto out;
2703	}
2704
2705	/* calc total requested load for this regulator */
2706	list_for_each_entry(consumer, &rdev->consumer_list, list)
2707		total_uA_load += consumer->uA_load;
2708
2709	mode = rdev->desc->ops->get_optimum_mode(rdev,
2710						 input_uV, output_uV,
2711						 total_uA_load);
2712	ret = regulator_mode_constrain(rdev, &mode);
2713	if (ret < 0) {
2714		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2715			 total_uA_load, input_uV, output_uV);
2716		goto out;
2717	}
2718
2719	ret = rdev->desc->ops->set_mode(rdev, mode);
2720	if (ret < 0) {
2721		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2722		goto out;
2723	}
2724	ret = mode;
2725out:
2726	mutex_unlock(&rdev->mutex);
2727	return ret;
2728}
2729EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2730
2731/**
2732 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2733 *
2734 * @rdev: device to operate on.
2735 * @enable: state to set.
2736 */
2737int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2738{
2739	unsigned int val;
2740
2741	if (enable)
2742		val = rdev->desc->bypass_mask;
2743	else
2744		val = 0;
2745
2746	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2747				  rdev->desc->bypass_mask, val);
2748}
2749EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2750
2751/**
2752 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2753 *
2754 * @rdev: device to operate on.
2755 * @enable: current state.
2756 */
2757int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2758{
2759	unsigned int val;
2760	int ret;
2761
2762	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2763	if (ret != 0)
2764		return ret;
2765
2766	*enable = val & rdev->desc->bypass_mask;
2767
2768	return 0;
2769}
2770EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2771
2772/**
2773 * regulator_allow_bypass - allow the regulator to go into bypass mode
2774 *
2775 * @regulator: Regulator to configure
2776 * @allow: enable or disable bypass mode
2777 *
2778 * Allow the regulator to go into bypass mode if all other consumers
2779 * for the regulator also enable bypass mode and the machine
2780 * constraints allow this.  Bypass mode means that the regulator is
2781 * simply passing the input directly to the output with no regulation.
2782 */
2783int regulator_allow_bypass(struct regulator *regulator, bool enable)
2784{
2785	struct regulator_dev *rdev = regulator->rdev;
2786	int ret = 0;
2787
2788	if (!rdev->desc->ops->set_bypass)
2789		return 0;
2790
2791	if (rdev->constraints &&
2792	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2793		return 0;
2794
2795	mutex_lock(&rdev->mutex);
2796
2797	if (enable && !regulator->bypass) {
2798		rdev->bypass_count++;
2799
2800		if (rdev->bypass_count == rdev->open_count) {
2801			ret = rdev->desc->ops->set_bypass(rdev, enable);
2802			if (ret != 0)
2803				rdev->bypass_count--;
2804		}
2805
2806	} else if (!enable && regulator->bypass) {
2807		rdev->bypass_count--;
2808
2809		if (rdev->bypass_count != rdev->open_count) {
2810			ret = rdev->desc->ops->set_bypass(rdev, enable);
2811			if (ret != 0)
2812				rdev->bypass_count++;
2813		}
2814	}
2815
2816	if (ret == 0)
2817		regulator->bypass = enable;
2818
2819	mutex_unlock(&rdev->mutex);
2820
2821	return ret;
2822}
2823EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2824
2825/**
2826 * regulator_register_notifier - register regulator event notifier
2827 * @regulator: regulator source
2828 * @nb: notifier block
2829 *
2830 * Register notifier block to receive regulator events.
2831 */
2832int regulator_register_notifier(struct regulator *regulator,
2833			      struct notifier_block *nb)
2834{
2835	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2836						nb);
2837}
2838EXPORT_SYMBOL_GPL(regulator_register_notifier);
2839
2840/**
2841 * regulator_unregister_notifier - unregister regulator event notifier
2842 * @regulator: regulator source
2843 * @nb: notifier block
2844 *
2845 * Unregister regulator event notifier block.
2846 */
2847int regulator_unregister_notifier(struct regulator *regulator,
2848				struct notifier_block *nb)
2849{
2850	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2851						  nb);
2852}
2853EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2854
2855/* notify regulator consumers and downstream regulator consumers.
2856 * Note mutex must be held by caller.
2857 */
2858static void _notifier_call_chain(struct regulator_dev *rdev,
2859				  unsigned long event, void *data)
2860{
2861	/* call rdev chain first */
2862	blocking_notifier_call_chain(&rdev->notifier, event, data);
2863}
2864
2865/**
2866 * regulator_bulk_get - get multiple regulator consumers
2867 *
2868 * @dev:           Device to supply
2869 * @num_consumers: Number of consumers to register
2870 * @consumers:     Configuration of consumers; clients are stored here.
2871 *
2872 * @return 0 on success, an errno on failure.
2873 *
2874 * This helper function allows drivers to get several regulator
2875 * consumers in one operation.  If any of the regulators cannot be
2876 * acquired then any regulators that were allocated will be freed
2877 * before returning to the caller.
2878 */
2879int regulator_bulk_get(struct device *dev, int num_consumers,
2880		       struct regulator_bulk_data *consumers)
2881{
2882	int i;
2883	int ret;
2884
2885	for (i = 0; i < num_consumers; i++)
2886		consumers[i].consumer = NULL;
2887
2888	for (i = 0; i < num_consumers; i++) {
2889		consumers[i].consumer = regulator_get(dev,
2890						      consumers[i].supply);
2891		if (IS_ERR(consumers[i].consumer)) {
2892			ret = PTR_ERR(consumers[i].consumer);
2893			dev_err(dev, "Failed to get supply '%s': %d\n",
2894				consumers[i].supply, ret);
2895			consumers[i].consumer = NULL;
2896			goto err;
2897		}
2898	}
2899
2900	return 0;
2901
2902err:
2903	while (--i >= 0)
2904		regulator_put(consumers[i].consumer);
2905
2906	return ret;
2907}
2908EXPORT_SYMBOL_GPL(regulator_bulk_get);
2909
2910/**
2911 * devm_regulator_bulk_get - managed get multiple regulator consumers
2912 *
2913 * @dev:           Device to supply
2914 * @num_consumers: Number of consumers to register
2915 * @consumers:     Configuration of consumers; clients are stored here.
2916 *
2917 * @return 0 on success, an errno on failure.
2918 *
2919 * This helper function allows drivers to get several regulator
2920 * consumers in one operation with management, the regulators will
2921 * automatically be freed when the device is unbound.  If any of the
2922 * regulators cannot be acquired then any regulators that were
2923 * allocated will be freed before returning to the caller.
2924 */
2925int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2926			    struct regulator_bulk_data *consumers)
2927{
2928	int i;
2929	int ret;
2930
2931	for (i = 0; i < num_consumers; i++)
2932		consumers[i].consumer = NULL;
2933
2934	for (i = 0; i < num_consumers; i++) {
2935		consumers[i].consumer = devm_regulator_get(dev,
2936							   consumers[i].supply);
2937		if (IS_ERR(consumers[i].consumer)) {
2938			ret = PTR_ERR(consumers[i].consumer);
2939			dev_err(dev, "Failed to get supply '%s': %d\n",
2940				consumers[i].supply, ret);
2941			consumers[i].consumer = NULL;
2942			goto err;
2943		}
2944	}
2945
2946	return 0;
2947
2948err:
2949	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2950		devm_regulator_put(consumers[i].consumer);
2951
2952	return ret;
2953}
2954EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2955
2956static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2957{
2958	struct regulator_bulk_data *bulk = data;
2959
2960	bulk->ret = regulator_enable(bulk->consumer);
2961}
2962
2963/**
2964 * regulator_bulk_enable - enable multiple regulator consumers
2965 *
2966 * @num_consumers: Number of consumers
2967 * @consumers:     Consumer data; clients are stored here.
2968 * @return         0 on success, an errno on failure
2969 *
2970 * This convenience API allows consumers to enable multiple regulator
2971 * clients in a single API call.  If any consumers cannot be enabled
2972 * then any others that were enabled will be disabled again prior to
2973 * return.
2974 */
2975int regulator_bulk_enable(int num_consumers,
2976			  struct regulator_bulk_data *consumers)
2977{
2978	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2979	int i;
2980	int ret = 0;
2981
2982	for (i = 0; i < num_consumers; i++) {
2983		if (consumers[i].consumer->always_on)
2984			consumers[i].ret = 0;
2985		else
2986			async_schedule_domain(regulator_bulk_enable_async,
2987					      &consumers[i], &async_domain);
2988	}
2989
2990	async_synchronize_full_domain(&async_domain);
2991
2992	/* If any consumer failed we need to unwind any that succeeded */
2993	for (i = 0; i < num_consumers; i++) {
2994		if (consumers[i].ret != 0) {
2995			ret = consumers[i].ret;
2996			goto err;
2997		}
2998	}
2999
3000	return 0;
3001
3002err:
3003	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3004	while (--i >= 0)
3005		regulator_disable(consumers[i].consumer);
3006
3007	return ret;
3008}
3009EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3010
3011/**
3012 * regulator_bulk_disable - disable multiple regulator consumers
3013 *
3014 * @num_consumers: Number of consumers
3015 * @consumers:     Consumer data; clients are stored here.
3016 * @return         0 on success, an errno on failure
3017 *
3018 * This convenience API allows consumers to disable multiple regulator
3019 * clients in a single API call.  If any consumers cannot be disabled
3020 * then any others that were disabled will be enabled again prior to
3021 * return.
3022 */
3023int regulator_bulk_disable(int num_consumers,
3024			   struct regulator_bulk_data *consumers)
3025{
3026	int i;
3027	int ret, r;
3028
3029	for (i = num_consumers - 1; i >= 0; --i) {
3030		ret = regulator_disable(consumers[i].consumer);
3031		if (ret != 0)
3032			goto err;
3033	}
3034
3035	return 0;
3036
3037err:
3038	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3039	for (++i; i < num_consumers; ++i) {
3040		r = regulator_enable(consumers[i].consumer);
3041		if (r != 0)
3042			pr_err("Failed to reename %s: %d\n",
3043			       consumers[i].supply, r);
3044	}
3045
3046	return ret;
3047}
3048EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3049
3050/**
3051 * regulator_bulk_force_disable - force disable multiple regulator consumers
3052 *
3053 * @num_consumers: Number of consumers
3054 * @consumers:     Consumer data; clients are stored here.
3055 * @return         0 on success, an errno on failure
3056 *
3057 * This convenience API allows consumers to forcibly disable multiple regulator
3058 * clients in a single API call.
3059 * NOTE: This should be used for situations when device damage will
3060 * likely occur if the regulators are not disabled (e.g. over temp).
3061 * Although regulator_force_disable function call for some consumers can
3062 * return error numbers, the function is called for all consumers.
3063 */
3064int regulator_bulk_force_disable(int num_consumers,
3065			   struct regulator_bulk_data *consumers)
3066{
3067	int i;
3068	int ret;
3069
3070	for (i = 0; i < num_consumers; i++)
3071		consumers[i].ret =
3072			    regulator_force_disable(consumers[i].consumer);
3073
3074	for (i = 0; i < num_consumers; i++) {
3075		if (consumers[i].ret != 0) {
3076			ret = consumers[i].ret;
3077			goto out;
3078		}
3079	}
3080
3081	return 0;
3082out:
3083	return ret;
3084}
3085EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3086
3087/**
3088 * regulator_bulk_free - free multiple regulator consumers
3089 *
3090 * @num_consumers: Number of consumers
3091 * @consumers:     Consumer data; clients are stored here.
3092 *
3093 * This convenience API allows consumers to free multiple regulator
3094 * clients in a single API call.
3095 */
3096void regulator_bulk_free(int num_consumers,
3097			 struct regulator_bulk_data *consumers)
3098{
3099	int i;
3100
3101	for (i = 0; i < num_consumers; i++) {
3102		regulator_put(consumers[i].consumer);
3103		consumers[i].consumer = NULL;
3104	}
3105}
3106EXPORT_SYMBOL_GPL(regulator_bulk_free);
3107
3108/**
3109 * regulator_notifier_call_chain - call regulator event notifier
3110 * @rdev: regulator source
3111 * @event: notifier block
3112 * @data: callback-specific data.
3113 *
3114 * Called by regulator drivers to notify clients a regulator event has
3115 * occurred. We also notify regulator clients downstream.
3116 * Note lock must be held by caller.
3117 */
3118int regulator_notifier_call_chain(struct regulator_dev *rdev,
3119				  unsigned long event, void *data)
3120{
3121	_notifier_call_chain(rdev, event, data);
3122	return NOTIFY_DONE;
3123
3124}
3125EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3126
3127/**
3128 * regulator_mode_to_status - convert a regulator mode into a status
3129 *
3130 * @mode: Mode to convert
3131 *
3132 * Convert a regulator mode into a status.
3133 */
3134int regulator_mode_to_status(unsigned int mode)
3135{
3136	switch (mode) {
3137	case REGULATOR_MODE_FAST:
3138		return REGULATOR_STATUS_FAST;
3139	case REGULATOR_MODE_NORMAL:
3140		return REGULATOR_STATUS_NORMAL;
3141	case REGULATOR_MODE_IDLE:
3142		return REGULATOR_STATUS_IDLE;
3143	case REGULATOR_MODE_STANDBY:
3144		return REGULATOR_STATUS_STANDBY;
3145	default:
3146		return REGULATOR_STATUS_UNDEFINED;
3147	}
3148}
3149EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3150
3151/*
3152 * To avoid cluttering sysfs (and memory) with useless state, only
3153 * create attributes that can be meaningfully displayed.
3154 */
3155static int add_regulator_attributes(struct regulator_dev *rdev)
3156{
3157	struct device		*dev = &rdev->dev;
3158	struct regulator_ops	*ops = rdev->desc->ops;
3159	int			status = 0;
3160
3161	/* some attributes need specific methods to be displayed */
3162	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3163	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3164	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3165		status = device_create_file(dev, &dev_attr_microvolts);
3166		if (status < 0)
3167			return status;
3168	}
3169	if (ops->get_current_limit) {
3170		status = device_create_file(dev, &dev_attr_microamps);
3171		if (status < 0)
3172			return status;
3173	}
3174	if (ops->get_mode) {
3175		status = device_create_file(dev, &dev_attr_opmode);
3176		if (status < 0)
3177			return status;
3178	}
3179	if (ops->is_enabled) {
3180		status = device_create_file(dev, &dev_attr_state);
3181		if (status < 0)
3182			return status;
3183	}
3184	if (ops->get_status) {
3185		status = device_create_file(dev, &dev_attr_status);
3186		if (status < 0)
3187			return status;
3188	}
3189	if (ops->get_bypass) {
3190		status = device_create_file(dev, &dev_attr_bypass);
3191		if (status < 0)
3192			return status;
3193	}
3194
3195	/* some attributes are type-specific */
3196	if (rdev->desc->type == REGULATOR_CURRENT) {
3197		status = device_create_file(dev, &dev_attr_requested_microamps);
3198		if (status < 0)
3199			return status;
3200	}
3201
3202	/* all the other attributes exist to support constraints;
3203	 * don't show them if there are no constraints, or if the
3204	 * relevant supporting methods are missing.
3205	 */
3206	if (!rdev->constraints)
3207		return status;
3208
3209	/* constraints need specific supporting methods */
3210	if (ops->set_voltage || ops->set_voltage_sel) {
3211		status = device_create_file(dev, &dev_attr_min_microvolts);
3212		if (status < 0)
3213			return status;
3214		status = device_create_file(dev, &dev_attr_max_microvolts);
3215		if (status < 0)
3216			return status;
3217	}
3218	if (ops->set_current_limit) {
3219		status = device_create_file(dev, &dev_attr_min_microamps);
3220		if (status < 0)
3221			return status;
3222		status = device_create_file(dev, &dev_attr_max_microamps);
3223		if (status < 0)
3224			return status;
3225	}
3226
3227	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3228	if (status < 0)
3229		return status;
3230	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3231	if (status < 0)
3232		return status;
3233	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3234	if (status < 0)
3235		return status;
3236
3237	if (ops->set_suspend_voltage) {
3238		status = device_create_file(dev,
3239				&dev_attr_suspend_standby_microvolts);
3240		if (status < 0)
3241			return status;
3242		status = device_create_file(dev,
3243				&dev_attr_suspend_mem_microvolts);
3244		if (status < 0)
3245			return status;
3246		status = device_create_file(dev,
3247				&dev_attr_suspend_disk_microvolts);
3248		if (status < 0)
3249			return status;
3250	}
3251
3252	if (ops->set_suspend_mode) {
3253		status = device_create_file(dev,
3254				&dev_attr_suspend_standby_mode);
3255		if (status < 0)
3256			return status;
3257		status = device_create_file(dev,
3258				&dev_attr_suspend_mem_mode);
3259		if (status < 0)
3260			return status;
3261		status = device_create_file(dev,
3262				&dev_attr_suspend_disk_mode);
3263		if (status < 0)
3264			return status;
3265	}
3266
3267	return status;
3268}
3269
3270static void rdev_init_debugfs(struct regulator_dev *rdev)
3271{
3272	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3273	if (!rdev->debugfs) {
3274		rdev_warn(rdev, "Failed to create debugfs directory\n");
3275		return;
3276	}
3277
3278	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3279			   &rdev->use_count);
3280	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3281			   &rdev->open_count);
3282	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3283			   &rdev->bypass_count);
3284}
3285
3286/**
3287 * regulator_register - register regulator
3288 * @regulator_desc: regulator to register
3289 * @config: runtime configuration for regulator
3290 *
3291 * Called by regulator drivers to register a regulator.
3292 * Returns 0 on success.
3293 */
3294struct regulator_dev *
3295regulator_register(const struct regulator_desc *regulator_desc,
3296		   const struct regulator_config *config)
3297{
3298	const struct regulation_constraints *constraints = NULL;
3299	const struct regulator_init_data *init_data;
3300	static atomic_t regulator_no = ATOMIC_INIT(0);
3301	struct regulator_dev *rdev;
3302	struct device *dev;
3303	int ret, i;
3304	const char *supply = NULL;
3305
3306	if (regulator_desc == NULL || config == NULL)
3307		return ERR_PTR(-EINVAL);
3308
3309	dev = config->dev;
3310	WARN_ON(!dev);
3311
3312	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3313		return ERR_PTR(-EINVAL);
3314
3315	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3316	    regulator_desc->type != REGULATOR_CURRENT)
3317		return ERR_PTR(-EINVAL);
3318
3319	/* Only one of each should be implemented */
3320	WARN_ON(regulator_desc->ops->get_voltage &&
3321		regulator_desc->ops->get_voltage_sel);
3322	WARN_ON(regulator_desc->ops->set_voltage &&
3323		regulator_desc->ops->set_voltage_sel);
3324
3325	/* If we're using selectors we must implement list_voltage. */
3326	if (regulator_desc->ops->get_voltage_sel &&
3327	    !regulator_desc->ops->list_voltage) {
3328		return ERR_PTR(-EINVAL);
3329	}
3330	if (regulator_desc->ops->set_voltage_sel &&
3331	    !regulator_desc->ops->list_voltage) {
3332		return ERR_PTR(-EINVAL);
3333	}
3334
3335	init_data = config->init_data;
3336
3337	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3338	if (rdev == NULL)
3339		return ERR_PTR(-ENOMEM);
3340
3341	mutex_lock(&regulator_list_mutex);
3342
3343	mutex_init(&rdev->mutex);
3344	rdev->reg_data = config->driver_data;
3345	rdev->owner = regulator_desc->owner;
3346	rdev->desc = regulator_desc;
3347	if (config->regmap)
3348		rdev->regmap = config->regmap;
3349	else if (dev_get_regmap(dev, NULL))
3350		rdev->regmap = dev_get_regmap(dev, NULL);
3351	else if (dev->parent)
3352		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3353	INIT_LIST_HEAD(&rdev->consumer_list);
3354	INIT_LIST_HEAD(&rdev->list);
3355	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3356	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3357
3358	/* preform any regulator specific init */
3359	if (init_data && init_data->regulator_init) {
3360		ret = init_data->regulator_init(rdev->reg_data);
3361		if (ret < 0)
3362			goto clean;
3363	}
3364
3365	/* register with sysfs */
3366	rdev->dev.class = &regulator_class;
3367	rdev->dev.of_node = config->of_node;
3368	rdev->dev.parent = dev;
3369	dev_set_name(&rdev->dev, "regulator.%d",
3370		     atomic_inc_return(&regulator_no) - 1);
3371	ret = device_register(&rdev->dev);
3372	if (ret != 0) {
3373		put_device(&rdev->dev);
3374		goto clean;
3375	}
3376
3377	dev_set_drvdata(&rdev->dev, rdev);
3378
3379	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3380		ret = gpio_request_one(config->ena_gpio,
3381				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3382				       rdev_get_name(rdev));
3383		if (ret != 0) {
3384			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3385				 config->ena_gpio, ret);
3386			goto wash;
3387		}
3388
3389		rdev->ena_gpio = config->ena_gpio;
3390		rdev->ena_gpio_invert = config->ena_gpio_invert;
3391
3392		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3393			rdev->ena_gpio_state = 1;
3394
3395		if (rdev->ena_gpio_invert)
3396			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3397	}
3398
3399	/* set regulator constraints */
3400	if (init_data)
3401		constraints = &init_data->constraints;
3402
3403	ret = set_machine_constraints(rdev, constraints);
3404	if (ret < 0)
3405		goto scrub;
3406
3407	/* add attributes supported by this regulator */
3408	ret = add_regulator_attributes(rdev);
3409	if (ret < 0)
3410		goto scrub;
3411
3412	if (init_data && init_data->supply_regulator)
3413		supply = init_data->supply_regulator;
3414	else if (regulator_desc->supply_name)
3415		supply = regulator_desc->supply_name;
3416
3417	if (supply) {
3418		struct regulator_dev *r;
3419
3420		r = regulator_dev_lookup(dev, supply, &ret);
3421
3422		if (!r) {
3423			dev_err(dev, "Failed to find supply %s\n", supply);
3424			ret = -EPROBE_DEFER;
3425			goto scrub;
3426		}
3427
3428		ret = set_supply(rdev, r);
3429		if (ret < 0)
3430			goto scrub;
3431
3432		/* Enable supply if rail is enabled */
3433		if (_regulator_is_enabled(rdev)) {
3434			ret = regulator_enable(rdev->supply);
3435			if (ret < 0)
3436				goto scrub;
3437		}
3438	}
3439
3440	/* add consumers devices */
3441	if (init_data) {
3442		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3443			ret = set_consumer_device_supply(rdev,
3444				init_data->consumer_supplies[i].dev_name,
3445				init_data->consumer_supplies[i].supply);
3446			if (ret < 0) {
3447				dev_err(dev, "Failed to set supply %s\n",
3448					init_data->consumer_supplies[i].supply);
3449				goto unset_supplies;
3450			}
3451		}
3452	}
3453
3454	list_add(&rdev->list, &regulator_list);
3455
3456	rdev_init_debugfs(rdev);
3457out:
3458	mutex_unlock(&regulator_list_mutex);
3459	return rdev;
3460
3461unset_supplies:
3462	unset_regulator_supplies(rdev);
3463
3464scrub:
3465	if (rdev->supply)
3466		_regulator_put(rdev->supply);
3467	if (rdev->ena_gpio)
3468		gpio_free(rdev->ena_gpio);
3469	kfree(rdev->constraints);
3470wash:
3471	device_unregister(&rdev->dev);
3472	/* device core frees rdev */
3473	rdev = ERR_PTR(ret);
3474	goto out;
3475
3476clean:
3477	kfree(rdev);
3478	rdev = ERR_PTR(ret);
3479	goto out;
3480}
3481EXPORT_SYMBOL_GPL(regulator_register);
3482
3483/**
3484 * regulator_unregister - unregister regulator
3485 * @rdev: regulator to unregister
3486 *
3487 * Called by regulator drivers to unregister a regulator.
3488 */
3489void regulator_unregister(struct regulator_dev *rdev)
3490{
3491	if (rdev == NULL)
3492		return;
3493
3494	if (rdev->supply)
3495		regulator_put(rdev->supply);
3496	mutex_lock(&regulator_list_mutex);
3497	debugfs_remove_recursive(rdev->debugfs);
3498	flush_work(&rdev->disable_work.work);
3499	WARN_ON(rdev->open_count);
3500	unset_regulator_supplies(rdev);
3501	list_del(&rdev->list);
3502	kfree(rdev->constraints);
3503	if (rdev->ena_gpio)
3504		gpio_free(rdev->ena_gpio);
3505	device_unregister(&rdev->dev);
3506	mutex_unlock(&regulator_list_mutex);
3507}
3508EXPORT_SYMBOL_GPL(regulator_unregister);
3509
3510/**
3511 * regulator_suspend_prepare - prepare regulators for system wide suspend
3512 * @state: system suspend state
3513 *
3514 * Configure each regulator with it's suspend operating parameters for state.
3515 * This will usually be called by machine suspend code prior to supending.
3516 */
3517int regulator_suspend_prepare(suspend_state_t state)
3518{
3519	struct regulator_dev *rdev;
3520	int ret = 0;
3521
3522	/* ON is handled by regulator active state */
3523	if (state == PM_SUSPEND_ON)
3524		return -EINVAL;
3525
3526	mutex_lock(&regulator_list_mutex);
3527	list_for_each_entry(rdev, &regulator_list, list) {
3528
3529		mutex_lock(&rdev->mutex);
3530		ret = suspend_prepare(rdev, state);
3531		mutex_unlock(&rdev->mutex);
3532
3533		if (ret < 0) {
3534			rdev_err(rdev, "failed to prepare\n");
3535			goto out;
3536		}
3537	}
3538out:
3539	mutex_unlock(&regulator_list_mutex);
3540	return ret;
3541}
3542EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3543
3544/**
3545 * regulator_suspend_finish - resume regulators from system wide suspend
3546 *
3547 * Turn on regulators that might be turned off by regulator_suspend_prepare
3548 * and that should be turned on according to the regulators properties.
3549 */
3550int regulator_suspend_finish(void)
3551{
3552	struct regulator_dev *rdev;
3553	int ret = 0, error;
3554
3555	mutex_lock(&regulator_list_mutex);
3556	list_for_each_entry(rdev, &regulator_list, list) {
3557		struct regulator_ops *ops = rdev->desc->ops;
3558
3559		mutex_lock(&rdev->mutex);
3560		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3561				ops->enable) {
3562			error = ops->enable(rdev);
3563			if (error)
3564				ret = error;
3565		} else {
3566			if (!has_full_constraints)
3567				goto unlock;
3568			if (!ops->disable)
3569				goto unlock;
3570			if (!_regulator_is_enabled(rdev))
3571				goto unlock;
3572
3573			error = ops->disable(rdev);
3574			if (error)
3575				ret = error;
3576		}
3577unlock:
3578		mutex_unlock(&rdev->mutex);
3579	}
3580	mutex_unlock(&regulator_list_mutex);
3581	return ret;
3582}
3583EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3584
3585/**
3586 * regulator_has_full_constraints - the system has fully specified constraints
3587 *
3588 * Calling this function will cause the regulator API to disable all
3589 * regulators which have a zero use count and don't have an always_on
3590 * constraint in a late_initcall.
3591 *
3592 * The intention is that this will become the default behaviour in a
3593 * future kernel release so users are encouraged to use this facility
3594 * now.
3595 */
3596void regulator_has_full_constraints(void)
3597{
3598	has_full_constraints = 1;
3599}
3600EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3601
3602/**
3603 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3604 *
3605 * Calling this function will cause the regulator API to provide a
3606 * dummy regulator to consumers if no physical regulator is found,
3607 * allowing most consumers to proceed as though a regulator were
3608 * configured.  This allows systems such as those with software
3609 * controllable regulators for the CPU core only to be brought up more
3610 * readily.
3611 */
3612void regulator_use_dummy_regulator(void)
3613{
3614	board_wants_dummy_regulator = true;
3615}
3616EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3617
3618/**
3619 * rdev_get_drvdata - get rdev regulator driver data
3620 * @rdev: regulator
3621 *
3622 * Get rdev regulator driver private data. This call can be used in the
3623 * regulator driver context.
3624 */
3625void *rdev_get_drvdata(struct regulator_dev *rdev)
3626{
3627	return rdev->reg_data;
3628}
3629EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3630
3631/**
3632 * regulator_get_drvdata - get regulator driver data
3633 * @regulator: regulator
3634 *
3635 * Get regulator driver private data. This call can be used in the consumer
3636 * driver context when non API regulator specific functions need to be called.
3637 */
3638void *regulator_get_drvdata(struct regulator *regulator)
3639{
3640	return regulator->rdev->reg_data;
3641}
3642EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3643
3644/**
3645 * regulator_set_drvdata - set regulator driver data
3646 * @regulator: regulator
3647 * @data: data
3648 */
3649void regulator_set_drvdata(struct regulator *regulator, void *data)
3650{
3651	regulator->rdev->reg_data = data;
3652}
3653EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3654
3655/**
3656 * regulator_get_id - get regulator ID
3657 * @rdev: regulator
3658 */
3659int rdev_get_id(struct regulator_dev *rdev)
3660{
3661	return rdev->desc->id;
3662}
3663EXPORT_SYMBOL_GPL(rdev_get_id);
3664
3665struct device *rdev_get_dev(struct regulator_dev *rdev)
3666{
3667	return &rdev->dev;
3668}
3669EXPORT_SYMBOL_GPL(rdev_get_dev);
3670
3671void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3672{
3673	return reg_init_data->driver_data;
3674}
3675EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3676
3677#ifdef CONFIG_DEBUG_FS
3678static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3679				    size_t count, loff_t *ppos)
3680{
3681	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3682	ssize_t len, ret = 0;
3683	struct regulator_map *map;
3684
3685	if (!buf)
3686		return -ENOMEM;
3687
3688	list_for_each_entry(map, &regulator_map_list, list) {
3689		len = snprintf(buf + ret, PAGE_SIZE - ret,
3690			       "%s -> %s.%s\n",
3691			       rdev_get_name(map->regulator), map->dev_name,
3692			       map->supply);
3693		if (len >= 0)
3694			ret += len;
3695		if (ret > PAGE_SIZE) {
3696			ret = PAGE_SIZE;
3697			break;
3698		}
3699	}
3700
3701	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3702
3703	kfree(buf);
3704
3705	return ret;
3706}
3707#endif
3708
3709static const struct file_operations supply_map_fops = {
3710#ifdef CONFIG_DEBUG_FS
3711	.read = supply_map_read_file,
3712	.llseek = default_llseek,
3713#endif
3714};
3715
3716static int __init regulator_init(void)
3717{
3718	int ret;
3719
3720	ret = class_register(&regulator_class);
3721
3722	debugfs_root = debugfs_create_dir("regulator", NULL);
3723	if (!debugfs_root)
3724		pr_warn("regulator: Failed to create debugfs directory\n");
3725
3726	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3727			    &supply_map_fops);
3728
3729	regulator_dummy_init();
3730
3731	return ret;
3732}
3733
3734/* init early to allow our consumers to complete system booting */
3735core_initcall(regulator_init);
3736
3737static int __init regulator_init_complete(void)
3738{
3739	struct regulator_dev *rdev;
3740	struct regulator_ops *ops;
3741	struct regulation_constraints *c;
3742	int enabled, ret;
3743
3744	/*
3745	 * Since DT doesn't provide an idiomatic mechanism for
3746	 * enabling full constraints and since it's much more natural
3747	 * with DT to provide them just assume that a DT enabled
3748	 * system has full constraints.
3749	 */
3750	if (of_have_populated_dt())
3751		has_full_constraints = true;
3752
3753	mutex_lock(&regulator_list_mutex);
3754
3755	/* If we have a full configuration then disable any regulators
3756	 * which are not in use or always_on.  This will become the
3757	 * default behaviour in the future.
3758	 */
3759	list_for_each_entry(rdev, &regulator_list, list) {
3760		ops = rdev->desc->ops;
3761		c = rdev->constraints;
3762
3763		if (!ops->disable || (c && c->always_on))
3764			continue;
3765
3766		mutex_lock(&rdev->mutex);
3767
3768		if (rdev->use_count)
3769			goto unlock;
3770
3771		/* If we can't read the status assume it's on. */
3772		if (ops->is_enabled)
3773			enabled = ops->is_enabled(rdev);
3774		else
3775			enabled = 1;
3776
3777		if (!enabled)
3778			goto unlock;
3779
3780		if (has_full_constraints) {
3781			/* We log since this may kill the system if it
3782			 * goes wrong. */
3783			rdev_info(rdev, "disabling\n");
3784			ret = ops->disable(rdev);
3785			if (ret != 0) {
3786				rdev_err(rdev, "couldn't disable: %d\n", ret);
3787			}
3788		} else {
3789			/* The intention is that in future we will
3790			 * assume that full constraints are provided
3791			 * so warn even if we aren't going to do
3792			 * anything here.
3793			 */
3794			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3795		}
3796
3797unlock:
3798		mutex_unlock(&rdev->mutex);
3799	}
3800
3801	mutex_unlock(&regulator_list_mutex);
3802
3803	return 0;
3804}
3805late_initcall(regulator_init_complete);
3806