core.c revision 9a8f5e07200dd80fe5979490c36b62f64f70825b
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/of.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57#ifdef CONFIG_DEBUG_FS
58static struct dentry *debugfs_root;
59#endif
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78struct regulator {
79	struct device *dev;
80	struct list_head list;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87#ifdef CONFIG_DEBUG_FS
88	struct dentry *debugfs;
89#endif
90};
91
92static int _regulator_is_enabled(struct regulator_dev *rdev);
93static int _regulator_disable(struct regulator_dev *rdev);
94static int _regulator_get_voltage(struct regulator_dev *rdev);
95static int _regulator_get_current_limit(struct regulator_dev *rdev);
96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97static void _notifier_call_chain(struct regulator_dev *rdev,
98				  unsigned long event, void *data);
99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100				     int min_uV, int max_uV);
101static struct regulator *create_regulator(struct regulator_dev *rdev,
102					  struct device *dev,
103					  const char *supply_name);
104
105static const char *rdev_get_name(struct regulator_dev *rdev)
106{
107	if (rdev->constraints && rdev->constraints->name)
108		return rdev->constraints->name;
109	else if (rdev->desc->name)
110		return rdev->desc->name;
111	else
112		return "";
113}
114
115/* gets the regulator for a given consumer device */
116static struct regulator *get_device_regulator(struct device *dev)
117{
118	struct regulator *regulator = NULL;
119	struct regulator_dev *rdev;
120
121	mutex_lock(&regulator_list_mutex);
122	list_for_each_entry(rdev, &regulator_list, list) {
123		mutex_lock(&rdev->mutex);
124		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125			if (regulator->dev == dev) {
126				mutex_unlock(&rdev->mutex);
127				mutex_unlock(&regulator_list_mutex);
128				return regulator;
129			}
130		}
131		mutex_unlock(&rdev->mutex);
132	}
133	mutex_unlock(&regulator_list_mutex);
134	return NULL;
135}
136
137/**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147{
148	struct device_node *regnode = NULL;
149	char prop_name[32]; /* 32 is max size of property name */
150
151	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153	snprintf(prop_name, 32, "%s-supply", supply);
154	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156	if (!regnode) {
157		dev_warn(dev, "%s property in node %s references invalid phandle",
158				prop_name, dev->of_node->full_name);
159		return NULL;
160	}
161	return regnode;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV)
216		return -EINVAL;
217
218	return 0;
219}
220
221/* current constraint check */
222static int regulator_check_current_limit(struct regulator_dev *rdev,
223					int *min_uA, int *max_uA)
224{
225	BUG_ON(*min_uA > *max_uA);
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	if (*max_uA > rdev->constraints->max_uA)
237		*max_uA = rdev->constraints->max_uA;
238	if (*min_uA < rdev->constraints->min_uA)
239		*min_uA = rdev->constraints->min_uA;
240
241	if (*min_uA > *max_uA) {
242		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243			 *min_uA, *max_uA);
244		return -EINVAL;
245	}
246
247	return 0;
248}
249
250/* operating mode constraint check */
251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252{
253	switch (*mode) {
254	case REGULATOR_MODE_FAST:
255	case REGULATOR_MODE_NORMAL:
256	case REGULATOR_MODE_IDLE:
257	case REGULATOR_MODE_STANDBY:
258		break;
259	default:
260		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261		return -EINVAL;
262	}
263
264	if (!rdev->constraints) {
265		rdev_err(rdev, "no constraints\n");
266		return -ENODEV;
267	}
268	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269		rdev_err(rdev, "operation not allowed\n");
270		return -EPERM;
271	}
272
273	/* The modes are bitmasks, the most power hungry modes having
274	 * the lowest values. If the requested mode isn't supported
275	 * try higher modes. */
276	while (*mode) {
277		if (rdev->constraints->valid_modes_mask & *mode)
278			return 0;
279		*mode /= 2;
280	}
281
282	return -EINVAL;
283}
284
285/* dynamic regulator mode switching constraint check */
286static int regulator_check_drms(struct regulator_dev *rdev)
287{
288	if (!rdev->constraints) {
289		rdev_err(rdev, "no constraints\n");
290		return -ENODEV;
291	}
292	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293		rdev_err(rdev, "operation not allowed\n");
294		return -EPERM;
295	}
296	return 0;
297}
298
299static ssize_t device_requested_uA_show(struct device *dev,
300			     struct device_attribute *attr, char *buf)
301{
302	struct regulator *regulator;
303
304	regulator = get_device_regulator(dev);
305	if (regulator == NULL)
306		return 0;
307
308	return sprintf(buf, "%d\n", regulator->uA_load);
309}
310
311static ssize_t regulator_uV_show(struct device *dev,
312				struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325static ssize_t regulator_uA_show(struct device *dev,
326				struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331}
332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334static ssize_t regulator_name_show(struct device *dev,
335			     struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340}
341
342static ssize_t regulator_print_opmode(char *buf, int mode)
343{
344	switch (mode) {
345	case REGULATOR_MODE_FAST:
346		return sprintf(buf, "fast\n");
347	case REGULATOR_MODE_NORMAL:
348		return sprintf(buf, "normal\n");
349	case REGULATOR_MODE_IDLE:
350		return sprintf(buf, "idle\n");
351	case REGULATOR_MODE_STANDBY:
352		return sprintf(buf, "standby\n");
353	}
354	return sprintf(buf, "unknown\n");
355}
356
357static ssize_t regulator_opmode_show(struct device *dev,
358				    struct device_attribute *attr, char *buf)
359{
360	struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363}
364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366static ssize_t regulator_print_state(char *buf, int state)
367{
368	if (state > 0)
369		return sprintf(buf, "enabled\n");
370	else if (state == 0)
371		return sprintf(buf, "disabled\n");
372	else
373		return sprintf(buf, "unknown\n");
374}
375
376static ssize_t regulator_state_show(struct device *dev,
377				   struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	ssize_t ret;
381
382	mutex_lock(&rdev->mutex);
383	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384	mutex_unlock(&rdev->mutex);
385
386	return ret;
387}
388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390static ssize_t regulator_status_show(struct device *dev,
391				   struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	int status;
395	char *label;
396
397	status = rdev->desc->ops->get_status(rdev);
398	if (status < 0)
399		return status;
400
401	switch (status) {
402	case REGULATOR_STATUS_OFF:
403		label = "off";
404		break;
405	case REGULATOR_STATUS_ON:
406		label = "on";
407		break;
408	case REGULATOR_STATUS_ERROR:
409		label = "error";
410		break;
411	case REGULATOR_STATUS_FAST:
412		label = "fast";
413		break;
414	case REGULATOR_STATUS_NORMAL:
415		label = "normal";
416		break;
417	case REGULATOR_STATUS_IDLE:
418		label = "idle";
419		break;
420	case REGULATOR_STATUS_STANDBY:
421		label = "standby";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t regulator_num_users_show(struct device *dev,
495				      struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500
501static ssize_t regulator_type_show(struct device *dev,
502				  struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611
612/*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616static struct device_attribute regulator_dev_attrs[] = {
617	__ATTR(name, 0444, regulator_name_show, NULL),
618	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619	__ATTR(type, 0444, regulator_type_show, NULL),
620	__ATTR_NULL,
621};
622
623static void regulator_dev_release(struct device *dev)
624{
625	struct regulator_dev *rdev = dev_get_drvdata(dev);
626	kfree(rdev);
627}
628
629static struct class regulator_class = {
630	.name = "regulator",
631	.dev_release = regulator_dev_release,
632	.dev_attrs = regulator_dev_attrs,
633};
634
635/* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637static void drms_uA_update(struct regulator_dev *rdev)
638{
639	struct regulator *sibling;
640	int current_uA = 0, output_uV, input_uV, err;
641	unsigned int mode;
642
643	err = regulator_check_drms(rdev);
644	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645	    (!rdev->desc->ops->get_voltage &&
646	     !rdev->desc->ops->get_voltage_sel) ||
647	    !rdev->desc->ops->set_mode)
648		return;
649
650	/* get output voltage */
651	output_uV = _regulator_get_voltage(rdev);
652	if (output_uV <= 0)
653		return;
654
655	/* get input voltage */
656	input_uV = 0;
657	if (rdev->supply)
658		input_uV = _regulator_get_voltage(rdev);
659	if (input_uV <= 0)
660		input_uV = rdev->constraints->input_uV;
661	if (input_uV <= 0)
662		return;
663
664	/* calc total requested load */
665	list_for_each_entry(sibling, &rdev->consumer_list, list)
666		current_uA += sibling->uA_load;
667
668	/* now get the optimum mode for our new total regulator load */
669	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670						  output_uV, current_uA);
671
672	/* check the new mode is allowed */
673	err = regulator_mode_constrain(rdev, &mode);
674	if (err == 0)
675		rdev->desc->ops->set_mode(rdev, mode);
676}
677
678static int suspend_set_state(struct regulator_dev *rdev,
679	struct regulator_state *rstate)
680{
681	int ret = 0;
682	bool can_set_state;
683
684	can_set_state = rdev->desc->ops->set_suspend_enable &&
685		rdev->desc->ops->set_suspend_disable;
686
687	/* If we have no suspend mode configration don't set anything;
688	 * only warn if the driver actually makes the suspend mode
689	 * configurable.
690	 */
691	if (!rstate->enabled && !rstate->disabled) {
692		if (can_set_state)
693			rdev_warn(rdev, "No configuration\n");
694		return 0;
695	}
696
697	if (rstate->enabled && rstate->disabled) {
698		rdev_err(rdev, "invalid configuration\n");
699		return -EINVAL;
700	}
701
702	if (!can_set_state) {
703		rdev_err(rdev, "no way to set suspend state\n");
704		return -EINVAL;
705	}
706
707	if (rstate->enabled)
708		ret = rdev->desc->ops->set_suspend_enable(rdev);
709	else
710		ret = rdev->desc->ops->set_suspend_disable(rdev);
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	rdev_info(rdev, "%s\n", buf);
810}
811
812static int machine_constraints_voltage(struct regulator_dev *rdev,
813	struct regulation_constraints *constraints)
814{
815	struct regulator_ops *ops = rdev->desc->ops;
816	int ret;
817
818	/* do we need to apply the constraint voltage */
819	if (rdev->constraints->apply_uV &&
820	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821		ret = _regulator_do_set_voltage(rdev,
822						rdev->constraints->min_uV,
823						rdev->constraints->max_uV);
824		if (ret < 0) {
825			rdev_err(rdev, "failed to apply %duV constraint\n",
826				 rdev->constraints->min_uV);
827			return ret;
828		}
829	}
830
831	/* constrain machine-level voltage specs to fit
832	 * the actual range supported by this regulator.
833	 */
834	if (ops->list_voltage && rdev->desc->n_voltages) {
835		int	count = rdev->desc->n_voltages;
836		int	i;
837		int	min_uV = INT_MAX;
838		int	max_uV = INT_MIN;
839		int	cmin = constraints->min_uV;
840		int	cmax = constraints->max_uV;
841
842		/* it's safe to autoconfigure fixed-voltage supplies
843		   and the constraints are used by list_voltage. */
844		if (count == 1 && !cmin) {
845			cmin = 1;
846			cmax = INT_MAX;
847			constraints->min_uV = cmin;
848			constraints->max_uV = cmax;
849		}
850
851		/* voltage constraints are optional */
852		if ((cmin == 0) && (cmax == 0))
853			return 0;
854
855		/* else require explicit machine-level constraints */
856		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857			rdev_err(rdev, "invalid voltage constraints\n");
858			return -EINVAL;
859		}
860
861		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862		for (i = 0; i < count; i++) {
863			int	value;
864
865			value = ops->list_voltage(rdev, i);
866			if (value <= 0)
867				continue;
868
869			/* maybe adjust [min_uV..max_uV] */
870			if (value >= cmin && value < min_uV)
871				min_uV = value;
872			if (value <= cmax && value > max_uV)
873				max_uV = value;
874		}
875
876		/* final: [min_uV..max_uV] valid iff constraints valid */
877		if (max_uV < min_uV) {
878			rdev_err(rdev, "unsupportable voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* use regulator's subset of machine constraints */
883		if (constraints->min_uV < min_uV) {
884			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885				 constraints->min_uV, min_uV);
886			constraints->min_uV = min_uV;
887		}
888		if (constraints->max_uV > max_uV) {
889			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890				 constraints->max_uV, max_uV);
891			constraints->max_uV = max_uV;
892		}
893	}
894
895	return 0;
896}
897
898/**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909static int set_machine_constraints(struct regulator_dev *rdev,
910	const struct regulation_constraints *constraints)
911{
912	int ret = 0;
913	struct regulator_ops *ops = rdev->desc->ops;
914
915	if (constraints)
916		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917					    GFP_KERNEL);
918	else
919		rdev->constraints = kzalloc(sizeof(*constraints),
920					    GFP_KERNEL);
921	if (!rdev->constraints)
922		return -ENOMEM;
923
924	ret = machine_constraints_voltage(rdev, rdev->constraints);
925	if (ret != 0)
926		goto out;
927
928	/* do we need to setup our suspend state */
929	if (rdev->constraints->initial_state) {
930		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931		if (ret < 0) {
932			rdev_err(rdev, "failed to set suspend state\n");
933			goto out;
934		}
935	}
936
937	if (rdev->constraints->initial_mode) {
938		if (!ops->set_mode) {
939			rdev_err(rdev, "no set_mode operation\n");
940			ret = -EINVAL;
941			goto out;
942		}
943
944		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945		if (ret < 0) {
946			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947			goto out;
948		}
949	}
950
951	/* If the constraints say the regulator should be on at this point
952	 * and we have control then make sure it is enabled.
953	 */
954	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955	    ops->enable) {
956		ret = ops->enable(rdev);
957		if (ret < 0) {
958			rdev_err(rdev, "failed to enable\n");
959			goto out;
960		}
961	}
962
963	print_constraints(rdev);
964	return 0;
965out:
966	kfree(rdev->constraints);
967	rdev->constraints = NULL;
968	return ret;
969}
970
971/**
972 * set_supply - set regulator supply regulator
973 * @rdev: regulator name
974 * @supply_rdev: supply regulator name
975 *
976 * Called by platform initialisation code to set the supply regulator for this
977 * regulator. This ensures that a regulators supply will also be enabled by the
978 * core if it's child is enabled.
979 */
980static int set_supply(struct regulator_dev *rdev,
981		      struct regulator_dev *supply_rdev)
982{
983	int err;
984
985	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988	if (IS_ERR(rdev->supply)) {
989		err = PTR_ERR(rdev->supply);
990		rdev->supply = NULL;
991		return err;
992	}
993
994	return 0;
995}
996
997/**
998 * set_consumer_device_supply - Bind a regulator to a symbolic supply
999 * @rdev:         regulator source
1000 * @consumer_dev: device the supply applies to
1001 * @consumer_dev_name: dev_name() string for device supply applies to
1002 * @supply:       symbolic name for supply
1003 *
1004 * Allows platform initialisation code to map physical regulator
1005 * sources to symbolic names for supplies for use by devices.  Devices
1006 * should use these symbolic names to request regulators, avoiding the
1007 * need to provide board-specific regulator names as platform data.
1008 *
1009 * Only one of consumer_dev and consumer_dev_name may be specified.
1010 */
1011static int set_consumer_device_supply(struct regulator_dev *rdev,
1012	struct device *consumer_dev, const char *consumer_dev_name,
1013	const char *supply)
1014{
1015	struct regulator_map *node;
1016	int has_dev;
1017
1018	if (consumer_dev && consumer_dev_name)
1019		return -EINVAL;
1020
1021	if (!consumer_dev_name && consumer_dev)
1022		consumer_dev_name = dev_name(consumer_dev);
1023
1024	if (supply == NULL)
1025		return -EINVAL;
1026
1027	if (consumer_dev_name != NULL)
1028		has_dev = 1;
1029	else
1030		has_dev = 0;
1031
1032	list_for_each_entry(node, &regulator_map_list, list) {
1033		if (node->dev_name && consumer_dev_name) {
1034			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1035				continue;
1036		} else if (node->dev_name || consumer_dev_name) {
1037			continue;
1038		}
1039
1040		if (strcmp(node->supply, supply) != 0)
1041			continue;
1042
1043		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1044			dev_name(&node->regulator->dev),
1045			node->regulator->desc->name,
1046			supply,
1047			dev_name(&rdev->dev), rdev_get_name(rdev));
1048		return -EBUSY;
1049	}
1050
1051	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1052	if (node == NULL)
1053		return -ENOMEM;
1054
1055	node->regulator = rdev;
1056	node->supply = supply;
1057
1058	if (has_dev) {
1059		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1060		if (node->dev_name == NULL) {
1061			kfree(node);
1062			return -ENOMEM;
1063		}
1064	}
1065
1066	list_add(&node->list, &regulator_map_list);
1067	return 0;
1068}
1069
1070static void unset_regulator_supplies(struct regulator_dev *rdev)
1071{
1072	struct regulator_map *node, *n;
1073
1074	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1075		if (rdev == node->regulator) {
1076			list_del(&node->list);
1077			kfree(node->dev_name);
1078			kfree(node);
1079		}
1080	}
1081}
1082
1083#define REG_STR_SIZE	64
1084
1085static struct regulator *create_regulator(struct regulator_dev *rdev,
1086					  struct device *dev,
1087					  const char *supply_name)
1088{
1089	struct regulator *regulator;
1090	char buf[REG_STR_SIZE];
1091	int err, size;
1092
1093	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1094	if (regulator == NULL)
1095		return NULL;
1096
1097	mutex_lock(&rdev->mutex);
1098	regulator->rdev = rdev;
1099	list_add(&regulator->list, &rdev->consumer_list);
1100
1101	if (dev) {
1102		/* create a 'requested_microamps_name' sysfs entry */
1103		size = scnprintf(buf, REG_STR_SIZE,
1104				 "microamps_requested_%s-%s",
1105				 dev_name(dev), supply_name);
1106		if (size >= REG_STR_SIZE)
1107			goto overflow_err;
1108
1109		regulator->dev = dev;
1110		sysfs_attr_init(&regulator->dev_attr.attr);
1111		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1112		if (regulator->dev_attr.attr.name == NULL)
1113			goto attr_name_err;
1114
1115		regulator->dev_attr.attr.mode = 0444;
1116		regulator->dev_attr.show = device_requested_uA_show;
1117		err = device_create_file(dev, &regulator->dev_attr);
1118		if (err < 0) {
1119			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1120			goto attr_name_err;
1121		}
1122
1123		/* also add a link to the device sysfs entry */
1124		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1125				 dev->kobj.name, supply_name);
1126		if (size >= REG_STR_SIZE)
1127			goto attr_err;
1128
1129		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1130		if (regulator->supply_name == NULL)
1131			goto attr_err;
1132
1133		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1134					buf);
1135		if (err) {
1136			rdev_warn(rdev, "could not add device link %s err %d\n",
1137				  dev->kobj.name, err);
1138			goto link_name_err;
1139		}
1140	} else {
1141		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1142		if (regulator->supply_name == NULL)
1143			goto attr_err;
1144	}
1145
1146#ifdef CONFIG_DEBUG_FS
1147	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1148						rdev->debugfs);
1149	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1150		rdev_warn(rdev, "Failed to create debugfs directory\n");
1151		regulator->debugfs = NULL;
1152	} else {
1153		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1154				   &regulator->uA_load);
1155		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1156				   &regulator->min_uV);
1157		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1158				   &regulator->max_uV);
1159	}
1160#endif
1161
1162	mutex_unlock(&rdev->mutex);
1163	return regulator;
1164link_name_err:
1165	kfree(regulator->supply_name);
1166attr_err:
1167	device_remove_file(regulator->dev, &regulator->dev_attr);
1168attr_name_err:
1169	kfree(regulator->dev_attr.attr.name);
1170overflow_err:
1171	list_del(&regulator->list);
1172	kfree(regulator);
1173	mutex_unlock(&rdev->mutex);
1174	return NULL;
1175}
1176
1177static int _regulator_get_enable_time(struct regulator_dev *rdev)
1178{
1179	if (!rdev->desc->ops->enable_time)
1180		return 0;
1181	return rdev->desc->ops->enable_time(rdev);
1182}
1183
1184static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1185							 const char *supply)
1186{
1187	struct regulator_dev *r;
1188	struct device_node *node;
1189
1190	/* first do a dt based lookup */
1191	if (dev && dev->of_node) {
1192		node = of_get_regulator(dev, supply);
1193		if (node)
1194			list_for_each_entry(r, &regulator_list, list)
1195				if (r->dev.parent &&
1196					node == r->dev.of_node)
1197					return r;
1198	}
1199
1200	/* if not found, try doing it non-dt way */
1201	list_for_each_entry(r, &regulator_list, list)
1202		if (strcmp(rdev_get_name(r), supply) == 0)
1203			return r;
1204
1205	return NULL;
1206}
1207
1208/* Internal regulator request function */
1209static struct regulator *_regulator_get(struct device *dev, const char *id,
1210					int exclusive)
1211{
1212	struct regulator_dev *rdev;
1213	struct regulator_map *map;
1214	struct regulator *regulator = ERR_PTR(-ENODEV);
1215	const char *devname = NULL;
1216	int ret;
1217
1218	if (id == NULL) {
1219		pr_err("get() with no identifier\n");
1220		return regulator;
1221	}
1222
1223	if (dev)
1224		devname = dev_name(dev);
1225
1226	mutex_lock(&regulator_list_mutex);
1227
1228	rdev = regulator_dev_lookup(dev, id);
1229	if (rdev)
1230		goto found;
1231
1232	list_for_each_entry(map, &regulator_map_list, list) {
1233		/* If the mapping has a device set up it must match */
1234		if (map->dev_name &&
1235		    (!devname || strcmp(map->dev_name, devname)))
1236			continue;
1237
1238		if (strcmp(map->supply, id) == 0) {
1239			rdev = map->regulator;
1240			goto found;
1241		}
1242	}
1243
1244	if (board_wants_dummy_regulator) {
1245		rdev = dummy_regulator_rdev;
1246		goto found;
1247	}
1248
1249#ifdef CONFIG_REGULATOR_DUMMY
1250	if (!devname)
1251		devname = "deviceless";
1252
1253	/* If the board didn't flag that it was fully constrained then
1254	 * substitute in a dummy regulator so consumers can continue.
1255	 */
1256	if (!has_full_constraints) {
1257		pr_warn("%s supply %s not found, using dummy regulator\n",
1258			devname, id);
1259		rdev = dummy_regulator_rdev;
1260		goto found;
1261	}
1262#endif
1263
1264	mutex_unlock(&regulator_list_mutex);
1265	return regulator;
1266
1267found:
1268	if (rdev->exclusive) {
1269		regulator = ERR_PTR(-EPERM);
1270		goto out;
1271	}
1272
1273	if (exclusive && rdev->open_count) {
1274		regulator = ERR_PTR(-EBUSY);
1275		goto out;
1276	}
1277
1278	if (!try_module_get(rdev->owner))
1279		goto out;
1280
1281	regulator = create_regulator(rdev, dev, id);
1282	if (regulator == NULL) {
1283		regulator = ERR_PTR(-ENOMEM);
1284		module_put(rdev->owner);
1285	}
1286
1287	rdev->open_count++;
1288	if (exclusive) {
1289		rdev->exclusive = 1;
1290
1291		ret = _regulator_is_enabled(rdev);
1292		if (ret > 0)
1293			rdev->use_count = 1;
1294		else
1295			rdev->use_count = 0;
1296	}
1297
1298out:
1299	mutex_unlock(&regulator_list_mutex);
1300
1301	return regulator;
1302}
1303
1304/**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged.  It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317struct regulator *regulator_get(struct device *dev, const char *id)
1318{
1319	return _regulator_get(dev, id, 0);
1320}
1321EXPORT_SYMBOL_GPL(regulator_get);
1322
1323/**
1324 * regulator_get_exclusive - obtain exclusive access to a regulator.
1325 * @dev: device for regulator "consumer"
1326 * @id: Supply name or regulator ID.
1327 *
1328 * Returns a struct regulator corresponding to the regulator producer,
1329 * or IS_ERR() condition containing errno.  Other consumers will be
1330 * unable to obtain this reference is held and the use count for the
1331 * regulator will be initialised to reflect the current state of the
1332 * regulator.
1333 *
1334 * This is intended for use by consumers which cannot tolerate shared
1335 * use of the regulator such as those which need to force the
1336 * regulator off for correct operation of the hardware they are
1337 * controlling.
1338 *
1339 * Use of supply names configured via regulator_set_device_supply() is
1340 * strongly encouraged.  It is recommended that the supply name used
1341 * should match the name used for the supply and/or the relevant
1342 * device pins in the datasheet.
1343 */
1344struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1345{
1346	return _regulator_get(dev, id, 1);
1347}
1348EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1349
1350/**
1351 * regulator_put - "free" the regulator source
1352 * @regulator: regulator source
1353 *
1354 * Note: drivers must ensure that all regulator_enable calls made on this
1355 * regulator source are balanced by regulator_disable calls prior to calling
1356 * this function.
1357 */
1358void regulator_put(struct regulator *regulator)
1359{
1360	struct regulator_dev *rdev;
1361
1362	if (regulator == NULL || IS_ERR(regulator))
1363		return;
1364
1365	mutex_lock(&regulator_list_mutex);
1366	rdev = regulator->rdev;
1367
1368#ifdef CONFIG_DEBUG_FS
1369	debugfs_remove_recursive(regulator->debugfs);
1370#endif
1371
1372	/* remove any sysfs entries */
1373	if (regulator->dev) {
1374		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1375		device_remove_file(regulator->dev, &regulator->dev_attr);
1376		kfree(regulator->dev_attr.attr.name);
1377	}
1378	kfree(regulator->supply_name);
1379	list_del(&regulator->list);
1380	kfree(regulator);
1381
1382	rdev->open_count--;
1383	rdev->exclusive = 0;
1384
1385	module_put(rdev->owner);
1386	mutex_unlock(&regulator_list_mutex);
1387}
1388EXPORT_SYMBOL_GPL(regulator_put);
1389
1390static int _regulator_can_change_status(struct regulator_dev *rdev)
1391{
1392	if (!rdev->constraints)
1393		return 0;
1394
1395	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1396		return 1;
1397	else
1398		return 0;
1399}
1400
1401/* locks held by regulator_enable() */
1402static int _regulator_enable(struct regulator_dev *rdev)
1403{
1404	int ret, delay;
1405
1406	/* check voltage and requested load before enabling */
1407	if (rdev->constraints &&
1408	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1409		drms_uA_update(rdev);
1410
1411	if (rdev->use_count == 0) {
1412		/* The regulator may on if it's not switchable or left on */
1413		ret = _regulator_is_enabled(rdev);
1414		if (ret == -EINVAL || ret == 0) {
1415			if (!_regulator_can_change_status(rdev))
1416				return -EPERM;
1417
1418			if (!rdev->desc->ops->enable)
1419				return -EINVAL;
1420
1421			/* Query before enabling in case configuration
1422			 * dependent.  */
1423			ret = _regulator_get_enable_time(rdev);
1424			if (ret >= 0) {
1425				delay = ret;
1426			} else {
1427				rdev_warn(rdev, "enable_time() failed: %d\n",
1428					   ret);
1429				delay = 0;
1430			}
1431
1432			trace_regulator_enable(rdev_get_name(rdev));
1433
1434			/* Allow the regulator to ramp; it would be useful
1435			 * to extend this for bulk operations so that the
1436			 * regulators can ramp together.  */
1437			ret = rdev->desc->ops->enable(rdev);
1438			if (ret < 0)
1439				return ret;
1440
1441			trace_regulator_enable_delay(rdev_get_name(rdev));
1442
1443			if (delay >= 1000) {
1444				mdelay(delay / 1000);
1445				udelay(delay % 1000);
1446			} else if (delay) {
1447				udelay(delay);
1448			}
1449
1450			trace_regulator_enable_complete(rdev_get_name(rdev));
1451
1452		} else if (ret < 0) {
1453			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1454			return ret;
1455		}
1456		/* Fallthrough on positive return values - already enabled */
1457	}
1458
1459	rdev->use_count++;
1460
1461	return 0;
1462}
1463
1464/**
1465 * regulator_enable - enable regulator output
1466 * @regulator: regulator source
1467 *
1468 * Request that the regulator be enabled with the regulator output at
1469 * the predefined voltage or current value.  Calls to regulator_enable()
1470 * must be balanced with calls to regulator_disable().
1471 *
1472 * NOTE: the output value can be set by other drivers, boot loader or may be
1473 * hardwired in the regulator.
1474 */
1475int regulator_enable(struct regulator *regulator)
1476{
1477	struct regulator_dev *rdev = regulator->rdev;
1478	int ret = 0;
1479
1480	if (rdev->supply) {
1481		ret = regulator_enable(rdev->supply);
1482		if (ret != 0)
1483			return ret;
1484	}
1485
1486	mutex_lock(&rdev->mutex);
1487	ret = _regulator_enable(rdev);
1488	mutex_unlock(&rdev->mutex);
1489
1490	if (ret != 0 && rdev->supply)
1491		regulator_disable(rdev->supply);
1492
1493	return ret;
1494}
1495EXPORT_SYMBOL_GPL(regulator_enable);
1496
1497/* locks held by regulator_disable() */
1498static int _regulator_disable(struct regulator_dev *rdev)
1499{
1500	int ret = 0;
1501
1502	if (WARN(rdev->use_count <= 0,
1503		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1504		return -EIO;
1505
1506	/* are we the last user and permitted to disable ? */
1507	if (rdev->use_count == 1 &&
1508	    (rdev->constraints && !rdev->constraints->always_on)) {
1509
1510		/* we are last user */
1511		if (_regulator_can_change_status(rdev) &&
1512		    rdev->desc->ops->disable) {
1513			trace_regulator_disable(rdev_get_name(rdev));
1514
1515			ret = rdev->desc->ops->disable(rdev);
1516			if (ret < 0) {
1517				rdev_err(rdev, "failed to disable\n");
1518				return ret;
1519			}
1520
1521			trace_regulator_disable_complete(rdev_get_name(rdev));
1522
1523			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1524					     NULL);
1525		}
1526
1527		rdev->use_count = 0;
1528	} else if (rdev->use_count > 1) {
1529
1530		if (rdev->constraints &&
1531			(rdev->constraints->valid_ops_mask &
1532			REGULATOR_CHANGE_DRMS))
1533			drms_uA_update(rdev);
1534
1535		rdev->use_count--;
1536	}
1537
1538	return ret;
1539}
1540
1541/**
1542 * regulator_disable - disable regulator output
1543 * @regulator: regulator source
1544 *
1545 * Disable the regulator output voltage or current.  Calls to
1546 * regulator_enable() must be balanced with calls to
1547 * regulator_disable().
1548 *
1549 * NOTE: this will only disable the regulator output if no other consumer
1550 * devices have it enabled, the regulator device supports disabling and
1551 * machine constraints permit this operation.
1552 */
1553int regulator_disable(struct regulator *regulator)
1554{
1555	struct regulator_dev *rdev = regulator->rdev;
1556	int ret = 0;
1557
1558	mutex_lock(&rdev->mutex);
1559	ret = _regulator_disable(rdev);
1560	mutex_unlock(&rdev->mutex);
1561
1562	if (ret == 0 && rdev->supply)
1563		regulator_disable(rdev->supply);
1564
1565	return ret;
1566}
1567EXPORT_SYMBOL_GPL(regulator_disable);
1568
1569/* locks held by regulator_force_disable() */
1570static int _regulator_force_disable(struct regulator_dev *rdev)
1571{
1572	int ret = 0;
1573
1574	/* force disable */
1575	if (rdev->desc->ops->disable) {
1576		/* ah well, who wants to live forever... */
1577		ret = rdev->desc->ops->disable(rdev);
1578		if (ret < 0) {
1579			rdev_err(rdev, "failed to force disable\n");
1580			return ret;
1581		}
1582		/* notify other consumers that power has been forced off */
1583		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1584			REGULATOR_EVENT_DISABLE, NULL);
1585	}
1586
1587	return ret;
1588}
1589
1590/**
1591 * regulator_force_disable - force disable regulator output
1592 * @regulator: regulator source
1593 *
1594 * Forcibly disable the regulator output voltage or current.
1595 * NOTE: this *will* disable the regulator output even if other consumer
1596 * devices have it enabled. This should be used for situations when device
1597 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1598 */
1599int regulator_force_disable(struct regulator *regulator)
1600{
1601	struct regulator_dev *rdev = regulator->rdev;
1602	int ret;
1603
1604	mutex_lock(&rdev->mutex);
1605	regulator->uA_load = 0;
1606	ret = _regulator_force_disable(regulator->rdev);
1607	mutex_unlock(&rdev->mutex);
1608
1609	if (rdev->supply)
1610		while (rdev->open_count--)
1611			regulator_disable(rdev->supply);
1612
1613	return ret;
1614}
1615EXPORT_SYMBOL_GPL(regulator_force_disable);
1616
1617static void regulator_disable_work(struct work_struct *work)
1618{
1619	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1620						  disable_work.work);
1621	int count, i, ret;
1622
1623	mutex_lock(&rdev->mutex);
1624
1625	BUG_ON(!rdev->deferred_disables);
1626
1627	count = rdev->deferred_disables;
1628	rdev->deferred_disables = 0;
1629
1630	for (i = 0; i < count; i++) {
1631		ret = _regulator_disable(rdev);
1632		if (ret != 0)
1633			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1634	}
1635
1636	mutex_unlock(&rdev->mutex);
1637
1638	if (rdev->supply) {
1639		for (i = 0; i < count; i++) {
1640			ret = regulator_disable(rdev->supply);
1641			if (ret != 0) {
1642				rdev_err(rdev,
1643					 "Supply disable failed: %d\n", ret);
1644			}
1645		}
1646	}
1647}
1648
1649/**
1650 * regulator_disable_deferred - disable regulator output with delay
1651 * @regulator: regulator source
1652 * @ms: miliseconds until the regulator is disabled
1653 *
1654 * Execute regulator_disable() on the regulator after a delay.  This
1655 * is intended for use with devices that require some time to quiesce.
1656 *
1657 * NOTE: this will only disable the regulator output if no other consumer
1658 * devices have it enabled, the regulator device supports disabling and
1659 * machine constraints permit this operation.
1660 */
1661int regulator_disable_deferred(struct regulator *regulator, int ms)
1662{
1663	struct regulator_dev *rdev = regulator->rdev;
1664	int ret;
1665
1666	mutex_lock(&rdev->mutex);
1667	rdev->deferred_disables++;
1668	mutex_unlock(&rdev->mutex);
1669
1670	ret = schedule_delayed_work(&rdev->disable_work,
1671				    msecs_to_jiffies(ms));
1672	if (ret < 0)
1673		return ret;
1674	else
1675		return 0;
1676}
1677EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1678
1679static int _regulator_is_enabled(struct regulator_dev *rdev)
1680{
1681	/* If we don't know then assume that the regulator is always on */
1682	if (!rdev->desc->ops->is_enabled)
1683		return 1;
1684
1685	return rdev->desc->ops->is_enabled(rdev);
1686}
1687
1688/**
1689 * regulator_is_enabled - is the regulator output enabled
1690 * @regulator: regulator source
1691 *
1692 * Returns positive if the regulator driver backing the source/client
1693 * has requested that the device be enabled, zero if it hasn't, else a
1694 * negative errno code.
1695 *
1696 * Note that the device backing this regulator handle can have multiple
1697 * users, so it might be enabled even if regulator_enable() was never
1698 * called for this particular source.
1699 */
1700int regulator_is_enabled(struct regulator *regulator)
1701{
1702	int ret;
1703
1704	mutex_lock(&regulator->rdev->mutex);
1705	ret = _regulator_is_enabled(regulator->rdev);
1706	mutex_unlock(&regulator->rdev->mutex);
1707
1708	return ret;
1709}
1710EXPORT_SYMBOL_GPL(regulator_is_enabled);
1711
1712/**
1713 * regulator_count_voltages - count regulator_list_voltage() selectors
1714 * @regulator: regulator source
1715 *
1716 * Returns number of selectors, or negative errno.  Selectors are
1717 * numbered starting at zero, and typically correspond to bitfields
1718 * in hardware registers.
1719 */
1720int regulator_count_voltages(struct regulator *regulator)
1721{
1722	struct regulator_dev	*rdev = regulator->rdev;
1723
1724	return rdev->desc->n_voltages ? : -EINVAL;
1725}
1726EXPORT_SYMBOL_GPL(regulator_count_voltages);
1727
1728/**
1729 * regulator_list_voltage - enumerate supported voltages
1730 * @regulator: regulator source
1731 * @selector: identify voltage to list
1732 * Context: can sleep
1733 *
1734 * Returns a voltage that can be passed to @regulator_set_voltage(),
1735 * zero if this selector code can't be used on this system, or a
1736 * negative errno.
1737 */
1738int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1739{
1740	struct regulator_dev	*rdev = regulator->rdev;
1741	struct regulator_ops	*ops = rdev->desc->ops;
1742	int			ret;
1743
1744	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1745		return -EINVAL;
1746
1747	mutex_lock(&rdev->mutex);
1748	ret = ops->list_voltage(rdev, selector);
1749	mutex_unlock(&rdev->mutex);
1750
1751	if (ret > 0) {
1752		if (ret < rdev->constraints->min_uV)
1753			ret = 0;
1754		else if (ret > rdev->constraints->max_uV)
1755			ret = 0;
1756	}
1757
1758	return ret;
1759}
1760EXPORT_SYMBOL_GPL(regulator_list_voltage);
1761
1762/**
1763 * regulator_is_supported_voltage - check if a voltage range can be supported
1764 *
1765 * @regulator: Regulator to check.
1766 * @min_uV: Minimum required voltage in uV.
1767 * @max_uV: Maximum required voltage in uV.
1768 *
1769 * Returns a boolean or a negative error code.
1770 */
1771int regulator_is_supported_voltage(struct regulator *regulator,
1772				   int min_uV, int max_uV)
1773{
1774	int i, voltages, ret;
1775
1776	ret = regulator_count_voltages(regulator);
1777	if (ret < 0)
1778		return ret;
1779	voltages = ret;
1780
1781	for (i = 0; i < voltages; i++) {
1782		ret = regulator_list_voltage(regulator, i);
1783
1784		if (ret >= min_uV && ret <= max_uV)
1785			return 1;
1786	}
1787
1788	return 0;
1789}
1790
1791static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1792				     int min_uV, int max_uV)
1793{
1794	int ret;
1795	int delay = 0;
1796	unsigned int selector;
1797
1798	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1799
1800	min_uV += rdev->constraints->uV_offset;
1801	max_uV += rdev->constraints->uV_offset;
1802
1803	if (rdev->desc->ops->set_voltage) {
1804		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1805						   &selector);
1806
1807		if (rdev->desc->ops->list_voltage)
1808			selector = rdev->desc->ops->list_voltage(rdev,
1809								 selector);
1810		else
1811			selector = -1;
1812	} else if (rdev->desc->ops->set_voltage_sel) {
1813		int best_val = INT_MAX;
1814		int i;
1815
1816		selector = 0;
1817
1818		/* Find the smallest voltage that falls within the specified
1819		 * range.
1820		 */
1821		for (i = 0; i < rdev->desc->n_voltages; i++) {
1822			ret = rdev->desc->ops->list_voltage(rdev, i);
1823			if (ret < 0)
1824				continue;
1825
1826			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1827				best_val = ret;
1828				selector = i;
1829			}
1830		}
1831
1832		/*
1833		 * If we can't obtain the old selector there is not enough
1834		 * info to call set_voltage_time_sel().
1835		 */
1836		if (rdev->desc->ops->set_voltage_time_sel &&
1837		    rdev->desc->ops->get_voltage_sel) {
1838			unsigned int old_selector = 0;
1839
1840			ret = rdev->desc->ops->get_voltage_sel(rdev);
1841			if (ret < 0)
1842				return ret;
1843			old_selector = ret;
1844			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1845						old_selector, selector);
1846		}
1847
1848		if (best_val != INT_MAX) {
1849			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1850			selector = best_val;
1851		} else {
1852			ret = -EINVAL;
1853		}
1854	} else {
1855		ret = -EINVAL;
1856	}
1857
1858	/* Insert any necessary delays */
1859	if (delay >= 1000) {
1860		mdelay(delay / 1000);
1861		udelay(delay % 1000);
1862	} else if (delay) {
1863		udelay(delay);
1864	}
1865
1866	if (ret == 0)
1867		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1868				     NULL);
1869
1870	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1871
1872	return ret;
1873}
1874
1875/**
1876 * regulator_set_voltage - set regulator output voltage
1877 * @regulator: regulator source
1878 * @min_uV: Minimum required voltage in uV
1879 * @max_uV: Maximum acceptable voltage in uV
1880 *
1881 * Sets a voltage regulator to the desired output voltage. This can be set
1882 * during any regulator state. IOW, regulator can be disabled or enabled.
1883 *
1884 * If the regulator is enabled then the voltage will change to the new value
1885 * immediately otherwise if the regulator is disabled the regulator will
1886 * output at the new voltage when enabled.
1887 *
1888 * NOTE: If the regulator is shared between several devices then the lowest
1889 * request voltage that meets the system constraints will be used.
1890 * Regulator system constraints must be set for this regulator before
1891 * calling this function otherwise this call will fail.
1892 */
1893int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1894{
1895	struct regulator_dev *rdev = regulator->rdev;
1896	int ret = 0;
1897
1898	mutex_lock(&rdev->mutex);
1899
1900	/* If we're setting the same range as last time the change
1901	 * should be a noop (some cpufreq implementations use the same
1902	 * voltage for multiple frequencies, for example).
1903	 */
1904	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1905		goto out;
1906
1907	/* sanity check */
1908	if (!rdev->desc->ops->set_voltage &&
1909	    !rdev->desc->ops->set_voltage_sel) {
1910		ret = -EINVAL;
1911		goto out;
1912	}
1913
1914	/* constraints check */
1915	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1916	if (ret < 0)
1917		goto out;
1918	regulator->min_uV = min_uV;
1919	regulator->max_uV = max_uV;
1920
1921	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1922	if (ret < 0)
1923		goto out;
1924
1925	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1926
1927out:
1928	mutex_unlock(&rdev->mutex);
1929	return ret;
1930}
1931EXPORT_SYMBOL_GPL(regulator_set_voltage);
1932
1933/**
1934 * regulator_set_voltage_time - get raise/fall time
1935 * @regulator: regulator source
1936 * @old_uV: starting voltage in microvolts
1937 * @new_uV: target voltage in microvolts
1938 *
1939 * Provided with the starting and ending voltage, this function attempts to
1940 * calculate the time in microseconds required to rise or fall to this new
1941 * voltage.
1942 */
1943int regulator_set_voltage_time(struct regulator *regulator,
1944			       int old_uV, int new_uV)
1945{
1946	struct regulator_dev	*rdev = regulator->rdev;
1947	struct regulator_ops	*ops = rdev->desc->ops;
1948	int old_sel = -1;
1949	int new_sel = -1;
1950	int voltage;
1951	int i;
1952
1953	/* Currently requires operations to do this */
1954	if (!ops->list_voltage || !ops->set_voltage_time_sel
1955	    || !rdev->desc->n_voltages)
1956		return -EINVAL;
1957
1958	for (i = 0; i < rdev->desc->n_voltages; i++) {
1959		/* We only look for exact voltage matches here */
1960		voltage = regulator_list_voltage(regulator, i);
1961		if (voltage < 0)
1962			return -EINVAL;
1963		if (voltage == 0)
1964			continue;
1965		if (voltage == old_uV)
1966			old_sel = i;
1967		if (voltage == new_uV)
1968			new_sel = i;
1969	}
1970
1971	if (old_sel < 0 || new_sel < 0)
1972		return -EINVAL;
1973
1974	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1975}
1976EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1977
1978/**
1979 * regulator_sync_voltage - re-apply last regulator output voltage
1980 * @regulator: regulator source
1981 *
1982 * Re-apply the last configured voltage.  This is intended to be used
1983 * where some external control source the consumer is cooperating with
1984 * has caused the configured voltage to change.
1985 */
1986int regulator_sync_voltage(struct regulator *regulator)
1987{
1988	struct regulator_dev *rdev = regulator->rdev;
1989	int ret, min_uV, max_uV;
1990
1991	mutex_lock(&rdev->mutex);
1992
1993	if (!rdev->desc->ops->set_voltage &&
1994	    !rdev->desc->ops->set_voltage_sel) {
1995		ret = -EINVAL;
1996		goto out;
1997	}
1998
1999	/* This is only going to work if we've had a voltage configured. */
2000	if (!regulator->min_uV && !regulator->max_uV) {
2001		ret = -EINVAL;
2002		goto out;
2003	}
2004
2005	min_uV = regulator->min_uV;
2006	max_uV = regulator->max_uV;
2007
2008	/* This should be a paranoia check... */
2009	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2010	if (ret < 0)
2011		goto out;
2012
2013	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2014	if (ret < 0)
2015		goto out;
2016
2017	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2018
2019out:
2020	mutex_unlock(&rdev->mutex);
2021	return ret;
2022}
2023EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2024
2025static int _regulator_get_voltage(struct regulator_dev *rdev)
2026{
2027	int sel, ret;
2028
2029	if (rdev->desc->ops->get_voltage_sel) {
2030		sel = rdev->desc->ops->get_voltage_sel(rdev);
2031		if (sel < 0)
2032			return sel;
2033		ret = rdev->desc->ops->list_voltage(rdev, sel);
2034	} else if (rdev->desc->ops->get_voltage) {
2035		ret = rdev->desc->ops->get_voltage(rdev);
2036	} else {
2037		return -EINVAL;
2038	}
2039
2040	if (ret < 0)
2041		return ret;
2042	return ret - rdev->constraints->uV_offset;
2043}
2044
2045/**
2046 * regulator_get_voltage - get regulator output voltage
2047 * @regulator: regulator source
2048 *
2049 * This returns the current regulator voltage in uV.
2050 *
2051 * NOTE: If the regulator is disabled it will return the voltage value. This
2052 * function should not be used to determine regulator state.
2053 */
2054int regulator_get_voltage(struct regulator *regulator)
2055{
2056	int ret;
2057
2058	mutex_lock(&regulator->rdev->mutex);
2059
2060	ret = _regulator_get_voltage(regulator->rdev);
2061
2062	mutex_unlock(&regulator->rdev->mutex);
2063
2064	return ret;
2065}
2066EXPORT_SYMBOL_GPL(regulator_get_voltage);
2067
2068/**
2069 * regulator_set_current_limit - set regulator output current limit
2070 * @regulator: regulator source
2071 * @min_uA: Minimuum supported current in uA
2072 * @max_uA: Maximum supported current in uA
2073 *
2074 * Sets current sink to the desired output current. This can be set during
2075 * any regulator state. IOW, regulator can be disabled or enabled.
2076 *
2077 * If the regulator is enabled then the current will change to the new value
2078 * immediately otherwise if the regulator is disabled the regulator will
2079 * output at the new current when enabled.
2080 *
2081 * NOTE: Regulator system constraints must be set for this regulator before
2082 * calling this function otherwise this call will fail.
2083 */
2084int regulator_set_current_limit(struct regulator *regulator,
2085			       int min_uA, int max_uA)
2086{
2087	struct regulator_dev *rdev = regulator->rdev;
2088	int ret;
2089
2090	mutex_lock(&rdev->mutex);
2091
2092	/* sanity check */
2093	if (!rdev->desc->ops->set_current_limit) {
2094		ret = -EINVAL;
2095		goto out;
2096	}
2097
2098	/* constraints check */
2099	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2100	if (ret < 0)
2101		goto out;
2102
2103	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2104out:
2105	mutex_unlock(&rdev->mutex);
2106	return ret;
2107}
2108EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2109
2110static int _regulator_get_current_limit(struct regulator_dev *rdev)
2111{
2112	int ret;
2113
2114	mutex_lock(&rdev->mutex);
2115
2116	/* sanity check */
2117	if (!rdev->desc->ops->get_current_limit) {
2118		ret = -EINVAL;
2119		goto out;
2120	}
2121
2122	ret = rdev->desc->ops->get_current_limit(rdev);
2123out:
2124	mutex_unlock(&rdev->mutex);
2125	return ret;
2126}
2127
2128/**
2129 * regulator_get_current_limit - get regulator output current
2130 * @regulator: regulator source
2131 *
2132 * This returns the current supplied by the specified current sink in uA.
2133 *
2134 * NOTE: If the regulator is disabled it will return the current value. This
2135 * function should not be used to determine regulator state.
2136 */
2137int regulator_get_current_limit(struct regulator *regulator)
2138{
2139	return _regulator_get_current_limit(regulator->rdev);
2140}
2141EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2142
2143/**
2144 * regulator_set_mode - set regulator operating mode
2145 * @regulator: regulator source
2146 * @mode: operating mode - one of the REGULATOR_MODE constants
2147 *
2148 * Set regulator operating mode to increase regulator efficiency or improve
2149 * regulation performance.
2150 *
2151 * NOTE: Regulator system constraints must be set for this regulator before
2152 * calling this function otherwise this call will fail.
2153 */
2154int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2155{
2156	struct regulator_dev *rdev = regulator->rdev;
2157	int ret;
2158	int regulator_curr_mode;
2159
2160	mutex_lock(&rdev->mutex);
2161
2162	/* sanity check */
2163	if (!rdev->desc->ops->set_mode) {
2164		ret = -EINVAL;
2165		goto out;
2166	}
2167
2168	/* return if the same mode is requested */
2169	if (rdev->desc->ops->get_mode) {
2170		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2171		if (regulator_curr_mode == mode) {
2172			ret = 0;
2173			goto out;
2174		}
2175	}
2176
2177	/* constraints check */
2178	ret = regulator_mode_constrain(rdev, &mode);
2179	if (ret < 0)
2180		goto out;
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183out:
2184	mutex_unlock(&rdev->mutex);
2185	return ret;
2186}
2187EXPORT_SYMBOL_GPL(regulator_set_mode);
2188
2189static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2190{
2191	int ret;
2192
2193	mutex_lock(&rdev->mutex);
2194
2195	/* sanity check */
2196	if (!rdev->desc->ops->get_mode) {
2197		ret = -EINVAL;
2198		goto out;
2199	}
2200
2201	ret = rdev->desc->ops->get_mode(rdev);
2202out:
2203	mutex_unlock(&rdev->mutex);
2204	return ret;
2205}
2206
2207/**
2208 * regulator_get_mode - get regulator operating mode
2209 * @regulator: regulator source
2210 *
2211 * Get the current regulator operating mode.
2212 */
2213unsigned int regulator_get_mode(struct regulator *regulator)
2214{
2215	return _regulator_get_mode(regulator->rdev);
2216}
2217EXPORT_SYMBOL_GPL(regulator_get_mode);
2218
2219/**
2220 * regulator_set_optimum_mode - set regulator optimum operating mode
2221 * @regulator: regulator source
2222 * @uA_load: load current
2223 *
2224 * Notifies the regulator core of a new device load. This is then used by
2225 * DRMS (if enabled by constraints) to set the most efficient regulator
2226 * operating mode for the new regulator loading.
2227 *
2228 * Consumer devices notify their supply regulator of the maximum power
2229 * they will require (can be taken from device datasheet in the power
2230 * consumption tables) when they change operational status and hence power
2231 * state. Examples of operational state changes that can affect power
2232 * consumption are :-
2233 *
2234 *    o Device is opened / closed.
2235 *    o Device I/O is about to begin or has just finished.
2236 *    o Device is idling in between work.
2237 *
2238 * This information is also exported via sysfs to userspace.
2239 *
2240 * DRMS will sum the total requested load on the regulator and change
2241 * to the most efficient operating mode if platform constraints allow.
2242 *
2243 * Returns the new regulator mode or error.
2244 */
2245int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2246{
2247	struct regulator_dev *rdev = regulator->rdev;
2248	struct regulator *consumer;
2249	int ret, output_uV, input_uV, total_uA_load = 0;
2250	unsigned int mode;
2251
2252	mutex_lock(&rdev->mutex);
2253
2254	/*
2255	 * first check to see if we can set modes at all, otherwise just
2256	 * tell the consumer everything is OK.
2257	 */
2258	regulator->uA_load = uA_load;
2259	ret = regulator_check_drms(rdev);
2260	if (ret < 0) {
2261		ret = 0;
2262		goto out;
2263	}
2264
2265	if (!rdev->desc->ops->get_optimum_mode)
2266		goto out;
2267
2268	/*
2269	 * we can actually do this so any errors are indicators of
2270	 * potential real failure.
2271	 */
2272	ret = -EINVAL;
2273
2274	/* get output voltage */
2275	output_uV = _regulator_get_voltage(rdev);
2276	if (output_uV <= 0) {
2277		rdev_err(rdev, "invalid output voltage found\n");
2278		goto out;
2279	}
2280
2281	/* get input voltage */
2282	input_uV = 0;
2283	if (rdev->supply)
2284		input_uV = regulator_get_voltage(rdev->supply);
2285	if (input_uV <= 0)
2286		input_uV = rdev->constraints->input_uV;
2287	if (input_uV <= 0) {
2288		rdev_err(rdev, "invalid input voltage found\n");
2289		goto out;
2290	}
2291
2292	/* calc total requested load for this regulator */
2293	list_for_each_entry(consumer, &rdev->consumer_list, list)
2294		total_uA_load += consumer->uA_load;
2295
2296	mode = rdev->desc->ops->get_optimum_mode(rdev,
2297						 input_uV, output_uV,
2298						 total_uA_load);
2299	ret = regulator_mode_constrain(rdev, &mode);
2300	if (ret < 0) {
2301		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2302			 total_uA_load, input_uV, output_uV);
2303		goto out;
2304	}
2305
2306	ret = rdev->desc->ops->set_mode(rdev, mode);
2307	if (ret < 0) {
2308		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2309		goto out;
2310	}
2311	ret = mode;
2312out:
2313	mutex_unlock(&rdev->mutex);
2314	return ret;
2315}
2316EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2317
2318/**
2319 * regulator_register_notifier - register regulator event notifier
2320 * @regulator: regulator source
2321 * @nb: notifier block
2322 *
2323 * Register notifier block to receive regulator events.
2324 */
2325int regulator_register_notifier(struct regulator *regulator,
2326			      struct notifier_block *nb)
2327{
2328	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2329						nb);
2330}
2331EXPORT_SYMBOL_GPL(regulator_register_notifier);
2332
2333/**
2334 * regulator_unregister_notifier - unregister regulator event notifier
2335 * @regulator: regulator source
2336 * @nb: notifier block
2337 *
2338 * Unregister regulator event notifier block.
2339 */
2340int regulator_unregister_notifier(struct regulator *regulator,
2341				struct notifier_block *nb)
2342{
2343	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2344						  nb);
2345}
2346EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2347
2348/* notify regulator consumers and downstream regulator consumers.
2349 * Note mutex must be held by caller.
2350 */
2351static void _notifier_call_chain(struct regulator_dev *rdev,
2352				  unsigned long event, void *data)
2353{
2354	/* call rdev chain first */
2355	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2356}
2357
2358/**
2359 * regulator_bulk_get - get multiple regulator consumers
2360 *
2361 * @dev:           Device to supply
2362 * @num_consumers: Number of consumers to register
2363 * @consumers:     Configuration of consumers; clients are stored here.
2364 *
2365 * @return 0 on success, an errno on failure.
2366 *
2367 * This helper function allows drivers to get several regulator
2368 * consumers in one operation.  If any of the regulators cannot be
2369 * acquired then any regulators that were allocated will be freed
2370 * before returning to the caller.
2371 */
2372int regulator_bulk_get(struct device *dev, int num_consumers,
2373		       struct regulator_bulk_data *consumers)
2374{
2375	int i;
2376	int ret;
2377
2378	for (i = 0; i < num_consumers; i++)
2379		consumers[i].consumer = NULL;
2380
2381	for (i = 0; i < num_consumers; i++) {
2382		consumers[i].consumer = regulator_get(dev,
2383						      consumers[i].supply);
2384		if (IS_ERR(consumers[i].consumer)) {
2385			ret = PTR_ERR(consumers[i].consumer);
2386			dev_err(dev, "Failed to get supply '%s': %d\n",
2387				consumers[i].supply, ret);
2388			consumers[i].consumer = NULL;
2389			goto err;
2390		}
2391	}
2392
2393	return 0;
2394
2395err:
2396	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2397		regulator_put(consumers[i].consumer);
2398
2399	return ret;
2400}
2401EXPORT_SYMBOL_GPL(regulator_bulk_get);
2402
2403static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2404{
2405	struct regulator_bulk_data *bulk = data;
2406
2407	bulk->ret = regulator_enable(bulk->consumer);
2408}
2409
2410/**
2411 * regulator_bulk_enable - enable multiple regulator consumers
2412 *
2413 * @num_consumers: Number of consumers
2414 * @consumers:     Consumer data; clients are stored here.
2415 * @return         0 on success, an errno on failure
2416 *
2417 * This convenience API allows consumers to enable multiple regulator
2418 * clients in a single API call.  If any consumers cannot be enabled
2419 * then any others that were enabled will be disabled again prior to
2420 * return.
2421 */
2422int regulator_bulk_enable(int num_consumers,
2423			  struct regulator_bulk_data *consumers)
2424{
2425	LIST_HEAD(async_domain);
2426	int i;
2427	int ret = 0;
2428
2429	for (i = 0; i < num_consumers; i++)
2430		async_schedule_domain(regulator_bulk_enable_async,
2431				      &consumers[i], &async_domain);
2432
2433	async_synchronize_full_domain(&async_domain);
2434
2435	/* If any consumer failed we need to unwind any that succeeded */
2436	for (i = 0; i < num_consumers; i++) {
2437		if (consumers[i].ret != 0) {
2438			ret = consumers[i].ret;
2439			goto err;
2440		}
2441	}
2442
2443	return 0;
2444
2445err:
2446	for (i = 0; i < num_consumers; i++)
2447		if (consumers[i].ret == 0)
2448			regulator_disable(consumers[i].consumer);
2449		else
2450			pr_err("Failed to enable %s: %d\n",
2451			       consumers[i].supply, consumers[i].ret);
2452
2453	return ret;
2454}
2455EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2456
2457/**
2458 * regulator_bulk_disable - disable multiple regulator consumers
2459 *
2460 * @num_consumers: Number of consumers
2461 * @consumers:     Consumer data; clients are stored here.
2462 * @return         0 on success, an errno on failure
2463 *
2464 * This convenience API allows consumers to disable multiple regulator
2465 * clients in a single API call.  If any consumers cannot be enabled
2466 * then any others that were disabled will be disabled again prior to
2467 * return.
2468 */
2469int regulator_bulk_disable(int num_consumers,
2470			   struct regulator_bulk_data *consumers)
2471{
2472	int i;
2473	int ret;
2474
2475	for (i = 0; i < num_consumers; i++) {
2476		ret = regulator_disable(consumers[i].consumer);
2477		if (ret != 0)
2478			goto err;
2479	}
2480
2481	return 0;
2482
2483err:
2484	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2485	for (--i; i >= 0; --i)
2486		regulator_enable(consumers[i].consumer);
2487
2488	return ret;
2489}
2490EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2491
2492/**
2493 * regulator_bulk_free - free multiple regulator consumers
2494 *
2495 * @num_consumers: Number of consumers
2496 * @consumers:     Consumer data; clients are stored here.
2497 *
2498 * This convenience API allows consumers to free multiple regulator
2499 * clients in a single API call.
2500 */
2501void regulator_bulk_free(int num_consumers,
2502			 struct regulator_bulk_data *consumers)
2503{
2504	int i;
2505
2506	for (i = 0; i < num_consumers; i++) {
2507		regulator_put(consumers[i].consumer);
2508		consumers[i].consumer = NULL;
2509	}
2510}
2511EXPORT_SYMBOL_GPL(regulator_bulk_free);
2512
2513/**
2514 * regulator_notifier_call_chain - call regulator event notifier
2515 * @rdev: regulator source
2516 * @event: notifier block
2517 * @data: callback-specific data.
2518 *
2519 * Called by regulator drivers to notify clients a regulator event has
2520 * occurred. We also notify regulator clients downstream.
2521 * Note lock must be held by caller.
2522 */
2523int regulator_notifier_call_chain(struct regulator_dev *rdev,
2524				  unsigned long event, void *data)
2525{
2526	_notifier_call_chain(rdev, event, data);
2527	return NOTIFY_DONE;
2528
2529}
2530EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2531
2532/**
2533 * regulator_mode_to_status - convert a regulator mode into a status
2534 *
2535 * @mode: Mode to convert
2536 *
2537 * Convert a regulator mode into a status.
2538 */
2539int regulator_mode_to_status(unsigned int mode)
2540{
2541	switch (mode) {
2542	case REGULATOR_MODE_FAST:
2543		return REGULATOR_STATUS_FAST;
2544	case REGULATOR_MODE_NORMAL:
2545		return REGULATOR_STATUS_NORMAL;
2546	case REGULATOR_MODE_IDLE:
2547		return REGULATOR_STATUS_IDLE;
2548	case REGULATOR_STATUS_STANDBY:
2549		return REGULATOR_STATUS_STANDBY;
2550	default:
2551		return 0;
2552	}
2553}
2554EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2555
2556/*
2557 * To avoid cluttering sysfs (and memory) with useless state, only
2558 * create attributes that can be meaningfully displayed.
2559 */
2560static int add_regulator_attributes(struct regulator_dev *rdev)
2561{
2562	struct device		*dev = &rdev->dev;
2563	struct regulator_ops	*ops = rdev->desc->ops;
2564	int			status = 0;
2565
2566	/* some attributes need specific methods to be displayed */
2567	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2568	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2569		status = device_create_file(dev, &dev_attr_microvolts);
2570		if (status < 0)
2571			return status;
2572	}
2573	if (ops->get_current_limit) {
2574		status = device_create_file(dev, &dev_attr_microamps);
2575		if (status < 0)
2576			return status;
2577	}
2578	if (ops->get_mode) {
2579		status = device_create_file(dev, &dev_attr_opmode);
2580		if (status < 0)
2581			return status;
2582	}
2583	if (ops->is_enabled) {
2584		status = device_create_file(dev, &dev_attr_state);
2585		if (status < 0)
2586			return status;
2587	}
2588	if (ops->get_status) {
2589		status = device_create_file(dev, &dev_attr_status);
2590		if (status < 0)
2591			return status;
2592	}
2593
2594	/* some attributes are type-specific */
2595	if (rdev->desc->type == REGULATOR_CURRENT) {
2596		status = device_create_file(dev, &dev_attr_requested_microamps);
2597		if (status < 0)
2598			return status;
2599	}
2600
2601	/* all the other attributes exist to support constraints;
2602	 * don't show them if there are no constraints, or if the
2603	 * relevant supporting methods are missing.
2604	 */
2605	if (!rdev->constraints)
2606		return status;
2607
2608	/* constraints need specific supporting methods */
2609	if (ops->set_voltage || ops->set_voltage_sel) {
2610		status = device_create_file(dev, &dev_attr_min_microvolts);
2611		if (status < 0)
2612			return status;
2613		status = device_create_file(dev, &dev_attr_max_microvolts);
2614		if (status < 0)
2615			return status;
2616	}
2617	if (ops->set_current_limit) {
2618		status = device_create_file(dev, &dev_attr_min_microamps);
2619		if (status < 0)
2620			return status;
2621		status = device_create_file(dev, &dev_attr_max_microamps);
2622		if (status < 0)
2623			return status;
2624	}
2625
2626	/* suspend mode constraints need multiple supporting methods */
2627	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2628		return status;
2629
2630	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2631	if (status < 0)
2632		return status;
2633	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2634	if (status < 0)
2635		return status;
2636	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2637	if (status < 0)
2638		return status;
2639
2640	if (ops->set_suspend_voltage) {
2641		status = device_create_file(dev,
2642				&dev_attr_suspend_standby_microvolts);
2643		if (status < 0)
2644			return status;
2645		status = device_create_file(dev,
2646				&dev_attr_suspend_mem_microvolts);
2647		if (status < 0)
2648			return status;
2649		status = device_create_file(dev,
2650				&dev_attr_suspend_disk_microvolts);
2651		if (status < 0)
2652			return status;
2653	}
2654
2655	if (ops->set_suspend_mode) {
2656		status = device_create_file(dev,
2657				&dev_attr_suspend_standby_mode);
2658		if (status < 0)
2659			return status;
2660		status = device_create_file(dev,
2661				&dev_attr_suspend_mem_mode);
2662		if (status < 0)
2663			return status;
2664		status = device_create_file(dev,
2665				&dev_attr_suspend_disk_mode);
2666		if (status < 0)
2667			return status;
2668	}
2669
2670	return status;
2671}
2672
2673static void rdev_init_debugfs(struct regulator_dev *rdev)
2674{
2675#ifdef CONFIG_DEBUG_FS
2676	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2677	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2678		rdev_warn(rdev, "Failed to create debugfs directory\n");
2679		rdev->debugfs = NULL;
2680		return;
2681	}
2682
2683	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2684			   &rdev->use_count);
2685	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2686			   &rdev->open_count);
2687#endif
2688}
2689
2690/**
2691 * regulator_register - register regulator
2692 * @regulator_desc: regulator to register
2693 * @dev: struct device for the regulator
2694 * @init_data: platform provided init data, passed through by driver
2695 * @driver_data: private regulator data
2696 *
2697 * Called by regulator drivers to register a regulator.
2698 * Returns 0 on success.
2699 */
2700struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2701	struct device *dev, const struct regulator_init_data *init_data,
2702	void *driver_data, struct device_node *of_node)
2703{
2704	const struct regulation_constraints *constraints = NULL;
2705	static atomic_t regulator_no = ATOMIC_INIT(0);
2706	struct regulator_dev *rdev;
2707	int ret, i;
2708	const char *supply = NULL;
2709
2710	if (regulator_desc == NULL)
2711		return ERR_PTR(-EINVAL);
2712
2713	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2714		return ERR_PTR(-EINVAL);
2715
2716	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2717	    regulator_desc->type != REGULATOR_CURRENT)
2718		return ERR_PTR(-EINVAL);
2719
2720	/* Only one of each should be implemented */
2721	WARN_ON(regulator_desc->ops->get_voltage &&
2722		regulator_desc->ops->get_voltage_sel);
2723	WARN_ON(regulator_desc->ops->set_voltage &&
2724		regulator_desc->ops->set_voltage_sel);
2725
2726	/* If we're using selectors we must implement list_voltage. */
2727	if (regulator_desc->ops->get_voltage_sel &&
2728	    !regulator_desc->ops->list_voltage) {
2729		return ERR_PTR(-EINVAL);
2730	}
2731	if (regulator_desc->ops->set_voltage_sel &&
2732	    !regulator_desc->ops->list_voltage) {
2733		return ERR_PTR(-EINVAL);
2734	}
2735
2736	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2737	if (rdev == NULL)
2738		return ERR_PTR(-ENOMEM);
2739
2740	mutex_lock(&regulator_list_mutex);
2741
2742	mutex_init(&rdev->mutex);
2743	rdev->reg_data = driver_data;
2744	rdev->owner = regulator_desc->owner;
2745	rdev->desc = regulator_desc;
2746	INIT_LIST_HEAD(&rdev->consumer_list);
2747	INIT_LIST_HEAD(&rdev->list);
2748	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2749	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2750
2751	/* preform any regulator specific init */
2752	if (init_data && init_data->regulator_init) {
2753		ret = init_data->regulator_init(rdev->reg_data);
2754		if (ret < 0)
2755			goto clean;
2756	}
2757
2758	/* register with sysfs */
2759	rdev->dev.class = &regulator_class;
2760	rdev->dev.of_node = of_node;
2761	rdev->dev.parent = dev;
2762	dev_set_name(&rdev->dev, "regulator.%d",
2763		     atomic_inc_return(&regulator_no) - 1);
2764	ret = device_register(&rdev->dev);
2765	if (ret != 0) {
2766		put_device(&rdev->dev);
2767		goto clean;
2768	}
2769
2770	dev_set_drvdata(&rdev->dev, rdev);
2771
2772	/* set regulator constraints */
2773	if (init_data)
2774		constraints = &init_data->constraints;
2775
2776	ret = set_machine_constraints(rdev, constraints);
2777	if (ret < 0)
2778		goto scrub;
2779
2780	/* add attributes supported by this regulator */
2781	ret = add_regulator_attributes(rdev);
2782	if (ret < 0)
2783		goto scrub;
2784
2785	if (init_data && init_data->supply_regulator)
2786		supply = init_data->supply_regulator;
2787	else if (regulator_desc->supply_name)
2788		supply = regulator_desc->supply_name;
2789
2790	if (supply) {
2791		struct regulator_dev *r;
2792
2793		r = regulator_dev_lookup(dev, supply);
2794
2795		if (!r) {
2796			dev_err(dev, "Failed to find supply %s\n", supply);
2797			ret = -ENODEV;
2798			goto scrub;
2799		}
2800
2801		ret = set_supply(rdev, r);
2802		if (ret < 0)
2803			goto scrub;
2804	}
2805
2806	/* add consumers devices */
2807	if (init_data) {
2808		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2809			ret = set_consumer_device_supply(rdev,
2810				init_data->consumer_supplies[i].dev,
2811				init_data->consumer_supplies[i].dev_name,
2812				init_data->consumer_supplies[i].supply);
2813			if (ret < 0) {
2814				dev_err(dev, "Failed to set supply %s\n",
2815					init_data->consumer_supplies[i].supply);
2816				goto unset_supplies;
2817			}
2818		}
2819	}
2820
2821	list_add(&rdev->list, &regulator_list);
2822
2823	rdev_init_debugfs(rdev);
2824out:
2825	mutex_unlock(&regulator_list_mutex);
2826	return rdev;
2827
2828unset_supplies:
2829	unset_regulator_supplies(rdev);
2830
2831scrub:
2832	kfree(rdev->constraints);
2833	device_unregister(&rdev->dev);
2834	/* device core frees rdev */
2835	rdev = ERR_PTR(ret);
2836	goto out;
2837
2838clean:
2839	kfree(rdev);
2840	rdev = ERR_PTR(ret);
2841	goto out;
2842}
2843EXPORT_SYMBOL_GPL(regulator_register);
2844
2845/**
2846 * regulator_unregister - unregister regulator
2847 * @rdev: regulator to unregister
2848 *
2849 * Called by regulator drivers to unregister a regulator.
2850 */
2851void regulator_unregister(struct regulator_dev *rdev)
2852{
2853	if (rdev == NULL)
2854		return;
2855
2856	mutex_lock(&regulator_list_mutex);
2857#ifdef CONFIG_DEBUG_FS
2858	debugfs_remove_recursive(rdev->debugfs);
2859#endif
2860	flush_work_sync(&rdev->disable_work.work);
2861	WARN_ON(rdev->open_count);
2862	unset_regulator_supplies(rdev);
2863	list_del(&rdev->list);
2864	if (rdev->supply)
2865		regulator_put(rdev->supply);
2866	kfree(rdev->constraints);
2867	device_unregister(&rdev->dev);
2868	mutex_unlock(&regulator_list_mutex);
2869}
2870EXPORT_SYMBOL_GPL(regulator_unregister);
2871
2872/**
2873 * regulator_suspend_prepare - prepare regulators for system wide suspend
2874 * @state: system suspend state
2875 *
2876 * Configure each regulator with it's suspend operating parameters for state.
2877 * This will usually be called by machine suspend code prior to supending.
2878 */
2879int regulator_suspend_prepare(suspend_state_t state)
2880{
2881	struct regulator_dev *rdev;
2882	int ret = 0;
2883
2884	/* ON is handled by regulator active state */
2885	if (state == PM_SUSPEND_ON)
2886		return -EINVAL;
2887
2888	mutex_lock(&regulator_list_mutex);
2889	list_for_each_entry(rdev, &regulator_list, list) {
2890
2891		mutex_lock(&rdev->mutex);
2892		ret = suspend_prepare(rdev, state);
2893		mutex_unlock(&rdev->mutex);
2894
2895		if (ret < 0) {
2896			rdev_err(rdev, "failed to prepare\n");
2897			goto out;
2898		}
2899	}
2900out:
2901	mutex_unlock(&regulator_list_mutex);
2902	return ret;
2903}
2904EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2905
2906/**
2907 * regulator_suspend_finish - resume regulators from system wide suspend
2908 *
2909 * Turn on regulators that might be turned off by regulator_suspend_prepare
2910 * and that should be turned on according to the regulators properties.
2911 */
2912int regulator_suspend_finish(void)
2913{
2914	struct regulator_dev *rdev;
2915	int ret = 0, error;
2916
2917	mutex_lock(&regulator_list_mutex);
2918	list_for_each_entry(rdev, &regulator_list, list) {
2919		struct regulator_ops *ops = rdev->desc->ops;
2920
2921		mutex_lock(&rdev->mutex);
2922		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2923				ops->enable) {
2924			error = ops->enable(rdev);
2925			if (error)
2926				ret = error;
2927		} else {
2928			if (!has_full_constraints)
2929				goto unlock;
2930			if (!ops->disable)
2931				goto unlock;
2932			if (ops->is_enabled && !ops->is_enabled(rdev))
2933				goto unlock;
2934
2935			error = ops->disable(rdev);
2936			if (error)
2937				ret = error;
2938		}
2939unlock:
2940		mutex_unlock(&rdev->mutex);
2941	}
2942	mutex_unlock(&regulator_list_mutex);
2943	return ret;
2944}
2945EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2946
2947/**
2948 * regulator_has_full_constraints - the system has fully specified constraints
2949 *
2950 * Calling this function will cause the regulator API to disable all
2951 * regulators which have a zero use count and don't have an always_on
2952 * constraint in a late_initcall.
2953 *
2954 * The intention is that this will become the default behaviour in a
2955 * future kernel release so users are encouraged to use this facility
2956 * now.
2957 */
2958void regulator_has_full_constraints(void)
2959{
2960	has_full_constraints = 1;
2961}
2962EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2963
2964/**
2965 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2966 *
2967 * Calling this function will cause the regulator API to provide a
2968 * dummy regulator to consumers if no physical regulator is found,
2969 * allowing most consumers to proceed as though a regulator were
2970 * configured.  This allows systems such as those with software
2971 * controllable regulators for the CPU core only to be brought up more
2972 * readily.
2973 */
2974void regulator_use_dummy_regulator(void)
2975{
2976	board_wants_dummy_regulator = true;
2977}
2978EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2979
2980/**
2981 * rdev_get_drvdata - get rdev regulator driver data
2982 * @rdev: regulator
2983 *
2984 * Get rdev regulator driver private data. This call can be used in the
2985 * regulator driver context.
2986 */
2987void *rdev_get_drvdata(struct regulator_dev *rdev)
2988{
2989	return rdev->reg_data;
2990}
2991EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2992
2993/**
2994 * regulator_get_drvdata - get regulator driver data
2995 * @regulator: regulator
2996 *
2997 * Get regulator driver private data. This call can be used in the consumer
2998 * driver context when non API regulator specific functions need to be called.
2999 */
3000void *regulator_get_drvdata(struct regulator *regulator)
3001{
3002	return regulator->rdev->reg_data;
3003}
3004EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3005
3006/**
3007 * regulator_set_drvdata - set regulator driver data
3008 * @regulator: regulator
3009 * @data: data
3010 */
3011void regulator_set_drvdata(struct regulator *regulator, void *data)
3012{
3013	regulator->rdev->reg_data = data;
3014}
3015EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3016
3017/**
3018 * regulator_get_id - get regulator ID
3019 * @rdev: regulator
3020 */
3021int rdev_get_id(struct regulator_dev *rdev)
3022{
3023	return rdev->desc->id;
3024}
3025EXPORT_SYMBOL_GPL(rdev_get_id);
3026
3027struct device *rdev_get_dev(struct regulator_dev *rdev)
3028{
3029	return &rdev->dev;
3030}
3031EXPORT_SYMBOL_GPL(rdev_get_dev);
3032
3033void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3034{
3035	return reg_init_data->driver_data;
3036}
3037EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3038
3039#ifdef CONFIG_DEBUG_FS
3040static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3041				    size_t count, loff_t *ppos)
3042{
3043	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3044	ssize_t len, ret = 0;
3045	struct regulator_map *map;
3046
3047	if (!buf)
3048		return -ENOMEM;
3049
3050	list_for_each_entry(map, &regulator_map_list, list) {
3051		len = snprintf(buf + ret, PAGE_SIZE - ret,
3052			       "%s -> %s.%s\n",
3053			       rdev_get_name(map->regulator), map->dev_name,
3054			       map->supply);
3055		if (len >= 0)
3056			ret += len;
3057		if (ret > PAGE_SIZE) {
3058			ret = PAGE_SIZE;
3059			break;
3060		}
3061	}
3062
3063	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3064
3065	kfree(buf);
3066
3067	return ret;
3068}
3069
3070static const struct file_operations supply_map_fops = {
3071	.read = supply_map_read_file,
3072	.llseek = default_llseek,
3073};
3074#endif
3075
3076static int __init regulator_init(void)
3077{
3078	int ret;
3079
3080	ret = class_register(&regulator_class);
3081
3082#ifdef CONFIG_DEBUG_FS
3083	debugfs_root = debugfs_create_dir("regulator", NULL);
3084	if (IS_ERR(debugfs_root) || !debugfs_root) {
3085		pr_warn("regulator: Failed to create debugfs directory\n");
3086		debugfs_root = NULL;
3087	}
3088
3089	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3090				       NULL, &supply_map_fops)))
3091		pr_warn("regulator: Failed to create supplies debugfs\n");
3092#endif
3093
3094	regulator_dummy_init();
3095
3096	return ret;
3097}
3098
3099/* init early to allow our consumers to complete system booting */
3100core_initcall(regulator_init);
3101
3102static int __init regulator_init_complete(void)
3103{
3104	struct regulator_dev *rdev;
3105	struct regulator_ops *ops;
3106	struct regulation_constraints *c;
3107	int enabled, ret;
3108
3109	mutex_lock(&regulator_list_mutex);
3110
3111	/* If we have a full configuration then disable any regulators
3112	 * which are not in use or always_on.  This will become the
3113	 * default behaviour in the future.
3114	 */
3115	list_for_each_entry(rdev, &regulator_list, list) {
3116		ops = rdev->desc->ops;
3117		c = rdev->constraints;
3118
3119		if (!ops->disable || (c && c->always_on))
3120			continue;
3121
3122		mutex_lock(&rdev->mutex);
3123
3124		if (rdev->use_count)
3125			goto unlock;
3126
3127		/* If we can't read the status assume it's on. */
3128		if (ops->is_enabled)
3129			enabled = ops->is_enabled(rdev);
3130		else
3131			enabled = 1;
3132
3133		if (!enabled)
3134			goto unlock;
3135
3136		if (has_full_constraints) {
3137			/* We log since this may kill the system if it
3138			 * goes wrong. */
3139			rdev_info(rdev, "disabling\n");
3140			ret = ops->disable(rdev);
3141			if (ret != 0) {
3142				rdev_err(rdev, "couldn't disable: %d\n", ret);
3143			}
3144		} else {
3145			/* The intention is that in future we will
3146			 * assume that full constraints are provided
3147			 * so warn even if we aren't going to do
3148			 * anything here.
3149			 */
3150			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3151		}
3152
3153unlock:
3154		mutex_unlock(&rdev->mutex);
3155	}
3156
3157	mutex_unlock(&regulator_list_mutex);
3158
3159	return 0;
3160}
3161late_initcall(regulator_init_complete);
3162