core.c revision a0c7b164ad115ec0556dc0904ee2218cbc5cedfa
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/gpio/consumer.h>
28#include <linux/of.h>
29#include <linux/regmap.h>
30#include <linux/regulator/of_regulator.h>
31#include <linux/regulator/consumer.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include <linux/module.h>
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/regulator.h>
38
39#include "dummy.h"
40#include "internal.h"
41
42#define rdev_crit(rdev, fmt, ...)					\
43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_err(rdev, fmt, ...)					\
45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_warn(rdev, fmt, ...)					\
47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_info(rdev, fmt, ...)					\
49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50#define rdev_dbg(rdev, fmt, ...)					\
51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53static DEFINE_MUTEX(regulator_list_mutex);
54static LIST_HEAD(regulator_list);
55static LIST_HEAD(regulator_map_list);
56static LIST_HEAD(regulator_ena_gpio_list);
57static LIST_HEAD(regulator_supply_alias_list);
58static bool has_full_constraints;
59
60static struct dentry *debugfs_root;
61
62/*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67struct regulator_map {
68	struct list_head list;
69	const char *dev_name;   /* The dev_name() for the consumer */
70	const char *supply;
71	struct regulator_dev *regulator;
72};
73
74/*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79struct regulator_enable_gpio {
80	struct list_head list;
81	struct gpio_desc *gpiod;
82	u32 enable_count;	/* a number of enabled shared GPIO */
83	u32 request_count;	/* a number of requested shared GPIO */
84	unsigned int ena_gpio_invert:1;
85};
86
87/*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92struct regulator_supply_alias {
93	struct list_head list;
94	struct device *src_dev;
95	const char *src_supply;
96	struct device *alias_dev;
97	const char *alias_supply;
98};
99
100static int _regulator_is_enabled(struct regulator_dev *rdev);
101static int _regulator_disable(struct regulator_dev *rdev);
102static int _regulator_get_voltage(struct regulator_dev *rdev);
103static int _regulator_get_current_limit(struct regulator_dev *rdev);
104static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105static void _notifier_call_chain(struct regulator_dev *rdev,
106				  unsigned long event, void *data);
107static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108				     int min_uV, int max_uV);
109static struct regulator *create_regulator(struct regulator_dev *rdev,
110					  struct device *dev,
111					  const char *supply_name);
112
113static const char *rdev_get_name(struct regulator_dev *rdev)
114{
115	if (rdev->constraints && rdev->constraints->name)
116		return rdev->constraints->name;
117	else if (rdev->desc->name)
118		return rdev->desc->name;
119	else
120		return "";
121}
122
123static bool have_full_constraints(void)
124{
125	return has_full_constraints || of_have_populated_dt();
126}
127
128/**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138{
139	struct device_node *regnode = NULL;
140	char prop_name[32]; /* 32 is max size of property name */
141
142	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144	snprintf(prop_name, 32, "%s-supply", supply);
145	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147	if (!regnode) {
148		dev_dbg(dev, "Looking up %s property in node %s failed",
149				prop_name, dev->of_node->full_name);
150		return NULL;
151	}
152	return regnode;
153}
154
155static int _regulator_can_change_status(struct regulator_dev *rdev)
156{
157	if (!rdev->constraints)
158		return 0;
159
160	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161		return 1;
162	else
163		return 0;
164}
165
166/* Platform voltage constraint check */
167static int regulator_check_voltage(struct regulator_dev *rdev,
168				   int *min_uV, int *max_uV)
169{
170	BUG_ON(*min_uV > *max_uV);
171
172	if (!rdev->constraints) {
173		rdev_err(rdev, "no constraints\n");
174		return -ENODEV;
175	}
176	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177		rdev_err(rdev, "operation not allowed\n");
178		return -EPERM;
179	}
180
181	if (*max_uV > rdev->constraints->max_uV)
182		*max_uV = rdev->constraints->max_uV;
183	if (*min_uV < rdev->constraints->min_uV)
184		*min_uV = rdev->constraints->min_uV;
185
186	if (*min_uV > *max_uV) {
187		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188			 *min_uV, *max_uV);
189		return -EINVAL;
190	}
191
192	return 0;
193}
194
195/* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198static int regulator_check_consumers(struct regulator_dev *rdev,
199				     int *min_uV, int *max_uV)
200{
201	struct regulator *regulator;
202
203	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204		/*
205		 * Assume consumers that didn't say anything are OK
206		 * with anything in the constraint range.
207		 */
208		if (!regulator->min_uV && !regulator->max_uV)
209			continue;
210
211		if (*max_uV > regulator->max_uV)
212			*max_uV = regulator->max_uV;
213		if (*min_uV < regulator->min_uV)
214			*min_uV = regulator->min_uV;
215	}
216
217	if (*min_uV > *max_uV) {
218		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219			*min_uV, *max_uV);
220		return -EINVAL;
221	}
222
223	return 0;
224}
225
226/* current constraint check */
227static int regulator_check_current_limit(struct regulator_dev *rdev,
228					int *min_uA, int *max_uA)
229{
230	BUG_ON(*min_uA > *max_uA);
231
232	if (!rdev->constraints) {
233		rdev_err(rdev, "no constraints\n");
234		return -ENODEV;
235	}
236	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237		rdev_err(rdev, "operation not allowed\n");
238		return -EPERM;
239	}
240
241	if (*max_uA > rdev->constraints->max_uA)
242		*max_uA = rdev->constraints->max_uA;
243	if (*min_uA < rdev->constraints->min_uA)
244		*min_uA = rdev->constraints->min_uA;
245
246	if (*min_uA > *max_uA) {
247		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248			 *min_uA, *max_uA);
249		return -EINVAL;
250	}
251
252	return 0;
253}
254
255/* operating mode constraint check */
256static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257{
258	switch (*mode) {
259	case REGULATOR_MODE_FAST:
260	case REGULATOR_MODE_NORMAL:
261	case REGULATOR_MODE_IDLE:
262	case REGULATOR_MODE_STANDBY:
263		break;
264	default:
265		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266		return -EINVAL;
267	}
268
269	if (!rdev->constraints) {
270		rdev_err(rdev, "no constraints\n");
271		return -ENODEV;
272	}
273	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274		rdev_err(rdev, "operation not allowed\n");
275		return -EPERM;
276	}
277
278	/* The modes are bitmasks, the most power hungry modes having
279	 * the lowest values. If the requested mode isn't supported
280	 * try higher modes. */
281	while (*mode) {
282		if (rdev->constraints->valid_modes_mask & *mode)
283			return 0;
284		*mode /= 2;
285	}
286
287	return -EINVAL;
288}
289
290/* dynamic regulator mode switching constraint check */
291static int regulator_check_drms(struct regulator_dev *rdev)
292{
293	if (!rdev->constraints) {
294		rdev_err(rdev, "no constraints\n");
295		return -ENODEV;
296	}
297	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298		rdev_err(rdev, "operation not allowed\n");
299		return -EPERM;
300	}
301	return 0;
302}
303
304static ssize_t regulator_uV_show(struct device *dev,
305				struct device_attribute *attr, char *buf)
306{
307	struct regulator_dev *rdev = dev_get_drvdata(dev);
308	ssize_t ret;
309
310	mutex_lock(&rdev->mutex);
311	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312	mutex_unlock(&rdev->mutex);
313
314	return ret;
315}
316static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318static ssize_t regulator_uA_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324}
325static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328			 char *buf)
329{
330	struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333}
334static DEVICE_ATTR_RO(name);
335
336static ssize_t regulator_print_opmode(char *buf, int mode)
337{
338	switch (mode) {
339	case REGULATOR_MODE_FAST:
340		return sprintf(buf, "fast\n");
341	case REGULATOR_MODE_NORMAL:
342		return sprintf(buf, "normal\n");
343	case REGULATOR_MODE_IDLE:
344		return sprintf(buf, "idle\n");
345	case REGULATOR_MODE_STANDBY:
346		return sprintf(buf, "standby\n");
347	}
348	return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_opmode_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357}
358static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360static ssize_t regulator_print_state(char *buf, int state)
361{
362	if (state > 0)
363		return sprintf(buf, "enabled\n");
364	else if (state == 0)
365		return sprintf(buf, "disabled\n");
366	else
367		return sprintf(buf, "unknown\n");
368}
369
370static ssize_t regulator_state_show(struct device *dev,
371				   struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374	ssize_t ret;
375
376	mutex_lock(&rdev->mutex);
377	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378	mutex_unlock(&rdev->mutex);
379
380	return ret;
381}
382static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384static ssize_t regulator_status_show(struct device *dev,
385				   struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	int status;
389	char *label;
390
391	status = rdev->desc->ops->get_status(rdev);
392	if (status < 0)
393		return status;
394
395	switch (status) {
396	case REGULATOR_STATUS_OFF:
397		label = "off";
398		break;
399	case REGULATOR_STATUS_ON:
400		label = "on";
401		break;
402	case REGULATOR_STATUS_ERROR:
403		label = "error";
404		break;
405	case REGULATOR_STATUS_FAST:
406		label = "fast";
407		break;
408	case REGULATOR_STATUS_NORMAL:
409		label = "normal";
410		break;
411	case REGULATOR_STATUS_IDLE:
412		label = "idle";
413		break;
414	case REGULATOR_STATUS_STANDBY:
415		label = "standby";
416		break;
417	case REGULATOR_STATUS_BYPASS:
418		label = "bypass";
419		break;
420	case REGULATOR_STATUS_UNDEFINED:
421		label = "undefined";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495			      char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500static DEVICE_ATTR_RO(num_users);
501
502static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503			 char *buf)
504{
505	struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507	switch (rdev->desc->type) {
508	case REGULATOR_VOLTAGE:
509		return sprintf(buf, "voltage\n");
510	case REGULATOR_CURRENT:
511		return sprintf(buf, "current\n");
512	}
513	return sprintf(buf, "unknown\n");
514}
515static DEVICE_ATTR_RO(type);
516
517static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518				struct device_attribute *attr, char *buf)
519{
520	struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523}
524static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525		regulator_suspend_mem_uV_show, NULL);
526
527static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528				struct device_attribute *attr, char *buf)
529{
530	struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533}
534static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535		regulator_suspend_disk_uV_show, NULL);
536
537static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538				struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543}
544static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545		regulator_suspend_standby_uV_show, NULL);
546
547static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548				struct device_attribute *attr, char *buf)
549{
550	struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552	return regulator_print_opmode(buf,
553		rdev->constraints->state_mem.mode);
554}
555static DEVICE_ATTR(suspend_mem_mode, 0444,
556		regulator_suspend_mem_mode_show, NULL);
557
558static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559				struct device_attribute *attr, char *buf)
560{
561	struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563	return regulator_print_opmode(buf,
564		rdev->constraints->state_disk.mode);
565}
566static DEVICE_ATTR(suspend_disk_mode, 0444,
567		regulator_suspend_disk_mode_show, NULL);
568
569static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570				struct device_attribute *attr, char *buf)
571{
572	struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574	return regulator_print_opmode(buf,
575		rdev->constraints->state_standby.mode);
576}
577static DEVICE_ATTR(suspend_standby_mode, 0444,
578		regulator_suspend_standby_mode_show, NULL);
579
580static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581				   struct device_attribute *attr, char *buf)
582{
583	struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585	return regulator_print_state(buf,
586			rdev->constraints->state_mem.enabled);
587}
588static DEVICE_ATTR(suspend_mem_state, 0444,
589		regulator_suspend_mem_state_show, NULL);
590
591static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592				   struct device_attribute *attr, char *buf)
593{
594	struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596	return regulator_print_state(buf,
597			rdev->constraints->state_disk.enabled);
598}
599static DEVICE_ATTR(suspend_disk_state, 0444,
600		regulator_suspend_disk_state_show, NULL);
601
602static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603				   struct device_attribute *attr, char *buf)
604{
605	struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607	return regulator_print_state(buf,
608			rdev->constraints->state_standby.enabled);
609}
610static DEVICE_ATTR(suspend_standby_state, 0444,
611		regulator_suspend_standby_state_show, NULL);
612
613static ssize_t regulator_bypass_show(struct device *dev,
614				     struct device_attribute *attr, char *buf)
615{
616	struct regulator_dev *rdev = dev_get_drvdata(dev);
617	const char *report;
618	bool bypass;
619	int ret;
620
621	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623	if (ret != 0)
624		report = "unknown";
625	else if (bypass)
626		report = "enabled";
627	else
628		report = "disabled";
629
630	return sprintf(buf, "%s\n", report);
631}
632static DEVICE_ATTR(bypass, 0444,
633		   regulator_bypass_show, NULL);
634
635/*
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
638 */
639static struct attribute *regulator_dev_attrs[] = {
640	&dev_attr_name.attr,
641	&dev_attr_num_users.attr,
642	&dev_attr_type.attr,
643	NULL,
644};
645ATTRIBUTE_GROUPS(regulator_dev);
646
647static void regulator_dev_release(struct device *dev)
648{
649	struct regulator_dev *rdev = dev_get_drvdata(dev);
650	kfree(rdev);
651}
652
653static struct class regulator_class = {
654	.name = "regulator",
655	.dev_release = regulator_dev_release,
656	.dev_groups = regulator_dev_groups,
657};
658
659/* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661static void drms_uA_update(struct regulator_dev *rdev)
662{
663	struct regulator *sibling;
664	int current_uA = 0, output_uV, input_uV, err;
665	unsigned int mode;
666
667	err = regulator_check_drms(rdev);
668	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669	    (!rdev->desc->ops->get_voltage &&
670	     !rdev->desc->ops->get_voltage_sel) ||
671	    !rdev->desc->ops->set_mode)
672		return;
673
674	/* get output voltage */
675	output_uV = _regulator_get_voltage(rdev);
676	if (output_uV <= 0)
677		return;
678
679	/* get input voltage */
680	input_uV = 0;
681	if (rdev->supply)
682		input_uV = regulator_get_voltage(rdev->supply);
683	if (input_uV <= 0)
684		input_uV = rdev->constraints->input_uV;
685	if (input_uV <= 0)
686		return;
687
688	/* calc total requested load */
689	list_for_each_entry(sibling, &rdev->consumer_list, list)
690		current_uA += sibling->uA_load;
691
692	/* now get the optimum mode for our new total regulator load */
693	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694						  output_uV, current_uA);
695
696	/* check the new mode is allowed */
697	err = regulator_mode_constrain(rdev, &mode);
698	if (err == 0)
699		rdev->desc->ops->set_mode(rdev, mode);
700}
701
702static int suspend_set_state(struct regulator_dev *rdev,
703	struct regulator_state *rstate)
704{
705	int ret = 0;
706
707	/* If we have no suspend mode configration don't set anything;
708	 * only warn if the driver implements set_suspend_voltage or
709	 * set_suspend_mode callback.
710	 */
711	if (!rstate->enabled && !rstate->disabled) {
712		if (rdev->desc->ops->set_suspend_voltage ||
713		    rdev->desc->ops->set_suspend_mode)
714			rdev_warn(rdev, "No configuration\n");
715		return 0;
716	}
717
718	if (rstate->enabled && rstate->disabled) {
719		rdev_err(rdev, "invalid configuration\n");
720		return -EINVAL;
721	}
722
723	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724		ret = rdev->desc->ops->set_suspend_enable(rdev);
725	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726		ret = rdev->desc->ops->set_suspend_disable(rdev);
727	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728		ret = 0;
729
730	if (ret < 0) {
731		rdev_err(rdev, "failed to enabled/disable\n");
732		return ret;
733	}
734
735	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737		if (ret < 0) {
738			rdev_err(rdev, "failed to set voltage\n");
739			return ret;
740		}
741	}
742
743	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745		if (ret < 0) {
746			rdev_err(rdev, "failed to set mode\n");
747			return ret;
748		}
749	}
750	return ret;
751}
752
753/* locks held by caller */
754static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755{
756	if (!rdev->constraints)
757		return -EINVAL;
758
759	switch (state) {
760	case PM_SUSPEND_STANDBY:
761		return suspend_set_state(rdev,
762			&rdev->constraints->state_standby);
763	case PM_SUSPEND_MEM:
764		return suspend_set_state(rdev,
765			&rdev->constraints->state_mem);
766	case PM_SUSPEND_MAX:
767		return suspend_set_state(rdev,
768			&rdev->constraints->state_disk);
769	default:
770		return -EINVAL;
771	}
772}
773
774static void print_constraints(struct regulator_dev *rdev)
775{
776	struct regulation_constraints *constraints = rdev->constraints;
777	char buf[80] = "";
778	int count = 0;
779	int ret;
780
781	if (constraints->min_uV && constraints->max_uV) {
782		if (constraints->min_uV == constraints->max_uV)
783			count += sprintf(buf + count, "%d mV ",
784					 constraints->min_uV / 1000);
785		else
786			count += sprintf(buf + count, "%d <--> %d mV ",
787					 constraints->min_uV / 1000,
788					 constraints->max_uV / 1000);
789	}
790
791	if (!constraints->min_uV ||
792	    constraints->min_uV != constraints->max_uV) {
793		ret = _regulator_get_voltage(rdev);
794		if (ret > 0)
795			count += sprintf(buf + count, "at %d mV ", ret / 1000);
796	}
797
798	if (constraints->uV_offset)
799		count += sprintf(buf, "%dmV offset ",
800				 constraints->uV_offset / 1000);
801
802	if (constraints->min_uA && constraints->max_uA) {
803		if (constraints->min_uA == constraints->max_uA)
804			count += sprintf(buf + count, "%d mA ",
805					 constraints->min_uA / 1000);
806		else
807			count += sprintf(buf + count, "%d <--> %d mA ",
808					 constraints->min_uA / 1000,
809					 constraints->max_uA / 1000);
810	}
811
812	if (!constraints->min_uA ||
813	    constraints->min_uA != constraints->max_uA) {
814		ret = _regulator_get_current_limit(rdev);
815		if (ret > 0)
816			count += sprintf(buf + count, "at %d mA ", ret / 1000);
817	}
818
819	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820		count += sprintf(buf + count, "fast ");
821	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822		count += sprintf(buf + count, "normal ");
823	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824		count += sprintf(buf + count, "idle ");
825	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826		count += sprintf(buf + count, "standby");
827
828	if (!count)
829		sprintf(buf, "no parameters");
830
831	rdev_info(rdev, "%s\n", buf);
832
833	if ((constraints->min_uV != constraints->max_uV) &&
834	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835		rdev_warn(rdev,
836			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837}
838
839static int machine_constraints_voltage(struct regulator_dev *rdev,
840	struct regulation_constraints *constraints)
841{
842	struct regulator_ops *ops = rdev->desc->ops;
843	int ret;
844
845	/* do we need to apply the constraint voltage */
846	if (rdev->constraints->apply_uV &&
847	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
848		int current_uV = _regulator_get_voltage(rdev);
849		if (current_uV < 0) {
850			rdev_err(rdev,
851				 "failed to get the current voltage(%d)\n",
852				 current_uV);
853			return current_uV;
854		}
855		if (current_uV < rdev->constraints->min_uV ||
856		    current_uV > rdev->constraints->max_uV) {
857			ret = _regulator_do_set_voltage(
858				rdev, rdev->constraints->min_uV,
859				rdev->constraints->max_uV);
860			if (ret < 0) {
861				rdev_err(rdev,
862					"failed to apply %duV constraint(%d)\n",
863					rdev->constraints->min_uV, ret);
864				return ret;
865			}
866		}
867	}
868
869	/* constrain machine-level voltage specs to fit
870	 * the actual range supported by this regulator.
871	 */
872	if (ops->list_voltage && rdev->desc->n_voltages) {
873		int	count = rdev->desc->n_voltages;
874		int	i;
875		int	min_uV = INT_MAX;
876		int	max_uV = INT_MIN;
877		int	cmin = constraints->min_uV;
878		int	cmax = constraints->max_uV;
879
880		/* it's safe to autoconfigure fixed-voltage supplies
881		   and the constraints are used by list_voltage. */
882		if (count == 1 && !cmin) {
883			cmin = 1;
884			cmax = INT_MAX;
885			constraints->min_uV = cmin;
886			constraints->max_uV = cmax;
887		}
888
889		/* voltage constraints are optional */
890		if ((cmin == 0) && (cmax == 0))
891			return 0;
892
893		/* else require explicit machine-level constraints */
894		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895			rdev_err(rdev, "invalid voltage constraints\n");
896			return -EINVAL;
897		}
898
899		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900		for (i = 0; i < count; i++) {
901			int	value;
902
903			value = ops->list_voltage(rdev, i);
904			if (value <= 0)
905				continue;
906
907			/* maybe adjust [min_uV..max_uV] */
908			if (value >= cmin && value < min_uV)
909				min_uV = value;
910			if (value <= cmax && value > max_uV)
911				max_uV = value;
912		}
913
914		/* final: [min_uV..max_uV] valid iff constraints valid */
915		if (max_uV < min_uV) {
916			rdev_err(rdev,
917				 "unsupportable voltage constraints %u-%uuV\n",
918				 min_uV, max_uV);
919			return -EINVAL;
920		}
921
922		/* use regulator's subset of machine constraints */
923		if (constraints->min_uV < min_uV) {
924			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925				 constraints->min_uV, min_uV);
926			constraints->min_uV = min_uV;
927		}
928		if (constraints->max_uV > max_uV) {
929			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930				 constraints->max_uV, max_uV);
931			constraints->max_uV = max_uV;
932		}
933	}
934
935	return 0;
936}
937
938static int machine_constraints_current(struct regulator_dev *rdev,
939	struct regulation_constraints *constraints)
940{
941	struct regulator_ops *ops = rdev->desc->ops;
942	int ret;
943
944	if (!constraints->min_uA && !constraints->max_uA)
945		return 0;
946
947	if (constraints->min_uA > constraints->max_uA) {
948		rdev_err(rdev, "Invalid current constraints\n");
949		return -EINVAL;
950	}
951
952	if (!ops->set_current_limit || !ops->get_current_limit) {
953		rdev_warn(rdev, "Operation of current configuration missing\n");
954		return 0;
955	}
956
957	/* Set regulator current in constraints range */
958	ret = ops->set_current_limit(rdev, constraints->min_uA,
959			constraints->max_uA);
960	if (ret < 0) {
961		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962		return ret;
963	}
964
965	return 0;
966}
967
968static int _regulator_do_enable(struct regulator_dev *rdev);
969
970/**
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
974 *
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
979 * set_mode.
980 */
981static int set_machine_constraints(struct regulator_dev *rdev,
982	const struct regulation_constraints *constraints)
983{
984	int ret = 0;
985	struct regulator_ops *ops = rdev->desc->ops;
986
987	if (constraints)
988		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989					    GFP_KERNEL);
990	else
991		rdev->constraints = kzalloc(sizeof(*constraints),
992					    GFP_KERNEL);
993	if (!rdev->constraints)
994		return -ENOMEM;
995
996	ret = machine_constraints_voltage(rdev, rdev->constraints);
997	if (ret != 0)
998		goto out;
999
1000	ret = machine_constraints_current(rdev, rdev->constraints);
1001	if (ret != 0)
1002		goto out;
1003
1004	/* do we need to setup our suspend state */
1005	if (rdev->constraints->initial_state) {
1006		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007		if (ret < 0) {
1008			rdev_err(rdev, "failed to set suspend state\n");
1009			goto out;
1010		}
1011	}
1012
1013	if (rdev->constraints->initial_mode) {
1014		if (!ops->set_mode) {
1015			rdev_err(rdev, "no set_mode operation\n");
1016			ret = -EINVAL;
1017			goto out;
1018		}
1019
1020		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021		if (ret < 0) {
1022			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023			goto out;
1024		}
1025	}
1026
1027	/* If the constraints say the regulator should be on at this point
1028	 * and we have control then make sure it is enabled.
1029	 */
1030	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031		ret = _regulator_do_enable(rdev);
1032		if (ret < 0 && ret != -EINVAL) {
1033			rdev_err(rdev, "failed to enable\n");
1034			goto out;
1035		}
1036	}
1037
1038	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039		&& ops->set_ramp_delay) {
1040		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041		if (ret < 0) {
1042			rdev_err(rdev, "failed to set ramp_delay\n");
1043			goto out;
1044		}
1045	}
1046
1047	print_constraints(rdev);
1048	return 0;
1049out:
1050	kfree(rdev->constraints);
1051	rdev->constraints = NULL;
1052	return ret;
1053}
1054
1055/**
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1059 *
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1063 */
1064static int set_supply(struct regulator_dev *rdev,
1065		      struct regulator_dev *supply_rdev)
1066{
1067	int err;
1068
1069	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072	if (rdev->supply == NULL) {
1073		err = -ENOMEM;
1074		return err;
1075	}
1076	supply_rdev->open_count++;
1077
1078	return 0;
1079}
1080
1081/**
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev:         regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply:       symbolic name for supply
1086 *
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices.  Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1091 */
1092static int set_consumer_device_supply(struct regulator_dev *rdev,
1093				      const char *consumer_dev_name,
1094				      const char *supply)
1095{
1096	struct regulator_map *node;
1097	int has_dev;
1098
1099	if (supply == NULL)
1100		return -EINVAL;
1101
1102	if (consumer_dev_name != NULL)
1103		has_dev = 1;
1104	else
1105		has_dev = 0;
1106
1107	list_for_each_entry(node, &regulator_map_list, list) {
1108		if (node->dev_name && consumer_dev_name) {
1109			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110				continue;
1111		} else if (node->dev_name || consumer_dev_name) {
1112			continue;
1113		}
1114
1115		if (strcmp(node->supply, supply) != 0)
1116			continue;
1117
1118		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119			 consumer_dev_name,
1120			 dev_name(&node->regulator->dev),
1121			 node->regulator->desc->name,
1122			 supply,
1123			 dev_name(&rdev->dev), rdev_get_name(rdev));
1124		return -EBUSY;
1125	}
1126
1127	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128	if (node == NULL)
1129		return -ENOMEM;
1130
1131	node->regulator = rdev;
1132	node->supply = supply;
1133
1134	if (has_dev) {
1135		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136		if (node->dev_name == NULL) {
1137			kfree(node);
1138			return -ENOMEM;
1139		}
1140	}
1141
1142	list_add(&node->list, &regulator_map_list);
1143	return 0;
1144}
1145
1146static void unset_regulator_supplies(struct regulator_dev *rdev)
1147{
1148	struct regulator_map *node, *n;
1149
1150	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151		if (rdev == node->regulator) {
1152			list_del(&node->list);
1153			kfree(node->dev_name);
1154			kfree(node);
1155		}
1156	}
1157}
1158
1159#define REG_STR_SIZE	64
1160
1161static struct regulator *create_regulator(struct regulator_dev *rdev,
1162					  struct device *dev,
1163					  const char *supply_name)
1164{
1165	struct regulator *regulator;
1166	char buf[REG_STR_SIZE];
1167	int err, size;
1168
1169	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170	if (regulator == NULL)
1171		return NULL;
1172
1173	mutex_lock(&rdev->mutex);
1174	regulator->rdev = rdev;
1175	list_add(&regulator->list, &rdev->consumer_list);
1176
1177	if (dev) {
1178		regulator->dev = dev;
1179
1180		/* Add a link to the device sysfs entry */
1181		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182				 dev->kobj.name, supply_name);
1183		if (size >= REG_STR_SIZE)
1184			goto overflow_err;
1185
1186		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187		if (regulator->supply_name == NULL)
1188			goto overflow_err;
1189
1190		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191					buf);
1192		if (err) {
1193			rdev_warn(rdev, "could not add device link %s err %d\n",
1194				  dev->kobj.name, err);
1195			/* non-fatal */
1196		}
1197	} else {
1198		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199		if (regulator->supply_name == NULL)
1200			goto overflow_err;
1201	}
1202
1203	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204						rdev->debugfs);
1205	if (!regulator->debugfs) {
1206		rdev_warn(rdev, "Failed to create debugfs directory\n");
1207	} else {
1208		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209				   &regulator->uA_load);
1210		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211				   &regulator->min_uV);
1212		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213				   &regulator->max_uV);
1214	}
1215
1216	/*
1217	 * Check now if the regulator is an always on regulator - if
1218	 * it is then we don't need to do nearly so much work for
1219	 * enable/disable calls.
1220	 */
1221	if (!_regulator_can_change_status(rdev) &&
1222	    _regulator_is_enabled(rdev))
1223		regulator->always_on = true;
1224
1225	mutex_unlock(&rdev->mutex);
1226	return regulator;
1227overflow_err:
1228	list_del(&regulator->list);
1229	kfree(regulator);
1230	mutex_unlock(&rdev->mutex);
1231	return NULL;
1232}
1233
1234static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235{
1236	if (rdev->constraints && rdev->constraints->enable_time)
1237		return rdev->constraints->enable_time;
1238	if (!rdev->desc->ops->enable_time)
1239		return rdev->desc->enable_time;
1240	return rdev->desc->ops->enable_time(rdev);
1241}
1242
1243static struct regulator_supply_alias *regulator_find_supply_alias(
1244		struct device *dev, const char *supply)
1245{
1246	struct regulator_supply_alias *map;
1247
1248	list_for_each_entry(map, &regulator_supply_alias_list, list)
1249		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250			return map;
1251
1252	return NULL;
1253}
1254
1255static void regulator_supply_alias(struct device **dev, const char **supply)
1256{
1257	struct regulator_supply_alias *map;
1258
1259	map = regulator_find_supply_alias(*dev, *supply);
1260	if (map) {
1261		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262				*supply, map->alias_supply,
1263				dev_name(map->alias_dev));
1264		*dev = map->alias_dev;
1265		*supply = map->alias_supply;
1266	}
1267}
1268
1269static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270						  const char *supply,
1271						  int *ret)
1272{
1273	struct regulator_dev *r;
1274	struct device_node *node;
1275	struct regulator_map *map;
1276	const char *devname = NULL;
1277
1278	regulator_supply_alias(&dev, &supply);
1279
1280	/* first do a dt based lookup */
1281	if (dev && dev->of_node) {
1282		node = of_get_regulator(dev, supply);
1283		if (node) {
1284			list_for_each_entry(r, &regulator_list, list)
1285				if (r->dev.parent &&
1286					node == r->dev.of_node)
1287					return r;
1288			*ret = -EPROBE_DEFER;
1289			return NULL;
1290		} else {
1291			/*
1292			 * If we couldn't even get the node then it's
1293			 * not just that the device didn't register
1294			 * yet, there's no node and we'll never
1295			 * succeed.
1296			 */
1297			*ret = -ENODEV;
1298		}
1299	}
1300
1301	/* if not found, try doing it non-dt way */
1302	if (dev)
1303		devname = dev_name(dev);
1304
1305	list_for_each_entry(r, &regulator_list, list)
1306		if (strcmp(rdev_get_name(r), supply) == 0)
1307			return r;
1308
1309	list_for_each_entry(map, &regulator_map_list, list) {
1310		/* If the mapping has a device set up it must match */
1311		if (map->dev_name &&
1312		    (!devname || strcmp(map->dev_name, devname)))
1313			continue;
1314
1315		if (strcmp(map->supply, supply) == 0)
1316			return map->regulator;
1317	}
1318
1319
1320	return NULL;
1321}
1322
1323/* Internal regulator request function */
1324static struct regulator *_regulator_get(struct device *dev, const char *id,
1325					bool exclusive, bool allow_dummy)
1326{
1327	struct regulator_dev *rdev;
1328	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329	const char *devname = NULL;
1330	int ret;
1331
1332	if (id == NULL) {
1333		pr_err("get() with no identifier\n");
1334		return ERR_PTR(-EINVAL);
1335	}
1336
1337	if (dev)
1338		devname = dev_name(dev);
1339
1340	if (have_full_constraints())
1341		ret = -ENODEV;
1342	else
1343		ret = -EPROBE_DEFER;
1344
1345	mutex_lock(&regulator_list_mutex);
1346
1347	rdev = regulator_dev_lookup(dev, id, &ret);
1348	if (rdev)
1349		goto found;
1350
1351	regulator = ERR_PTR(ret);
1352
1353	/*
1354	 * If we have return value from dev_lookup fail, we do not expect to
1355	 * succeed, so, quit with appropriate error value
1356	 */
1357	if (ret && ret != -ENODEV)
1358		goto out;
1359
1360	if (!devname)
1361		devname = "deviceless";
1362
1363	/*
1364	 * Assume that a regulator is physically present and enabled
1365	 * even if it isn't hooked up and just provide a dummy.
1366	 */
1367	if (have_full_constraints() && allow_dummy) {
1368		pr_warn("%s supply %s not found, using dummy regulator\n",
1369			devname, id);
1370
1371		rdev = dummy_regulator_rdev;
1372		goto found;
1373	/* Don't log an error when called from regulator_get_optional() */
1374	} else if (!have_full_constraints() || exclusive) {
1375		dev_warn(dev, "dummy supplies not allowed\n");
1376	}
1377
1378	mutex_unlock(&regulator_list_mutex);
1379	return regulator;
1380
1381found:
1382	if (rdev->exclusive) {
1383		regulator = ERR_PTR(-EPERM);
1384		goto out;
1385	}
1386
1387	if (exclusive && rdev->open_count) {
1388		regulator = ERR_PTR(-EBUSY);
1389		goto out;
1390	}
1391
1392	if (!try_module_get(rdev->owner))
1393		goto out;
1394
1395	regulator = create_regulator(rdev, dev, id);
1396	if (regulator == NULL) {
1397		regulator = ERR_PTR(-ENOMEM);
1398		module_put(rdev->owner);
1399		goto out;
1400	}
1401
1402	rdev->open_count++;
1403	if (exclusive) {
1404		rdev->exclusive = 1;
1405
1406		ret = _regulator_is_enabled(rdev);
1407		if (ret > 0)
1408			rdev->use_count = 1;
1409		else
1410			rdev->use_count = 0;
1411	}
1412
1413out:
1414	mutex_unlock(&regulator_list_mutex);
1415
1416	return regulator;
1417}
1418
1419/**
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1426 *
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged.  It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1431 */
1432struct regulator *regulator_get(struct device *dev, const char *id)
1433{
1434	return _regulator_get(dev, id, false, true);
1435}
1436EXPORT_SYMBOL_GPL(regulator_get);
1437
1438/**
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1442 *
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno.  Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1448 *
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1452 * controlling.
1453 *
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged.  It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1458 */
1459struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460{
1461	return _regulator_get(dev, id, true, false);
1462}
1463EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465/**
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1469 *
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1472 *
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1478 * supplies.
1479 *
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged.  It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1484 */
1485struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486{
1487	return _regulator_get(dev, id, false, false);
1488}
1489EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491/* Locks held by regulator_put() */
1492static void _regulator_put(struct regulator *regulator)
1493{
1494	struct regulator_dev *rdev;
1495
1496	if (regulator == NULL || IS_ERR(regulator))
1497		return;
1498
1499	rdev = regulator->rdev;
1500
1501	debugfs_remove_recursive(regulator->debugfs);
1502
1503	/* remove any sysfs entries */
1504	if (regulator->dev)
1505		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506	kfree(regulator->supply_name);
1507	list_del(&regulator->list);
1508	kfree(regulator);
1509
1510	rdev->open_count--;
1511	rdev->exclusive = 0;
1512
1513	module_put(rdev->owner);
1514}
1515
1516/**
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1519 *
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1522 * this function.
1523 */
1524void regulator_put(struct regulator *regulator)
1525{
1526	mutex_lock(&regulator_list_mutex);
1527	_regulator_put(regulator);
1528	mutex_unlock(&regulator_list_mutex);
1529}
1530EXPORT_SYMBOL_GPL(regulator_put);
1531
1532/**
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 *
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1539 * supply
1540 *
1541 * All lookups for id on dev will instead be conducted for alias_id on
1542 * alias_dev.
1543 */
1544int regulator_register_supply_alias(struct device *dev, const char *id,
1545				    struct device *alias_dev,
1546				    const char *alias_id)
1547{
1548	struct regulator_supply_alias *map;
1549
1550	map = regulator_find_supply_alias(dev, id);
1551	if (map)
1552		return -EEXIST;
1553
1554	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555	if (!map)
1556		return -ENOMEM;
1557
1558	map->src_dev = dev;
1559	map->src_supply = id;
1560	map->alias_dev = alias_dev;
1561	map->alias_supply = alias_id;
1562
1563	list_add(&map->list, &regulator_supply_alias_list);
1564
1565	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566		id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568	return 0;
1569}
1570EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572/**
1573 * regulator_unregister_supply_alias - Remove device alias
1574 *
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1577 *
1578 * Remove a lookup alias if one exists for id on dev.
1579 */
1580void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581{
1582	struct regulator_supply_alias *map;
1583
1584	map = regulator_find_supply_alias(dev, id);
1585	if (map) {
1586		list_del(&map->list);
1587		kfree(map);
1588	}
1589}
1590EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592/**
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1594 *
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * lookup the supply
1600 * @num_id: Number of aliases to register
1601 *
1602 * @return 0 on success, an errno on failure.
1603 *
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation.  If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1608 */
1609int regulator_bulk_register_supply_alias(struct device *dev,
1610					 const char *const *id,
1611					 struct device *alias_dev,
1612					 const char *const *alias_id,
1613					 int num_id)
1614{
1615	int i;
1616	int ret;
1617
1618	for (i = 0; i < num_id; ++i) {
1619		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620						      alias_id[i]);
1621		if (ret < 0)
1622			goto err;
1623	}
1624
1625	return 0;
1626
1627err:
1628	dev_err(dev,
1629		"Failed to create supply alias %s,%s -> %s,%s\n",
1630		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632	while (--i >= 0)
1633		regulator_unregister_supply_alias(dev, id[i]);
1634
1635	return ret;
1636}
1637EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639/**
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 *
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1645 *
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1648 */
1649void regulator_bulk_unregister_supply_alias(struct device *dev,
1650					    const char *const *id,
1651					    int num_id)
1652{
1653	int i;
1654
1655	for (i = 0; i < num_id; ++i)
1656		regulator_unregister_supply_alias(dev, id[i]);
1657}
1658EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663				const struct regulator_config *config)
1664{
1665	struct regulator_enable_gpio *pin;
1666	struct gpio_desc *gpiod;
1667	int ret;
1668
1669	gpiod = gpio_to_desc(config->ena_gpio);
1670
1671	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672		if (pin->gpiod == gpiod) {
1673			rdev_dbg(rdev, "GPIO %d is already used\n",
1674				config->ena_gpio);
1675			goto update_ena_gpio_to_rdev;
1676		}
1677	}
1678
1679	ret = gpio_request_one(config->ena_gpio,
1680				GPIOF_DIR_OUT | config->ena_gpio_flags,
1681				rdev_get_name(rdev));
1682	if (ret)
1683		return ret;
1684
1685	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686	if (pin == NULL) {
1687		gpio_free(config->ena_gpio);
1688		return -ENOMEM;
1689	}
1690
1691	pin->gpiod = gpiod;
1692	pin->ena_gpio_invert = config->ena_gpio_invert;
1693	list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695update_ena_gpio_to_rdev:
1696	pin->request_count++;
1697	rdev->ena_pin = pin;
1698	return 0;
1699}
1700
1701static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702{
1703	struct regulator_enable_gpio *pin, *n;
1704
1705	if (!rdev->ena_pin)
1706		return;
1707
1708	/* Free the GPIO only in case of no use */
1709	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710		if (pin->gpiod == rdev->ena_pin->gpiod) {
1711			if (pin->request_count <= 1) {
1712				pin->request_count = 0;
1713				gpiod_put(pin->gpiod);
1714				list_del(&pin->list);
1715				kfree(pin);
1716			} else {
1717				pin->request_count--;
1718			}
1719		}
1720	}
1721}
1722
1723/**
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1727 *
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730 */
1731static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732{
1733	struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735	if (!pin)
1736		return -EINVAL;
1737
1738	if (enable) {
1739		/* Enable GPIO at initial use */
1740		if (pin->enable_count == 0)
1741			gpiod_set_value_cansleep(pin->gpiod,
1742						 !pin->ena_gpio_invert);
1743
1744		pin->enable_count++;
1745	} else {
1746		if (pin->enable_count > 1) {
1747			pin->enable_count--;
1748			return 0;
1749		}
1750
1751		/* Disable GPIO if not used */
1752		if (pin->enable_count <= 1) {
1753			gpiod_set_value_cansleep(pin->gpiod,
1754						 pin->ena_gpio_invert);
1755			pin->enable_count = 0;
1756		}
1757	}
1758
1759	return 0;
1760}
1761
1762static int _regulator_do_enable(struct regulator_dev *rdev)
1763{
1764	int ret, delay;
1765
1766	/* Query before enabling in case configuration dependent.  */
1767	ret = _regulator_get_enable_time(rdev);
1768	if (ret >= 0) {
1769		delay = ret;
1770	} else {
1771		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1772		delay = 0;
1773	}
1774
1775	trace_regulator_enable(rdev_get_name(rdev));
1776
1777	if (rdev->ena_pin) {
1778		ret = regulator_ena_gpio_ctrl(rdev, true);
1779		if (ret < 0)
1780			return ret;
1781		rdev->ena_gpio_state = 1;
1782	} else if (rdev->desc->ops->enable) {
1783		ret = rdev->desc->ops->enable(rdev);
1784		if (ret < 0)
1785			return ret;
1786	} else {
1787		return -EINVAL;
1788	}
1789
1790	/* Allow the regulator to ramp; it would be useful to extend
1791	 * this for bulk operations so that the regulators can ramp
1792	 * together.  */
1793	trace_regulator_enable_delay(rdev_get_name(rdev));
1794
1795	/*
1796	 * Delay for the requested amount of time as per the guidelines in:
1797	 *
1798	 *     Documentation/timers/timers-howto.txt
1799	 *
1800	 * The assumption here is that regulators will never be enabled in
1801	 * atomic context and therefore sleeping functions can be used.
1802	 */
1803	if (delay) {
1804		unsigned int ms = delay / 1000;
1805		unsigned int us = delay % 1000;
1806
1807		if (ms > 0) {
1808			/*
1809			 * For small enough values, handle super-millisecond
1810			 * delays in the usleep_range() call below.
1811			 */
1812			if (ms < 20)
1813				us += ms * 1000;
1814			else
1815				msleep(ms);
1816		}
1817
1818		/*
1819		 * Give the scheduler some room to coalesce with any other
1820		 * wakeup sources. For delays shorter than 10 us, don't even
1821		 * bother setting up high-resolution timers and just busy-
1822		 * loop.
1823		 */
1824		if (us >= 10)
1825			usleep_range(us, us + 100);
1826		else
1827			udelay(us);
1828	}
1829
1830	trace_regulator_enable_complete(rdev_get_name(rdev));
1831
1832	return 0;
1833}
1834
1835/* locks held by regulator_enable() */
1836static int _regulator_enable(struct regulator_dev *rdev)
1837{
1838	int ret;
1839
1840	/* check voltage and requested load before enabling */
1841	if (rdev->constraints &&
1842	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1843		drms_uA_update(rdev);
1844
1845	if (rdev->use_count == 0) {
1846		/* The regulator may on if it's not switchable or left on */
1847		ret = _regulator_is_enabled(rdev);
1848		if (ret == -EINVAL || ret == 0) {
1849			if (!_regulator_can_change_status(rdev))
1850				return -EPERM;
1851
1852			ret = _regulator_do_enable(rdev);
1853			if (ret < 0)
1854				return ret;
1855
1856		} else if (ret < 0) {
1857			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1858			return ret;
1859		}
1860		/* Fallthrough on positive return values - already enabled */
1861	}
1862
1863	rdev->use_count++;
1864
1865	return 0;
1866}
1867
1868/**
1869 * regulator_enable - enable regulator output
1870 * @regulator: regulator source
1871 *
1872 * Request that the regulator be enabled with the regulator output at
1873 * the predefined voltage or current value.  Calls to regulator_enable()
1874 * must be balanced with calls to regulator_disable().
1875 *
1876 * NOTE: the output value can be set by other drivers, boot loader or may be
1877 * hardwired in the regulator.
1878 */
1879int regulator_enable(struct regulator *regulator)
1880{
1881	struct regulator_dev *rdev = regulator->rdev;
1882	int ret = 0;
1883
1884	if (regulator->always_on)
1885		return 0;
1886
1887	if (rdev->supply) {
1888		ret = regulator_enable(rdev->supply);
1889		if (ret != 0)
1890			return ret;
1891	}
1892
1893	mutex_lock(&rdev->mutex);
1894	ret = _regulator_enable(rdev);
1895	mutex_unlock(&rdev->mutex);
1896
1897	if (ret != 0 && rdev->supply)
1898		regulator_disable(rdev->supply);
1899
1900	return ret;
1901}
1902EXPORT_SYMBOL_GPL(regulator_enable);
1903
1904static int _regulator_do_disable(struct regulator_dev *rdev)
1905{
1906	int ret;
1907
1908	trace_regulator_disable(rdev_get_name(rdev));
1909
1910	if (rdev->ena_pin) {
1911		ret = regulator_ena_gpio_ctrl(rdev, false);
1912		if (ret < 0)
1913			return ret;
1914		rdev->ena_gpio_state = 0;
1915
1916	} else if (rdev->desc->ops->disable) {
1917		ret = rdev->desc->ops->disable(rdev);
1918		if (ret != 0)
1919			return ret;
1920	}
1921
1922	trace_regulator_disable_complete(rdev_get_name(rdev));
1923
1924	return 0;
1925}
1926
1927/* locks held by regulator_disable() */
1928static int _regulator_disable(struct regulator_dev *rdev)
1929{
1930	int ret = 0;
1931
1932	if (WARN(rdev->use_count <= 0,
1933		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1934		return -EIO;
1935
1936	/* are we the last user and permitted to disable ? */
1937	if (rdev->use_count == 1 &&
1938	    (rdev->constraints && !rdev->constraints->always_on)) {
1939
1940		/* we are last user */
1941		if (_regulator_can_change_status(rdev)) {
1942			ret = _regulator_do_disable(rdev);
1943			if (ret < 0) {
1944				rdev_err(rdev, "failed to disable\n");
1945				return ret;
1946			}
1947			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1948					NULL);
1949		}
1950
1951		rdev->use_count = 0;
1952	} else if (rdev->use_count > 1) {
1953
1954		if (rdev->constraints &&
1955			(rdev->constraints->valid_ops_mask &
1956			REGULATOR_CHANGE_DRMS))
1957			drms_uA_update(rdev);
1958
1959		rdev->use_count--;
1960	}
1961
1962	return ret;
1963}
1964
1965/**
1966 * regulator_disable - disable regulator output
1967 * @regulator: regulator source
1968 *
1969 * Disable the regulator output voltage or current.  Calls to
1970 * regulator_enable() must be balanced with calls to
1971 * regulator_disable().
1972 *
1973 * NOTE: this will only disable the regulator output if no other consumer
1974 * devices have it enabled, the regulator device supports disabling and
1975 * machine constraints permit this operation.
1976 */
1977int regulator_disable(struct regulator *regulator)
1978{
1979	struct regulator_dev *rdev = regulator->rdev;
1980	int ret = 0;
1981
1982	if (regulator->always_on)
1983		return 0;
1984
1985	mutex_lock(&rdev->mutex);
1986	ret = _regulator_disable(rdev);
1987	mutex_unlock(&rdev->mutex);
1988
1989	if (ret == 0 && rdev->supply)
1990		regulator_disable(rdev->supply);
1991
1992	return ret;
1993}
1994EXPORT_SYMBOL_GPL(regulator_disable);
1995
1996/* locks held by regulator_force_disable() */
1997static int _regulator_force_disable(struct regulator_dev *rdev)
1998{
1999	int ret = 0;
2000
2001	ret = _regulator_do_disable(rdev);
2002	if (ret < 0) {
2003		rdev_err(rdev, "failed to force disable\n");
2004		return ret;
2005	}
2006
2007	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2008			REGULATOR_EVENT_DISABLE, NULL);
2009
2010	return 0;
2011}
2012
2013/**
2014 * regulator_force_disable - force disable regulator output
2015 * @regulator: regulator source
2016 *
2017 * Forcibly disable the regulator output voltage or current.
2018 * NOTE: this *will* disable the regulator output even if other consumer
2019 * devices have it enabled. This should be used for situations when device
2020 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2021 */
2022int regulator_force_disable(struct regulator *regulator)
2023{
2024	struct regulator_dev *rdev = regulator->rdev;
2025	int ret;
2026
2027	mutex_lock(&rdev->mutex);
2028	regulator->uA_load = 0;
2029	ret = _regulator_force_disable(regulator->rdev);
2030	mutex_unlock(&rdev->mutex);
2031
2032	if (rdev->supply)
2033		while (rdev->open_count--)
2034			regulator_disable(rdev->supply);
2035
2036	return ret;
2037}
2038EXPORT_SYMBOL_GPL(regulator_force_disable);
2039
2040static void regulator_disable_work(struct work_struct *work)
2041{
2042	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2043						  disable_work.work);
2044	int count, i, ret;
2045
2046	mutex_lock(&rdev->mutex);
2047
2048	BUG_ON(!rdev->deferred_disables);
2049
2050	count = rdev->deferred_disables;
2051	rdev->deferred_disables = 0;
2052
2053	for (i = 0; i < count; i++) {
2054		ret = _regulator_disable(rdev);
2055		if (ret != 0)
2056			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2057	}
2058
2059	mutex_unlock(&rdev->mutex);
2060
2061	if (rdev->supply) {
2062		for (i = 0; i < count; i++) {
2063			ret = regulator_disable(rdev->supply);
2064			if (ret != 0) {
2065				rdev_err(rdev,
2066					 "Supply disable failed: %d\n", ret);
2067			}
2068		}
2069	}
2070}
2071
2072/**
2073 * regulator_disable_deferred - disable regulator output with delay
2074 * @regulator: regulator source
2075 * @ms: miliseconds until the regulator is disabled
2076 *
2077 * Execute regulator_disable() on the regulator after a delay.  This
2078 * is intended for use with devices that require some time to quiesce.
2079 *
2080 * NOTE: this will only disable the regulator output if no other consumer
2081 * devices have it enabled, the regulator device supports disabling and
2082 * machine constraints permit this operation.
2083 */
2084int regulator_disable_deferred(struct regulator *regulator, int ms)
2085{
2086	struct regulator_dev *rdev = regulator->rdev;
2087	int ret;
2088
2089	if (regulator->always_on)
2090		return 0;
2091
2092	if (!ms)
2093		return regulator_disable(regulator);
2094
2095	mutex_lock(&rdev->mutex);
2096	rdev->deferred_disables++;
2097	mutex_unlock(&rdev->mutex);
2098
2099	ret = queue_delayed_work(system_power_efficient_wq,
2100				 &rdev->disable_work,
2101				 msecs_to_jiffies(ms));
2102	if (ret < 0)
2103		return ret;
2104	else
2105		return 0;
2106}
2107EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2108
2109static int _regulator_is_enabled(struct regulator_dev *rdev)
2110{
2111	/* A GPIO control always takes precedence */
2112	if (rdev->ena_pin)
2113		return rdev->ena_gpio_state;
2114
2115	/* If we don't know then assume that the regulator is always on */
2116	if (!rdev->desc->ops->is_enabled)
2117		return 1;
2118
2119	return rdev->desc->ops->is_enabled(rdev);
2120}
2121
2122/**
2123 * regulator_is_enabled - is the regulator output enabled
2124 * @regulator: regulator source
2125 *
2126 * Returns positive if the regulator driver backing the source/client
2127 * has requested that the device be enabled, zero if it hasn't, else a
2128 * negative errno code.
2129 *
2130 * Note that the device backing this regulator handle can have multiple
2131 * users, so it might be enabled even if regulator_enable() was never
2132 * called for this particular source.
2133 */
2134int regulator_is_enabled(struct regulator *regulator)
2135{
2136	int ret;
2137
2138	if (regulator->always_on)
2139		return 1;
2140
2141	mutex_lock(&regulator->rdev->mutex);
2142	ret = _regulator_is_enabled(regulator->rdev);
2143	mutex_unlock(&regulator->rdev->mutex);
2144
2145	return ret;
2146}
2147EXPORT_SYMBOL_GPL(regulator_is_enabled);
2148
2149/**
2150 * regulator_can_change_voltage - check if regulator can change voltage
2151 * @regulator: regulator source
2152 *
2153 * Returns positive if the regulator driver backing the source/client
2154 * can change its voltage, false otherwise. Useful for detecting fixed
2155 * or dummy regulators and disabling voltage change logic in the client
2156 * driver.
2157 */
2158int regulator_can_change_voltage(struct regulator *regulator)
2159{
2160	struct regulator_dev	*rdev = regulator->rdev;
2161
2162	if (rdev->constraints &&
2163	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2164		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2165			return 1;
2166
2167		if (rdev->desc->continuous_voltage_range &&
2168		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2169		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2170			return 1;
2171	}
2172
2173	return 0;
2174}
2175EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2176
2177/**
2178 * regulator_count_voltages - count regulator_list_voltage() selectors
2179 * @regulator: regulator source
2180 *
2181 * Returns number of selectors, or negative errno.  Selectors are
2182 * numbered starting at zero, and typically correspond to bitfields
2183 * in hardware registers.
2184 */
2185int regulator_count_voltages(struct regulator *regulator)
2186{
2187	struct regulator_dev	*rdev = regulator->rdev;
2188
2189	if (rdev->desc->n_voltages)
2190		return rdev->desc->n_voltages;
2191
2192	if (!rdev->supply)
2193		return -EINVAL;
2194
2195	return regulator_count_voltages(rdev->supply);
2196}
2197EXPORT_SYMBOL_GPL(regulator_count_voltages);
2198
2199/**
2200 * regulator_list_voltage - enumerate supported voltages
2201 * @regulator: regulator source
2202 * @selector: identify voltage to list
2203 * Context: can sleep
2204 *
2205 * Returns a voltage that can be passed to @regulator_set_voltage(),
2206 * zero if this selector code can't be used on this system, or a
2207 * negative errno.
2208 */
2209int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2210{
2211	struct regulator_dev	*rdev = regulator->rdev;
2212	struct regulator_ops	*ops = rdev->desc->ops;
2213	int			ret;
2214
2215	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2216		return rdev->desc->fixed_uV;
2217
2218	if (ops->list_voltage) {
2219		if (selector >= rdev->desc->n_voltages)
2220			return -EINVAL;
2221		mutex_lock(&rdev->mutex);
2222		ret = ops->list_voltage(rdev, selector);
2223		mutex_unlock(&rdev->mutex);
2224	} else if (rdev->supply) {
2225		ret = regulator_list_voltage(rdev->supply, selector);
2226	} else {
2227		return -EINVAL;
2228	}
2229
2230	if (ret > 0) {
2231		if (ret < rdev->constraints->min_uV)
2232			ret = 0;
2233		else if (ret > rdev->constraints->max_uV)
2234			ret = 0;
2235	}
2236
2237	return ret;
2238}
2239EXPORT_SYMBOL_GPL(regulator_list_voltage);
2240
2241/**
2242 * regulator_get_regmap - get the regulator's register map
2243 * @regulator: regulator source
2244 *
2245 * Returns the register map for the given regulator, or an ERR_PTR value
2246 * if the regulator doesn't use regmap.
2247 */
2248struct regmap *regulator_get_regmap(struct regulator *regulator)
2249{
2250	struct regmap *map = regulator->rdev->regmap;
2251
2252	return map ? map : ERR_PTR(-EOPNOTSUPP);
2253}
2254
2255/**
2256 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2257 * @regulator: regulator source
2258 * @vsel_reg: voltage selector register, output parameter
2259 * @vsel_mask: mask for voltage selector bitfield, output parameter
2260 *
2261 * Returns the hardware register offset and bitmask used for setting the
2262 * regulator voltage. This might be useful when configuring voltage-scaling
2263 * hardware or firmware that can make I2C requests behind the kernel's back,
2264 * for example.
2265 *
2266 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2267 * and 0 is returned, otherwise a negative errno is returned.
2268 */
2269int regulator_get_hardware_vsel_register(struct regulator *regulator,
2270					 unsigned *vsel_reg,
2271					 unsigned *vsel_mask)
2272{
2273	struct regulator_dev	*rdev = regulator->rdev;
2274	struct regulator_ops	*ops = rdev->desc->ops;
2275
2276	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2277		return -EOPNOTSUPP;
2278
2279	 *vsel_reg = rdev->desc->vsel_reg;
2280	 *vsel_mask = rdev->desc->vsel_mask;
2281
2282	 return 0;
2283}
2284EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2285
2286/**
2287 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2288 * @regulator: regulator source
2289 * @selector: identify voltage to list
2290 *
2291 * Converts the selector to a hardware-specific voltage selector that can be
2292 * directly written to the regulator registers. The address of the voltage
2293 * register can be determined by calling @regulator_get_hardware_vsel_register.
2294 *
2295 * On error a negative errno is returned.
2296 */
2297int regulator_list_hardware_vsel(struct regulator *regulator,
2298				 unsigned selector)
2299{
2300	struct regulator_dev	*rdev = regulator->rdev;
2301	struct regulator_ops	*ops = rdev->desc->ops;
2302
2303	if (selector >= rdev->desc->n_voltages)
2304		return -EINVAL;
2305	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2306		return -EOPNOTSUPP;
2307
2308	return selector;
2309}
2310EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2311
2312/**
2313 * regulator_get_linear_step - return the voltage step size between VSEL values
2314 * @regulator: regulator source
2315 *
2316 * Returns the voltage step size between VSEL values for linear
2317 * regulators, or return 0 if the regulator isn't a linear regulator.
2318 */
2319unsigned int regulator_get_linear_step(struct regulator *regulator)
2320{
2321	struct regulator_dev *rdev = regulator->rdev;
2322
2323	return rdev->desc->uV_step;
2324}
2325EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2326
2327/**
2328 * regulator_is_supported_voltage - check if a voltage range can be supported
2329 *
2330 * @regulator: Regulator to check.
2331 * @min_uV: Minimum required voltage in uV.
2332 * @max_uV: Maximum required voltage in uV.
2333 *
2334 * Returns a boolean or a negative error code.
2335 */
2336int regulator_is_supported_voltage(struct regulator *regulator,
2337				   int min_uV, int max_uV)
2338{
2339	struct regulator_dev *rdev = regulator->rdev;
2340	int i, voltages, ret;
2341
2342	/* If we can't change voltage check the current voltage */
2343	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2344		ret = regulator_get_voltage(regulator);
2345		if (ret >= 0)
2346			return min_uV <= ret && ret <= max_uV;
2347		else
2348			return ret;
2349	}
2350
2351	/* Any voltage within constrains range is fine? */
2352	if (rdev->desc->continuous_voltage_range)
2353		return min_uV >= rdev->constraints->min_uV &&
2354				max_uV <= rdev->constraints->max_uV;
2355
2356	ret = regulator_count_voltages(regulator);
2357	if (ret < 0)
2358		return ret;
2359	voltages = ret;
2360
2361	for (i = 0; i < voltages; i++) {
2362		ret = regulator_list_voltage(regulator, i);
2363
2364		if (ret >= min_uV && ret <= max_uV)
2365			return 1;
2366	}
2367
2368	return 0;
2369}
2370EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2371
2372static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2373				     int min_uV, int max_uV)
2374{
2375	int ret;
2376	int delay = 0;
2377	int best_val = 0;
2378	unsigned int selector;
2379	int old_selector = -1;
2380
2381	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2382
2383	min_uV += rdev->constraints->uV_offset;
2384	max_uV += rdev->constraints->uV_offset;
2385
2386	/*
2387	 * If we can't obtain the old selector there is not enough
2388	 * info to call set_voltage_time_sel().
2389	 */
2390	if (_regulator_is_enabled(rdev) &&
2391	    rdev->desc->ops->set_voltage_time_sel &&
2392	    rdev->desc->ops->get_voltage_sel) {
2393		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2394		if (old_selector < 0)
2395			return old_selector;
2396	}
2397
2398	if (rdev->desc->ops->set_voltage) {
2399		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2400						   &selector);
2401
2402		if (ret >= 0) {
2403			if (rdev->desc->ops->list_voltage)
2404				best_val = rdev->desc->ops->list_voltage(rdev,
2405									 selector);
2406			else
2407				best_val = _regulator_get_voltage(rdev);
2408		}
2409
2410	} else if (rdev->desc->ops->set_voltage_sel) {
2411		if (rdev->desc->ops->map_voltage) {
2412			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2413							   max_uV);
2414		} else {
2415			if (rdev->desc->ops->list_voltage ==
2416			    regulator_list_voltage_linear)
2417				ret = regulator_map_voltage_linear(rdev,
2418								min_uV, max_uV);
2419			else if (rdev->desc->ops->list_voltage ==
2420				 regulator_list_voltage_linear_range)
2421				ret = regulator_map_voltage_linear_range(rdev,
2422								min_uV, max_uV);
2423			else
2424				ret = regulator_map_voltage_iterate(rdev,
2425								min_uV, max_uV);
2426		}
2427
2428		if (ret >= 0) {
2429			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2430			if (min_uV <= best_val && max_uV >= best_val) {
2431				selector = ret;
2432				if (old_selector == selector)
2433					ret = 0;
2434				else
2435					ret = rdev->desc->ops->set_voltage_sel(
2436								rdev, ret);
2437			} else {
2438				ret = -EINVAL;
2439			}
2440		}
2441	} else {
2442		ret = -EINVAL;
2443	}
2444
2445	/* Call set_voltage_time_sel if successfully obtained old_selector */
2446	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2447		&& old_selector != selector) {
2448
2449		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2450						old_selector, selector);
2451		if (delay < 0) {
2452			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2453				  delay);
2454			delay = 0;
2455		}
2456
2457		/* Insert any necessary delays */
2458		if (delay >= 1000) {
2459			mdelay(delay / 1000);
2460			udelay(delay % 1000);
2461		} else if (delay) {
2462			udelay(delay);
2463		}
2464	}
2465
2466	if (ret == 0 && best_val >= 0) {
2467		unsigned long data = best_val;
2468
2469		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2470				     (void *)data);
2471	}
2472
2473	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2474
2475	return ret;
2476}
2477
2478/**
2479 * regulator_set_voltage - set regulator output voltage
2480 * @regulator: regulator source
2481 * @min_uV: Minimum required voltage in uV
2482 * @max_uV: Maximum acceptable voltage in uV
2483 *
2484 * Sets a voltage regulator to the desired output voltage. This can be set
2485 * during any regulator state. IOW, regulator can be disabled or enabled.
2486 *
2487 * If the regulator is enabled then the voltage will change to the new value
2488 * immediately otherwise if the regulator is disabled the regulator will
2489 * output at the new voltage when enabled.
2490 *
2491 * NOTE: If the regulator is shared between several devices then the lowest
2492 * request voltage that meets the system constraints will be used.
2493 * Regulator system constraints must be set for this regulator before
2494 * calling this function otherwise this call will fail.
2495 */
2496int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2497{
2498	struct regulator_dev *rdev = regulator->rdev;
2499	int ret = 0;
2500	int old_min_uV, old_max_uV;
2501	int current_uV;
2502
2503	mutex_lock(&rdev->mutex);
2504
2505	/* If we're setting the same range as last time the change
2506	 * should be a noop (some cpufreq implementations use the same
2507	 * voltage for multiple frequencies, for example).
2508	 */
2509	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2510		goto out;
2511
2512	/* If we're trying to set a range that overlaps the current voltage,
2513	 * return succesfully even though the regulator does not support
2514	 * changing the voltage.
2515	 */
2516	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2517		current_uV = _regulator_get_voltage(rdev);
2518		if (min_uV <= current_uV && current_uV <= max_uV) {
2519			regulator->min_uV = min_uV;
2520			regulator->max_uV = max_uV;
2521			goto out;
2522		}
2523	}
2524
2525	/* sanity check */
2526	if (!rdev->desc->ops->set_voltage &&
2527	    !rdev->desc->ops->set_voltage_sel) {
2528		ret = -EINVAL;
2529		goto out;
2530	}
2531
2532	/* constraints check */
2533	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2534	if (ret < 0)
2535		goto out;
2536
2537	/* restore original values in case of error */
2538	old_min_uV = regulator->min_uV;
2539	old_max_uV = regulator->max_uV;
2540	regulator->min_uV = min_uV;
2541	regulator->max_uV = max_uV;
2542
2543	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2544	if (ret < 0)
2545		goto out2;
2546
2547	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2548	if (ret < 0)
2549		goto out2;
2550
2551out:
2552	mutex_unlock(&rdev->mutex);
2553	return ret;
2554out2:
2555	regulator->min_uV = old_min_uV;
2556	regulator->max_uV = old_max_uV;
2557	mutex_unlock(&rdev->mutex);
2558	return ret;
2559}
2560EXPORT_SYMBOL_GPL(regulator_set_voltage);
2561
2562/**
2563 * regulator_set_voltage_time - get raise/fall time
2564 * @regulator: regulator source
2565 * @old_uV: starting voltage in microvolts
2566 * @new_uV: target voltage in microvolts
2567 *
2568 * Provided with the starting and ending voltage, this function attempts to
2569 * calculate the time in microseconds required to rise or fall to this new
2570 * voltage.
2571 */
2572int regulator_set_voltage_time(struct regulator *regulator,
2573			       int old_uV, int new_uV)
2574{
2575	struct regulator_dev	*rdev = regulator->rdev;
2576	struct regulator_ops	*ops = rdev->desc->ops;
2577	int old_sel = -1;
2578	int new_sel = -1;
2579	int voltage;
2580	int i;
2581
2582	/* Currently requires operations to do this */
2583	if (!ops->list_voltage || !ops->set_voltage_time_sel
2584	    || !rdev->desc->n_voltages)
2585		return -EINVAL;
2586
2587	for (i = 0; i < rdev->desc->n_voltages; i++) {
2588		/* We only look for exact voltage matches here */
2589		voltage = regulator_list_voltage(regulator, i);
2590		if (voltage < 0)
2591			return -EINVAL;
2592		if (voltage == 0)
2593			continue;
2594		if (voltage == old_uV)
2595			old_sel = i;
2596		if (voltage == new_uV)
2597			new_sel = i;
2598	}
2599
2600	if (old_sel < 0 || new_sel < 0)
2601		return -EINVAL;
2602
2603	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2604}
2605EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2606
2607/**
2608 * regulator_set_voltage_time_sel - get raise/fall time
2609 * @rdev: regulator source device
2610 * @old_selector: selector for starting voltage
2611 * @new_selector: selector for target voltage
2612 *
2613 * Provided with the starting and target voltage selectors, this function
2614 * returns time in microseconds required to rise or fall to this new voltage
2615 *
2616 * Drivers providing ramp_delay in regulation_constraints can use this as their
2617 * set_voltage_time_sel() operation.
2618 */
2619int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2620				   unsigned int old_selector,
2621				   unsigned int new_selector)
2622{
2623	unsigned int ramp_delay = 0;
2624	int old_volt, new_volt;
2625
2626	if (rdev->constraints->ramp_delay)
2627		ramp_delay = rdev->constraints->ramp_delay;
2628	else if (rdev->desc->ramp_delay)
2629		ramp_delay = rdev->desc->ramp_delay;
2630
2631	if (ramp_delay == 0) {
2632		rdev_warn(rdev, "ramp_delay not set\n");
2633		return 0;
2634	}
2635
2636	/* sanity check */
2637	if (!rdev->desc->ops->list_voltage)
2638		return -EINVAL;
2639
2640	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2641	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2642
2643	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2644}
2645EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2646
2647/**
2648 * regulator_sync_voltage - re-apply last regulator output voltage
2649 * @regulator: regulator source
2650 *
2651 * Re-apply the last configured voltage.  This is intended to be used
2652 * where some external control source the consumer is cooperating with
2653 * has caused the configured voltage to change.
2654 */
2655int regulator_sync_voltage(struct regulator *regulator)
2656{
2657	struct regulator_dev *rdev = regulator->rdev;
2658	int ret, min_uV, max_uV;
2659
2660	mutex_lock(&rdev->mutex);
2661
2662	if (!rdev->desc->ops->set_voltage &&
2663	    !rdev->desc->ops->set_voltage_sel) {
2664		ret = -EINVAL;
2665		goto out;
2666	}
2667
2668	/* This is only going to work if we've had a voltage configured. */
2669	if (!regulator->min_uV && !regulator->max_uV) {
2670		ret = -EINVAL;
2671		goto out;
2672	}
2673
2674	min_uV = regulator->min_uV;
2675	max_uV = regulator->max_uV;
2676
2677	/* This should be a paranoia check... */
2678	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2679	if (ret < 0)
2680		goto out;
2681
2682	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2683	if (ret < 0)
2684		goto out;
2685
2686	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2687
2688out:
2689	mutex_unlock(&rdev->mutex);
2690	return ret;
2691}
2692EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2693
2694static int _regulator_get_voltage(struct regulator_dev *rdev)
2695{
2696	int sel, ret;
2697
2698	if (rdev->desc->ops->get_voltage_sel) {
2699		sel = rdev->desc->ops->get_voltage_sel(rdev);
2700		if (sel < 0)
2701			return sel;
2702		ret = rdev->desc->ops->list_voltage(rdev, sel);
2703	} else if (rdev->desc->ops->get_voltage) {
2704		ret = rdev->desc->ops->get_voltage(rdev);
2705	} else if (rdev->desc->ops->list_voltage) {
2706		ret = rdev->desc->ops->list_voltage(rdev, 0);
2707	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2708		ret = rdev->desc->fixed_uV;
2709	} else if (rdev->supply) {
2710		ret = regulator_get_voltage(rdev->supply);
2711	} else {
2712		return -EINVAL;
2713	}
2714
2715	if (ret < 0)
2716		return ret;
2717	return ret - rdev->constraints->uV_offset;
2718}
2719
2720/**
2721 * regulator_get_voltage - get regulator output voltage
2722 * @regulator: regulator source
2723 *
2724 * This returns the current regulator voltage in uV.
2725 *
2726 * NOTE: If the regulator is disabled it will return the voltage value. This
2727 * function should not be used to determine regulator state.
2728 */
2729int regulator_get_voltage(struct regulator *regulator)
2730{
2731	int ret;
2732
2733	mutex_lock(&regulator->rdev->mutex);
2734
2735	ret = _regulator_get_voltage(regulator->rdev);
2736
2737	mutex_unlock(&regulator->rdev->mutex);
2738
2739	return ret;
2740}
2741EXPORT_SYMBOL_GPL(regulator_get_voltage);
2742
2743/**
2744 * regulator_set_current_limit - set regulator output current limit
2745 * @regulator: regulator source
2746 * @min_uA: Minimum supported current in uA
2747 * @max_uA: Maximum supported current in uA
2748 *
2749 * Sets current sink to the desired output current. This can be set during
2750 * any regulator state. IOW, regulator can be disabled or enabled.
2751 *
2752 * If the regulator is enabled then the current will change to the new value
2753 * immediately otherwise if the regulator is disabled the regulator will
2754 * output at the new current when enabled.
2755 *
2756 * NOTE: Regulator system constraints must be set for this regulator before
2757 * calling this function otherwise this call will fail.
2758 */
2759int regulator_set_current_limit(struct regulator *regulator,
2760			       int min_uA, int max_uA)
2761{
2762	struct regulator_dev *rdev = regulator->rdev;
2763	int ret;
2764
2765	mutex_lock(&rdev->mutex);
2766
2767	/* sanity check */
2768	if (!rdev->desc->ops->set_current_limit) {
2769		ret = -EINVAL;
2770		goto out;
2771	}
2772
2773	/* constraints check */
2774	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2775	if (ret < 0)
2776		goto out;
2777
2778	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2779out:
2780	mutex_unlock(&rdev->mutex);
2781	return ret;
2782}
2783EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2784
2785static int _regulator_get_current_limit(struct regulator_dev *rdev)
2786{
2787	int ret;
2788
2789	mutex_lock(&rdev->mutex);
2790
2791	/* sanity check */
2792	if (!rdev->desc->ops->get_current_limit) {
2793		ret = -EINVAL;
2794		goto out;
2795	}
2796
2797	ret = rdev->desc->ops->get_current_limit(rdev);
2798out:
2799	mutex_unlock(&rdev->mutex);
2800	return ret;
2801}
2802
2803/**
2804 * regulator_get_current_limit - get regulator output current
2805 * @regulator: regulator source
2806 *
2807 * This returns the current supplied by the specified current sink in uA.
2808 *
2809 * NOTE: If the regulator is disabled it will return the current value. This
2810 * function should not be used to determine regulator state.
2811 */
2812int regulator_get_current_limit(struct regulator *regulator)
2813{
2814	return _regulator_get_current_limit(regulator->rdev);
2815}
2816EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2817
2818/**
2819 * regulator_set_mode - set regulator operating mode
2820 * @regulator: regulator source
2821 * @mode: operating mode - one of the REGULATOR_MODE constants
2822 *
2823 * Set regulator operating mode to increase regulator efficiency or improve
2824 * regulation performance.
2825 *
2826 * NOTE: Regulator system constraints must be set for this regulator before
2827 * calling this function otherwise this call will fail.
2828 */
2829int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2830{
2831	struct regulator_dev *rdev = regulator->rdev;
2832	int ret;
2833	int regulator_curr_mode;
2834
2835	mutex_lock(&rdev->mutex);
2836
2837	/* sanity check */
2838	if (!rdev->desc->ops->set_mode) {
2839		ret = -EINVAL;
2840		goto out;
2841	}
2842
2843	/* return if the same mode is requested */
2844	if (rdev->desc->ops->get_mode) {
2845		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2846		if (regulator_curr_mode == mode) {
2847			ret = 0;
2848			goto out;
2849		}
2850	}
2851
2852	/* constraints check */
2853	ret = regulator_mode_constrain(rdev, &mode);
2854	if (ret < 0)
2855		goto out;
2856
2857	ret = rdev->desc->ops->set_mode(rdev, mode);
2858out:
2859	mutex_unlock(&rdev->mutex);
2860	return ret;
2861}
2862EXPORT_SYMBOL_GPL(regulator_set_mode);
2863
2864static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2865{
2866	int ret;
2867
2868	mutex_lock(&rdev->mutex);
2869
2870	/* sanity check */
2871	if (!rdev->desc->ops->get_mode) {
2872		ret = -EINVAL;
2873		goto out;
2874	}
2875
2876	ret = rdev->desc->ops->get_mode(rdev);
2877out:
2878	mutex_unlock(&rdev->mutex);
2879	return ret;
2880}
2881
2882/**
2883 * regulator_get_mode - get regulator operating mode
2884 * @regulator: regulator source
2885 *
2886 * Get the current regulator operating mode.
2887 */
2888unsigned int regulator_get_mode(struct regulator *regulator)
2889{
2890	return _regulator_get_mode(regulator->rdev);
2891}
2892EXPORT_SYMBOL_GPL(regulator_get_mode);
2893
2894/**
2895 * regulator_set_optimum_mode - set regulator optimum operating mode
2896 * @regulator: regulator source
2897 * @uA_load: load current
2898 *
2899 * Notifies the regulator core of a new device load. This is then used by
2900 * DRMS (if enabled by constraints) to set the most efficient regulator
2901 * operating mode for the new regulator loading.
2902 *
2903 * Consumer devices notify their supply regulator of the maximum power
2904 * they will require (can be taken from device datasheet in the power
2905 * consumption tables) when they change operational status and hence power
2906 * state. Examples of operational state changes that can affect power
2907 * consumption are :-
2908 *
2909 *    o Device is opened / closed.
2910 *    o Device I/O is about to begin or has just finished.
2911 *    o Device is idling in between work.
2912 *
2913 * This information is also exported via sysfs to userspace.
2914 *
2915 * DRMS will sum the total requested load on the regulator and change
2916 * to the most efficient operating mode if platform constraints allow.
2917 *
2918 * Returns the new regulator mode or error.
2919 */
2920int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2921{
2922	struct regulator_dev *rdev = regulator->rdev;
2923	struct regulator *consumer;
2924	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2925	unsigned int mode;
2926
2927	if (rdev->supply)
2928		input_uV = regulator_get_voltage(rdev->supply);
2929
2930	mutex_lock(&rdev->mutex);
2931
2932	/*
2933	 * first check to see if we can set modes at all, otherwise just
2934	 * tell the consumer everything is OK.
2935	 */
2936	regulator->uA_load = uA_load;
2937	ret = regulator_check_drms(rdev);
2938	if (ret < 0) {
2939		ret = 0;
2940		goto out;
2941	}
2942
2943	if (!rdev->desc->ops->get_optimum_mode)
2944		goto out;
2945
2946	/*
2947	 * we can actually do this so any errors are indicators of
2948	 * potential real failure.
2949	 */
2950	ret = -EINVAL;
2951
2952	if (!rdev->desc->ops->set_mode)
2953		goto out;
2954
2955	/* get output voltage */
2956	output_uV = _regulator_get_voltage(rdev);
2957	if (output_uV <= 0) {
2958		rdev_err(rdev, "invalid output voltage found\n");
2959		goto out;
2960	}
2961
2962	/* No supply? Use constraint voltage */
2963	if (input_uV <= 0)
2964		input_uV = rdev->constraints->input_uV;
2965	if (input_uV <= 0) {
2966		rdev_err(rdev, "invalid input voltage found\n");
2967		goto out;
2968	}
2969
2970	/* calc total requested load for this regulator */
2971	list_for_each_entry(consumer, &rdev->consumer_list, list)
2972		total_uA_load += consumer->uA_load;
2973
2974	mode = rdev->desc->ops->get_optimum_mode(rdev,
2975						 input_uV, output_uV,
2976						 total_uA_load);
2977	ret = regulator_mode_constrain(rdev, &mode);
2978	if (ret < 0) {
2979		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2980			 total_uA_load, input_uV, output_uV);
2981		goto out;
2982	}
2983
2984	ret = rdev->desc->ops->set_mode(rdev, mode);
2985	if (ret < 0) {
2986		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2987		goto out;
2988	}
2989	ret = mode;
2990out:
2991	mutex_unlock(&rdev->mutex);
2992	return ret;
2993}
2994EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2995
2996/**
2997 * regulator_allow_bypass - allow the regulator to go into bypass mode
2998 *
2999 * @regulator: Regulator to configure
3000 * @enable: enable or disable bypass mode
3001 *
3002 * Allow the regulator to go into bypass mode if all other consumers
3003 * for the regulator also enable bypass mode and the machine
3004 * constraints allow this.  Bypass mode means that the regulator is
3005 * simply passing the input directly to the output with no regulation.
3006 */
3007int regulator_allow_bypass(struct regulator *regulator, bool enable)
3008{
3009	struct regulator_dev *rdev = regulator->rdev;
3010	int ret = 0;
3011
3012	if (!rdev->desc->ops->set_bypass)
3013		return 0;
3014
3015	if (rdev->constraints &&
3016	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3017		return 0;
3018
3019	mutex_lock(&rdev->mutex);
3020
3021	if (enable && !regulator->bypass) {
3022		rdev->bypass_count++;
3023
3024		if (rdev->bypass_count == rdev->open_count) {
3025			ret = rdev->desc->ops->set_bypass(rdev, enable);
3026			if (ret != 0)
3027				rdev->bypass_count--;
3028		}
3029
3030	} else if (!enable && regulator->bypass) {
3031		rdev->bypass_count--;
3032
3033		if (rdev->bypass_count != rdev->open_count) {
3034			ret = rdev->desc->ops->set_bypass(rdev, enable);
3035			if (ret != 0)
3036				rdev->bypass_count++;
3037		}
3038	}
3039
3040	if (ret == 0)
3041		regulator->bypass = enable;
3042
3043	mutex_unlock(&rdev->mutex);
3044
3045	return ret;
3046}
3047EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3048
3049/**
3050 * regulator_register_notifier - register regulator event notifier
3051 * @regulator: regulator source
3052 * @nb: notifier block
3053 *
3054 * Register notifier block to receive regulator events.
3055 */
3056int regulator_register_notifier(struct regulator *regulator,
3057			      struct notifier_block *nb)
3058{
3059	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3060						nb);
3061}
3062EXPORT_SYMBOL_GPL(regulator_register_notifier);
3063
3064/**
3065 * regulator_unregister_notifier - unregister regulator event notifier
3066 * @regulator: regulator source
3067 * @nb: notifier block
3068 *
3069 * Unregister regulator event notifier block.
3070 */
3071int regulator_unregister_notifier(struct regulator *regulator,
3072				struct notifier_block *nb)
3073{
3074	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3075						  nb);
3076}
3077EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3078
3079/* notify regulator consumers and downstream regulator consumers.
3080 * Note mutex must be held by caller.
3081 */
3082static void _notifier_call_chain(struct regulator_dev *rdev,
3083				  unsigned long event, void *data)
3084{
3085	/* call rdev chain first */
3086	blocking_notifier_call_chain(&rdev->notifier, event, data);
3087}
3088
3089/**
3090 * regulator_bulk_get - get multiple regulator consumers
3091 *
3092 * @dev:           Device to supply
3093 * @num_consumers: Number of consumers to register
3094 * @consumers:     Configuration of consumers; clients are stored here.
3095 *
3096 * @return 0 on success, an errno on failure.
3097 *
3098 * This helper function allows drivers to get several regulator
3099 * consumers in one operation.  If any of the regulators cannot be
3100 * acquired then any regulators that were allocated will be freed
3101 * before returning to the caller.
3102 */
3103int regulator_bulk_get(struct device *dev, int num_consumers,
3104		       struct regulator_bulk_data *consumers)
3105{
3106	int i;
3107	int ret;
3108
3109	for (i = 0; i < num_consumers; i++)
3110		consumers[i].consumer = NULL;
3111
3112	for (i = 0; i < num_consumers; i++) {
3113		consumers[i].consumer = regulator_get(dev,
3114						      consumers[i].supply);
3115		if (IS_ERR(consumers[i].consumer)) {
3116			ret = PTR_ERR(consumers[i].consumer);
3117			dev_err(dev, "Failed to get supply '%s': %d\n",
3118				consumers[i].supply, ret);
3119			consumers[i].consumer = NULL;
3120			goto err;
3121		}
3122	}
3123
3124	return 0;
3125
3126err:
3127	while (--i >= 0)
3128		regulator_put(consumers[i].consumer);
3129
3130	return ret;
3131}
3132EXPORT_SYMBOL_GPL(regulator_bulk_get);
3133
3134static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3135{
3136	struct regulator_bulk_data *bulk = data;
3137
3138	bulk->ret = regulator_enable(bulk->consumer);
3139}
3140
3141/**
3142 * regulator_bulk_enable - enable multiple regulator consumers
3143 *
3144 * @num_consumers: Number of consumers
3145 * @consumers:     Consumer data; clients are stored here.
3146 * @return         0 on success, an errno on failure
3147 *
3148 * This convenience API allows consumers to enable multiple regulator
3149 * clients in a single API call.  If any consumers cannot be enabled
3150 * then any others that were enabled will be disabled again prior to
3151 * return.
3152 */
3153int regulator_bulk_enable(int num_consumers,
3154			  struct regulator_bulk_data *consumers)
3155{
3156	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3157	int i;
3158	int ret = 0;
3159
3160	for (i = 0; i < num_consumers; i++) {
3161		if (consumers[i].consumer->always_on)
3162			consumers[i].ret = 0;
3163		else
3164			async_schedule_domain(regulator_bulk_enable_async,
3165					      &consumers[i], &async_domain);
3166	}
3167
3168	async_synchronize_full_domain(&async_domain);
3169
3170	/* If any consumer failed we need to unwind any that succeeded */
3171	for (i = 0; i < num_consumers; i++) {
3172		if (consumers[i].ret != 0) {
3173			ret = consumers[i].ret;
3174			goto err;
3175		}
3176	}
3177
3178	return 0;
3179
3180err:
3181	for (i = 0; i < num_consumers; i++) {
3182		if (consumers[i].ret < 0)
3183			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3184			       consumers[i].ret);
3185		else
3186			regulator_disable(consumers[i].consumer);
3187	}
3188
3189	return ret;
3190}
3191EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3192
3193/**
3194 * regulator_bulk_disable - disable multiple regulator consumers
3195 *
3196 * @num_consumers: Number of consumers
3197 * @consumers:     Consumer data; clients are stored here.
3198 * @return         0 on success, an errno on failure
3199 *
3200 * This convenience API allows consumers to disable multiple regulator
3201 * clients in a single API call.  If any consumers cannot be disabled
3202 * then any others that were disabled will be enabled again prior to
3203 * return.
3204 */
3205int regulator_bulk_disable(int num_consumers,
3206			   struct regulator_bulk_data *consumers)
3207{
3208	int i;
3209	int ret, r;
3210
3211	for (i = num_consumers - 1; i >= 0; --i) {
3212		ret = regulator_disable(consumers[i].consumer);
3213		if (ret != 0)
3214			goto err;
3215	}
3216
3217	return 0;
3218
3219err:
3220	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3221	for (++i; i < num_consumers; ++i) {
3222		r = regulator_enable(consumers[i].consumer);
3223		if (r != 0)
3224			pr_err("Failed to reename %s: %d\n",
3225			       consumers[i].supply, r);
3226	}
3227
3228	return ret;
3229}
3230EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3231
3232/**
3233 * regulator_bulk_force_disable - force disable multiple regulator consumers
3234 *
3235 * @num_consumers: Number of consumers
3236 * @consumers:     Consumer data; clients are stored here.
3237 * @return         0 on success, an errno on failure
3238 *
3239 * This convenience API allows consumers to forcibly disable multiple regulator
3240 * clients in a single API call.
3241 * NOTE: This should be used for situations when device damage will
3242 * likely occur if the regulators are not disabled (e.g. over temp).
3243 * Although regulator_force_disable function call for some consumers can
3244 * return error numbers, the function is called for all consumers.
3245 */
3246int regulator_bulk_force_disable(int num_consumers,
3247			   struct regulator_bulk_data *consumers)
3248{
3249	int i;
3250	int ret;
3251
3252	for (i = 0; i < num_consumers; i++)
3253		consumers[i].ret =
3254			    regulator_force_disable(consumers[i].consumer);
3255
3256	for (i = 0; i < num_consumers; i++) {
3257		if (consumers[i].ret != 0) {
3258			ret = consumers[i].ret;
3259			goto out;
3260		}
3261	}
3262
3263	return 0;
3264out:
3265	return ret;
3266}
3267EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3268
3269/**
3270 * regulator_bulk_free - free multiple regulator consumers
3271 *
3272 * @num_consumers: Number of consumers
3273 * @consumers:     Consumer data; clients are stored here.
3274 *
3275 * This convenience API allows consumers to free multiple regulator
3276 * clients in a single API call.
3277 */
3278void regulator_bulk_free(int num_consumers,
3279			 struct regulator_bulk_data *consumers)
3280{
3281	int i;
3282
3283	for (i = 0; i < num_consumers; i++) {
3284		regulator_put(consumers[i].consumer);
3285		consumers[i].consumer = NULL;
3286	}
3287}
3288EXPORT_SYMBOL_GPL(regulator_bulk_free);
3289
3290/**
3291 * regulator_notifier_call_chain - call regulator event notifier
3292 * @rdev: regulator source
3293 * @event: notifier block
3294 * @data: callback-specific data.
3295 *
3296 * Called by regulator drivers to notify clients a regulator event has
3297 * occurred. We also notify regulator clients downstream.
3298 * Note lock must be held by caller.
3299 */
3300int regulator_notifier_call_chain(struct regulator_dev *rdev,
3301				  unsigned long event, void *data)
3302{
3303	_notifier_call_chain(rdev, event, data);
3304	return NOTIFY_DONE;
3305
3306}
3307EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3308
3309/**
3310 * regulator_mode_to_status - convert a regulator mode into a status
3311 *
3312 * @mode: Mode to convert
3313 *
3314 * Convert a regulator mode into a status.
3315 */
3316int regulator_mode_to_status(unsigned int mode)
3317{
3318	switch (mode) {
3319	case REGULATOR_MODE_FAST:
3320		return REGULATOR_STATUS_FAST;
3321	case REGULATOR_MODE_NORMAL:
3322		return REGULATOR_STATUS_NORMAL;
3323	case REGULATOR_MODE_IDLE:
3324		return REGULATOR_STATUS_IDLE;
3325	case REGULATOR_MODE_STANDBY:
3326		return REGULATOR_STATUS_STANDBY;
3327	default:
3328		return REGULATOR_STATUS_UNDEFINED;
3329	}
3330}
3331EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3332
3333/*
3334 * To avoid cluttering sysfs (and memory) with useless state, only
3335 * create attributes that can be meaningfully displayed.
3336 */
3337static int add_regulator_attributes(struct regulator_dev *rdev)
3338{
3339	struct device		*dev = &rdev->dev;
3340	struct regulator_ops	*ops = rdev->desc->ops;
3341	int			status = 0;
3342
3343	/* some attributes need specific methods to be displayed */
3344	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3345	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3346	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3347		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3348		status = device_create_file(dev, &dev_attr_microvolts);
3349		if (status < 0)
3350			return status;
3351	}
3352	if (ops->get_current_limit) {
3353		status = device_create_file(dev, &dev_attr_microamps);
3354		if (status < 0)
3355			return status;
3356	}
3357	if (ops->get_mode) {
3358		status = device_create_file(dev, &dev_attr_opmode);
3359		if (status < 0)
3360			return status;
3361	}
3362	if (rdev->ena_pin || ops->is_enabled) {
3363		status = device_create_file(dev, &dev_attr_state);
3364		if (status < 0)
3365			return status;
3366	}
3367	if (ops->get_status) {
3368		status = device_create_file(dev, &dev_attr_status);
3369		if (status < 0)
3370			return status;
3371	}
3372	if (ops->get_bypass) {
3373		status = device_create_file(dev, &dev_attr_bypass);
3374		if (status < 0)
3375			return status;
3376	}
3377
3378	/* some attributes are type-specific */
3379	if (rdev->desc->type == REGULATOR_CURRENT) {
3380		status = device_create_file(dev, &dev_attr_requested_microamps);
3381		if (status < 0)
3382			return status;
3383	}
3384
3385	/* all the other attributes exist to support constraints;
3386	 * don't show them if there are no constraints, or if the
3387	 * relevant supporting methods are missing.
3388	 */
3389	if (!rdev->constraints)
3390		return status;
3391
3392	/* constraints need specific supporting methods */
3393	if (ops->set_voltage || ops->set_voltage_sel) {
3394		status = device_create_file(dev, &dev_attr_min_microvolts);
3395		if (status < 0)
3396			return status;
3397		status = device_create_file(dev, &dev_attr_max_microvolts);
3398		if (status < 0)
3399			return status;
3400	}
3401	if (ops->set_current_limit) {
3402		status = device_create_file(dev, &dev_attr_min_microamps);
3403		if (status < 0)
3404			return status;
3405		status = device_create_file(dev, &dev_attr_max_microamps);
3406		if (status < 0)
3407			return status;
3408	}
3409
3410	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3411	if (status < 0)
3412		return status;
3413	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3414	if (status < 0)
3415		return status;
3416	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3417	if (status < 0)
3418		return status;
3419
3420	if (ops->set_suspend_voltage) {
3421		status = device_create_file(dev,
3422				&dev_attr_suspend_standby_microvolts);
3423		if (status < 0)
3424			return status;
3425		status = device_create_file(dev,
3426				&dev_attr_suspend_mem_microvolts);
3427		if (status < 0)
3428			return status;
3429		status = device_create_file(dev,
3430				&dev_attr_suspend_disk_microvolts);
3431		if (status < 0)
3432			return status;
3433	}
3434
3435	if (ops->set_suspend_mode) {
3436		status = device_create_file(dev,
3437				&dev_attr_suspend_standby_mode);
3438		if (status < 0)
3439			return status;
3440		status = device_create_file(dev,
3441				&dev_attr_suspend_mem_mode);
3442		if (status < 0)
3443			return status;
3444		status = device_create_file(dev,
3445				&dev_attr_suspend_disk_mode);
3446		if (status < 0)
3447			return status;
3448	}
3449
3450	return status;
3451}
3452
3453static void rdev_init_debugfs(struct regulator_dev *rdev)
3454{
3455	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3456	if (!rdev->debugfs) {
3457		rdev_warn(rdev, "Failed to create debugfs directory\n");
3458		return;
3459	}
3460
3461	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3462			   &rdev->use_count);
3463	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3464			   &rdev->open_count);
3465	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3466			   &rdev->bypass_count);
3467}
3468
3469/**
3470 * regulator_register - register regulator
3471 * @regulator_desc: regulator to register
3472 * @config: runtime configuration for regulator
3473 *
3474 * Called by regulator drivers to register a regulator.
3475 * Returns a valid pointer to struct regulator_dev on success
3476 * or an ERR_PTR() on error.
3477 */
3478struct regulator_dev *
3479regulator_register(const struct regulator_desc *regulator_desc,
3480		   const struct regulator_config *config)
3481{
3482	const struct regulation_constraints *constraints = NULL;
3483	const struct regulator_init_data *init_data;
3484	static atomic_t regulator_no = ATOMIC_INIT(0);
3485	struct regulator_dev *rdev;
3486	struct device *dev;
3487	int ret, i;
3488	const char *supply = NULL;
3489
3490	if (regulator_desc == NULL || config == NULL)
3491		return ERR_PTR(-EINVAL);
3492
3493	dev = config->dev;
3494	WARN_ON(!dev);
3495
3496	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3497		return ERR_PTR(-EINVAL);
3498
3499	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3500	    regulator_desc->type != REGULATOR_CURRENT)
3501		return ERR_PTR(-EINVAL);
3502
3503	/* Only one of each should be implemented */
3504	WARN_ON(regulator_desc->ops->get_voltage &&
3505		regulator_desc->ops->get_voltage_sel);
3506	WARN_ON(regulator_desc->ops->set_voltage &&
3507		regulator_desc->ops->set_voltage_sel);
3508
3509	/* If we're using selectors we must implement list_voltage. */
3510	if (regulator_desc->ops->get_voltage_sel &&
3511	    !regulator_desc->ops->list_voltage) {
3512		return ERR_PTR(-EINVAL);
3513	}
3514	if (regulator_desc->ops->set_voltage_sel &&
3515	    !regulator_desc->ops->list_voltage) {
3516		return ERR_PTR(-EINVAL);
3517	}
3518
3519	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3520	if (rdev == NULL)
3521		return ERR_PTR(-ENOMEM);
3522
3523	init_data = regulator_of_get_init_data(dev, regulator_desc,
3524					       &rdev->dev.of_node);
3525	if (!init_data) {
3526		init_data = config->init_data;
3527		rdev->dev.of_node = of_node_get(config->of_node);
3528	}
3529
3530	mutex_lock(&regulator_list_mutex);
3531
3532	mutex_init(&rdev->mutex);
3533	rdev->reg_data = config->driver_data;
3534	rdev->owner = regulator_desc->owner;
3535	rdev->desc = regulator_desc;
3536	if (config->regmap)
3537		rdev->regmap = config->regmap;
3538	else if (dev_get_regmap(dev, NULL))
3539		rdev->regmap = dev_get_regmap(dev, NULL);
3540	else if (dev->parent)
3541		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3542	INIT_LIST_HEAD(&rdev->consumer_list);
3543	INIT_LIST_HEAD(&rdev->list);
3544	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3545	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3546
3547	/* preform any regulator specific init */
3548	if (init_data && init_data->regulator_init) {
3549		ret = init_data->regulator_init(rdev->reg_data);
3550		if (ret < 0)
3551			goto clean;
3552	}
3553
3554	/* register with sysfs */
3555	rdev->dev.class = &regulator_class;
3556	rdev->dev.parent = dev;
3557	dev_set_name(&rdev->dev, "regulator.%d",
3558		     atomic_inc_return(&regulator_no) - 1);
3559	ret = device_register(&rdev->dev);
3560	if (ret != 0) {
3561		put_device(&rdev->dev);
3562		goto clean;
3563	}
3564
3565	dev_set_drvdata(&rdev->dev, rdev);
3566
3567	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3568		ret = regulator_ena_gpio_request(rdev, config);
3569		if (ret != 0) {
3570			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3571				 config->ena_gpio, ret);
3572			goto wash;
3573		}
3574
3575		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3576			rdev->ena_gpio_state = 1;
3577
3578		if (config->ena_gpio_invert)
3579			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3580	}
3581
3582	/* set regulator constraints */
3583	if (init_data)
3584		constraints = &init_data->constraints;
3585
3586	ret = set_machine_constraints(rdev, constraints);
3587	if (ret < 0)
3588		goto scrub;
3589
3590	/* add attributes supported by this regulator */
3591	ret = add_regulator_attributes(rdev);
3592	if (ret < 0)
3593		goto scrub;
3594
3595	if (init_data && init_data->supply_regulator)
3596		supply = init_data->supply_regulator;
3597	else if (regulator_desc->supply_name)
3598		supply = regulator_desc->supply_name;
3599
3600	if (supply) {
3601		struct regulator_dev *r;
3602
3603		r = regulator_dev_lookup(dev, supply, &ret);
3604
3605		if (ret == -ENODEV) {
3606			/*
3607			 * No supply was specified for this regulator and
3608			 * there will never be one.
3609			 */
3610			ret = 0;
3611			goto add_dev;
3612		} else if (!r) {
3613			dev_err(dev, "Failed to find supply %s\n", supply);
3614			ret = -EPROBE_DEFER;
3615			goto scrub;
3616		}
3617
3618		ret = set_supply(rdev, r);
3619		if (ret < 0)
3620			goto scrub;
3621
3622		/* Enable supply if rail is enabled */
3623		if (_regulator_is_enabled(rdev)) {
3624			ret = regulator_enable(rdev->supply);
3625			if (ret < 0)
3626				goto scrub;
3627		}
3628	}
3629
3630add_dev:
3631	/* add consumers devices */
3632	if (init_data) {
3633		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3634			ret = set_consumer_device_supply(rdev,
3635				init_data->consumer_supplies[i].dev_name,
3636				init_data->consumer_supplies[i].supply);
3637			if (ret < 0) {
3638				dev_err(dev, "Failed to set supply %s\n",
3639					init_data->consumer_supplies[i].supply);
3640				goto unset_supplies;
3641			}
3642		}
3643	}
3644
3645	list_add(&rdev->list, &regulator_list);
3646
3647	rdev_init_debugfs(rdev);
3648out:
3649	mutex_unlock(&regulator_list_mutex);
3650	return rdev;
3651
3652unset_supplies:
3653	unset_regulator_supplies(rdev);
3654
3655scrub:
3656	if (rdev->supply)
3657		_regulator_put(rdev->supply);
3658	regulator_ena_gpio_free(rdev);
3659	kfree(rdev->constraints);
3660wash:
3661	device_unregister(&rdev->dev);
3662	/* device core frees rdev */
3663	rdev = ERR_PTR(ret);
3664	goto out;
3665
3666clean:
3667	kfree(rdev);
3668	rdev = ERR_PTR(ret);
3669	goto out;
3670}
3671EXPORT_SYMBOL_GPL(regulator_register);
3672
3673/**
3674 * regulator_unregister - unregister regulator
3675 * @rdev: regulator to unregister
3676 *
3677 * Called by regulator drivers to unregister a regulator.
3678 */
3679void regulator_unregister(struct regulator_dev *rdev)
3680{
3681	if (rdev == NULL)
3682		return;
3683
3684	if (rdev->supply) {
3685		while (rdev->use_count--)
3686			regulator_disable(rdev->supply);
3687		regulator_put(rdev->supply);
3688	}
3689	mutex_lock(&regulator_list_mutex);
3690	debugfs_remove_recursive(rdev->debugfs);
3691	flush_work(&rdev->disable_work.work);
3692	WARN_ON(rdev->open_count);
3693	unset_regulator_supplies(rdev);
3694	list_del(&rdev->list);
3695	kfree(rdev->constraints);
3696	regulator_ena_gpio_free(rdev);
3697	of_node_put(rdev->dev.of_node);
3698	device_unregister(&rdev->dev);
3699	mutex_unlock(&regulator_list_mutex);
3700}
3701EXPORT_SYMBOL_GPL(regulator_unregister);
3702
3703/**
3704 * regulator_suspend_prepare - prepare regulators for system wide suspend
3705 * @state: system suspend state
3706 *
3707 * Configure each regulator with it's suspend operating parameters for state.
3708 * This will usually be called by machine suspend code prior to supending.
3709 */
3710int regulator_suspend_prepare(suspend_state_t state)
3711{
3712	struct regulator_dev *rdev;
3713	int ret = 0;
3714
3715	/* ON is handled by regulator active state */
3716	if (state == PM_SUSPEND_ON)
3717		return -EINVAL;
3718
3719	mutex_lock(&regulator_list_mutex);
3720	list_for_each_entry(rdev, &regulator_list, list) {
3721
3722		mutex_lock(&rdev->mutex);
3723		ret = suspend_prepare(rdev, state);
3724		mutex_unlock(&rdev->mutex);
3725
3726		if (ret < 0) {
3727			rdev_err(rdev, "failed to prepare\n");
3728			goto out;
3729		}
3730	}
3731out:
3732	mutex_unlock(&regulator_list_mutex);
3733	return ret;
3734}
3735EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3736
3737/**
3738 * regulator_suspend_finish - resume regulators from system wide suspend
3739 *
3740 * Turn on regulators that might be turned off by regulator_suspend_prepare
3741 * and that should be turned on according to the regulators properties.
3742 */
3743int regulator_suspend_finish(void)
3744{
3745	struct regulator_dev *rdev;
3746	int ret = 0, error;
3747
3748	mutex_lock(&regulator_list_mutex);
3749	list_for_each_entry(rdev, &regulator_list, list) {
3750		mutex_lock(&rdev->mutex);
3751		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3752			error = _regulator_do_enable(rdev);
3753			if (error)
3754				ret = error;
3755		} else {
3756			if (!have_full_constraints())
3757				goto unlock;
3758			if (!_regulator_is_enabled(rdev))
3759				goto unlock;
3760
3761			error = _regulator_do_disable(rdev);
3762			if (error)
3763				ret = error;
3764		}
3765unlock:
3766		mutex_unlock(&rdev->mutex);
3767	}
3768	mutex_unlock(&regulator_list_mutex);
3769	return ret;
3770}
3771EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3772
3773/**
3774 * regulator_has_full_constraints - the system has fully specified constraints
3775 *
3776 * Calling this function will cause the regulator API to disable all
3777 * regulators which have a zero use count and don't have an always_on
3778 * constraint in a late_initcall.
3779 *
3780 * The intention is that this will become the default behaviour in a
3781 * future kernel release so users are encouraged to use this facility
3782 * now.
3783 */
3784void regulator_has_full_constraints(void)
3785{
3786	has_full_constraints = 1;
3787}
3788EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3789
3790/**
3791 * rdev_get_drvdata - get rdev regulator driver data
3792 * @rdev: regulator
3793 *
3794 * Get rdev regulator driver private data. This call can be used in the
3795 * regulator driver context.
3796 */
3797void *rdev_get_drvdata(struct regulator_dev *rdev)
3798{
3799	return rdev->reg_data;
3800}
3801EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3802
3803/**
3804 * regulator_get_drvdata - get regulator driver data
3805 * @regulator: regulator
3806 *
3807 * Get regulator driver private data. This call can be used in the consumer
3808 * driver context when non API regulator specific functions need to be called.
3809 */
3810void *regulator_get_drvdata(struct regulator *regulator)
3811{
3812	return regulator->rdev->reg_data;
3813}
3814EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3815
3816/**
3817 * regulator_set_drvdata - set regulator driver data
3818 * @regulator: regulator
3819 * @data: data
3820 */
3821void regulator_set_drvdata(struct regulator *regulator, void *data)
3822{
3823	regulator->rdev->reg_data = data;
3824}
3825EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3826
3827/**
3828 * regulator_get_id - get regulator ID
3829 * @rdev: regulator
3830 */
3831int rdev_get_id(struct regulator_dev *rdev)
3832{
3833	return rdev->desc->id;
3834}
3835EXPORT_SYMBOL_GPL(rdev_get_id);
3836
3837struct device *rdev_get_dev(struct regulator_dev *rdev)
3838{
3839	return &rdev->dev;
3840}
3841EXPORT_SYMBOL_GPL(rdev_get_dev);
3842
3843void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3844{
3845	return reg_init_data->driver_data;
3846}
3847EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3848
3849#ifdef CONFIG_DEBUG_FS
3850static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3851				    size_t count, loff_t *ppos)
3852{
3853	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3854	ssize_t len, ret = 0;
3855	struct regulator_map *map;
3856
3857	if (!buf)
3858		return -ENOMEM;
3859
3860	list_for_each_entry(map, &regulator_map_list, list) {
3861		len = snprintf(buf + ret, PAGE_SIZE - ret,
3862			       "%s -> %s.%s\n",
3863			       rdev_get_name(map->regulator), map->dev_name,
3864			       map->supply);
3865		if (len >= 0)
3866			ret += len;
3867		if (ret > PAGE_SIZE) {
3868			ret = PAGE_SIZE;
3869			break;
3870		}
3871	}
3872
3873	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3874
3875	kfree(buf);
3876
3877	return ret;
3878}
3879#endif
3880
3881static const struct file_operations supply_map_fops = {
3882#ifdef CONFIG_DEBUG_FS
3883	.read = supply_map_read_file,
3884	.llseek = default_llseek,
3885#endif
3886};
3887
3888static int __init regulator_init(void)
3889{
3890	int ret;
3891
3892	ret = class_register(&regulator_class);
3893
3894	debugfs_root = debugfs_create_dir("regulator", NULL);
3895	if (!debugfs_root)
3896		pr_warn("regulator: Failed to create debugfs directory\n");
3897
3898	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3899			    &supply_map_fops);
3900
3901	regulator_dummy_init();
3902
3903	return ret;
3904}
3905
3906/* init early to allow our consumers to complete system booting */
3907core_initcall(regulator_init);
3908
3909static int __init regulator_init_complete(void)
3910{
3911	struct regulator_dev *rdev;
3912	struct regulator_ops *ops;
3913	struct regulation_constraints *c;
3914	int enabled, ret;
3915
3916	/*
3917	 * Since DT doesn't provide an idiomatic mechanism for
3918	 * enabling full constraints and since it's much more natural
3919	 * with DT to provide them just assume that a DT enabled
3920	 * system has full constraints.
3921	 */
3922	if (of_have_populated_dt())
3923		has_full_constraints = true;
3924
3925	mutex_lock(&regulator_list_mutex);
3926
3927	/* If we have a full configuration then disable any regulators
3928	 * we have permission to change the status for and which are
3929	 * not in use or always_on.  This is effectively the default
3930	 * for DT and ACPI as they have full constraints.
3931	 */
3932	list_for_each_entry(rdev, &regulator_list, list) {
3933		ops = rdev->desc->ops;
3934		c = rdev->constraints;
3935
3936		if (c && c->always_on)
3937			continue;
3938
3939		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3940			continue;
3941
3942		mutex_lock(&rdev->mutex);
3943
3944		if (rdev->use_count)
3945			goto unlock;
3946
3947		/* If we can't read the status assume it's on. */
3948		if (ops->is_enabled)
3949			enabled = ops->is_enabled(rdev);
3950		else
3951			enabled = 1;
3952
3953		if (!enabled)
3954			goto unlock;
3955
3956		if (have_full_constraints()) {
3957			/* We log since this may kill the system if it
3958			 * goes wrong. */
3959			rdev_info(rdev, "disabling\n");
3960			ret = _regulator_do_disable(rdev);
3961			if (ret != 0)
3962				rdev_err(rdev, "couldn't disable: %d\n", ret);
3963		} else {
3964			/* The intention is that in future we will
3965			 * assume that full constraints are provided
3966			 * so warn even if we aren't going to do
3967			 * anything here.
3968			 */
3969			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3970		}
3971
3972unlock:
3973		mutex_unlock(&rdev->mutex);
3974	}
3975
3976	mutex_unlock(&regulator_list_mutex);
3977
3978	return 0;
3979}
3980late_initcall_sync(regulator_init_complete);
3981