core.c revision a5766f11cfd3a0c03450d99c8fe548c2940be884
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/**
33 * struct regulator_dev
34 *
35 * Voltage / Current regulator class device. One for each regulator.
36 */
37struct regulator_dev {
38	struct regulator_desc *desc;
39	int use_count;
40
41	/* lists we belong to */
42	struct list_head list; /* list of all regulators */
43	struct list_head slist; /* list of supplied regulators */
44
45	/* lists we own */
46	struct list_head consumer_list; /* consumers we supply */
47	struct list_head supply_list; /* regulators we supply */
48
49	struct blocking_notifier_head notifier;
50	struct mutex mutex; /* consumer lock */
51	struct module *owner;
52	struct device dev;
53	struct regulation_constraints *constraints;
54	struct regulator_dev *supply;	/* for tree */
55
56	void *reg_data;		/* regulator_dev data */
57};
58
59/**
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	struct device *dev;
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	int enabled; /* client has called enabled */
83	char *supply_name;
84	struct device_attribute dev_attr;
85	struct regulator_dev *rdev;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95
96/* gets the regulator for a given consumer device */
97static struct regulator *get_device_regulator(struct device *dev)
98{
99	struct regulator *regulator = NULL;
100	struct regulator_dev *rdev;
101
102	mutex_lock(&regulator_list_mutex);
103	list_for_each_entry(rdev, &regulator_list, list) {
104		mutex_lock(&rdev->mutex);
105		list_for_each_entry(regulator, &rdev->consumer_list, list) {
106			if (regulator->dev == dev) {
107				mutex_unlock(&rdev->mutex);
108				mutex_unlock(&regulator_list_mutex);
109				return regulator;
110			}
111		}
112		mutex_unlock(&rdev->mutex);
113	}
114	mutex_unlock(&regulator_list_mutex);
115	return NULL;
116}
117
118/* Platform voltage constraint check */
119static int regulator_check_voltage(struct regulator_dev *rdev,
120				   int *min_uV, int *max_uV)
121{
122	BUG_ON(*min_uV > *max_uV);
123
124	if (!rdev->constraints) {
125		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126		       rdev->desc->name);
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130		printk(KERN_ERR "%s: operation not allowed for %s\n",
131		       __func__, rdev->desc->name);
132		return -EPERM;
133	}
134
135	if (*max_uV > rdev->constraints->max_uV)
136		*max_uV = rdev->constraints->max_uV;
137	if (*min_uV < rdev->constraints->min_uV)
138		*min_uV = rdev->constraints->min_uV;
139
140	if (*min_uV > *max_uV)
141		return -EINVAL;
142
143	return 0;
144}
145
146/* current constraint check */
147static int regulator_check_current_limit(struct regulator_dev *rdev,
148					int *min_uA, int *max_uA)
149{
150	BUG_ON(*min_uA > *max_uA);
151
152	if (!rdev->constraints) {
153		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154		       rdev->desc->name);
155		return -ENODEV;
156	}
157	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158		printk(KERN_ERR "%s: operation not allowed for %s\n",
159		       __func__, rdev->desc->name);
160		return -EPERM;
161	}
162
163	if (*max_uA > rdev->constraints->max_uA)
164		*max_uA = rdev->constraints->max_uA;
165	if (*min_uA < rdev->constraints->min_uA)
166		*min_uA = rdev->constraints->min_uA;
167
168	if (*min_uA > *max_uA)
169		return -EINVAL;
170
171	return 0;
172}
173
174/* operating mode constraint check */
175static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176{
177	if (!rdev->constraints) {
178		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
179		       rdev->desc->name);
180		return -ENODEV;
181	}
182	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
183		printk(KERN_ERR "%s: operation not allowed for %s\n",
184		       __func__, rdev->desc->name);
185		return -EPERM;
186	}
187	if (!(rdev->constraints->valid_modes_mask & mode)) {
188		printk(KERN_ERR "%s: invalid mode %x for %s\n",
189		       __func__, mode, rdev->desc->name);
190		return -EINVAL;
191	}
192	return 0;
193}
194
195/* dynamic regulator mode switching constraint check */
196static int regulator_check_drms(struct regulator_dev *rdev)
197{
198	if (!rdev->constraints) {
199		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
200		       rdev->desc->name);
201		return -ENODEV;
202	}
203	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
204		printk(KERN_ERR "%s: operation not allowed for %s\n",
205		       __func__, rdev->desc->name);
206		return -EPERM;
207	}
208	return 0;
209}
210
211static ssize_t device_requested_uA_show(struct device *dev,
212			     struct device_attribute *attr, char *buf)
213{
214	struct regulator *regulator;
215
216	regulator = get_device_regulator(dev);
217	if (regulator == NULL)
218		return 0;
219
220	return sprintf(buf, "%d\n", regulator->uA_load);
221}
222
223static ssize_t regulator_uV_show(struct device *dev,
224				struct device_attribute *attr, char *buf)
225{
226	struct regulator_dev *rdev = dev_get_drvdata(dev);
227	ssize_t ret;
228
229	mutex_lock(&rdev->mutex);
230	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
231	mutex_unlock(&rdev->mutex);
232
233	return ret;
234}
235
236static ssize_t regulator_uA_show(struct device *dev,
237				struct device_attribute *attr, char *buf)
238{
239	struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242}
243
244static ssize_t regulator_opmode_show(struct device *dev,
245				    struct device_attribute *attr, char *buf)
246{
247	struct regulator_dev *rdev = dev_get_drvdata(dev);
248	int mode = _regulator_get_mode(rdev);
249
250	switch (mode) {
251	case REGULATOR_MODE_FAST:
252		return sprintf(buf, "fast\n");
253	case REGULATOR_MODE_NORMAL:
254		return sprintf(buf, "normal\n");
255	case REGULATOR_MODE_IDLE:
256		return sprintf(buf, "idle\n");
257	case REGULATOR_MODE_STANDBY:
258		return sprintf(buf, "standby\n");
259	}
260	return sprintf(buf, "unknown\n");
261}
262
263static ssize_t regulator_state_show(struct device *dev,
264				   struct device_attribute *attr, char *buf)
265{
266	struct regulator_dev *rdev = dev_get_drvdata(dev);
267	int state = _regulator_is_enabled(rdev);
268
269	if (state > 0)
270		return sprintf(buf, "enabled\n");
271	else if (state == 0)
272		return sprintf(buf, "disabled\n");
273	else
274		return sprintf(buf, "unknown\n");
275}
276
277static ssize_t regulator_min_uA_show(struct device *dev,
278				    struct device_attribute *attr, char *buf)
279{
280	struct regulator_dev *rdev = dev_get_drvdata(dev);
281
282	if (!rdev->constraints)
283		return sprintf(buf, "constraint not defined\n");
284
285	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
286}
287
288static ssize_t regulator_max_uA_show(struct device *dev,
289				    struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292
293	if (!rdev->constraints)
294		return sprintf(buf, "constraint not defined\n");
295
296	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
297}
298
299static ssize_t regulator_min_uV_show(struct device *dev,
300				    struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304	if (!rdev->constraints)
305		return sprintf(buf, "constraint not defined\n");
306
307	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
308}
309
310static ssize_t regulator_max_uV_show(struct device *dev,
311				    struct device_attribute *attr, char *buf)
312{
313	struct regulator_dev *rdev = dev_get_drvdata(dev);
314
315	if (!rdev->constraints)
316		return sprintf(buf, "constraint not defined\n");
317
318	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
319}
320
321static ssize_t regulator_total_uA_show(struct device *dev,
322				      struct device_attribute *attr, char *buf)
323{
324	struct regulator_dev *rdev = dev_get_drvdata(dev);
325	struct regulator *regulator;
326	int uA = 0;
327
328	mutex_lock(&rdev->mutex);
329	list_for_each_entry(regulator, &rdev->consumer_list, list)
330	    uA += regulator->uA_load;
331	mutex_unlock(&rdev->mutex);
332	return sprintf(buf, "%d\n", uA);
333}
334
335static ssize_t regulator_num_users_show(struct device *dev,
336				      struct device_attribute *attr, char *buf)
337{
338	struct regulator_dev *rdev = dev_get_drvdata(dev);
339	return sprintf(buf, "%d\n", rdev->use_count);
340}
341
342static ssize_t regulator_type_show(struct device *dev,
343				  struct device_attribute *attr, char *buf)
344{
345	struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347	switch (rdev->desc->type) {
348	case REGULATOR_VOLTAGE:
349		return sprintf(buf, "voltage\n");
350	case REGULATOR_CURRENT:
351		return sprintf(buf, "current\n");
352	}
353	return sprintf(buf, "unknown\n");
354}
355
356static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
357				struct device_attribute *attr, char *buf)
358{
359	struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361	if (!rdev->constraints)
362		return sprintf(buf, "not defined\n");
363	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
364}
365
366static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
367				struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "not defined\n");
373	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
374}
375
376static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
377				struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381	if (!rdev->constraints)
382		return sprintf(buf, "not defined\n");
383	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
384}
385
386static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
387	unsigned int mode, char *buf)
388{
389	switch (mode) {
390	case REGULATOR_MODE_FAST:
391		return sprintf(buf, "fast\n");
392	case REGULATOR_MODE_NORMAL:
393		return sprintf(buf, "normal\n");
394	case REGULATOR_MODE_IDLE:
395		return sprintf(buf, "idle\n");
396	case REGULATOR_MODE_STANDBY:
397		return sprintf(buf, "standby\n");
398	}
399	return sprintf(buf, "unknown\n");
400}
401
402static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
403				struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407	if (!rdev->constraints)
408		return sprintf(buf, "not defined\n");
409	return suspend_opmode_show(rdev,
410		rdev->constraints->state_mem.mode, buf);
411}
412
413static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	if (!rdev->constraints)
419		return sprintf(buf, "not defined\n");
420	return suspend_opmode_show(rdev,
421		rdev->constraints->state_disk.mode, buf);
422}
423
424static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
425				struct device_attribute *attr, char *buf)
426{
427	struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429	if (!rdev->constraints)
430		return sprintf(buf, "not defined\n");
431	return suspend_opmode_show(rdev,
432		rdev->constraints->state_standby.mode, buf);
433}
434
435static ssize_t regulator_suspend_mem_state_show(struct device *dev,
436				   struct device_attribute *attr, char *buf)
437{
438	struct regulator_dev *rdev = dev_get_drvdata(dev);
439
440	if (!rdev->constraints)
441		return sprintf(buf, "not defined\n");
442
443	if (rdev->constraints->state_mem.enabled)
444		return sprintf(buf, "enabled\n");
445	else
446		return sprintf(buf, "disabled\n");
447}
448
449static ssize_t regulator_suspend_disk_state_show(struct device *dev,
450				   struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454	if (!rdev->constraints)
455		return sprintf(buf, "not defined\n");
456
457	if (rdev->constraints->state_disk.enabled)
458		return sprintf(buf, "enabled\n");
459	else
460		return sprintf(buf, "disabled\n");
461}
462
463static ssize_t regulator_suspend_standby_state_show(struct device *dev,
464				   struct device_attribute *attr, char *buf)
465{
466	struct regulator_dev *rdev = dev_get_drvdata(dev);
467
468	if (!rdev->constraints)
469		return sprintf(buf, "not defined\n");
470
471	if (rdev->constraints->state_standby.enabled)
472		return sprintf(buf, "enabled\n");
473	else
474		return sprintf(buf, "disabled\n");
475}
476static struct device_attribute regulator_dev_attrs[] = {
477	__ATTR(microvolts, 0444, regulator_uV_show, NULL),
478	__ATTR(microamps, 0444, regulator_uA_show, NULL),
479	__ATTR(opmode, 0444, regulator_opmode_show, NULL),
480	__ATTR(state, 0444, regulator_state_show, NULL),
481	__ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
482	__ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
483	__ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
484	__ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
485	__ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
486	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
487	__ATTR(type, 0444, regulator_type_show, NULL),
488	__ATTR(suspend_mem_microvolts, 0444,
489		regulator_suspend_mem_uV_show, NULL),
490	__ATTR(suspend_disk_microvolts, 0444,
491		regulator_suspend_disk_uV_show, NULL),
492	__ATTR(suspend_standby_microvolts, 0444,
493		regulator_suspend_standby_uV_show, NULL),
494	__ATTR(suspend_mem_mode, 0444,
495		regulator_suspend_mem_mode_show, NULL),
496	__ATTR(suspend_disk_mode, 0444,
497		regulator_suspend_disk_mode_show, NULL),
498	__ATTR(suspend_standby_mode, 0444,
499		regulator_suspend_standby_mode_show, NULL),
500	__ATTR(suspend_mem_state, 0444,
501		regulator_suspend_mem_state_show, NULL),
502	__ATTR(suspend_disk_state, 0444,
503		regulator_suspend_disk_state_show, NULL),
504	__ATTR(suspend_standby_state, 0444,
505		regulator_suspend_standby_state_show, NULL),
506	__ATTR_NULL,
507};
508
509static void regulator_dev_release(struct device *dev)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512	kfree(rdev);
513}
514
515static struct class regulator_class = {
516	.name = "regulator",
517	.dev_release = regulator_dev_release,
518	.dev_attrs = regulator_dev_attrs,
519};
520
521/* Calculate the new optimum regulator operating mode based on the new total
522 * consumer load. All locks held by caller */
523static void drms_uA_update(struct regulator_dev *rdev)
524{
525	struct regulator *sibling;
526	int current_uA = 0, output_uV, input_uV, err;
527	unsigned int mode;
528
529	err = regulator_check_drms(rdev);
530	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
531	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
532	return;
533
534	/* get output voltage */
535	output_uV = rdev->desc->ops->get_voltage(rdev);
536	if (output_uV <= 0)
537		return;
538
539	/* get input voltage */
540	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
541		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
542	else
543		input_uV = rdev->constraints->input_uV;
544	if (input_uV <= 0)
545		return;
546
547	/* calc total requested load */
548	list_for_each_entry(sibling, &rdev->consumer_list, list)
549	    current_uA += sibling->uA_load;
550
551	/* now get the optimum mode for our new total regulator load */
552	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
553						  output_uV, current_uA);
554
555	/* check the new mode is allowed */
556	err = regulator_check_mode(rdev, mode);
557	if (err == 0)
558		rdev->desc->ops->set_mode(rdev, mode);
559}
560
561static int suspend_set_state(struct regulator_dev *rdev,
562	struct regulator_state *rstate)
563{
564	int ret = 0;
565
566	/* enable & disable are mandatory for suspend control */
567	if (!rdev->desc->ops->set_suspend_enable ||
568		!rdev->desc->ops->set_suspend_disable) {
569		printk(KERN_ERR "%s: no way to set suspend state\n",
570			__func__);
571		return -EINVAL;
572	}
573
574	if (rstate->enabled)
575		ret = rdev->desc->ops->set_suspend_enable(rdev);
576	else
577		ret = rdev->desc->ops->set_suspend_disable(rdev);
578	if (ret < 0) {
579		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
580		return ret;
581	}
582
583	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
584		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
585		if (ret < 0) {
586			printk(KERN_ERR "%s: failed to set voltage\n",
587				__func__);
588			return ret;
589		}
590	}
591
592	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
593		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
594		if (ret < 0) {
595			printk(KERN_ERR "%s: failed to set mode\n", __func__);
596			return ret;
597		}
598	}
599	return ret;
600}
601
602/* locks held by caller */
603static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
604{
605	if (!rdev->constraints)
606		return -EINVAL;
607
608	switch (state) {
609	case PM_SUSPEND_STANDBY:
610		return suspend_set_state(rdev,
611			&rdev->constraints->state_standby);
612	case PM_SUSPEND_MEM:
613		return suspend_set_state(rdev,
614			&rdev->constraints->state_mem);
615	case PM_SUSPEND_MAX:
616		return suspend_set_state(rdev,
617			&rdev->constraints->state_disk);
618	default:
619		return -EINVAL;
620	}
621}
622
623static void print_constraints(struct regulator_dev *rdev)
624{
625	struct regulation_constraints *constraints = rdev->constraints;
626	char buf[80];
627	int count;
628
629	if (rdev->desc->type == REGULATOR_VOLTAGE) {
630		if (constraints->min_uV == constraints->max_uV)
631			count = sprintf(buf, "%d mV ",
632					constraints->min_uV / 1000);
633		else
634			count = sprintf(buf, "%d <--> %d mV ",
635					constraints->min_uV / 1000,
636					constraints->max_uV / 1000);
637	} else {
638		if (constraints->min_uA == constraints->max_uA)
639			count = sprintf(buf, "%d mA ",
640					constraints->min_uA / 1000);
641		else
642			count = sprintf(buf, "%d <--> %d mA ",
643					constraints->min_uA / 1000,
644					constraints->max_uA / 1000);
645	}
646	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
647		count += sprintf(buf + count, "fast ");
648	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
649		count += sprintf(buf + count, "normal ");
650	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
651		count += sprintf(buf + count, "idle ");
652	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
653		count += sprintf(buf + count, "standby");
654
655	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
656}
657
658/**
659 * set_machine_constraints - sets regulator constraints
660 * @regulator: regulator source
661 *
662 * Allows platform initialisation code to define and constrain
663 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
664 * Constraints *must* be set by platform code in order for some
665 * regulator operations to proceed i.e. set_voltage, set_current_limit,
666 * set_mode.
667 */
668static int set_machine_constraints(struct regulator_dev *rdev,
669	struct regulation_constraints *constraints)
670{
671	int ret = 0;
672
673	rdev->constraints = constraints;
674
675	/* do we need to apply the constraint voltage */
676	if (rdev->constraints->apply_uV &&
677		rdev->constraints->min_uV == rdev->constraints->max_uV &&
678		rdev->desc->ops->set_voltage) {
679		ret = rdev->desc->ops->set_voltage(rdev,
680			rdev->constraints->min_uV, rdev->constraints->max_uV);
681			if (ret < 0) {
682				printk(KERN_ERR "%s: failed to apply %duV"
683					" constraint\n", __func__,
684					rdev->constraints->min_uV);
685				rdev->constraints = NULL;
686				goto out;
687			}
688	}
689
690	/* are we enabled at boot time by firmware / bootloader */
691	if (rdev->constraints->boot_on)
692		rdev->use_count = 1;
693
694	/* do we need to setup our suspend state */
695	if (constraints->initial_state)
696		ret = suspend_prepare(rdev, constraints->initial_state);
697
698	print_constraints(rdev);
699out:
700	return ret;
701}
702
703/**
704 * set_supply - set regulator supply regulator
705 * @regulator: regulator name
706 * @supply: supply regulator name
707 *
708 * Called by platform initialisation code to set the supply regulator for this
709 * regulator. This ensures that a regulators supply will also be enabled by the
710 * core if it's child is enabled.
711 */
712static int set_supply(struct regulator_dev *rdev,
713	struct regulator_dev *supply_rdev)
714{
715	int err;
716
717	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
718				"supply");
719	if (err) {
720		printk(KERN_ERR
721		       "%s: could not add device link %s err %d\n",
722		       __func__, supply_rdev->dev.kobj.name, err);
723		       goto out;
724	}
725	rdev->supply = supply_rdev;
726	list_add(&rdev->slist, &supply_rdev->supply_list);
727out:
728	return err;
729}
730
731/**
732 * set_consumer_device_supply: Bind a regulator to a symbolic supply
733 * @regulator: regulator source
734 * @dev:       device the supply applies to
735 * @supply:    symbolic name for supply
736 *
737 * Allows platform initialisation code to map physical regulator
738 * sources to symbolic names for supplies for use by devices.  Devices
739 * should use these symbolic names to request regulators, avoiding the
740 * need to provide board-specific regulator names as platform data.
741 */
742static int set_consumer_device_supply(struct regulator_dev *rdev,
743	struct device *consumer_dev, const char *supply)
744{
745	struct regulator_map *node;
746
747	if (supply == NULL)
748		return -EINVAL;
749
750	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
751	if (node == NULL)
752		return -ENOMEM;
753
754	node->regulator = rdev;
755	node->dev = consumer_dev;
756	node->supply = supply;
757
758	list_add(&node->list, &regulator_map_list);
759	return 0;
760}
761
762static void unset_consumer_device_supply(struct regulator_dev *rdev,
763	struct device *consumer_dev)
764{
765	struct regulator_map *node, *n;
766
767	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
768		if (rdev == node->regulator &&
769			consumer_dev == node->dev) {
770			list_del(&node->list);
771			kfree(node);
772			return;
773		}
774	}
775}
776
777#define REG_STR_SIZE	32
778
779static struct regulator *create_regulator(struct regulator_dev *rdev,
780					  struct device *dev,
781					  const char *supply_name)
782{
783	struct regulator *regulator;
784	char buf[REG_STR_SIZE];
785	int err, size;
786
787	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
788	if (regulator == NULL)
789		return NULL;
790
791	mutex_lock(&rdev->mutex);
792	regulator->rdev = rdev;
793	list_add(&regulator->list, &rdev->consumer_list);
794
795	if (dev) {
796		/* create a 'requested_microamps_name' sysfs entry */
797		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
798			supply_name);
799		if (size >= REG_STR_SIZE)
800			goto overflow_err;
801
802		regulator->dev = dev;
803		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
804		if (regulator->dev_attr.attr.name == NULL)
805			goto attr_name_err;
806
807		regulator->dev_attr.attr.owner = THIS_MODULE;
808		regulator->dev_attr.attr.mode = 0444;
809		regulator->dev_attr.show = device_requested_uA_show;
810		err = device_create_file(dev, &regulator->dev_attr);
811		if (err < 0) {
812			printk(KERN_WARNING "%s: could not add regulator_dev"
813				" load sysfs\n", __func__);
814			goto attr_name_err;
815		}
816
817		/* also add a link to the device sysfs entry */
818		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
819				 dev->kobj.name, supply_name);
820		if (size >= REG_STR_SIZE)
821			goto attr_err;
822
823		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
824		if (regulator->supply_name == NULL)
825			goto attr_err;
826
827		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
828					buf);
829		if (err) {
830			printk(KERN_WARNING
831			       "%s: could not add device link %s err %d\n",
832			       __func__, dev->kobj.name, err);
833			device_remove_file(dev, &regulator->dev_attr);
834			goto link_name_err;
835		}
836	}
837	mutex_unlock(&rdev->mutex);
838	return regulator;
839link_name_err:
840	kfree(regulator->supply_name);
841attr_err:
842	device_remove_file(regulator->dev, &regulator->dev_attr);
843attr_name_err:
844	kfree(regulator->dev_attr.attr.name);
845overflow_err:
846	list_del(&regulator->list);
847	kfree(regulator);
848	mutex_unlock(&rdev->mutex);
849	return NULL;
850}
851
852/**
853 * regulator_get - lookup and obtain a reference to a regulator.
854 * @dev: device for regulator "consumer"
855 * @id: Supply name or regulator ID.
856 *
857 * Returns a struct regulator corresponding to the regulator producer,
858 * or IS_ERR() condition containing errno.  Use of supply names
859 * configured via regulator_set_device_supply() is strongly
860 * encouraged.
861 */
862struct regulator *regulator_get(struct device *dev, const char *id)
863{
864	struct regulator_dev *rdev;
865	struct regulator_map *map;
866	struct regulator *regulator = ERR_PTR(-ENODEV);
867
868	if (id == NULL) {
869		printk(KERN_ERR "regulator: get() with no identifier\n");
870		return regulator;
871	}
872
873	mutex_lock(&regulator_list_mutex);
874
875	list_for_each_entry(map, &regulator_map_list, list) {
876		if (dev == map->dev &&
877		    strcmp(map->supply, id) == 0) {
878			rdev = map->regulator;
879			goto found;
880		}
881	}
882	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
883	       id);
884	mutex_unlock(&regulator_list_mutex);
885	return regulator;
886
887found:
888	if (!try_module_get(rdev->owner))
889		goto out;
890
891	regulator = create_regulator(rdev, dev, id);
892	if (regulator == NULL) {
893		regulator = ERR_PTR(-ENOMEM);
894		module_put(rdev->owner);
895	}
896
897out:
898	mutex_unlock(&regulator_list_mutex);
899	return regulator;
900}
901EXPORT_SYMBOL_GPL(regulator_get);
902
903/**
904 * regulator_put - "free" the regulator source
905 * @regulator: regulator source
906 *
907 * Note: drivers must ensure that all regulator_enable calls made on this
908 * regulator source are balanced by regulator_disable calls prior to calling
909 * this function.
910 */
911void regulator_put(struct regulator *regulator)
912{
913	struct regulator_dev *rdev;
914
915	if (regulator == NULL || IS_ERR(regulator))
916		return;
917
918	if (regulator->enabled) {
919		printk(KERN_WARNING "Releasing supply %s while enabled\n",
920		       regulator->supply_name);
921		WARN_ON(regulator->enabled);
922		regulator_disable(regulator);
923	}
924
925	mutex_lock(&regulator_list_mutex);
926	rdev = regulator->rdev;
927
928	/* remove any sysfs entries */
929	if (regulator->dev) {
930		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
931		kfree(regulator->supply_name);
932		device_remove_file(regulator->dev, &regulator->dev_attr);
933		kfree(regulator->dev_attr.attr.name);
934	}
935	list_del(&regulator->list);
936	kfree(regulator);
937
938	module_put(rdev->owner);
939	mutex_unlock(&regulator_list_mutex);
940}
941EXPORT_SYMBOL_GPL(regulator_put);
942
943/* locks held by regulator_enable() */
944static int _regulator_enable(struct regulator_dev *rdev)
945{
946	int ret = -EINVAL;
947
948	if (!rdev->constraints) {
949		printk(KERN_ERR "%s: %s has no constraints\n",
950		       __func__, rdev->desc->name);
951		return ret;
952	}
953
954	/* do we need to enable the supply regulator first */
955	if (rdev->supply) {
956		ret = _regulator_enable(rdev->supply);
957		if (ret < 0) {
958			printk(KERN_ERR "%s: failed to enable %s: %d\n",
959			       __func__, rdev->desc->name, ret);
960			return ret;
961		}
962	}
963
964	/* check voltage and requested load before enabling */
965	if (rdev->desc->ops->enable) {
966
967		if (rdev->constraints &&
968			(rdev->constraints->valid_ops_mask &
969			REGULATOR_CHANGE_DRMS))
970			drms_uA_update(rdev);
971
972		ret = rdev->desc->ops->enable(rdev);
973		if (ret < 0) {
974			printk(KERN_ERR "%s: failed to enable %s: %d\n",
975			       __func__, rdev->desc->name, ret);
976			return ret;
977		}
978		rdev->use_count++;
979		return ret;
980	}
981
982	return ret;
983}
984
985/**
986 * regulator_enable - enable regulator output
987 * @regulator: regulator source
988 *
989 * Enable the regulator output at the predefined voltage or current value.
990 * NOTE: the output value can be set by other drivers, boot loader or may be
991 * hardwired in the regulator.
992 * NOTE: calls to regulator_enable() must be balanced with calls to
993 * regulator_disable().
994 */
995int regulator_enable(struct regulator *regulator)
996{
997	int ret;
998
999	if (regulator->enabled) {
1000		printk(KERN_CRIT "Regulator %s already enabled\n",
1001		       regulator->supply_name);
1002		WARN_ON(regulator->enabled);
1003		return 0;
1004	}
1005
1006	mutex_lock(&regulator->rdev->mutex);
1007	regulator->enabled = 1;
1008	ret = _regulator_enable(regulator->rdev);
1009	if (ret != 0)
1010		regulator->enabled = 0;
1011	mutex_unlock(&regulator->rdev->mutex);
1012	return ret;
1013}
1014EXPORT_SYMBOL_GPL(regulator_enable);
1015
1016/* locks held by regulator_disable() */
1017static int _regulator_disable(struct regulator_dev *rdev)
1018{
1019	int ret = 0;
1020
1021	/* are we the last user and permitted to disable ? */
1022	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1023
1024		/* we are last user */
1025		if (rdev->desc->ops->disable) {
1026			ret = rdev->desc->ops->disable(rdev);
1027			if (ret < 0) {
1028				printk(KERN_ERR "%s: failed to disable %s\n",
1029				       __func__, rdev->desc->name);
1030				return ret;
1031			}
1032		}
1033
1034		/* decrease our supplies ref count and disable if required */
1035		if (rdev->supply)
1036			_regulator_disable(rdev->supply);
1037
1038		rdev->use_count = 0;
1039	} else if (rdev->use_count > 1) {
1040
1041		if (rdev->constraints &&
1042			(rdev->constraints->valid_ops_mask &
1043			REGULATOR_CHANGE_DRMS))
1044			drms_uA_update(rdev);
1045
1046		rdev->use_count--;
1047	}
1048	return ret;
1049}
1050
1051/**
1052 * regulator_disable - disable regulator output
1053 * @regulator: regulator source
1054 *
1055 * Disable the regulator output voltage or current.
1056 * NOTE: this will only disable the regulator output if no other consumer
1057 * devices have it enabled.
1058 * NOTE: calls to regulator_enable() must be balanced with calls to
1059 * regulator_disable().
1060 */
1061int regulator_disable(struct regulator *regulator)
1062{
1063	int ret;
1064
1065	if (!regulator->enabled) {
1066		printk(KERN_ERR "%s: not in use by this consumer\n",
1067			__func__);
1068		return 0;
1069	}
1070
1071	mutex_lock(&regulator->rdev->mutex);
1072	regulator->enabled = 0;
1073	regulator->uA_load = 0;
1074	ret = _regulator_disable(regulator->rdev);
1075	mutex_unlock(&regulator->rdev->mutex);
1076	return ret;
1077}
1078EXPORT_SYMBOL_GPL(regulator_disable);
1079
1080/* locks held by regulator_force_disable() */
1081static int _regulator_force_disable(struct regulator_dev *rdev)
1082{
1083	int ret = 0;
1084
1085	/* force disable */
1086	if (rdev->desc->ops->disable) {
1087		/* ah well, who wants to live forever... */
1088		ret = rdev->desc->ops->disable(rdev);
1089		if (ret < 0) {
1090			printk(KERN_ERR "%s: failed to force disable %s\n",
1091			       __func__, rdev->desc->name);
1092			return ret;
1093		}
1094		/* notify other consumers that power has been forced off */
1095		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1096			NULL);
1097	}
1098
1099	/* decrease our supplies ref count and disable if required */
1100	if (rdev->supply)
1101		_regulator_disable(rdev->supply);
1102
1103	rdev->use_count = 0;
1104	return ret;
1105}
1106
1107/**
1108 * regulator_force_disable - force disable regulator output
1109 * @regulator: regulator source
1110 *
1111 * Forcibly disable the regulator output voltage or current.
1112 * NOTE: this *will* disable the regulator output even if other consumer
1113 * devices have it enabled. This should be used for situations when device
1114 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1115 */
1116int regulator_force_disable(struct regulator *regulator)
1117{
1118	int ret;
1119
1120	mutex_lock(&regulator->rdev->mutex);
1121	regulator->enabled = 0;
1122	regulator->uA_load = 0;
1123	ret = _regulator_force_disable(regulator->rdev);
1124	mutex_unlock(&regulator->rdev->mutex);
1125	return ret;
1126}
1127EXPORT_SYMBOL_GPL(regulator_force_disable);
1128
1129static int _regulator_is_enabled(struct regulator_dev *rdev)
1130{
1131	int ret;
1132
1133	mutex_lock(&rdev->mutex);
1134
1135	/* sanity check */
1136	if (!rdev->desc->ops->is_enabled) {
1137		ret = -EINVAL;
1138		goto out;
1139	}
1140
1141	ret = rdev->desc->ops->is_enabled(rdev);
1142out:
1143	mutex_unlock(&rdev->mutex);
1144	return ret;
1145}
1146
1147/**
1148 * regulator_is_enabled - is the regulator output enabled
1149 * @regulator: regulator source
1150 *
1151 * Returns zero for disabled otherwise return number of enable requests.
1152 */
1153int regulator_is_enabled(struct regulator *regulator)
1154{
1155	return _regulator_is_enabled(regulator->rdev);
1156}
1157EXPORT_SYMBOL_GPL(regulator_is_enabled);
1158
1159/**
1160 * regulator_set_voltage - set regulator output voltage
1161 * @regulator: regulator source
1162 * @min_uV: Minimum required voltage in uV
1163 * @max_uV: Maximum acceptable voltage in uV
1164 *
1165 * Sets a voltage regulator to the desired output voltage. This can be set
1166 * during any regulator state. IOW, regulator can be disabled or enabled.
1167 *
1168 * If the regulator is enabled then the voltage will change to the new value
1169 * immediately otherwise if the regulator is disabled the regulator will
1170 * output at the new voltage when enabled.
1171 *
1172 * NOTE: If the regulator is shared between several devices then the lowest
1173 * request voltage that meets the system constraints will be used.
1174 * NOTE: Regulator system constraints must be set for this regulator before
1175 * calling this function otherwise this call will fail.
1176 */
1177int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1178{
1179	struct regulator_dev *rdev = regulator->rdev;
1180	int ret;
1181
1182	mutex_lock(&rdev->mutex);
1183
1184	/* sanity check */
1185	if (!rdev->desc->ops->set_voltage) {
1186		ret = -EINVAL;
1187		goto out;
1188	}
1189
1190	/* constraints check */
1191	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1192	if (ret < 0)
1193		goto out;
1194	regulator->min_uV = min_uV;
1195	regulator->max_uV = max_uV;
1196	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1197
1198out:
1199	mutex_unlock(&rdev->mutex);
1200	return ret;
1201}
1202EXPORT_SYMBOL_GPL(regulator_set_voltage);
1203
1204static int _regulator_get_voltage(struct regulator_dev *rdev)
1205{
1206	/* sanity check */
1207	if (rdev->desc->ops->get_voltage)
1208		return rdev->desc->ops->get_voltage(rdev);
1209	else
1210		return -EINVAL;
1211}
1212
1213/**
1214 * regulator_get_voltage - get regulator output voltage
1215 * @regulator: regulator source
1216 *
1217 * This returns the current regulator voltage in uV.
1218 *
1219 * NOTE: If the regulator is disabled it will return the voltage value. This
1220 * function should not be used to determine regulator state.
1221 */
1222int regulator_get_voltage(struct regulator *regulator)
1223{
1224	int ret;
1225
1226	mutex_lock(&regulator->rdev->mutex);
1227
1228	ret = _regulator_get_voltage(regulator->rdev);
1229
1230	mutex_unlock(&regulator->rdev->mutex);
1231
1232	return ret;
1233}
1234EXPORT_SYMBOL_GPL(regulator_get_voltage);
1235
1236/**
1237 * regulator_set_current_limit - set regulator output current limit
1238 * @regulator: regulator source
1239 * @min_uA: Minimuum supported current in uA
1240 * @max_uA: Maximum supported current in uA
1241 *
1242 * Sets current sink to the desired output current. This can be set during
1243 * any regulator state. IOW, regulator can be disabled or enabled.
1244 *
1245 * If the regulator is enabled then the current will change to the new value
1246 * immediately otherwise if the regulator is disabled the regulator will
1247 * output at the new current when enabled.
1248 *
1249 * NOTE: Regulator system constraints must be set for this regulator before
1250 * calling this function otherwise this call will fail.
1251 */
1252int regulator_set_current_limit(struct regulator *regulator,
1253			       int min_uA, int max_uA)
1254{
1255	struct regulator_dev *rdev = regulator->rdev;
1256	int ret;
1257
1258	mutex_lock(&rdev->mutex);
1259
1260	/* sanity check */
1261	if (!rdev->desc->ops->set_current_limit) {
1262		ret = -EINVAL;
1263		goto out;
1264	}
1265
1266	/* constraints check */
1267	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1268	if (ret < 0)
1269		goto out;
1270
1271	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1272out:
1273	mutex_unlock(&rdev->mutex);
1274	return ret;
1275}
1276EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1277
1278static int _regulator_get_current_limit(struct regulator_dev *rdev)
1279{
1280	int ret;
1281
1282	mutex_lock(&rdev->mutex);
1283
1284	/* sanity check */
1285	if (!rdev->desc->ops->get_current_limit) {
1286		ret = -EINVAL;
1287		goto out;
1288	}
1289
1290	ret = rdev->desc->ops->get_current_limit(rdev);
1291out:
1292	mutex_unlock(&rdev->mutex);
1293	return ret;
1294}
1295
1296/**
1297 * regulator_get_current_limit - get regulator output current
1298 * @regulator: regulator source
1299 *
1300 * This returns the current supplied by the specified current sink in uA.
1301 *
1302 * NOTE: If the regulator is disabled it will return the current value. This
1303 * function should not be used to determine regulator state.
1304 */
1305int regulator_get_current_limit(struct regulator *regulator)
1306{
1307	return _regulator_get_current_limit(regulator->rdev);
1308}
1309EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1310
1311/**
1312 * regulator_set_mode - set regulator operating mode
1313 * @regulator: regulator source
1314 * @mode: operating mode - one of the REGULATOR_MODE constants
1315 *
1316 * Set regulator operating mode to increase regulator efficiency or improve
1317 * regulation performance.
1318 *
1319 * NOTE: Regulator system constraints must be set for this regulator before
1320 * calling this function otherwise this call will fail.
1321 */
1322int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1323{
1324	struct regulator_dev *rdev = regulator->rdev;
1325	int ret;
1326
1327	mutex_lock(&rdev->mutex);
1328
1329	/* sanity check */
1330	if (!rdev->desc->ops->set_mode) {
1331		ret = -EINVAL;
1332		goto out;
1333	}
1334
1335	/* constraints check */
1336	ret = regulator_check_mode(rdev, mode);
1337	if (ret < 0)
1338		goto out;
1339
1340	ret = rdev->desc->ops->set_mode(rdev, mode);
1341out:
1342	mutex_unlock(&rdev->mutex);
1343	return ret;
1344}
1345EXPORT_SYMBOL_GPL(regulator_set_mode);
1346
1347static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1348{
1349	int ret;
1350
1351	mutex_lock(&rdev->mutex);
1352
1353	/* sanity check */
1354	if (!rdev->desc->ops->get_mode) {
1355		ret = -EINVAL;
1356		goto out;
1357	}
1358
1359	ret = rdev->desc->ops->get_mode(rdev);
1360out:
1361	mutex_unlock(&rdev->mutex);
1362	return ret;
1363}
1364
1365/**
1366 * regulator_get_mode - get regulator operating mode
1367 * @regulator: regulator source
1368 *
1369 * Get the current regulator operating mode.
1370 */
1371unsigned int regulator_get_mode(struct regulator *regulator)
1372{
1373	return _regulator_get_mode(regulator->rdev);
1374}
1375EXPORT_SYMBOL_GPL(regulator_get_mode);
1376
1377/**
1378 * regulator_set_optimum_mode - set regulator optimum operating mode
1379 * @regulator: regulator source
1380 * @uA_load: load current
1381 *
1382 * Notifies the regulator core of a new device load. This is then used by
1383 * DRMS (if enabled by constraints) to set the most efficient regulator
1384 * operating mode for the new regulator loading.
1385 *
1386 * Consumer devices notify their supply regulator of the maximum power
1387 * they will require (can be taken from device datasheet in the power
1388 * consumption tables) when they change operational status and hence power
1389 * state. Examples of operational state changes that can affect power
1390 * consumption are :-
1391 *
1392 *    o Device is opened / closed.
1393 *    o Device I/O is about to begin or has just finished.
1394 *    o Device is idling in between work.
1395 *
1396 * This information is also exported via sysfs to userspace.
1397 *
1398 * DRMS will sum the total requested load on the regulator and change
1399 * to the most efficient operating mode if platform constraints allow.
1400 *
1401 * Returns the new regulator mode or error.
1402 */
1403int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1404{
1405	struct regulator_dev *rdev = regulator->rdev;
1406	struct regulator *consumer;
1407	int ret, output_uV, input_uV, total_uA_load = 0;
1408	unsigned int mode;
1409
1410	mutex_lock(&rdev->mutex);
1411
1412	regulator->uA_load = uA_load;
1413	ret = regulator_check_drms(rdev);
1414	if (ret < 0)
1415		goto out;
1416	ret = -EINVAL;
1417
1418	/* sanity check */
1419	if (!rdev->desc->ops->get_optimum_mode)
1420		goto out;
1421
1422	/* get output voltage */
1423	output_uV = rdev->desc->ops->get_voltage(rdev);
1424	if (output_uV <= 0) {
1425		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1426			__func__, rdev->desc->name);
1427		goto out;
1428	}
1429
1430	/* get input voltage */
1431	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1432		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1433	else
1434		input_uV = rdev->constraints->input_uV;
1435	if (input_uV <= 0) {
1436		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1437			__func__, rdev->desc->name);
1438		goto out;
1439	}
1440
1441	/* calc total requested load for this regulator */
1442	list_for_each_entry(consumer, &rdev->consumer_list, list)
1443	    total_uA_load += consumer->uA_load;
1444
1445	mode = rdev->desc->ops->get_optimum_mode(rdev,
1446						 input_uV, output_uV,
1447						 total_uA_load);
1448	if (ret <= 0) {
1449		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1450			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1451			total_uA_load, input_uV, output_uV);
1452		goto out;
1453	}
1454
1455	ret = rdev->desc->ops->set_mode(rdev, mode);
1456	if (ret <= 0) {
1457		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1458			__func__, mode, rdev->desc->name);
1459		goto out;
1460	}
1461	ret = mode;
1462out:
1463	mutex_unlock(&rdev->mutex);
1464	return ret;
1465}
1466EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1467
1468/**
1469 * regulator_register_notifier - register regulator event notifier
1470 * @regulator: regulator source
1471 * @notifier_block: notifier block
1472 *
1473 * Register notifier block to receive regulator events.
1474 */
1475int regulator_register_notifier(struct regulator *regulator,
1476			      struct notifier_block *nb)
1477{
1478	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1479						nb);
1480}
1481EXPORT_SYMBOL_GPL(regulator_register_notifier);
1482
1483/**
1484 * regulator_unregister_notifier - unregister regulator event notifier
1485 * @regulator: regulator source
1486 * @notifier_block: notifier block
1487 *
1488 * Unregister regulator event notifier block.
1489 */
1490int regulator_unregister_notifier(struct regulator *regulator,
1491				struct notifier_block *nb)
1492{
1493	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1494						  nb);
1495}
1496EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1497
1498/* notify regulator consumers and downstream regulator consumers */
1499static void _notifier_call_chain(struct regulator_dev *rdev,
1500				  unsigned long event, void *data)
1501{
1502	struct regulator_dev *_rdev;
1503
1504	/* call rdev chain first */
1505	mutex_lock(&rdev->mutex);
1506	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1507	mutex_unlock(&rdev->mutex);
1508
1509	/* now notify regulator we supply */
1510	list_for_each_entry(_rdev, &rdev->supply_list, slist)
1511		_notifier_call_chain(_rdev, event, data);
1512}
1513
1514/**
1515 * regulator_bulk_get - get multiple regulator consumers
1516 *
1517 * @dev:           Device to supply
1518 * @num_consumers: Number of consumers to register
1519 * @consumers:     Configuration of consumers; clients are stored here.
1520 *
1521 * @return 0 on success, an errno on failure.
1522 *
1523 * This helper function allows drivers to get several regulator
1524 * consumers in one operation.  If any of the regulators cannot be
1525 * acquired then any regulators that were allocated will be freed
1526 * before returning to the caller.
1527 */
1528int regulator_bulk_get(struct device *dev, int num_consumers,
1529		       struct regulator_bulk_data *consumers)
1530{
1531	int i;
1532	int ret;
1533
1534	for (i = 0; i < num_consumers; i++)
1535		consumers[i].consumer = NULL;
1536
1537	for (i = 0; i < num_consumers; i++) {
1538		consumers[i].consumer = regulator_get(dev,
1539						      consumers[i].supply);
1540		if (IS_ERR(consumers[i].consumer)) {
1541			dev_err(dev, "Failed to get supply '%s'\n",
1542				consumers[i].supply);
1543			ret = PTR_ERR(consumers[i].consumer);
1544			consumers[i].consumer = NULL;
1545			goto err;
1546		}
1547	}
1548
1549	return 0;
1550
1551err:
1552	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1553		regulator_put(consumers[i].consumer);
1554
1555	return ret;
1556}
1557EXPORT_SYMBOL_GPL(regulator_bulk_get);
1558
1559/**
1560 * regulator_bulk_enable - enable multiple regulator consumers
1561 *
1562 * @num_consumers: Number of consumers
1563 * @consumers:     Consumer data; clients are stored here.
1564 * @return         0 on success, an errno on failure
1565 *
1566 * This convenience API allows consumers to enable multiple regulator
1567 * clients in a single API call.  If any consumers cannot be enabled
1568 * then any others that were enabled will be disabled again prior to
1569 * return.
1570 */
1571int regulator_bulk_enable(int num_consumers,
1572			  struct regulator_bulk_data *consumers)
1573{
1574	int i;
1575	int ret;
1576
1577	for (i = 0; i < num_consumers; i++) {
1578		ret = regulator_enable(consumers[i].consumer);
1579		if (ret != 0)
1580			goto err;
1581	}
1582
1583	return 0;
1584
1585err:
1586	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1587	for (i = 0; i < num_consumers; i++)
1588		regulator_disable(consumers[i].consumer);
1589
1590	return ret;
1591}
1592EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1593
1594/**
1595 * regulator_bulk_disable - disable multiple regulator consumers
1596 *
1597 * @num_consumers: Number of consumers
1598 * @consumers:     Consumer data; clients are stored here.
1599 * @return         0 on success, an errno on failure
1600 *
1601 * This convenience API allows consumers to disable multiple regulator
1602 * clients in a single API call.  If any consumers cannot be enabled
1603 * then any others that were disabled will be disabled again prior to
1604 * return.
1605 */
1606int regulator_bulk_disable(int num_consumers,
1607			   struct regulator_bulk_data *consumers)
1608{
1609	int i;
1610	int ret;
1611
1612	for (i = 0; i < num_consumers; i++) {
1613		ret = regulator_disable(consumers[i].consumer);
1614		if (ret != 0)
1615			goto err;
1616	}
1617
1618	return 0;
1619
1620err:
1621	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1622	for (i = 0; i < num_consumers; i++)
1623		regulator_enable(consumers[i].consumer);
1624
1625	return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1628
1629/**
1630 * regulator_bulk_free - free multiple regulator consumers
1631 *
1632 * @num_consumers: Number of consumers
1633 * @consumers:     Consumer data; clients are stored here.
1634 *
1635 * This convenience API allows consumers to free multiple regulator
1636 * clients in a single API call.
1637 */
1638void regulator_bulk_free(int num_consumers,
1639			 struct regulator_bulk_data *consumers)
1640{
1641	int i;
1642
1643	for (i = 0; i < num_consumers; i++) {
1644		regulator_put(consumers[i].consumer);
1645		consumers[i].consumer = NULL;
1646	}
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_free);
1649
1650/**
1651 * regulator_notifier_call_chain - call regulator event notifier
1652 * @regulator: regulator source
1653 * @event: notifier block
1654 * @data:
1655 *
1656 * Called by regulator drivers to notify clients a regulator event has
1657 * occurred. We also notify regulator clients downstream.
1658 */
1659int regulator_notifier_call_chain(struct regulator_dev *rdev,
1660				  unsigned long event, void *data)
1661{
1662	_notifier_call_chain(rdev, event, data);
1663	return NOTIFY_DONE;
1664
1665}
1666EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1667
1668/**
1669 * regulator_register - register regulator
1670 * @regulator: regulator source
1671 * @reg_data: private regulator data
1672 *
1673 * Called by regulator drivers to register a regulator.
1674 * Returns 0 on success.
1675 */
1676struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1677	struct device *dev, void *driver_data)
1678{
1679	static atomic_t regulator_no = ATOMIC_INIT(0);
1680	struct regulator_dev *rdev;
1681	struct regulator_init_data *init_data = dev->platform_data;
1682	int ret, i;
1683
1684	if (regulator_desc == NULL)
1685		return ERR_PTR(-EINVAL);
1686
1687	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1688		return ERR_PTR(-EINVAL);
1689
1690	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1691	    !regulator_desc->type == REGULATOR_CURRENT)
1692		return ERR_PTR(-EINVAL);
1693
1694	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1695	if (rdev == NULL)
1696		return ERR_PTR(-ENOMEM);
1697
1698	mutex_lock(&regulator_list_mutex);
1699
1700	mutex_init(&rdev->mutex);
1701	rdev->reg_data = driver_data;
1702	rdev->owner = regulator_desc->owner;
1703	rdev->desc = regulator_desc;
1704	INIT_LIST_HEAD(&rdev->consumer_list);
1705	INIT_LIST_HEAD(&rdev->supply_list);
1706	INIT_LIST_HEAD(&rdev->list);
1707	INIT_LIST_HEAD(&rdev->slist);
1708	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1709
1710	/* preform any regulator specific init */
1711	if (init_data->regulator_init) {
1712		ret = init_data->regulator_init(rdev->reg_data);
1713		if (ret < 0) {
1714			kfree(rdev);
1715			rdev = ERR_PTR(ret);
1716			goto out;
1717		}
1718	}
1719
1720	/* set regulator constraints */
1721	ret = set_machine_constraints(rdev, &init_data->constraints);
1722	if (ret < 0) {
1723		kfree(rdev);
1724		rdev = ERR_PTR(ret);
1725		goto out;
1726	}
1727
1728	/* register with sysfs */
1729	rdev->dev.class = &regulator_class;
1730	rdev->dev.parent = dev;
1731	snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
1732		 "regulator.%d", atomic_inc_return(&regulator_no) - 1);
1733	ret = device_register(&rdev->dev);
1734	if (ret != 0) {
1735		kfree(rdev);
1736		rdev = ERR_PTR(ret);
1737		goto out;
1738	}
1739
1740	dev_set_drvdata(&rdev->dev, rdev);
1741
1742	/* set supply regulator if it exists */
1743	if (init_data->supply_regulator_dev) {
1744		ret = set_supply(rdev,
1745			dev_get_drvdata(init_data->supply_regulator_dev));
1746		if (ret < 0) {
1747			device_unregister(&rdev->dev);
1748			kfree(rdev);
1749			rdev = ERR_PTR(ret);
1750			goto out;
1751		}
1752	}
1753
1754	/* add consumers devices */
1755	for (i = 0; i < init_data->num_consumer_supplies; i++) {
1756		ret = set_consumer_device_supply(rdev,
1757			init_data->consumer_supplies[i].dev,
1758			init_data->consumer_supplies[i].supply);
1759		if (ret < 0) {
1760			for (--i; i >= 0; i--)
1761				unset_consumer_device_supply(rdev,
1762					init_data->consumer_supplies[i].dev);
1763			device_unregister(&rdev->dev);
1764			kfree(rdev);
1765			rdev = ERR_PTR(ret);
1766			goto out;
1767		}
1768	}
1769
1770	list_add(&rdev->list, &regulator_list);
1771out:
1772	mutex_unlock(&regulator_list_mutex);
1773	return rdev;
1774}
1775EXPORT_SYMBOL_GPL(regulator_register);
1776
1777/**
1778 * regulator_unregister - unregister regulator
1779 * @regulator: regulator source
1780 *
1781 * Called by regulator drivers to unregister a regulator.
1782 */
1783void regulator_unregister(struct regulator_dev *rdev)
1784{
1785	if (rdev == NULL)
1786		return;
1787
1788	mutex_lock(&regulator_list_mutex);
1789	list_del(&rdev->list);
1790	if (rdev->supply)
1791		sysfs_remove_link(&rdev->dev.kobj, "supply");
1792	device_unregister(&rdev->dev);
1793	mutex_unlock(&regulator_list_mutex);
1794}
1795EXPORT_SYMBOL_GPL(regulator_unregister);
1796
1797/**
1798 * regulator_suspend_prepare: prepare regulators for system wide suspend
1799 * @state: system suspend state
1800 *
1801 * Configure each regulator with it's suspend operating parameters for state.
1802 * This will usually be called by machine suspend code prior to supending.
1803 */
1804int regulator_suspend_prepare(suspend_state_t state)
1805{
1806	struct regulator_dev *rdev;
1807	int ret = 0;
1808
1809	/* ON is handled by regulator active state */
1810	if (state == PM_SUSPEND_ON)
1811		return -EINVAL;
1812
1813	mutex_lock(&regulator_list_mutex);
1814	list_for_each_entry(rdev, &regulator_list, list) {
1815
1816		mutex_lock(&rdev->mutex);
1817		ret = suspend_prepare(rdev, state);
1818		mutex_unlock(&rdev->mutex);
1819
1820		if (ret < 0) {
1821			printk(KERN_ERR "%s: failed to prepare %s\n",
1822				__func__, rdev->desc->name);
1823			goto out;
1824		}
1825	}
1826out:
1827	mutex_unlock(&regulator_list_mutex);
1828	return ret;
1829}
1830EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1831
1832/**
1833 * rdev_get_drvdata - get rdev regulator driver data
1834 * @regulator: regulator
1835 *
1836 * Get rdev regulator driver private data. This call can be used in the
1837 * regulator driver context.
1838 */
1839void *rdev_get_drvdata(struct regulator_dev *rdev)
1840{
1841	return rdev->reg_data;
1842}
1843EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1844
1845/**
1846 * regulator_get_drvdata - get regulator driver data
1847 * @regulator: regulator
1848 *
1849 * Get regulator driver private data. This call can be used in the consumer
1850 * driver context when non API regulator specific functions need to be called.
1851 */
1852void *regulator_get_drvdata(struct regulator *regulator)
1853{
1854	return regulator->rdev->reg_data;
1855}
1856EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1857
1858/**
1859 * regulator_set_drvdata - set regulator driver data
1860 * @regulator: regulator
1861 * @data: data
1862 */
1863void regulator_set_drvdata(struct regulator *regulator, void *data)
1864{
1865	regulator->rdev->reg_data = data;
1866}
1867EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1868
1869/**
1870 * regulator_get_id - get regulator ID
1871 * @regulator: regulator
1872 */
1873int rdev_get_id(struct regulator_dev *rdev)
1874{
1875	return rdev->desc->id;
1876}
1877EXPORT_SYMBOL_GPL(rdev_get_id);
1878
1879struct device *rdev_get_dev(struct regulator_dev *rdev)
1880{
1881	return &rdev->dev;
1882}
1883EXPORT_SYMBOL_GPL(rdev_get_dev);
1884
1885void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1886{
1887	return reg_init_data->driver_data;
1888}
1889EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1890
1891static int __init regulator_init(void)
1892{
1893	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1894	return class_register(&regulator_class);
1895}
1896
1897/* init early to allow our consumers to complete system booting */
1898core_initcall(regulator_init);
1899