core.c revision 9ed2099edca26d07947beb42c12bd1d6669e82bc
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544		return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	/* constrain machine-level voltage specs to fit
696	 * the actual range supported by this regulator.
697	 */
698	if (ops->list_voltage && rdev->desc->n_voltages) {
699		int	count = rdev->desc->n_voltages;
700		int	i;
701		int	min_uV = INT_MAX;
702		int	max_uV = INT_MIN;
703		int	cmin = constraints->min_uV;
704		int	cmax = constraints->max_uV;
705
706		/* it's safe to autoconfigure fixed-voltage supplies
707		   and the constraints are used by list_voltage. */
708		if (count == 1 && !cmin) {
709			cmin = 1;
710			cmax = INT_MAX;
711			constraints->min_uV = cmin;
712			constraints->max_uV = cmax;
713		}
714
715		/* voltage constraints are optional */
716		if ((cmin == 0) && (cmax == 0))
717			goto out;
718
719		/* else require explicit machine-level constraints */
720		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721			pr_err("%s: %s '%s' voltage constraints\n",
722				       __func__, "invalid", name);
723			ret = -EINVAL;
724			goto out;
725		}
726
727		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728		for (i = 0; i < count; i++) {
729			int	value;
730
731			value = ops->list_voltage(rdev, i);
732			if (value <= 0)
733				continue;
734
735			/* maybe adjust [min_uV..max_uV] */
736			if (value >= cmin && value < min_uV)
737				min_uV = value;
738			if (value <= cmax && value > max_uV)
739				max_uV = value;
740		}
741
742		/* final: [min_uV..max_uV] valid iff constraints valid */
743		if (max_uV < min_uV) {
744			pr_err("%s: %s '%s' voltage constraints\n",
745				       __func__, "unsupportable", name);
746			ret = -EINVAL;
747			goto out;
748		}
749
750		/* use regulator's subset of machine constraints */
751		if (constraints->min_uV < min_uV) {
752			pr_debug("%s: override '%s' %s, %d -> %d\n",
753				       __func__, name, "min_uV",
754					constraints->min_uV, min_uV);
755			constraints->min_uV = min_uV;
756		}
757		if (constraints->max_uV > max_uV) {
758			pr_debug("%s: override '%s' %s, %d -> %d\n",
759				       __func__, name, "max_uV",
760					constraints->max_uV, max_uV);
761			constraints->max_uV = max_uV;
762		}
763	}
764
765	rdev->constraints = constraints;
766
767	/* do we need to apply the constraint voltage */
768	if (rdev->constraints->apply_uV &&
769		rdev->constraints->min_uV == rdev->constraints->max_uV &&
770		ops->set_voltage) {
771		ret = ops->set_voltage(rdev,
772			rdev->constraints->min_uV, rdev->constraints->max_uV);
773			if (ret < 0) {
774				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775				       __func__,
776				       rdev->constraints->min_uV, name);
777				rdev->constraints = NULL;
778				goto out;
779			}
780	}
781
782	/* do we need to setup our suspend state */
783	if (constraints->initial_state) {
784		ret = suspend_prepare(rdev, constraints->initial_state);
785		if (ret < 0) {
786			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787			       __func__, name);
788			rdev->constraints = NULL;
789			goto out;
790		}
791	}
792
793	if (constraints->initial_mode) {
794		if (!ops->set_mode) {
795			printk(KERN_ERR "%s: no set_mode operation for %s\n",
796			       __func__, name);
797			ret = -EINVAL;
798			goto out;
799		}
800
801		ret = ops->set_mode(rdev, constraints->initial_mode);
802		if (ret < 0) {
803			printk(KERN_ERR
804			       "%s: failed to set initial mode for %s: %d\n",
805			       __func__, name, ret);
806			goto out;
807		}
808	}
809
810	/* If the constraints say the regulator should be on at this point
811	 * and we have control then make sure it is enabled.
812	 */
813	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814		ret = ops->enable(rdev);
815		if (ret < 0) {
816			printk(KERN_ERR "%s: failed to enable %s\n",
817			       __func__, name);
818			rdev->constraints = NULL;
819			goto out;
820		}
821	}
822
823	print_constraints(rdev);
824out:
825	return ret;
826}
827
828/**
829 * set_supply - set regulator supply regulator
830 * @rdev: regulator name
831 * @supply_rdev: supply regulator name
832 *
833 * Called by platform initialisation code to set the supply regulator for this
834 * regulator. This ensures that a regulators supply will also be enabled by the
835 * core if it's child is enabled.
836 */
837static int set_supply(struct regulator_dev *rdev,
838	struct regulator_dev *supply_rdev)
839{
840	int err;
841
842	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843				"supply");
844	if (err) {
845		printk(KERN_ERR
846		       "%s: could not add device link %s err %d\n",
847		       __func__, supply_rdev->dev.kobj.name, err);
848		       goto out;
849	}
850	rdev->supply = supply_rdev;
851	list_add(&rdev->slist, &supply_rdev->supply_list);
852out:
853	return err;
854}
855
856/**
857 * set_consumer_device_supply: Bind a regulator to a symbolic supply
858 * @rdev:         regulator source
859 * @consumer_dev: device the supply applies to
860 * @consumer_dev_name: dev_name() string for device supply applies to
861 * @supply:       symbolic name for supply
862 *
863 * Allows platform initialisation code to map physical regulator
864 * sources to symbolic names for supplies for use by devices.  Devices
865 * should use these symbolic names to request regulators, avoiding the
866 * need to provide board-specific regulator names as platform data.
867 *
868 * Only one of consumer_dev and consumer_dev_name may be specified.
869 */
870static int set_consumer_device_supply(struct regulator_dev *rdev,
871	struct device *consumer_dev, const char *consumer_dev_name,
872	const char *supply)
873{
874	struct regulator_map *node;
875	int has_dev;
876
877	if (consumer_dev && consumer_dev_name)
878		return -EINVAL;
879
880	if (!consumer_dev_name && consumer_dev)
881		consumer_dev_name = dev_name(consumer_dev);
882
883	if (supply == NULL)
884		return -EINVAL;
885
886	if (consumer_dev_name != NULL)
887		has_dev = 1;
888	else
889		has_dev = 0;
890
891	list_for_each_entry(node, &regulator_map_list, list) {
892		if (consumer_dev_name != node->dev_name)
893			continue;
894		if (strcmp(node->supply, supply) != 0)
895			continue;
896
897		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
898				dev_name(&node->regulator->dev),
899				node->regulator->desc->name,
900				supply,
901				dev_name(&rdev->dev), rdev->desc->name);
902		return -EBUSY;
903	}
904
905	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
906	if (node == NULL)
907		return -ENOMEM;
908
909	node->regulator = rdev;
910	node->supply = supply;
911
912	if (has_dev) {
913		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
914		if (node->dev_name == NULL) {
915			kfree(node);
916			return -ENOMEM;
917		}
918	}
919
920	list_add(&node->list, &regulator_map_list);
921	return 0;
922}
923
924static void unset_consumer_device_supply(struct regulator_dev *rdev,
925	const char *consumer_dev_name, struct device *consumer_dev)
926{
927	struct regulator_map *node, *n;
928
929	if (consumer_dev && !consumer_dev_name)
930		consumer_dev_name = dev_name(consumer_dev);
931
932	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
933		if (rdev != node->regulator)
934			continue;
935
936		if (consumer_dev_name && node->dev_name &&
937		    strcmp(consumer_dev_name, node->dev_name))
938			continue;
939
940		list_del(&node->list);
941		kfree(node->dev_name);
942		kfree(node);
943		return;
944	}
945}
946
947static void unset_regulator_supplies(struct regulator_dev *rdev)
948{
949	struct regulator_map *node, *n;
950
951	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
952		if (rdev == node->regulator) {
953			list_del(&node->list);
954			kfree(node->dev_name);
955			kfree(node);
956			return;
957		}
958	}
959}
960
961#define REG_STR_SIZE	32
962
963static struct regulator *create_regulator(struct regulator_dev *rdev,
964					  struct device *dev,
965					  const char *supply_name)
966{
967	struct regulator *regulator;
968	char buf[REG_STR_SIZE];
969	int err, size;
970
971	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
972	if (regulator == NULL)
973		return NULL;
974
975	mutex_lock(&rdev->mutex);
976	regulator->rdev = rdev;
977	list_add(&regulator->list, &rdev->consumer_list);
978
979	if (dev) {
980		/* create a 'requested_microamps_name' sysfs entry */
981		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
982			supply_name);
983		if (size >= REG_STR_SIZE)
984			goto overflow_err;
985
986		regulator->dev = dev;
987		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
988		if (regulator->dev_attr.attr.name == NULL)
989			goto attr_name_err;
990
991		regulator->dev_attr.attr.owner = THIS_MODULE;
992		regulator->dev_attr.attr.mode = 0444;
993		regulator->dev_attr.show = device_requested_uA_show;
994		err = device_create_file(dev, &regulator->dev_attr);
995		if (err < 0) {
996			printk(KERN_WARNING "%s: could not add regulator_dev"
997				" load sysfs\n", __func__);
998			goto attr_name_err;
999		}
1000
1001		/* also add a link to the device sysfs entry */
1002		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1003				 dev->kobj.name, supply_name);
1004		if (size >= REG_STR_SIZE)
1005			goto attr_err;
1006
1007		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1008		if (regulator->supply_name == NULL)
1009			goto attr_err;
1010
1011		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1012					buf);
1013		if (err) {
1014			printk(KERN_WARNING
1015			       "%s: could not add device link %s err %d\n",
1016			       __func__, dev->kobj.name, err);
1017			device_remove_file(dev, &regulator->dev_attr);
1018			goto link_name_err;
1019		}
1020	}
1021	mutex_unlock(&rdev->mutex);
1022	return regulator;
1023link_name_err:
1024	kfree(regulator->supply_name);
1025attr_err:
1026	device_remove_file(regulator->dev, &regulator->dev_attr);
1027attr_name_err:
1028	kfree(regulator->dev_attr.attr.name);
1029overflow_err:
1030	list_del(&regulator->list);
1031	kfree(regulator);
1032	mutex_unlock(&rdev->mutex);
1033	return NULL;
1034}
1035
1036/* Internal regulator request function */
1037static struct regulator *_regulator_get(struct device *dev, const char *id,
1038					int exclusive)
1039{
1040	struct regulator_dev *rdev;
1041	struct regulator_map *map;
1042	struct regulator *regulator = ERR_PTR(-ENODEV);
1043	const char *devname = NULL;
1044	int ret;
1045
1046	if (id == NULL) {
1047		printk(KERN_ERR "regulator: get() with no identifier\n");
1048		return regulator;
1049	}
1050
1051	if (dev)
1052		devname = dev_name(dev);
1053
1054	mutex_lock(&regulator_list_mutex);
1055
1056	list_for_each_entry(map, &regulator_map_list, list) {
1057		/* If the mapping has a device set up it must match */
1058		if (map->dev_name &&
1059		    (!devname || strcmp(map->dev_name, devname)))
1060			continue;
1061
1062		if (strcmp(map->supply, id) == 0) {
1063			rdev = map->regulator;
1064			goto found;
1065		}
1066	}
1067	mutex_unlock(&regulator_list_mutex);
1068	return regulator;
1069
1070found:
1071	if (rdev->exclusive) {
1072		regulator = ERR_PTR(-EPERM);
1073		goto out;
1074	}
1075
1076	if (exclusive && rdev->open_count) {
1077		regulator = ERR_PTR(-EBUSY);
1078		goto out;
1079	}
1080
1081	if (!try_module_get(rdev->owner))
1082		goto out;
1083
1084	regulator = create_regulator(rdev, dev, id);
1085	if (regulator == NULL) {
1086		regulator = ERR_PTR(-ENOMEM);
1087		module_put(rdev->owner);
1088	}
1089
1090	rdev->open_count++;
1091	if (exclusive) {
1092		rdev->exclusive = 1;
1093
1094		ret = _regulator_is_enabled(rdev);
1095		if (ret > 0)
1096			rdev->use_count = 1;
1097		else
1098			rdev->use_count = 0;
1099	}
1100
1101out:
1102	mutex_unlock(&regulator_list_mutex);
1103
1104	return regulator;
1105}
1106
1107/**
1108 * regulator_get - lookup and obtain a reference to a regulator.
1109 * @dev: device for regulator "consumer"
1110 * @id: Supply name or regulator ID.
1111 *
1112 * Returns a struct regulator corresponding to the regulator producer,
1113 * or IS_ERR() condition containing errno.
1114 *
1115 * Use of supply names configured via regulator_set_device_supply() is
1116 * strongly encouraged.  It is recommended that the supply name used
1117 * should match the name used for the supply and/or the relevant
1118 * device pins in the datasheet.
1119 */
1120struct regulator *regulator_get(struct device *dev, const char *id)
1121{
1122	return _regulator_get(dev, id, 0);
1123}
1124EXPORT_SYMBOL_GPL(regulator_get);
1125
1126/**
1127 * regulator_get_exclusive - obtain exclusive access to a regulator.
1128 * @dev: device for regulator "consumer"
1129 * @id: Supply name or regulator ID.
1130 *
1131 * Returns a struct regulator corresponding to the regulator producer,
1132 * or IS_ERR() condition containing errno.  Other consumers will be
1133 * unable to obtain this reference is held and the use count for the
1134 * regulator will be initialised to reflect the current state of the
1135 * regulator.
1136 *
1137 * This is intended for use by consumers which cannot tolerate shared
1138 * use of the regulator such as those which need to force the
1139 * regulator off for correct operation of the hardware they are
1140 * controlling.
1141 *
1142 * Use of supply names configured via regulator_set_device_supply() is
1143 * strongly encouraged.  It is recommended that the supply name used
1144 * should match the name used for the supply and/or the relevant
1145 * device pins in the datasheet.
1146 */
1147struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1148{
1149	return _regulator_get(dev, id, 1);
1150}
1151EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1152
1153/**
1154 * regulator_put - "free" the regulator source
1155 * @regulator: regulator source
1156 *
1157 * Note: drivers must ensure that all regulator_enable calls made on this
1158 * regulator source are balanced by regulator_disable calls prior to calling
1159 * this function.
1160 */
1161void regulator_put(struct regulator *regulator)
1162{
1163	struct regulator_dev *rdev;
1164
1165	if (regulator == NULL || IS_ERR(regulator))
1166		return;
1167
1168	mutex_lock(&regulator_list_mutex);
1169	rdev = regulator->rdev;
1170
1171	/* remove any sysfs entries */
1172	if (regulator->dev) {
1173		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1174		kfree(regulator->supply_name);
1175		device_remove_file(regulator->dev, &regulator->dev_attr);
1176		kfree(regulator->dev_attr.attr.name);
1177	}
1178	list_del(&regulator->list);
1179	kfree(regulator);
1180
1181	rdev->open_count--;
1182	rdev->exclusive = 0;
1183
1184	module_put(rdev->owner);
1185	mutex_unlock(&regulator_list_mutex);
1186}
1187EXPORT_SYMBOL_GPL(regulator_put);
1188
1189/* locks held by regulator_enable() */
1190static int _regulator_enable(struct regulator_dev *rdev)
1191{
1192	int ret = -EINVAL;
1193
1194	if (!rdev->constraints) {
1195		printk(KERN_ERR "%s: %s has no constraints\n",
1196		       __func__, rdev->desc->name);
1197		return ret;
1198	}
1199
1200	/* do we need to enable the supply regulator first */
1201	if (rdev->supply) {
1202		ret = _regulator_enable(rdev->supply);
1203		if (ret < 0) {
1204			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1205			       __func__, rdev->desc->name, ret);
1206			return ret;
1207		}
1208	}
1209
1210	/* check voltage and requested load before enabling */
1211	if (rdev->desc->ops->enable) {
1212
1213		if (rdev->constraints &&
1214			(rdev->constraints->valid_ops_mask &
1215			REGULATOR_CHANGE_DRMS))
1216			drms_uA_update(rdev);
1217
1218		ret = rdev->desc->ops->enable(rdev);
1219		if (ret < 0) {
1220			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1221			       __func__, rdev->desc->name, ret);
1222			return ret;
1223		}
1224		rdev->use_count++;
1225		return ret;
1226	}
1227
1228	return ret;
1229}
1230
1231/**
1232 * regulator_enable - enable regulator output
1233 * @regulator: regulator source
1234 *
1235 * Request that the regulator be enabled with the regulator output at
1236 * the predefined voltage or current value.  Calls to regulator_enable()
1237 * must be balanced with calls to regulator_disable().
1238 *
1239 * NOTE: the output value can be set by other drivers, boot loader or may be
1240 * hardwired in the regulator.
1241 */
1242int regulator_enable(struct regulator *regulator)
1243{
1244	struct regulator_dev *rdev = regulator->rdev;
1245	int ret = 0;
1246
1247	mutex_lock(&rdev->mutex);
1248	ret = _regulator_enable(rdev);
1249	mutex_unlock(&rdev->mutex);
1250	return ret;
1251}
1252EXPORT_SYMBOL_GPL(regulator_enable);
1253
1254/* locks held by regulator_disable() */
1255static int _regulator_disable(struct regulator_dev *rdev)
1256{
1257	int ret = 0;
1258
1259	if (WARN(rdev->use_count <= 0,
1260			"unbalanced disables for %s\n",
1261			rdev->desc->name))
1262		return -EIO;
1263
1264	/* are we the last user and permitted to disable ? */
1265	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1266
1267		/* we are last user */
1268		if (rdev->desc->ops->disable) {
1269			ret = rdev->desc->ops->disable(rdev);
1270			if (ret < 0) {
1271				printk(KERN_ERR "%s: failed to disable %s\n",
1272				       __func__, rdev->desc->name);
1273				return ret;
1274			}
1275		}
1276
1277		/* decrease our supplies ref count and disable if required */
1278		if (rdev->supply)
1279			_regulator_disable(rdev->supply);
1280
1281		rdev->use_count = 0;
1282	} else if (rdev->use_count > 1) {
1283
1284		if (rdev->constraints &&
1285			(rdev->constraints->valid_ops_mask &
1286			REGULATOR_CHANGE_DRMS))
1287			drms_uA_update(rdev);
1288
1289		rdev->use_count--;
1290	}
1291	return ret;
1292}
1293
1294/**
1295 * regulator_disable - disable regulator output
1296 * @regulator: regulator source
1297 *
1298 * Disable the regulator output voltage or current.  Calls to
1299 * regulator_enable() must be balanced with calls to
1300 * regulator_disable().
1301 *
1302 * NOTE: this will only disable the regulator output if no other consumer
1303 * devices have it enabled, the regulator device supports disabling and
1304 * machine constraints permit this operation.
1305 */
1306int regulator_disable(struct regulator *regulator)
1307{
1308	struct regulator_dev *rdev = regulator->rdev;
1309	int ret = 0;
1310
1311	mutex_lock(&rdev->mutex);
1312	ret = _regulator_disable(rdev);
1313	mutex_unlock(&rdev->mutex);
1314	return ret;
1315}
1316EXPORT_SYMBOL_GPL(regulator_disable);
1317
1318/* locks held by regulator_force_disable() */
1319static int _regulator_force_disable(struct regulator_dev *rdev)
1320{
1321	int ret = 0;
1322
1323	/* force disable */
1324	if (rdev->desc->ops->disable) {
1325		/* ah well, who wants to live forever... */
1326		ret = rdev->desc->ops->disable(rdev);
1327		if (ret < 0) {
1328			printk(KERN_ERR "%s: failed to force disable %s\n",
1329			       __func__, rdev->desc->name);
1330			return ret;
1331		}
1332		/* notify other consumers that power has been forced off */
1333		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1334			NULL);
1335	}
1336
1337	/* decrease our supplies ref count and disable if required */
1338	if (rdev->supply)
1339		_regulator_disable(rdev->supply);
1340
1341	rdev->use_count = 0;
1342	return ret;
1343}
1344
1345/**
1346 * regulator_force_disable - force disable regulator output
1347 * @regulator: regulator source
1348 *
1349 * Forcibly disable the regulator output voltage or current.
1350 * NOTE: this *will* disable the regulator output even if other consumer
1351 * devices have it enabled. This should be used for situations when device
1352 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1353 */
1354int regulator_force_disable(struct regulator *regulator)
1355{
1356	int ret;
1357
1358	mutex_lock(&regulator->rdev->mutex);
1359	regulator->uA_load = 0;
1360	ret = _regulator_force_disable(regulator->rdev);
1361	mutex_unlock(&regulator->rdev->mutex);
1362	return ret;
1363}
1364EXPORT_SYMBOL_GPL(regulator_force_disable);
1365
1366static int _regulator_is_enabled(struct regulator_dev *rdev)
1367{
1368	int ret;
1369
1370	mutex_lock(&rdev->mutex);
1371
1372	/* sanity check */
1373	if (!rdev->desc->ops->is_enabled) {
1374		ret = -EINVAL;
1375		goto out;
1376	}
1377
1378	ret = rdev->desc->ops->is_enabled(rdev);
1379out:
1380	mutex_unlock(&rdev->mutex);
1381	return ret;
1382}
1383
1384/**
1385 * regulator_is_enabled - is the regulator output enabled
1386 * @regulator: regulator source
1387 *
1388 * Returns positive if the regulator driver backing the source/client
1389 * has requested that the device be enabled, zero if it hasn't, else a
1390 * negative errno code.
1391 *
1392 * Note that the device backing this regulator handle can have multiple
1393 * users, so it might be enabled even if regulator_enable() was never
1394 * called for this particular source.
1395 */
1396int regulator_is_enabled(struct regulator *regulator)
1397{
1398	return _regulator_is_enabled(regulator->rdev);
1399}
1400EXPORT_SYMBOL_GPL(regulator_is_enabled);
1401
1402/**
1403 * regulator_count_voltages - count regulator_list_voltage() selectors
1404 * @regulator: regulator source
1405 *
1406 * Returns number of selectors, or negative errno.  Selectors are
1407 * numbered starting at zero, and typically correspond to bitfields
1408 * in hardware registers.
1409 */
1410int regulator_count_voltages(struct regulator *regulator)
1411{
1412	struct regulator_dev	*rdev = regulator->rdev;
1413
1414	return rdev->desc->n_voltages ? : -EINVAL;
1415}
1416EXPORT_SYMBOL_GPL(regulator_count_voltages);
1417
1418/**
1419 * regulator_list_voltage - enumerate supported voltages
1420 * @regulator: regulator source
1421 * @selector: identify voltage to list
1422 * Context: can sleep
1423 *
1424 * Returns a voltage that can be passed to @regulator_set_voltage(),
1425 * zero if this selector code can't be used on this sytem, or a
1426 * negative errno.
1427 */
1428int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1429{
1430	struct regulator_dev	*rdev = regulator->rdev;
1431	struct regulator_ops	*ops = rdev->desc->ops;
1432	int			ret;
1433
1434	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1435		return -EINVAL;
1436
1437	mutex_lock(&rdev->mutex);
1438	ret = ops->list_voltage(rdev, selector);
1439	mutex_unlock(&rdev->mutex);
1440
1441	if (ret > 0) {
1442		if (ret < rdev->constraints->min_uV)
1443			ret = 0;
1444		else if (ret > rdev->constraints->max_uV)
1445			ret = 0;
1446	}
1447
1448	return ret;
1449}
1450EXPORT_SYMBOL_GPL(regulator_list_voltage);
1451
1452/**
1453 * regulator_is_supported_voltage - check if a voltage range can be supported
1454 *
1455 * @regulator: Regulator to check.
1456 * @min_uV: Minimum required voltage in uV.
1457 * @max_uV: Maximum required voltage in uV.
1458 *
1459 * Returns a boolean or a negative error code.
1460 */
1461int regulator_is_supported_voltage(struct regulator *regulator,
1462				   int min_uV, int max_uV)
1463{
1464	int i, voltages, ret;
1465
1466	ret = regulator_count_voltages(regulator);
1467	if (ret < 0)
1468		return ret;
1469	voltages = ret;
1470
1471	for (i = 0; i < voltages; i++) {
1472		ret = regulator_list_voltage(regulator, i);
1473
1474		if (ret >= min_uV && ret <= max_uV)
1475			return 1;
1476	}
1477
1478	return 0;
1479}
1480
1481/**
1482 * regulator_set_voltage - set regulator output voltage
1483 * @regulator: regulator source
1484 * @min_uV: Minimum required voltage in uV
1485 * @max_uV: Maximum acceptable voltage in uV
1486 *
1487 * Sets a voltage regulator to the desired output voltage. This can be set
1488 * during any regulator state. IOW, regulator can be disabled or enabled.
1489 *
1490 * If the regulator is enabled then the voltage will change to the new value
1491 * immediately otherwise if the regulator is disabled the regulator will
1492 * output at the new voltage when enabled.
1493 *
1494 * NOTE: If the regulator is shared between several devices then the lowest
1495 * request voltage that meets the system constraints will be used.
1496 * Regulator system constraints must be set for this regulator before
1497 * calling this function otherwise this call will fail.
1498 */
1499int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1500{
1501	struct regulator_dev *rdev = regulator->rdev;
1502	int ret;
1503
1504	mutex_lock(&rdev->mutex);
1505
1506	/* sanity check */
1507	if (!rdev->desc->ops->set_voltage) {
1508		ret = -EINVAL;
1509		goto out;
1510	}
1511
1512	/* constraints check */
1513	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1514	if (ret < 0)
1515		goto out;
1516	regulator->min_uV = min_uV;
1517	regulator->max_uV = max_uV;
1518	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1519
1520out:
1521	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1522	mutex_unlock(&rdev->mutex);
1523	return ret;
1524}
1525EXPORT_SYMBOL_GPL(regulator_set_voltage);
1526
1527static int _regulator_get_voltage(struct regulator_dev *rdev)
1528{
1529	/* sanity check */
1530	if (rdev->desc->ops->get_voltage)
1531		return rdev->desc->ops->get_voltage(rdev);
1532	else
1533		return -EINVAL;
1534}
1535
1536/**
1537 * regulator_get_voltage - get regulator output voltage
1538 * @regulator: regulator source
1539 *
1540 * This returns the current regulator voltage in uV.
1541 *
1542 * NOTE: If the regulator is disabled it will return the voltage value. This
1543 * function should not be used to determine regulator state.
1544 */
1545int regulator_get_voltage(struct regulator *regulator)
1546{
1547	int ret;
1548
1549	mutex_lock(&regulator->rdev->mutex);
1550
1551	ret = _regulator_get_voltage(regulator->rdev);
1552
1553	mutex_unlock(&regulator->rdev->mutex);
1554
1555	return ret;
1556}
1557EXPORT_SYMBOL_GPL(regulator_get_voltage);
1558
1559/**
1560 * regulator_set_current_limit - set regulator output current limit
1561 * @regulator: regulator source
1562 * @min_uA: Minimuum supported current in uA
1563 * @max_uA: Maximum supported current in uA
1564 *
1565 * Sets current sink to the desired output current. This can be set during
1566 * any regulator state. IOW, regulator can be disabled or enabled.
1567 *
1568 * If the regulator is enabled then the current will change to the new value
1569 * immediately otherwise if the regulator is disabled the regulator will
1570 * output at the new current when enabled.
1571 *
1572 * NOTE: Regulator system constraints must be set for this regulator before
1573 * calling this function otherwise this call will fail.
1574 */
1575int regulator_set_current_limit(struct regulator *regulator,
1576			       int min_uA, int max_uA)
1577{
1578	struct regulator_dev *rdev = regulator->rdev;
1579	int ret;
1580
1581	mutex_lock(&rdev->mutex);
1582
1583	/* sanity check */
1584	if (!rdev->desc->ops->set_current_limit) {
1585		ret = -EINVAL;
1586		goto out;
1587	}
1588
1589	/* constraints check */
1590	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1591	if (ret < 0)
1592		goto out;
1593
1594	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1595out:
1596	mutex_unlock(&rdev->mutex);
1597	return ret;
1598}
1599EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1600
1601static int _regulator_get_current_limit(struct regulator_dev *rdev)
1602{
1603	int ret;
1604
1605	mutex_lock(&rdev->mutex);
1606
1607	/* sanity check */
1608	if (!rdev->desc->ops->get_current_limit) {
1609		ret = -EINVAL;
1610		goto out;
1611	}
1612
1613	ret = rdev->desc->ops->get_current_limit(rdev);
1614out:
1615	mutex_unlock(&rdev->mutex);
1616	return ret;
1617}
1618
1619/**
1620 * regulator_get_current_limit - get regulator output current
1621 * @regulator: regulator source
1622 *
1623 * This returns the current supplied by the specified current sink in uA.
1624 *
1625 * NOTE: If the regulator is disabled it will return the current value. This
1626 * function should not be used to determine regulator state.
1627 */
1628int regulator_get_current_limit(struct regulator *regulator)
1629{
1630	return _regulator_get_current_limit(regulator->rdev);
1631}
1632EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1633
1634/**
1635 * regulator_set_mode - set regulator operating mode
1636 * @regulator: regulator source
1637 * @mode: operating mode - one of the REGULATOR_MODE constants
1638 *
1639 * Set regulator operating mode to increase regulator efficiency or improve
1640 * regulation performance.
1641 *
1642 * NOTE: Regulator system constraints must be set for this regulator before
1643 * calling this function otherwise this call will fail.
1644 */
1645int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1646{
1647	struct regulator_dev *rdev = regulator->rdev;
1648	int ret;
1649
1650	mutex_lock(&rdev->mutex);
1651
1652	/* sanity check */
1653	if (!rdev->desc->ops->set_mode) {
1654		ret = -EINVAL;
1655		goto out;
1656	}
1657
1658	/* constraints check */
1659	ret = regulator_check_mode(rdev, mode);
1660	if (ret < 0)
1661		goto out;
1662
1663	ret = rdev->desc->ops->set_mode(rdev, mode);
1664out:
1665	mutex_unlock(&rdev->mutex);
1666	return ret;
1667}
1668EXPORT_SYMBOL_GPL(regulator_set_mode);
1669
1670static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1671{
1672	int ret;
1673
1674	mutex_lock(&rdev->mutex);
1675
1676	/* sanity check */
1677	if (!rdev->desc->ops->get_mode) {
1678		ret = -EINVAL;
1679		goto out;
1680	}
1681
1682	ret = rdev->desc->ops->get_mode(rdev);
1683out:
1684	mutex_unlock(&rdev->mutex);
1685	return ret;
1686}
1687
1688/**
1689 * regulator_get_mode - get regulator operating mode
1690 * @regulator: regulator source
1691 *
1692 * Get the current regulator operating mode.
1693 */
1694unsigned int regulator_get_mode(struct regulator *regulator)
1695{
1696	return _regulator_get_mode(regulator->rdev);
1697}
1698EXPORT_SYMBOL_GPL(regulator_get_mode);
1699
1700/**
1701 * regulator_set_optimum_mode - set regulator optimum operating mode
1702 * @regulator: regulator source
1703 * @uA_load: load current
1704 *
1705 * Notifies the regulator core of a new device load. This is then used by
1706 * DRMS (if enabled by constraints) to set the most efficient regulator
1707 * operating mode for the new regulator loading.
1708 *
1709 * Consumer devices notify their supply regulator of the maximum power
1710 * they will require (can be taken from device datasheet in the power
1711 * consumption tables) when they change operational status and hence power
1712 * state. Examples of operational state changes that can affect power
1713 * consumption are :-
1714 *
1715 *    o Device is opened / closed.
1716 *    o Device I/O is about to begin or has just finished.
1717 *    o Device is idling in between work.
1718 *
1719 * This information is also exported via sysfs to userspace.
1720 *
1721 * DRMS will sum the total requested load on the regulator and change
1722 * to the most efficient operating mode if platform constraints allow.
1723 *
1724 * Returns the new regulator mode or error.
1725 */
1726int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1727{
1728	struct regulator_dev *rdev = regulator->rdev;
1729	struct regulator *consumer;
1730	int ret, output_uV, input_uV, total_uA_load = 0;
1731	unsigned int mode;
1732
1733	mutex_lock(&rdev->mutex);
1734
1735	regulator->uA_load = uA_load;
1736	ret = regulator_check_drms(rdev);
1737	if (ret < 0)
1738		goto out;
1739	ret = -EINVAL;
1740
1741	/* sanity check */
1742	if (!rdev->desc->ops->get_optimum_mode)
1743		goto out;
1744
1745	/* get output voltage */
1746	output_uV = rdev->desc->ops->get_voltage(rdev);
1747	if (output_uV <= 0) {
1748		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1749			__func__, rdev->desc->name);
1750		goto out;
1751	}
1752
1753	/* get input voltage */
1754	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1755		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1756	else
1757		input_uV = rdev->constraints->input_uV;
1758	if (input_uV <= 0) {
1759		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1760			__func__, rdev->desc->name);
1761		goto out;
1762	}
1763
1764	/* calc total requested load for this regulator */
1765	list_for_each_entry(consumer, &rdev->consumer_list, list)
1766	    total_uA_load += consumer->uA_load;
1767
1768	mode = rdev->desc->ops->get_optimum_mode(rdev,
1769						 input_uV, output_uV,
1770						 total_uA_load);
1771	ret = regulator_check_mode(rdev, mode);
1772	if (ret < 0) {
1773		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1774			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1775			total_uA_load, input_uV, output_uV);
1776		goto out;
1777	}
1778
1779	ret = rdev->desc->ops->set_mode(rdev, mode);
1780	if (ret < 0) {
1781		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1782			__func__, mode, rdev->desc->name);
1783		goto out;
1784	}
1785	ret = mode;
1786out:
1787	mutex_unlock(&rdev->mutex);
1788	return ret;
1789}
1790EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1791
1792/**
1793 * regulator_register_notifier - register regulator event notifier
1794 * @regulator: regulator source
1795 * @nb: notifier block
1796 *
1797 * Register notifier block to receive regulator events.
1798 */
1799int regulator_register_notifier(struct regulator *regulator,
1800			      struct notifier_block *nb)
1801{
1802	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1803						nb);
1804}
1805EXPORT_SYMBOL_GPL(regulator_register_notifier);
1806
1807/**
1808 * regulator_unregister_notifier - unregister regulator event notifier
1809 * @regulator: regulator source
1810 * @nb: notifier block
1811 *
1812 * Unregister regulator event notifier block.
1813 */
1814int regulator_unregister_notifier(struct regulator *regulator,
1815				struct notifier_block *nb)
1816{
1817	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1818						  nb);
1819}
1820EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1821
1822/* notify regulator consumers and downstream regulator consumers.
1823 * Note mutex must be held by caller.
1824 */
1825static void _notifier_call_chain(struct regulator_dev *rdev,
1826				  unsigned long event, void *data)
1827{
1828	struct regulator_dev *_rdev;
1829
1830	/* call rdev chain first */
1831	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1832
1833	/* now notify regulator we supply */
1834	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1835	  mutex_lock(&_rdev->mutex);
1836	  _notifier_call_chain(_rdev, event, data);
1837	  mutex_unlock(&_rdev->mutex);
1838	}
1839}
1840
1841/**
1842 * regulator_bulk_get - get multiple regulator consumers
1843 *
1844 * @dev:           Device to supply
1845 * @num_consumers: Number of consumers to register
1846 * @consumers:     Configuration of consumers; clients are stored here.
1847 *
1848 * @return 0 on success, an errno on failure.
1849 *
1850 * This helper function allows drivers to get several regulator
1851 * consumers in one operation.  If any of the regulators cannot be
1852 * acquired then any regulators that were allocated will be freed
1853 * before returning to the caller.
1854 */
1855int regulator_bulk_get(struct device *dev, int num_consumers,
1856		       struct regulator_bulk_data *consumers)
1857{
1858	int i;
1859	int ret;
1860
1861	for (i = 0; i < num_consumers; i++)
1862		consumers[i].consumer = NULL;
1863
1864	for (i = 0; i < num_consumers; i++) {
1865		consumers[i].consumer = regulator_get(dev,
1866						      consumers[i].supply);
1867		if (IS_ERR(consumers[i].consumer)) {
1868			dev_err(dev, "Failed to get supply '%s'\n",
1869				consumers[i].supply);
1870			ret = PTR_ERR(consumers[i].consumer);
1871			consumers[i].consumer = NULL;
1872			goto err;
1873		}
1874	}
1875
1876	return 0;
1877
1878err:
1879	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1880		regulator_put(consumers[i].consumer);
1881
1882	return ret;
1883}
1884EXPORT_SYMBOL_GPL(regulator_bulk_get);
1885
1886/**
1887 * regulator_bulk_enable - enable multiple regulator consumers
1888 *
1889 * @num_consumers: Number of consumers
1890 * @consumers:     Consumer data; clients are stored here.
1891 * @return         0 on success, an errno on failure
1892 *
1893 * This convenience API allows consumers to enable multiple regulator
1894 * clients in a single API call.  If any consumers cannot be enabled
1895 * then any others that were enabled will be disabled again prior to
1896 * return.
1897 */
1898int regulator_bulk_enable(int num_consumers,
1899			  struct regulator_bulk_data *consumers)
1900{
1901	int i;
1902	int ret;
1903
1904	for (i = 0; i < num_consumers; i++) {
1905		ret = regulator_enable(consumers[i].consumer);
1906		if (ret != 0)
1907			goto err;
1908	}
1909
1910	return 0;
1911
1912err:
1913	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1914	for (i = 0; i < num_consumers; i++)
1915		regulator_disable(consumers[i].consumer);
1916
1917	return ret;
1918}
1919EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1920
1921/**
1922 * regulator_bulk_disable - disable multiple regulator consumers
1923 *
1924 * @num_consumers: Number of consumers
1925 * @consumers:     Consumer data; clients are stored here.
1926 * @return         0 on success, an errno on failure
1927 *
1928 * This convenience API allows consumers to disable multiple regulator
1929 * clients in a single API call.  If any consumers cannot be enabled
1930 * then any others that were disabled will be disabled again prior to
1931 * return.
1932 */
1933int regulator_bulk_disable(int num_consumers,
1934			   struct regulator_bulk_data *consumers)
1935{
1936	int i;
1937	int ret;
1938
1939	for (i = 0; i < num_consumers; i++) {
1940		ret = regulator_disable(consumers[i].consumer);
1941		if (ret != 0)
1942			goto err;
1943	}
1944
1945	return 0;
1946
1947err:
1948	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1949	for (i = 0; i < num_consumers; i++)
1950		regulator_enable(consumers[i].consumer);
1951
1952	return ret;
1953}
1954EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1955
1956/**
1957 * regulator_bulk_free - free multiple regulator consumers
1958 *
1959 * @num_consumers: Number of consumers
1960 * @consumers:     Consumer data; clients are stored here.
1961 *
1962 * This convenience API allows consumers to free multiple regulator
1963 * clients in a single API call.
1964 */
1965void regulator_bulk_free(int num_consumers,
1966			 struct regulator_bulk_data *consumers)
1967{
1968	int i;
1969
1970	for (i = 0; i < num_consumers; i++) {
1971		regulator_put(consumers[i].consumer);
1972		consumers[i].consumer = NULL;
1973	}
1974}
1975EXPORT_SYMBOL_GPL(regulator_bulk_free);
1976
1977/**
1978 * regulator_notifier_call_chain - call regulator event notifier
1979 * @rdev: regulator source
1980 * @event: notifier block
1981 * @data: callback-specific data.
1982 *
1983 * Called by regulator drivers to notify clients a regulator event has
1984 * occurred. We also notify regulator clients downstream.
1985 * Note lock must be held by caller.
1986 */
1987int regulator_notifier_call_chain(struct regulator_dev *rdev,
1988				  unsigned long event, void *data)
1989{
1990	_notifier_call_chain(rdev, event, data);
1991	return NOTIFY_DONE;
1992
1993}
1994EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1995
1996/**
1997 * regulator_mode_to_status - convert a regulator mode into a status
1998 *
1999 * @mode: Mode to convert
2000 *
2001 * Convert a regulator mode into a status.
2002 */
2003int regulator_mode_to_status(unsigned int mode)
2004{
2005	switch (mode) {
2006	case REGULATOR_MODE_FAST:
2007		return REGULATOR_STATUS_FAST;
2008	case REGULATOR_MODE_NORMAL:
2009		return REGULATOR_STATUS_NORMAL;
2010	case REGULATOR_MODE_IDLE:
2011		return REGULATOR_STATUS_IDLE;
2012	case REGULATOR_STATUS_STANDBY:
2013		return REGULATOR_STATUS_STANDBY;
2014	default:
2015		return 0;
2016	}
2017}
2018EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2019
2020/*
2021 * To avoid cluttering sysfs (and memory) with useless state, only
2022 * create attributes that can be meaningfully displayed.
2023 */
2024static int add_regulator_attributes(struct regulator_dev *rdev)
2025{
2026	struct device		*dev = &rdev->dev;
2027	struct regulator_ops	*ops = rdev->desc->ops;
2028	int			status = 0;
2029
2030	/* some attributes need specific methods to be displayed */
2031	if (ops->get_voltage) {
2032		status = device_create_file(dev, &dev_attr_microvolts);
2033		if (status < 0)
2034			return status;
2035	}
2036	if (ops->get_current_limit) {
2037		status = device_create_file(dev, &dev_attr_microamps);
2038		if (status < 0)
2039			return status;
2040	}
2041	if (ops->get_mode) {
2042		status = device_create_file(dev, &dev_attr_opmode);
2043		if (status < 0)
2044			return status;
2045	}
2046	if (ops->is_enabled) {
2047		status = device_create_file(dev, &dev_attr_state);
2048		if (status < 0)
2049			return status;
2050	}
2051	if (ops->get_status) {
2052		status = device_create_file(dev, &dev_attr_status);
2053		if (status < 0)
2054			return status;
2055	}
2056
2057	/* some attributes are type-specific */
2058	if (rdev->desc->type == REGULATOR_CURRENT) {
2059		status = device_create_file(dev, &dev_attr_requested_microamps);
2060		if (status < 0)
2061			return status;
2062	}
2063
2064	/* all the other attributes exist to support constraints;
2065	 * don't show them if there are no constraints, or if the
2066	 * relevant supporting methods are missing.
2067	 */
2068	if (!rdev->constraints)
2069		return status;
2070
2071	/* constraints need specific supporting methods */
2072	if (ops->set_voltage) {
2073		status = device_create_file(dev, &dev_attr_min_microvolts);
2074		if (status < 0)
2075			return status;
2076		status = device_create_file(dev, &dev_attr_max_microvolts);
2077		if (status < 0)
2078			return status;
2079	}
2080	if (ops->set_current_limit) {
2081		status = device_create_file(dev, &dev_attr_min_microamps);
2082		if (status < 0)
2083			return status;
2084		status = device_create_file(dev, &dev_attr_max_microamps);
2085		if (status < 0)
2086			return status;
2087	}
2088
2089	/* suspend mode constraints need multiple supporting methods */
2090	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2091		return status;
2092
2093	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2094	if (status < 0)
2095		return status;
2096	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2097	if (status < 0)
2098		return status;
2099	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2100	if (status < 0)
2101		return status;
2102
2103	if (ops->set_suspend_voltage) {
2104		status = device_create_file(dev,
2105				&dev_attr_suspend_standby_microvolts);
2106		if (status < 0)
2107			return status;
2108		status = device_create_file(dev,
2109				&dev_attr_suspend_mem_microvolts);
2110		if (status < 0)
2111			return status;
2112		status = device_create_file(dev,
2113				&dev_attr_suspend_disk_microvolts);
2114		if (status < 0)
2115			return status;
2116	}
2117
2118	if (ops->set_suspend_mode) {
2119		status = device_create_file(dev,
2120				&dev_attr_suspend_standby_mode);
2121		if (status < 0)
2122			return status;
2123		status = device_create_file(dev,
2124				&dev_attr_suspend_mem_mode);
2125		if (status < 0)
2126			return status;
2127		status = device_create_file(dev,
2128				&dev_attr_suspend_disk_mode);
2129		if (status < 0)
2130			return status;
2131	}
2132
2133	return status;
2134}
2135
2136/**
2137 * regulator_register - register regulator
2138 * @regulator_desc: regulator to register
2139 * @dev: struct device for the regulator
2140 * @init_data: platform provided init data, passed through by driver
2141 * @driver_data: private regulator data
2142 *
2143 * Called by regulator drivers to register a regulator.
2144 * Returns 0 on success.
2145 */
2146struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2147	struct device *dev, struct regulator_init_data *init_data,
2148	void *driver_data)
2149{
2150	static atomic_t regulator_no = ATOMIC_INIT(0);
2151	struct regulator_dev *rdev;
2152	int ret, i;
2153
2154	if (regulator_desc == NULL)
2155		return ERR_PTR(-EINVAL);
2156
2157	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2158		return ERR_PTR(-EINVAL);
2159
2160	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2161	    regulator_desc->type != REGULATOR_CURRENT)
2162		return ERR_PTR(-EINVAL);
2163
2164	if (!init_data)
2165		return ERR_PTR(-EINVAL);
2166
2167	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2168	if (rdev == NULL)
2169		return ERR_PTR(-ENOMEM);
2170
2171	mutex_lock(&regulator_list_mutex);
2172
2173	mutex_init(&rdev->mutex);
2174	rdev->reg_data = driver_data;
2175	rdev->owner = regulator_desc->owner;
2176	rdev->desc = regulator_desc;
2177	INIT_LIST_HEAD(&rdev->consumer_list);
2178	INIT_LIST_HEAD(&rdev->supply_list);
2179	INIT_LIST_HEAD(&rdev->list);
2180	INIT_LIST_HEAD(&rdev->slist);
2181	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2182
2183	/* preform any regulator specific init */
2184	if (init_data->regulator_init) {
2185		ret = init_data->regulator_init(rdev->reg_data);
2186		if (ret < 0)
2187			goto clean;
2188	}
2189
2190	/* register with sysfs */
2191	rdev->dev.class = &regulator_class;
2192	rdev->dev.parent = dev;
2193	dev_set_name(&rdev->dev, "regulator.%d",
2194		     atomic_inc_return(&regulator_no) - 1);
2195	ret = device_register(&rdev->dev);
2196	if (ret != 0)
2197		goto clean;
2198
2199	dev_set_drvdata(&rdev->dev, rdev);
2200
2201	/* set regulator constraints */
2202	ret = set_machine_constraints(rdev, &init_data->constraints);
2203	if (ret < 0)
2204		goto scrub;
2205
2206	/* add attributes supported by this regulator */
2207	ret = add_regulator_attributes(rdev);
2208	if (ret < 0)
2209		goto scrub;
2210
2211	/* set supply regulator if it exists */
2212	if (init_data->supply_regulator_dev) {
2213		ret = set_supply(rdev,
2214			dev_get_drvdata(init_data->supply_regulator_dev));
2215		if (ret < 0)
2216			goto scrub;
2217	}
2218
2219	/* add consumers devices */
2220	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2221		ret = set_consumer_device_supply(rdev,
2222			init_data->consumer_supplies[i].dev,
2223			init_data->consumer_supplies[i].dev_name,
2224			init_data->consumer_supplies[i].supply);
2225		if (ret < 0) {
2226			for (--i; i >= 0; i--)
2227				unset_consumer_device_supply(rdev,
2228				    init_data->consumer_supplies[i].dev_name,
2229				    init_data->consumer_supplies[i].dev);
2230			goto scrub;
2231		}
2232	}
2233
2234	list_add(&rdev->list, &regulator_list);
2235out:
2236	mutex_unlock(&regulator_list_mutex);
2237	return rdev;
2238
2239scrub:
2240	device_unregister(&rdev->dev);
2241	/* device core frees rdev */
2242	rdev = ERR_PTR(ret);
2243	goto out;
2244
2245clean:
2246	kfree(rdev);
2247	rdev = ERR_PTR(ret);
2248	goto out;
2249}
2250EXPORT_SYMBOL_GPL(regulator_register);
2251
2252/**
2253 * regulator_unregister - unregister regulator
2254 * @rdev: regulator to unregister
2255 *
2256 * Called by regulator drivers to unregister a regulator.
2257 */
2258void regulator_unregister(struct regulator_dev *rdev)
2259{
2260	if (rdev == NULL)
2261		return;
2262
2263	mutex_lock(&regulator_list_mutex);
2264	WARN_ON(rdev->open_count);
2265	unset_regulator_supplies(rdev);
2266	list_del(&rdev->list);
2267	if (rdev->supply)
2268		sysfs_remove_link(&rdev->dev.kobj, "supply");
2269	device_unregister(&rdev->dev);
2270	mutex_unlock(&regulator_list_mutex);
2271}
2272EXPORT_SYMBOL_GPL(regulator_unregister);
2273
2274/**
2275 * regulator_suspend_prepare - prepare regulators for system wide suspend
2276 * @state: system suspend state
2277 *
2278 * Configure each regulator with it's suspend operating parameters for state.
2279 * This will usually be called by machine suspend code prior to supending.
2280 */
2281int regulator_suspend_prepare(suspend_state_t state)
2282{
2283	struct regulator_dev *rdev;
2284	int ret = 0;
2285
2286	/* ON is handled by regulator active state */
2287	if (state == PM_SUSPEND_ON)
2288		return -EINVAL;
2289
2290	mutex_lock(&regulator_list_mutex);
2291	list_for_each_entry(rdev, &regulator_list, list) {
2292
2293		mutex_lock(&rdev->mutex);
2294		ret = suspend_prepare(rdev, state);
2295		mutex_unlock(&rdev->mutex);
2296
2297		if (ret < 0) {
2298			printk(KERN_ERR "%s: failed to prepare %s\n",
2299				__func__, rdev->desc->name);
2300			goto out;
2301		}
2302	}
2303out:
2304	mutex_unlock(&regulator_list_mutex);
2305	return ret;
2306}
2307EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2308
2309/**
2310 * regulator_has_full_constraints - the system has fully specified constraints
2311 *
2312 * Calling this function will cause the regulator API to disable all
2313 * regulators which have a zero use count and don't have an always_on
2314 * constraint in a late_initcall.
2315 *
2316 * The intention is that this will become the default behaviour in a
2317 * future kernel release so users are encouraged to use this facility
2318 * now.
2319 */
2320void regulator_has_full_constraints(void)
2321{
2322	has_full_constraints = 1;
2323}
2324EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2325
2326/**
2327 * rdev_get_drvdata - get rdev regulator driver data
2328 * @rdev: regulator
2329 *
2330 * Get rdev regulator driver private data. This call can be used in the
2331 * regulator driver context.
2332 */
2333void *rdev_get_drvdata(struct regulator_dev *rdev)
2334{
2335	return rdev->reg_data;
2336}
2337EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2338
2339/**
2340 * regulator_get_drvdata - get regulator driver data
2341 * @regulator: regulator
2342 *
2343 * Get regulator driver private data. This call can be used in the consumer
2344 * driver context when non API regulator specific functions need to be called.
2345 */
2346void *regulator_get_drvdata(struct regulator *regulator)
2347{
2348	return regulator->rdev->reg_data;
2349}
2350EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2351
2352/**
2353 * regulator_set_drvdata - set regulator driver data
2354 * @regulator: regulator
2355 * @data: data
2356 */
2357void regulator_set_drvdata(struct regulator *regulator, void *data)
2358{
2359	regulator->rdev->reg_data = data;
2360}
2361EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2362
2363/**
2364 * regulator_get_id - get regulator ID
2365 * @rdev: regulator
2366 */
2367int rdev_get_id(struct regulator_dev *rdev)
2368{
2369	return rdev->desc->id;
2370}
2371EXPORT_SYMBOL_GPL(rdev_get_id);
2372
2373struct device *rdev_get_dev(struct regulator_dev *rdev)
2374{
2375	return &rdev->dev;
2376}
2377EXPORT_SYMBOL_GPL(rdev_get_dev);
2378
2379void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2380{
2381	return reg_init_data->driver_data;
2382}
2383EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2384
2385static int __init regulator_init(void)
2386{
2387	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2388	return class_register(&regulator_class);
2389}
2390
2391/* init early to allow our consumers to complete system booting */
2392core_initcall(regulator_init);
2393
2394static int __init regulator_init_complete(void)
2395{
2396	struct regulator_dev *rdev;
2397	struct regulator_ops *ops;
2398	struct regulation_constraints *c;
2399	int enabled, ret;
2400	const char *name;
2401
2402	mutex_lock(&regulator_list_mutex);
2403
2404	/* If we have a full configuration then disable any regulators
2405	 * which are not in use or always_on.  This will become the
2406	 * default behaviour in the future.
2407	 */
2408	list_for_each_entry(rdev, &regulator_list, list) {
2409		ops = rdev->desc->ops;
2410		c = rdev->constraints;
2411
2412		if (c->name)
2413			name = c->name;
2414		else if (rdev->desc->name)
2415			name = rdev->desc->name;
2416		else
2417			name = "regulator";
2418
2419		if (!ops->disable || c->always_on)
2420			continue;
2421
2422		mutex_lock(&rdev->mutex);
2423
2424		if (rdev->use_count)
2425			goto unlock;
2426
2427		/* If we can't read the status assume it's on. */
2428		if (ops->is_enabled)
2429			enabled = ops->is_enabled(rdev);
2430		else
2431			enabled = 1;
2432
2433		if (!enabled)
2434			goto unlock;
2435
2436		if (has_full_constraints) {
2437			/* We log since this may kill the system if it
2438			 * goes wrong. */
2439			printk(KERN_INFO "%s: disabling %s\n",
2440			       __func__, name);
2441			ret = ops->disable(rdev);
2442			if (ret != 0) {
2443				printk(KERN_ERR
2444				       "%s: couldn't disable %s: %d\n",
2445				       __func__, name, ret);
2446			}
2447		} else {
2448			/* The intention is that in future we will
2449			 * assume that full constraints are provided
2450			 * so warn even if we aren't going to do
2451			 * anything here.
2452			 */
2453			printk(KERN_WARNING
2454			       "%s: incomplete constraints, leaving %s on\n",
2455			       __func__, name);
2456		}
2457
2458unlock:
2459		mutex_unlock(&rdev->mutex);
2460	}
2461
2462	mutex_unlock(&regulator_list_mutex);
2463
2464	return 0;
2465}
2466late_initcall(regulator_init_complete);
2467