core.c revision a7433cff9ed8e7982de8e0f210f0325d0f3d1949
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints && rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283	ssize_t ret;
284
285	mutex_lock(&rdev->mutex);
286	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287	mutex_unlock(&rdev->mutex);
288
289	return ret;
290}
291static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293static ssize_t regulator_status_show(struct device *dev,
294				   struct device_attribute *attr, char *buf)
295{
296	struct regulator_dev *rdev = dev_get_drvdata(dev);
297	int status;
298	char *label;
299
300	status = rdev->desc->ops->get_status(rdev);
301	if (status < 0)
302		return status;
303
304	switch (status) {
305	case REGULATOR_STATUS_OFF:
306		label = "off";
307		break;
308	case REGULATOR_STATUS_ON:
309		label = "on";
310		break;
311	case REGULATOR_STATUS_ERROR:
312		label = "error";
313		break;
314	case REGULATOR_STATUS_FAST:
315		label = "fast";
316		break;
317	case REGULATOR_STATUS_NORMAL:
318		label = "normal";
319		break;
320	case REGULATOR_STATUS_IDLE:
321		label = "idle";
322		break;
323	case REGULATOR_STATUS_STANDBY:
324		label = "standby";
325		break;
326	default:
327		return -ERANGE;
328	}
329
330	return sprintf(buf, "%s\n", label);
331}
332static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334static ssize_t regulator_min_uA_show(struct device *dev,
335				    struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	if (!rdev->constraints)
340		return sprintf(buf, "constraint not defined\n");
341
342	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343}
344static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346static ssize_t regulator_max_uA_show(struct device *dev,
347				    struct device_attribute *attr, char *buf)
348{
349	struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351	if (!rdev->constraints)
352		return sprintf(buf, "constraint not defined\n");
353
354	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355}
356static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358static ssize_t regulator_min_uV_show(struct device *dev,
359				    struct device_attribute *attr, char *buf)
360{
361	struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363	if (!rdev->constraints)
364		return sprintf(buf, "constraint not defined\n");
365
366	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367}
368static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370static ssize_t regulator_max_uV_show(struct device *dev,
371				    struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375	if (!rdev->constraints)
376		return sprintf(buf, "constraint not defined\n");
377
378	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379}
380static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382static ssize_t regulator_total_uA_show(struct device *dev,
383				      struct device_attribute *attr, char *buf)
384{
385	struct regulator_dev *rdev = dev_get_drvdata(dev);
386	struct regulator *regulator;
387	int uA = 0;
388
389	mutex_lock(&rdev->mutex);
390	list_for_each_entry(regulator, &rdev->consumer_list, list)
391	    uA += regulator->uA_load;
392	mutex_unlock(&rdev->mutex);
393	return sprintf(buf, "%d\n", uA);
394}
395static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397static ssize_t regulator_num_users_show(struct device *dev,
398				      struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	return sprintf(buf, "%d\n", rdev->use_count);
402}
403
404static ssize_t regulator_type_show(struct device *dev,
405				  struct device_attribute *attr, char *buf)
406{
407	struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409	switch (rdev->desc->type) {
410	case REGULATOR_VOLTAGE:
411		return sprintf(buf, "voltage\n");
412	case REGULATOR_CURRENT:
413		return sprintf(buf, "current\n");
414	}
415	return sprintf(buf, "unknown\n");
416}
417
418static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419				struct device_attribute *attr, char *buf)
420{
421	struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424}
425static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426		regulator_suspend_mem_uV_show, NULL);
427
428static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429				struct device_attribute *attr, char *buf)
430{
431	struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434}
435static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436		regulator_suspend_disk_uV_show, NULL);
437
438static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439				struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444}
445static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446		regulator_suspend_standby_uV_show, NULL);
447
448static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449				struct device_attribute *attr, char *buf)
450{
451	struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453	return regulator_print_opmode(buf,
454		rdev->constraints->state_mem.mode);
455}
456static DEVICE_ATTR(suspend_mem_mode, 0444,
457		regulator_suspend_mem_mode_show, NULL);
458
459static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460				struct device_attribute *attr, char *buf)
461{
462	struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464	return regulator_print_opmode(buf,
465		rdev->constraints->state_disk.mode);
466}
467static DEVICE_ATTR(suspend_disk_mode, 0444,
468		regulator_suspend_disk_mode_show, NULL);
469
470static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471				struct device_attribute *attr, char *buf)
472{
473	struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475	return regulator_print_opmode(buf,
476		rdev->constraints->state_standby.mode);
477}
478static DEVICE_ATTR(suspend_standby_mode, 0444,
479		regulator_suspend_standby_mode_show, NULL);
480
481static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482				   struct device_attribute *attr, char *buf)
483{
484	struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486	return regulator_print_state(buf,
487			rdev->constraints->state_mem.enabled);
488}
489static DEVICE_ATTR(suspend_mem_state, 0444,
490		regulator_suspend_mem_state_show, NULL);
491
492static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493				   struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497	return regulator_print_state(buf,
498			rdev->constraints->state_disk.enabled);
499}
500static DEVICE_ATTR(suspend_disk_state, 0444,
501		regulator_suspend_disk_state_show, NULL);
502
503static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504				   struct device_attribute *attr, char *buf)
505{
506	struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508	return regulator_print_state(buf,
509			rdev->constraints->state_standby.enabled);
510}
511static DEVICE_ATTR(suspend_standby_state, 0444,
512		regulator_suspend_standby_state_show, NULL);
513
514
515/*
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
518 */
519static struct device_attribute regulator_dev_attrs[] = {
520	__ATTR(name, 0444, regulator_name_show, NULL),
521	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
522	__ATTR(type, 0444, regulator_type_show, NULL),
523	__ATTR_NULL,
524};
525
526static void regulator_dev_release(struct device *dev)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529	kfree(rdev);
530}
531
532static struct class regulator_class = {
533	.name = "regulator",
534	.dev_release = regulator_dev_release,
535	.dev_attrs = regulator_dev_attrs,
536};
537
538/* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540static void drms_uA_update(struct regulator_dev *rdev)
541{
542	struct regulator *sibling;
543	int current_uA = 0, output_uV, input_uV, err;
544	unsigned int mode;
545
546	err = regulator_check_drms(rdev);
547	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549		return;
550
551	/* get output voltage */
552	output_uV = rdev->desc->ops->get_voltage(rdev);
553	if (output_uV <= 0)
554		return;
555
556	/* get input voltage */
557	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559	else
560		input_uV = rdev->constraints->input_uV;
561	if (input_uV <= 0)
562		return;
563
564	/* calc total requested load */
565	list_for_each_entry(sibling, &rdev->consumer_list, list)
566	    current_uA += sibling->uA_load;
567
568	/* now get the optimum mode for our new total regulator load */
569	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570						  output_uV, current_uA);
571
572	/* check the new mode is allowed */
573	err = regulator_check_mode(rdev, mode);
574	if (err == 0)
575		rdev->desc->ops->set_mode(rdev, mode);
576}
577
578static int suspend_set_state(struct regulator_dev *rdev,
579	struct regulator_state *rstate)
580{
581	int ret = 0;
582
583	/* enable & disable are mandatory for suspend control */
584	if (!rdev->desc->ops->set_suspend_enable ||
585		!rdev->desc->ops->set_suspend_disable) {
586		printk(KERN_ERR "%s: no way to set suspend state\n",
587			__func__);
588		return -EINVAL;
589	}
590
591	if (rstate->enabled)
592		ret = rdev->desc->ops->set_suspend_enable(rdev);
593	else
594		ret = rdev->desc->ops->set_suspend_disable(rdev);
595	if (ret < 0) {
596		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597		return ret;
598	}
599
600	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602		if (ret < 0) {
603			printk(KERN_ERR "%s: failed to set voltage\n",
604				__func__);
605			return ret;
606		}
607	}
608
609	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611		if (ret < 0) {
612			printk(KERN_ERR "%s: failed to set mode\n", __func__);
613			return ret;
614		}
615	}
616	return ret;
617}
618
619/* locks held by caller */
620static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621{
622	if (!rdev->constraints)
623		return -EINVAL;
624
625	switch (state) {
626	case PM_SUSPEND_STANDBY:
627		return suspend_set_state(rdev,
628			&rdev->constraints->state_standby);
629	case PM_SUSPEND_MEM:
630		return suspend_set_state(rdev,
631			&rdev->constraints->state_mem);
632	case PM_SUSPEND_MAX:
633		return suspend_set_state(rdev,
634			&rdev->constraints->state_disk);
635	default:
636		return -EINVAL;
637	}
638}
639
640static void print_constraints(struct regulator_dev *rdev)
641{
642	struct regulation_constraints *constraints = rdev->constraints;
643	char buf[80];
644	int count;
645
646	if (rdev->desc->type == REGULATOR_VOLTAGE) {
647		if (constraints->min_uV == constraints->max_uV)
648			count = sprintf(buf, "%d mV ",
649					constraints->min_uV / 1000);
650		else
651			count = sprintf(buf, "%d <--> %d mV ",
652					constraints->min_uV / 1000,
653					constraints->max_uV / 1000);
654	} else {
655		if (constraints->min_uA == constraints->max_uA)
656			count = sprintf(buf, "%d mA ",
657					constraints->min_uA / 1000);
658		else
659			count = sprintf(buf, "%d <--> %d mA ",
660					constraints->min_uA / 1000,
661					constraints->max_uA / 1000);
662	}
663	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664		count += sprintf(buf + count, "fast ");
665	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666		count += sprintf(buf + count, "normal ");
667	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668		count += sprintf(buf + count, "idle ");
669	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670		count += sprintf(buf + count, "standby");
671
672	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673}
674
675/**
676 * set_machine_constraints - sets regulator constraints
677 * @rdev: regulator source
678 * @constraints: constraints to apply
679 *
680 * Allows platform initialisation code to define and constrain
681 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
682 * Constraints *must* be set by platform code in order for some
683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
684 * set_mode.
685 */
686static int set_machine_constraints(struct regulator_dev *rdev,
687	struct regulation_constraints *constraints)
688{
689	int ret = 0;
690	const char *name;
691	struct regulator_ops *ops = rdev->desc->ops;
692
693	if (constraints->name)
694		name = constraints->name;
695	else if (rdev->desc->name)
696		name = rdev->desc->name;
697	else
698		name = "regulator";
699
700	/* constrain machine-level voltage specs to fit
701	 * the actual range supported by this regulator.
702	 */
703	if (ops->list_voltage && rdev->desc->n_voltages) {
704		int	count = rdev->desc->n_voltages;
705		int	i;
706		int	min_uV = INT_MAX;
707		int	max_uV = INT_MIN;
708		int	cmin = constraints->min_uV;
709		int	cmax = constraints->max_uV;
710
711		/* it's safe to autoconfigure fixed-voltage supplies
712		   and the constraints are used by list_voltage. */
713		if (count == 1 && !cmin) {
714			cmin = 1;
715			cmax = INT_MAX;
716			constraints->min_uV = cmin;
717			constraints->max_uV = cmax;
718		}
719
720		/* voltage constraints are optional */
721		if ((cmin == 0) && (cmax == 0))
722			goto out;
723
724		/* else require explicit machine-level constraints */
725		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726			pr_err("%s: %s '%s' voltage constraints\n",
727				       __func__, "invalid", name);
728			ret = -EINVAL;
729			goto out;
730		}
731
732		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733		for (i = 0; i < count; i++) {
734			int	value;
735
736			value = ops->list_voltage(rdev, i);
737			if (value <= 0)
738				continue;
739
740			/* maybe adjust [min_uV..max_uV] */
741			if (value >= cmin && value < min_uV)
742				min_uV = value;
743			if (value <= cmax && value > max_uV)
744				max_uV = value;
745		}
746
747		/* final: [min_uV..max_uV] valid iff constraints valid */
748		if (max_uV < min_uV) {
749			pr_err("%s: %s '%s' voltage constraints\n",
750				       __func__, "unsupportable", name);
751			ret = -EINVAL;
752			goto out;
753		}
754
755		/* use regulator's subset of machine constraints */
756		if (constraints->min_uV < min_uV) {
757			pr_debug("%s: override '%s' %s, %d -> %d\n",
758				       __func__, name, "min_uV",
759					constraints->min_uV, min_uV);
760			constraints->min_uV = min_uV;
761		}
762		if (constraints->max_uV > max_uV) {
763			pr_debug("%s: override '%s' %s, %d -> %d\n",
764				       __func__, name, "max_uV",
765					constraints->max_uV, max_uV);
766			constraints->max_uV = max_uV;
767		}
768	}
769
770	rdev->constraints = constraints;
771
772	/* do we need to apply the constraint voltage */
773	if (rdev->constraints->apply_uV &&
774		rdev->constraints->min_uV == rdev->constraints->max_uV &&
775		ops->set_voltage) {
776		ret = ops->set_voltage(rdev,
777			rdev->constraints->min_uV, rdev->constraints->max_uV);
778			if (ret < 0) {
779				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780				       __func__,
781				       rdev->constraints->min_uV, name);
782				rdev->constraints = NULL;
783				goto out;
784			}
785	}
786
787	/* do we need to setup our suspend state */
788	if (constraints->initial_state) {
789		ret = suspend_prepare(rdev, constraints->initial_state);
790		if (ret < 0) {
791			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792			       __func__, name);
793			rdev->constraints = NULL;
794			goto out;
795		}
796	}
797
798	if (constraints->initial_mode) {
799		if (!ops->set_mode) {
800			printk(KERN_ERR "%s: no set_mode operation for %s\n",
801			       __func__, name);
802			ret = -EINVAL;
803			goto out;
804		}
805
806		ret = ops->set_mode(rdev, constraints->initial_mode);
807		if (ret < 0) {
808			printk(KERN_ERR
809			       "%s: failed to set initial mode for %s: %d\n",
810			       __func__, name, ret);
811			goto out;
812		}
813	}
814
815	/* If the constraints say the regulator should be on at this point
816	 * and we have control then make sure it is enabled.
817	 */
818	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819		ret = ops->enable(rdev);
820		if (ret < 0) {
821			printk(KERN_ERR "%s: failed to enable %s\n",
822			       __func__, name);
823			rdev->constraints = NULL;
824			goto out;
825		}
826	}
827
828	print_constraints(rdev);
829out:
830	return ret;
831}
832
833/**
834 * set_supply - set regulator supply regulator
835 * @rdev: regulator name
836 * @supply_rdev: supply regulator name
837 *
838 * Called by platform initialisation code to set the supply regulator for this
839 * regulator. This ensures that a regulators supply will also be enabled by the
840 * core if it's child is enabled.
841 */
842static int set_supply(struct regulator_dev *rdev,
843	struct regulator_dev *supply_rdev)
844{
845	int err;
846
847	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848				"supply");
849	if (err) {
850		printk(KERN_ERR
851		       "%s: could not add device link %s err %d\n",
852		       __func__, supply_rdev->dev.kobj.name, err);
853		       goto out;
854	}
855	rdev->supply = supply_rdev;
856	list_add(&rdev->slist, &supply_rdev->supply_list);
857out:
858	return err;
859}
860
861/**
862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
863 * @rdev:         regulator source
864 * @consumer_dev: device the supply applies to
865 * @consumer_dev_name: dev_name() string for device supply applies to
866 * @supply:       symbolic name for supply
867 *
868 * Allows platform initialisation code to map physical regulator
869 * sources to symbolic names for supplies for use by devices.  Devices
870 * should use these symbolic names to request regulators, avoiding the
871 * need to provide board-specific regulator names as platform data.
872 *
873 * Only one of consumer_dev and consumer_dev_name may be specified.
874 */
875static int set_consumer_device_supply(struct regulator_dev *rdev,
876	struct device *consumer_dev, const char *consumer_dev_name,
877	const char *supply)
878{
879	struct regulator_map *node;
880	int has_dev;
881
882	if (consumer_dev && consumer_dev_name)
883		return -EINVAL;
884
885	if (!consumer_dev_name && consumer_dev)
886		consumer_dev_name = dev_name(consumer_dev);
887
888	if (supply == NULL)
889		return -EINVAL;
890
891	if (consumer_dev_name != NULL)
892		has_dev = 1;
893	else
894		has_dev = 0;
895
896	list_for_each_entry(node, &regulator_map_list, list) {
897		if (consumer_dev_name != node->dev_name)
898			continue;
899		if (strcmp(node->supply, supply) != 0)
900			continue;
901
902		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903				dev_name(&node->regulator->dev),
904				node->regulator->desc->name,
905				supply,
906				dev_name(&rdev->dev), rdev->desc->name);
907		return -EBUSY;
908	}
909
910	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911	if (node == NULL)
912		return -ENOMEM;
913
914	node->regulator = rdev;
915	node->supply = supply;
916
917	if (has_dev) {
918		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919		if (node->dev_name == NULL) {
920			kfree(node);
921			return -ENOMEM;
922		}
923	}
924
925	list_add(&node->list, &regulator_map_list);
926	return 0;
927}
928
929static void unset_consumer_device_supply(struct regulator_dev *rdev,
930	const char *consumer_dev_name, struct device *consumer_dev)
931{
932	struct regulator_map *node, *n;
933
934	if (consumer_dev && !consumer_dev_name)
935		consumer_dev_name = dev_name(consumer_dev);
936
937	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938		if (rdev != node->regulator)
939			continue;
940
941		if (consumer_dev_name && node->dev_name &&
942		    strcmp(consumer_dev_name, node->dev_name))
943			continue;
944
945		list_del(&node->list);
946		kfree(node->dev_name);
947		kfree(node);
948		return;
949	}
950}
951
952static void unset_regulator_supplies(struct regulator_dev *rdev)
953{
954	struct regulator_map *node, *n;
955
956	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957		if (rdev == node->regulator) {
958			list_del(&node->list);
959			kfree(node->dev_name);
960			kfree(node);
961			return;
962		}
963	}
964}
965
966#define REG_STR_SIZE	32
967
968static struct regulator *create_regulator(struct regulator_dev *rdev,
969					  struct device *dev,
970					  const char *supply_name)
971{
972	struct regulator *regulator;
973	char buf[REG_STR_SIZE];
974	int err, size;
975
976	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977	if (regulator == NULL)
978		return NULL;
979
980	mutex_lock(&rdev->mutex);
981	regulator->rdev = rdev;
982	list_add(&regulator->list, &rdev->consumer_list);
983
984	if (dev) {
985		/* create a 'requested_microamps_name' sysfs entry */
986		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987			supply_name);
988		if (size >= REG_STR_SIZE)
989			goto overflow_err;
990
991		regulator->dev = dev;
992		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993		if (regulator->dev_attr.attr.name == NULL)
994			goto attr_name_err;
995
996		regulator->dev_attr.attr.owner = THIS_MODULE;
997		regulator->dev_attr.attr.mode = 0444;
998		regulator->dev_attr.show = device_requested_uA_show;
999		err = device_create_file(dev, &regulator->dev_attr);
1000		if (err < 0) {
1001			printk(KERN_WARNING "%s: could not add regulator_dev"
1002				" load sysfs\n", __func__);
1003			goto attr_name_err;
1004		}
1005
1006		/* also add a link to the device sysfs entry */
1007		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008				 dev->kobj.name, supply_name);
1009		if (size >= REG_STR_SIZE)
1010			goto attr_err;
1011
1012		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013		if (regulator->supply_name == NULL)
1014			goto attr_err;
1015
1016		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017					buf);
1018		if (err) {
1019			printk(KERN_WARNING
1020			       "%s: could not add device link %s err %d\n",
1021			       __func__, dev->kobj.name, err);
1022			device_remove_file(dev, &regulator->dev_attr);
1023			goto link_name_err;
1024		}
1025	}
1026	mutex_unlock(&rdev->mutex);
1027	return regulator;
1028link_name_err:
1029	kfree(regulator->supply_name);
1030attr_err:
1031	device_remove_file(regulator->dev, &regulator->dev_attr);
1032attr_name_err:
1033	kfree(regulator->dev_attr.attr.name);
1034overflow_err:
1035	list_del(&regulator->list);
1036	kfree(regulator);
1037	mutex_unlock(&rdev->mutex);
1038	return NULL;
1039}
1040
1041/* Internal regulator request function */
1042static struct regulator *_regulator_get(struct device *dev, const char *id,
1043					int exclusive)
1044{
1045	struct regulator_dev *rdev;
1046	struct regulator_map *map;
1047	struct regulator *regulator = ERR_PTR(-ENODEV);
1048	const char *devname = NULL;
1049	int ret;
1050
1051	if (id == NULL) {
1052		printk(KERN_ERR "regulator: get() with no identifier\n");
1053		return regulator;
1054	}
1055
1056	if (dev)
1057		devname = dev_name(dev);
1058
1059	mutex_lock(&regulator_list_mutex);
1060
1061	list_for_each_entry(map, &regulator_map_list, list) {
1062		/* If the mapping has a device set up it must match */
1063		if (map->dev_name &&
1064		    (!devname || strcmp(map->dev_name, devname)))
1065			continue;
1066
1067		if (strcmp(map->supply, id) == 0) {
1068			rdev = map->regulator;
1069			goto found;
1070		}
1071	}
1072	mutex_unlock(&regulator_list_mutex);
1073	return regulator;
1074
1075found:
1076	if (rdev->exclusive) {
1077		regulator = ERR_PTR(-EPERM);
1078		goto out;
1079	}
1080
1081	if (exclusive && rdev->open_count) {
1082		regulator = ERR_PTR(-EBUSY);
1083		goto out;
1084	}
1085
1086	if (!try_module_get(rdev->owner))
1087		goto out;
1088
1089	regulator = create_regulator(rdev, dev, id);
1090	if (regulator == NULL) {
1091		regulator = ERR_PTR(-ENOMEM);
1092		module_put(rdev->owner);
1093	}
1094
1095	rdev->open_count++;
1096	if (exclusive) {
1097		rdev->exclusive = 1;
1098
1099		ret = _regulator_is_enabled(rdev);
1100		if (ret > 0)
1101			rdev->use_count = 1;
1102		else
1103			rdev->use_count = 0;
1104	}
1105
1106out:
1107	mutex_unlock(&regulator_list_mutex);
1108
1109	return regulator;
1110}
1111
1112/**
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1116 *
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1119 *
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged.  It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1124 */
1125struct regulator *regulator_get(struct device *dev, const char *id)
1126{
1127	return _regulator_get(dev, id, 0);
1128}
1129EXPORT_SYMBOL_GPL(regulator_get);
1130
1131/**
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1135 *
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno.  Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1140 * regulator.
1141 *
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1145 * controlling.
1146 *
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged.  It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1151 */
1152struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153{
1154	return _regulator_get(dev, id, 1);
1155}
1156EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157
1158/**
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1161 *
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1164 * this function.
1165 */
1166void regulator_put(struct regulator *regulator)
1167{
1168	struct regulator_dev *rdev;
1169
1170	if (regulator == NULL || IS_ERR(regulator))
1171		return;
1172
1173	mutex_lock(&regulator_list_mutex);
1174	rdev = regulator->rdev;
1175
1176	/* remove any sysfs entries */
1177	if (regulator->dev) {
1178		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179		kfree(regulator->supply_name);
1180		device_remove_file(regulator->dev, &regulator->dev_attr);
1181		kfree(regulator->dev_attr.attr.name);
1182	}
1183	list_del(&regulator->list);
1184	kfree(regulator);
1185
1186	rdev->open_count--;
1187	rdev->exclusive = 0;
1188
1189	module_put(rdev->owner);
1190	mutex_unlock(&regulator_list_mutex);
1191}
1192EXPORT_SYMBOL_GPL(regulator_put);
1193
1194static int _regulator_can_change_status(struct regulator_dev *rdev)
1195{
1196	if (!rdev->constraints)
1197		return 0;
1198
1199	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200		return 1;
1201	else
1202		return 0;
1203}
1204
1205/* locks held by regulator_enable() */
1206static int _regulator_enable(struct regulator_dev *rdev)
1207{
1208	int ret;
1209
1210	/* do we need to enable the supply regulator first */
1211	if (rdev->supply) {
1212		ret = _regulator_enable(rdev->supply);
1213		if (ret < 0) {
1214			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215			       __func__, rdev->desc->name, ret);
1216			return ret;
1217		}
1218	}
1219
1220	/* check voltage and requested load before enabling */
1221	if (rdev->constraints &&
1222	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223		drms_uA_update(rdev);
1224
1225	if (rdev->use_count == 0) {
1226		/* The regulator may on if it's not switchable or left on */
1227		ret = _regulator_is_enabled(rdev);
1228		if (ret == -EINVAL || ret == 0) {
1229			if (!_regulator_can_change_status(rdev))
1230				return -EPERM;
1231
1232			if (rdev->desc->ops->enable) {
1233				ret = rdev->desc->ops->enable(rdev);
1234				if (ret < 0)
1235					return ret;
1236			} else {
1237				return -EINVAL;
1238			}
1239		} else if (ret < 0) {
1240			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241			       __func__, rdev->desc->name, ret);
1242			return ret;
1243		}
1244		/* Fallthrough on positive return values - already enabled */
1245	}
1246
1247	rdev->use_count++;
1248
1249	return 0;
1250}
1251
1252/**
1253 * regulator_enable - enable regulator output
1254 * @regulator: regulator source
1255 *
1256 * Request that the regulator be enabled with the regulator output at
1257 * the predefined voltage or current value.  Calls to regulator_enable()
1258 * must be balanced with calls to regulator_disable().
1259 *
1260 * NOTE: the output value can be set by other drivers, boot loader or may be
1261 * hardwired in the regulator.
1262 */
1263int regulator_enable(struct regulator *regulator)
1264{
1265	struct regulator_dev *rdev = regulator->rdev;
1266	int ret = 0;
1267
1268	mutex_lock(&rdev->mutex);
1269	ret = _regulator_enable(rdev);
1270	mutex_unlock(&rdev->mutex);
1271	return ret;
1272}
1273EXPORT_SYMBOL_GPL(regulator_enable);
1274
1275/* locks held by regulator_disable() */
1276static int _regulator_disable(struct regulator_dev *rdev)
1277{
1278	int ret = 0;
1279
1280	if (WARN(rdev->use_count <= 0,
1281			"unbalanced disables for %s\n",
1282			rdev->desc->name))
1283		return -EIO;
1284
1285	/* are we the last user and permitted to disable ? */
1286	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1287
1288		/* we are last user */
1289		if (_regulator_can_change_status(rdev) &&
1290		    rdev->desc->ops->disable) {
1291			ret = rdev->desc->ops->disable(rdev);
1292			if (ret < 0) {
1293				printk(KERN_ERR "%s: failed to disable %s\n",
1294				       __func__, rdev->desc->name);
1295				return ret;
1296			}
1297		}
1298
1299		/* decrease our supplies ref count and disable if required */
1300		if (rdev->supply)
1301			_regulator_disable(rdev->supply);
1302
1303		rdev->use_count = 0;
1304	} else if (rdev->use_count > 1) {
1305
1306		if (rdev->constraints &&
1307			(rdev->constraints->valid_ops_mask &
1308			REGULATOR_CHANGE_DRMS))
1309			drms_uA_update(rdev);
1310
1311		rdev->use_count--;
1312	}
1313	return ret;
1314}
1315
1316/**
1317 * regulator_disable - disable regulator output
1318 * @regulator: regulator source
1319 *
1320 * Disable the regulator output voltage or current.  Calls to
1321 * regulator_enable() must be balanced with calls to
1322 * regulator_disable().
1323 *
1324 * NOTE: this will only disable the regulator output if no other consumer
1325 * devices have it enabled, the regulator device supports disabling and
1326 * machine constraints permit this operation.
1327 */
1328int regulator_disable(struct regulator *regulator)
1329{
1330	struct regulator_dev *rdev = regulator->rdev;
1331	int ret = 0;
1332
1333	mutex_lock(&rdev->mutex);
1334	ret = _regulator_disable(rdev);
1335	mutex_unlock(&rdev->mutex);
1336	return ret;
1337}
1338EXPORT_SYMBOL_GPL(regulator_disable);
1339
1340/* locks held by regulator_force_disable() */
1341static int _regulator_force_disable(struct regulator_dev *rdev)
1342{
1343	int ret = 0;
1344
1345	/* force disable */
1346	if (rdev->desc->ops->disable) {
1347		/* ah well, who wants to live forever... */
1348		ret = rdev->desc->ops->disable(rdev);
1349		if (ret < 0) {
1350			printk(KERN_ERR "%s: failed to force disable %s\n",
1351			       __func__, rdev->desc->name);
1352			return ret;
1353		}
1354		/* notify other consumers that power has been forced off */
1355		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1356			NULL);
1357	}
1358
1359	/* decrease our supplies ref count and disable if required */
1360	if (rdev->supply)
1361		_regulator_disable(rdev->supply);
1362
1363	rdev->use_count = 0;
1364	return ret;
1365}
1366
1367/**
1368 * regulator_force_disable - force disable regulator output
1369 * @regulator: regulator source
1370 *
1371 * Forcibly disable the regulator output voltage or current.
1372 * NOTE: this *will* disable the regulator output even if other consumer
1373 * devices have it enabled. This should be used for situations when device
1374 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1375 */
1376int regulator_force_disable(struct regulator *regulator)
1377{
1378	int ret;
1379
1380	mutex_lock(&regulator->rdev->mutex);
1381	regulator->uA_load = 0;
1382	ret = _regulator_force_disable(regulator->rdev);
1383	mutex_unlock(&regulator->rdev->mutex);
1384	return ret;
1385}
1386EXPORT_SYMBOL_GPL(regulator_force_disable);
1387
1388static int _regulator_is_enabled(struct regulator_dev *rdev)
1389{
1390	/* sanity check */
1391	if (!rdev->desc->ops->is_enabled)
1392		return -EINVAL;
1393
1394	return rdev->desc->ops->is_enabled(rdev);
1395}
1396
1397/**
1398 * regulator_is_enabled - is the regulator output enabled
1399 * @regulator: regulator source
1400 *
1401 * Returns positive if the regulator driver backing the source/client
1402 * has requested that the device be enabled, zero if it hasn't, else a
1403 * negative errno code.
1404 *
1405 * Note that the device backing this regulator handle can have multiple
1406 * users, so it might be enabled even if regulator_enable() was never
1407 * called for this particular source.
1408 */
1409int regulator_is_enabled(struct regulator *regulator)
1410{
1411	int ret;
1412
1413	mutex_lock(&regulator->rdev->mutex);
1414	ret = _regulator_is_enabled(regulator->rdev);
1415	mutex_unlock(&regulator->rdev->mutex);
1416
1417	return ret;
1418}
1419EXPORT_SYMBOL_GPL(regulator_is_enabled);
1420
1421/**
1422 * regulator_count_voltages - count regulator_list_voltage() selectors
1423 * @regulator: regulator source
1424 *
1425 * Returns number of selectors, or negative errno.  Selectors are
1426 * numbered starting at zero, and typically correspond to bitfields
1427 * in hardware registers.
1428 */
1429int regulator_count_voltages(struct regulator *regulator)
1430{
1431	struct regulator_dev	*rdev = regulator->rdev;
1432
1433	return rdev->desc->n_voltages ? : -EINVAL;
1434}
1435EXPORT_SYMBOL_GPL(regulator_count_voltages);
1436
1437/**
1438 * regulator_list_voltage - enumerate supported voltages
1439 * @regulator: regulator source
1440 * @selector: identify voltage to list
1441 * Context: can sleep
1442 *
1443 * Returns a voltage that can be passed to @regulator_set_voltage(),
1444 * zero if this selector code can't be used on this sytem, or a
1445 * negative errno.
1446 */
1447int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1448{
1449	struct regulator_dev	*rdev = regulator->rdev;
1450	struct regulator_ops	*ops = rdev->desc->ops;
1451	int			ret;
1452
1453	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1454		return -EINVAL;
1455
1456	mutex_lock(&rdev->mutex);
1457	ret = ops->list_voltage(rdev, selector);
1458	mutex_unlock(&rdev->mutex);
1459
1460	if (ret > 0) {
1461		if (ret < rdev->constraints->min_uV)
1462			ret = 0;
1463		else if (ret > rdev->constraints->max_uV)
1464			ret = 0;
1465	}
1466
1467	return ret;
1468}
1469EXPORT_SYMBOL_GPL(regulator_list_voltage);
1470
1471/**
1472 * regulator_is_supported_voltage - check if a voltage range can be supported
1473 *
1474 * @regulator: Regulator to check.
1475 * @min_uV: Minimum required voltage in uV.
1476 * @max_uV: Maximum required voltage in uV.
1477 *
1478 * Returns a boolean or a negative error code.
1479 */
1480int regulator_is_supported_voltage(struct regulator *regulator,
1481				   int min_uV, int max_uV)
1482{
1483	int i, voltages, ret;
1484
1485	ret = regulator_count_voltages(regulator);
1486	if (ret < 0)
1487		return ret;
1488	voltages = ret;
1489
1490	for (i = 0; i < voltages; i++) {
1491		ret = regulator_list_voltage(regulator, i);
1492
1493		if (ret >= min_uV && ret <= max_uV)
1494			return 1;
1495	}
1496
1497	return 0;
1498}
1499
1500/**
1501 * regulator_set_voltage - set regulator output voltage
1502 * @regulator: regulator source
1503 * @min_uV: Minimum required voltage in uV
1504 * @max_uV: Maximum acceptable voltage in uV
1505 *
1506 * Sets a voltage regulator to the desired output voltage. This can be set
1507 * during any regulator state. IOW, regulator can be disabled or enabled.
1508 *
1509 * If the regulator is enabled then the voltage will change to the new value
1510 * immediately otherwise if the regulator is disabled the regulator will
1511 * output at the new voltage when enabled.
1512 *
1513 * NOTE: If the regulator is shared between several devices then the lowest
1514 * request voltage that meets the system constraints will be used.
1515 * Regulator system constraints must be set for this regulator before
1516 * calling this function otherwise this call will fail.
1517 */
1518int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1519{
1520	struct regulator_dev *rdev = regulator->rdev;
1521	int ret;
1522
1523	mutex_lock(&rdev->mutex);
1524
1525	/* sanity check */
1526	if (!rdev->desc->ops->set_voltage) {
1527		ret = -EINVAL;
1528		goto out;
1529	}
1530
1531	/* constraints check */
1532	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1533	if (ret < 0)
1534		goto out;
1535	regulator->min_uV = min_uV;
1536	regulator->max_uV = max_uV;
1537	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1538
1539out:
1540	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1541	mutex_unlock(&rdev->mutex);
1542	return ret;
1543}
1544EXPORT_SYMBOL_GPL(regulator_set_voltage);
1545
1546static int _regulator_get_voltage(struct regulator_dev *rdev)
1547{
1548	/* sanity check */
1549	if (rdev->desc->ops->get_voltage)
1550		return rdev->desc->ops->get_voltage(rdev);
1551	else
1552		return -EINVAL;
1553}
1554
1555/**
1556 * regulator_get_voltage - get regulator output voltage
1557 * @regulator: regulator source
1558 *
1559 * This returns the current regulator voltage in uV.
1560 *
1561 * NOTE: If the regulator is disabled it will return the voltage value. This
1562 * function should not be used to determine regulator state.
1563 */
1564int regulator_get_voltage(struct regulator *regulator)
1565{
1566	int ret;
1567
1568	mutex_lock(&regulator->rdev->mutex);
1569
1570	ret = _regulator_get_voltage(regulator->rdev);
1571
1572	mutex_unlock(&regulator->rdev->mutex);
1573
1574	return ret;
1575}
1576EXPORT_SYMBOL_GPL(regulator_get_voltage);
1577
1578/**
1579 * regulator_set_current_limit - set regulator output current limit
1580 * @regulator: regulator source
1581 * @min_uA: Minimuum supported current in uA
1582 * @max_uA: Maximum supported current in uA
1583 *
1584 * Sets current sink to the desired output current. This can be set during
1585 * any regulator state. IOW, regulator can be disabled or enabled.
1586 *
1587 * If the regulator is enabled then the current will change to the new value
1588 * immediately otherwise if the regulator is disabled the regulator will
1589 * output at the new current when enabled.
1590 *
1591 * NOTE: Regulator system constraints must be set for this regulator before
1592 * calling this function otherwise this call will fail.
1593 */
1594int regulator_set_current_limit(struct regulator *regulator,
1595			       int min_uA, int max_uA)
1596{
1597	struct regulator_dev *rdev = regulator->rdev;
1598	int ret;
1599
1600	mutex_lock(&rdev->mutex);
1601
1602	/* sanity check */
1603	if (!rdev->desc->ops->set_current_limit) {
1604		ret = -EINVAL;
1605		goto out;
1606	}
1607
1608	/* constraints check */
1609	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1610	if (ret < 0)
1611		goto out;
1612
1613	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1614out:
1615	mutex_unlock(&rdev->mutex);
1616	return ret;
1617}
1618EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1619
1620static int _regulator_get_current_limit(struct regulator_dev *rdev)
1621{
1622	int ret;
1623
1624	mutex_lock(&rdev->mutex);
1625
1626	/* sanity check */
1627	if (!rdev->desc->ops->get_current_limit) {
1628		ret = -EINVAL;
1629		goto out;
1630	}
1631
1632	ret = rdev->desc->ops->get_current_limit(rdev);
1633out:
1634	mutex_unlock(&rdev->mutex);
1635	return ret;
1636}
1637
1638/**
1639 * regulator_get_current_limit - get regulator output current
1640 * @regulator: regulator source
1641 *
1642 * This returns the current supplied by the specified current sink in uA.
1643 *
1644 * NOTE: If the regulator is disabled it will return the current value. This
1645 * function should not be used to determine regulator state.
1646 */
1647int regulator_get_current_limit(struct regulator *regulator)
1648{
1649	return _regulator_get_current_limit(regulator->rdev);
1650}
1651EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1652
1653/**
1654 * regulator_set_mode - set regulator operating mode
1655 * @regulator: regulator source
1656 * @mode: operating mode - one of the REGULATOR_MODE constants
1657 *
1658 * Set regulator operating mode to increase regulator efficiency or improve
1659 * regulation performance.
1660 *
1661 * NOTE: Regulator system constraints must be set for this regulator before
1662 * calling this function otherwise this call will fail.
1663 */
1664int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1665{
1666	struct regulator_dev *rdev = regulator->rdev;
1667	int ret;
1668
1669	mutex_lock(&rdev->mutex);
1670
1671	/* sanity check */
1672	if (!rdev->desc->ops->set_mode) {
1673		ret = -EINVAL;
1674		goto out;
1675	}
1676
1677	/* constraints check */
1678	ret = regulator_check_mode(rdev, mode);
1679	if (ret < 0)
1680		goto out;
1681
1682	ret = rdev->desc->ops->set_mode(rdev, mode);
1683out:
1684	mutex_unlock(&rdev->mutex);
1685	return ret;
1686}
1687EXPORT_SYMBOL_GPL(regulator_set_mode);
1688
1689static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1690{
1691	int ret;
1692
1693	mutex_lock(&rdev->mutex);
1694
1695	/* sanity check */
1696	if (!rdev->desc->ops->get_mode) {
1697		ret = -EINVAL;
1698		goto out;
1699	}
1700
1701	ret = rdev->desc->ops->get_mode(rdev);
1702out:
1703	mutex_unlock(&rdev->mutex);
1704	return ret;
1705}
1706
1707/**
1708 * regulator_get_mode - get regulator operating mode
1709 * @regulator: regulator source
1710 *
1711 * Get the current regulator operating mode.
1712 */
1713unsigned int regulator_get_mode(struct regulator *regulator)
1714{
1715	return _regulator_get_mode(regulator->rdev);
1716}
1717EXPORT_SYMBOL_GPL(regulator_get_mode);
1718
1719/**
1720 * regulator_set_optimum_mode - set regulator optimum operating mode
1721 * @regulator: regulator source
1722 * @uA_load: load current
1723 *
1724 * Notifies the regulator core of a new device load. This is then used by
1725 * DRMS (if enabled by constraints) to set the most efficient regulator
1726 * operating mode for the new regulator loading.
1727 *
1728 * Consumer devices notify their supply regulator of the maximum power
1729 * they will require (can be taken from device datasheet in the power
1730 * consumption tables) when they change operational status and hence power
1731 * state. Examples of operational state changes that can affect power
1732 * consumption are :-
1733 *
1734 *    o Device is opened / closed.
1735 *    o Device I/O is about to begin or has just finished.
1736 *    o Device is idling in between work.
1737 *
1738 * This information is also exported via sysfs to userspace.
1739 *
1740 * DRMS will sum the total requested load on the regulator and change
1741 * to the most efficient operating mode if platform constraints allow.
1742 *
1743 * Returns the new regulator mode or error.
1744 */
1745int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1746{
1747	struct regulator_dev *rdev = regulator->rdev;
1748	struct regulator *consumer;
1749	int ret, output_uV, input_uV, total_uA_load = 0;
1750	unsigned int mode;
1751
1752	mutex_lock(&rdev->mutex);
1753
1754	regulator->uA_load = uA_load;
1755	ret = regulator_check_drms(rdev);
1756	if (ret < 0)
1757		goto out;
1758	ret = -EINVAL;
1759
1760	/* sanity check */
1761	if (!rdev->desc->ops->get_optimum_mode)
1762		goto out;
1763
1764	/* get output voltage */
1765	output_uV = rdev->desc->ops->get_voltage(rdev);
1766	if (output_uV <= 0) {
1767		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1768			__func__, rdev->desc->name);
1769		goto out;
1770	}
1771
1772	/* get input voltage */
1773	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1774		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1775	else
1776		input_uV = rdev->constraints->input_uV;
1777	if (input_uV <= 0) {
1778		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1779			__func__, rdev->desc->name);
1780		goto out;
1781	}
1782
1783	/* calc total requested load for this regulator */
1784	list_for_each_entry(consumer, &rdev->consumer_list, list)
1785	    total_uA_load += consumer->uA_load;
1786
1787	mode = rdev->desc->ops->get_optimum_mode(rdev,
1788						 input_uV, output_uV,
1789						 total_uA_load);
1790	ret = regulator_check_mode(rdev, mode);
1791	if (ret < 0) {
1792		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1793			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1794			total_uA_load, input_uV, output_uV);
1795		goto out;
1796	}
1797
1798	ret = rdev->desc->ops->set_mode(rdev, mode);
1799	if (ret < 0) {
1800		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1801			__func__, mode, rdev->desc->name);
1802		goto out;
1803	}
1804	ret = mode;
1805out:
1806	mutex_unlock(&rdev->mutex);
1807	return ret;
1808}
1809EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1810
1811/**
1812 * regulator_register_notifier - register regulator event notifier
1813 * @regulator: regulator source
1814 * @nb: notifier block
1815 *
1816 * Register notifier block to receive regulator events.
1817 */
1818int regulator_register_notifier(struct regulator *regulator,
1819			      struct notifier_block *nb)
1820{
1821	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1822						nb);
1823}
1824EXPORT_SYMBOL_GPL(regulator_register_notifier);
1825
1826/**
1827 * regulator_unregister_notifier - unregister regulator event notifier
1828 * @regulator: regulator source
1829 * @nb: notifier block
1830 *
1831 * Unregister regulator event notifier block.
1832 */
1833int regulator_unregister_notifier(struct regulator *regulator,
1834				struct notifier_block *nb)
1835{
1836	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1837						  nb);
1838}
1839EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1840
1841/* notify regulator consumers and downstream regulator consumers.
1842 * Note mutex must be held by caller.
1843 */
1844static void _notifier_call_chain(struct regulator_dev *rdev,
1845				  unsigned long event, void *data)
1846{
1847	struct regulator_dev *_rdev;
1848
1849	/* call rdev chain first */
1850	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1851
1852	/* now notify regulator we supply */
1853	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1854	  mutex_lock(&_rdev->mutex);
1855	  _notifier_call_chain(_rdev, event, data);
1856	  mutex_unlock(&_rdev->mutex);
1857	}
1858}
1859
1860/**
1861 * regulator_bulk_get - get multiple regulator consumers
1862 *
1863 * @dev:           Device to supply
1864 * @num_consumers: Number of consumers to register
1865 * @consumers:     Configuration of consumers; clients are stored here.
1866 *
1867 * @return 0 on success, an errno on failure.
1868 *
1869 * This helper function allows drivers to get several regulator
1870 * consumers in one operation.  If any of the regulators cannot be
1871 * acquired then any regulators that were allocated will be freed
1872 * before returning to the caller.
1873 */
1874int regulator_bulk_get(struct device *dev, int num_consumers,
1875		       struct regulator_bulk_data *consumers)
1876{
1877	int i;
1878	int ret;
1879
1880	for (i = 0; i < num_consumers; i++)
1881		consumers[i].consumer = NULL;
1882
1883	for (i = 0; i < num_consumers; i++) {
1884		consumers[i].consumer = regulator_get(dev,
1885						      consumers[i].supply);
1886		if (IS_ERR(consumers[i].consumer)) {
1887			dev_err(dev, "Failed to get supply '%s'\n",
1888				consumers[i].supply);
1889			ret = PTR_ERR(consumers[i].consumer);
1890			consumers[i].consumer = NULL;
1891			goto err;
1892		}
1893	}
1894
1895	return 0;
1896
1897err:
1898	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1899		regulator_put(consumers[i].consumer);
1900
1901	return ret;
1902}
1903EXPORT_SYMBOL_GPL(regulator_bulk_get);
1904
1905/**
1906 * regulator_bulk_enable - enable multiple regulator consumers
1907 *
1908 * @num_consumers: Number of consumers
1909 * @consumers:     Consumer data; clients are stored here.
1910 * @return         0 on success, an errno on failure
1911 *
1912 * This convenience API allows consumers to enable multiple regulator
1913 * clients in a single API call.  If any consumers cannot be enabled
1914 * then any others that were enabled will be disabled again prior to
1915 * return.
1916 */
1917int regulator_bulk_enable(int num_consumers,
1918			  struct regulator_bulk_data *consumers)
1919{
1920	int i;
1921	int ret;
1922
1923	for (i = 0; i < num_consumers; i++) {
1924		ret = regulator_enable(consumers[i].consumer);
1925		if (ret != 0)
1926			goto err;
1927	}
1928
1929	return 0;
1930
1931err:
1932	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1933	for (i = 0; i < num_consumers; i++)
1934		regulator_disable(consumers[i].consumer);
1935
1936	return ret;
1937}
1938EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1939
1940/**
1941 * regulator_bulk_disable - disable multiple regulator consumers
1942 *
1943 * @num_consumers: Number of consumers
1944 * @consumers:     Consumer data; clients are stored here.
1945 * @return         0 on success, an errno on failure
1946 *
1947 * This convenience API allows consumers to disable multiple regulator
1948 * clients in a single API call.  If any consumers cannot be enabled
1949 * then any others that were disabled will be disabled again prior to
1950 * return.
1951 */
1952int regulator_bulk_disable(int num_consumers,
1953			   struct regulator_bulk_data *consumers)
1954{
1955	int i;
1956	int ret;
1957
1958	for (i = 0; i < num_consumers; i++) {
1959		ret = regulator_disable(consumers[i].consumer);
1960		if (ret != 0)
1961			goto err;
1962	}
1963
1964	return 0;
1965
1966err:
1967	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1968	for (i = 0; i < num_consumers; i++)
1969		regulator_enable(consumers[i].consumer);
1970
1971	return ret;
1972}
1973EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1974
1975/**
1976 * regulator_bulk_free - free multiple regulator consumers
1977 *
1978 * @num_consumers: Number of consumers
1979 * @consumers:     Consumer data; clients are stored here.
1980 *
1981 * This convenience API allows consumers to free multiple regulator
1982 * clients in a single API call.
1983 */
1984void regulator_bulk_free(int num_consumers,
1985			 struct regulator_bulk_data *consumers)
1986{
1987	int i;
1988
1989	for (i = 0; i < num_consumers; i++) {
1990		regulator_put(consumers[i].consumer);
1991		consumers[i].consumer = NULL;
1992	}
1993}
1994EXPORT_SYMBOL_GPL(regulator_bulk_free);
1995
1996/**
1997 * regulator_notifier_call_chain - call regulator event notifier
1998 * @rdev: regulator source
1999 * @event: notifier block
2000 * @data: callback-specific data.
2001 *
2002 * Called by regulator drivers to notify clients a regulator event has
2003 * occurred. We also notify regulator clients downstream.
2004 * Note lock must be held by caller.
2005 */
2006int regulator_notifier_call_chain(struct regulator_dev *rdev,
2007				  unsigned long event, void *data)
2008{
2009	_notifier_call_chain(rdev, event, data);
2010	return NOTIFY_DONE;
2011
2012}
2013EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2014
2015/**
2016 * regulator_mode_to_status - convert a regulator mode into a status
2017 *
2018 * @mode: Mode to convert
2019 *
2020 * Convert a regulator mode into a status.
2021 */
2022int regulator_mode_to_status(unsigned int mode)
2023{
2024	switch (mode) {
2025	case REGULATOR_MODE_FAST:
2026		return REGULATOR_STATUS_FAST;
2027	case REGULATOR_MODE_NORMAL:
2028		return REGULATOR_STATUS_NORMAL;
2029	case REGULATOR_MODE_IDLE:
2030		return REGULATOR_STATUS_IDLE;
2031	case REGULATOR_STATUS_STANDBY:
2032		return REGULATOR_STATUS_STANDBY;
2033	default:
2034		return 0;
2035	}
2036}
2037EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2038
2039/*
2040 * To avoid cluttering sysfs (and memory) with useless state, only
2041 * create attributes that can be meaningfully displayed.
2042 */
2043static int add_regulator_attributes(struct regulator_dev *rdev)
2044{
2045	struct device		*dev = &rdev->dev;
2046	struct regulator_ops	*ops = rdev->desc->ops;
2047	int			status = 0;
2048
2049	/* some attributes need specific methods to be displayed */
2050	if (ops->get_voltage) {
2051		status = device_create_file(dev, &dev_attr_microvolts);
2052		if (status < 0)
2053			return status;
2054	}
2055	if (ops->get_current_limit) {
2056		status = device_create_file(dev, &dev_attr_microamps);
2057		if (status < 0)
2058			return status;
2059	}
2060	if (ops->get_mode) {
2061		status = device_create_file(dev, &dev_attr_opmode);
2062		if (status < 0)
2063			return status;
2064	}
2065	if (ops->is_enabled) {
2066		status = device_create_file(dev, &dev_attr_state);
2067		if (status < 0)
2068			return status;
2069	}
2070	if (ops->get_status) {
2071		status = device_create_file(dev, &dev_attr_status);
2072		if (status < 0)
2073			return status;
2074	}
2075
2076	/* some attributes are type-specific */
2077	if (rdev->desc->type == REGULATOR_CURRENT) {
2078		status = device_create_file(dev, &dev_attr_requested_microamps);
2079		if (status < 0)
2080			return status;
2081	}
2082
2083	/* all the other attributes exist to support constraints;
2084	 * don't show them if there are no constraints, or if the
2085	 * relevant supporting methods are missing.
2086	 */
2087	if (!rdev->constraints)
2088		return status;
2089
2090	/* constraints need specific supporting methods */
2091	if (ops->set_voltage) {
2092		status = device_create_file(dev, &dev_attr_min_microvolts);
2093		if (status < 0)
2094			return status;
2095		status = device_create_file(dev, &dev_attr_max_microvolts);
2096		if (status < 0)
2097			return status;
2098	}
2099	if (ops->set_current_limit) {
2100		status = device_create_file(dev, &dev_attr_min_microamps);
2101		if (status < 0)
2102			return status;
2103		status = device_create_file(dev, &dev_attr_max_microamps);
2104		if (status < 0)
2105			return status;
2106	}
2107
2108	/* suspend mode constraints need multiple supporting methods */
2109	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2110		return status;
2111
2112	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2113	if (status < 0)
2114		return status;
2115	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2116	if (status < 0)
2117		return status;
2118	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2119	if (status < 0)
2120		return status;
2121
2122	if (ops->set_suspend_voltage) {
2123		status = device_create_file(dev,
2124				&dev_attr_suspend_standby_microvolts);
2125		if (status < 0)
2126			return status;
2127		status = device_create_file(dev,
2128				&dev_attr_suspend_mem_microvolts);
2129		if (status < 0)
2130			return status;
2131		status = device_create_file(dev,
2132				&dev_attr_suspend_disk_microvolts);
2133		if (status < 0)
2134			return status;
2135	}
2136
2137	if (ops->set_suspend_mode) {
2138		status = device_create_file(dev,
2139				&dev_attr_suspend_standby_mode);
2140		if (status < 0)
2141			return status;
2142		status = device_create_file(dev,
2143				&dev_attr_suspend_mem_mode);
2144		if (status < 0)
2145			return status;
2146		status = device_create_file(dev,
2147				&dev_attr_suspend_disk_mode);
2148		if (status < 0)
2149			return status;
2150	}
2151
2152	return status;
2153}
2154
2155/**
2156 * regulator_register - register regulator
2157 * @regulator_desc: regulator to register
2158 * @dev: struct device for the regulator
2159 * @init_data: platform provided init data, passed through by driver
2160 * @driver_data: private regulator data
2161 *
2162 * Called by regulator drivers to register a regulator.
2163 * Returns 0 on success.
2164 */
2165struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2166	struct device *dev, struct regulator_init_data *init_data,
2167	void *driver_data)
2168{
2169	static atomic_t regulator_no = ATOMIC_INIT(0);
2170	struct regulator_dev *rdev;
2171	int ret, i;
2172
2173	if (regulator_desc == NULL)
2174		return ERR_PTR(-EINVAL);
2175
2176	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2177		return ERR_PTR(-EINVAL);
2178
2179	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2180	    regulator_desc->type != REGULATOR_CURRENT)
2181		return ERR_PTR(-EINVAL);
2182
2183	if (!init_data)
2184		return ERR_PTR(-EINVAL);
2185
2186	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2187	if (rdev == NULL)
2188		return ERR_PTR(-ENOMEM);
2189
2190	mutex_lock(&regulator_list_mutex);
2191
2192	mutex_init(&rdev->mutex);
2193	rdev->reg_data = driver_data;
2194	rdev->owner = regulator_desc->owner;
2195	rdev->desc = regulator_desc;
2196	INIT_LIST_HEAD(&rdev->consumer_list);
2197	INIT_LIST_HEAD(&rdev->supply_list);
2198	INIT_LIST_HEAD(&rdev->list);
2199	INIT_LIST_HEAD(&rdev->slist);
2200	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2201
2202	/* preform any regulator specific init */
2203	if (init_data->regulator_init) {
2204		ret = init_data->regulator_init(rdev->reg_data);
2205		if (ret < 0)
2206			goto clean;
2207	}
2208
2209	/* register with sysfs */
2210	rdev->dev.class = &regulator_class;
2211	rdev->dev.parent = dev;
2212	dev_set_name(&rdev->dev, "regulator.%d",
2213		     atomic_inc_return(&regulator_no) - 1);
2214	ret = device_register(&rdev->dev);
2215	if (ret != 0)
2216		goto clean;
2217
2218	dev_set_drvdata(&rdev->dev, rdev);
2219
2220	/* set regulator constraints */
2221	ret = set_machine_constraints(rdev, &init_data->constraints);
2222	if (ret < 0)
2223		goto scrub;
2224
2225	/* add attributes supported by this regulator */
2226	ret = add_regulator_attributes(rdev);
2227	if (ret < 0)
2228		goto scrub;
2229
2230	/* set supply regulator if it exists */
2231	if (init_data->supply_regulator_dev) {
2232		ret = set_supply(rdev,
2233			dev_get_drvdata(init_data->supply_regulator_dev));
2234		if (ret < 0)
2235			goto scrub;
2236	}
2237
2238	/* add consumers devices */
2239	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2240		ret = set_consumer_device_supply(rdev,
2241			init_data->consumer_supplies[i].dev,
2242			init_data->consumer_supplies[i].dev_name,
2243			init_data->consumer_supplies[i].supply);
2244		if (ret < 0) {
2245			for (--i; i >= 0; i--)
2246				unset_consumer_device_supply(rdev,
2247				    init_data->consumer_supplies[i].dev_name,
2248				    init_data->consumer_supplies[i].dev);
2249			goto scrub;
2250		}
2251	}
2252
2253	list_add(&rdev->list, &regulator_list);
2254out:
2255	mutex_unlock(&regulator_list_mutex);
2256	return rdev;
2257
2258scrub:
2259	device_unregister(&rdev->dev);
2260	/* device core frees rdev */
2261	rdev = ERR_PTR(ret);
2262	goto out;
2263
2264clean:
2265	kfree(rdev);
2266	rdev = ERR_PTR(ret);
2267	goto out;
2268}
2269EXPORT_SYMBOL_GPL(regulator_register);
2270
2271/**
2272 * regulator_unregister - unregister regulator
2273 * @rdev: regulator to unregister
2274 *
2275 * Called by regulator drivers to unregister a regulator.
2276 */
2277void regulator_unregister(struct regulator_dev *rdev)
2278{
2279	if (rdev == NULL)
2280		return;
2281
2282	mutex_lock(&regulator_list_mutex);
2283	WARN_ON(rdev->open_count);
2284	unset_regulator_supplies(rdev);
2285	list_del(&rdev->list);
2286	if (rdev->supply)
2287		sysfs_remove_link(&rdev->dev.kobj, "supply");
2288	device_unregister(&rdev->dev);
2289	mutex_unlock(&regulator_list_mutex);
2290}
2291EXPORT_SYMBOL_GPL(regulator_unregister);
2292
2293/**
2294 * regulator_suspend_prepare - prepare regulators for system wide suspend
2295 * @state: system suspend state
2296 *
2297 * Configure each regulator with it's suspend operating parameters for state.
2298 * This will usually be called by machine suspend code prior to supending.
2299 */
2300int regulator_suspend_prepare(suspend_state_t state)
2301{
2302	struct regulator_dev *rdev;
2303	int ret = 0;
2304
2305	/* ON is handled by regulator active state */
2306	if (state == PM_SUSPEND_ON)
2307		return -EINVAL;
2308
2309	mutex_lock(&regulator_list_mutex);
2310	list_for_each_entry(rdev, &regulator_list, list) {
2311
2312		mutex_lock(&rdev->mutex);
2313		ret = suspend_prepare(rdev, state);
2314		mutex_unlock(&rdev->mutex);
2315
2316		if (ret < 0) {
2317			printk(KERN_ERR "%s: failed to prepare %s\n",
2318				__func__, rdev->desc->name);
2319			goto out;
2320		}
2321	}
2322out:
2323	mutex_unlock(&regulator_list_mutex);
2324	return ret;
2325}
2326EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2327
2328/**
2329 * regulator_has_full_constraints - the system has fully specified constraints
2330 *
2331 * Calling this function will cause the regulator API to disable all
2332 * regulators which have a zero use count and don't have an always_on
2333 * constraint in a late_initcall.
2334 *
2335 * The intention is that this will become the default behaviour in a
2336 * future kernel release so users are encouraged to use this facility
2337 * now.
2338 */
2339void regulator_has_full_constraints(void)
2340{
2341	has_full_constraints = 1;
2342}
2343EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2344
2345/**
2346 * rdev_get_drvdata - get rdev regulator driver data
2347 * @rdev: regulator
2348 *
2349 * Get rdev regulator driver private data. This call can be used in the
2350 * regulator driver context.
2351 */
2352void *rdev_get_drvdata(struct regulator_dev *rdev)
2353{
2354	return rdev->reg_data;
2355}
2356EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2357
2358/**
2359 * regulator_get_drvdata - get regulator driver data
2360 * @regulator: regulator
2361 *
2362 * Get regulator driver private data. This call can be used in the consumer
2363 * driver context when non API regulator specific functions need to be called.
2364 */
2365void *regulator_get_drvdata(struct regulator *regulator)
2366{
2367	return regulator->rdev->reg_data;
2368}
2369EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2370
2371/**
2372 * regulator_set_drvdata - set regulator driver data
2373 * @regulator: regulator
2374 * @data: data
2375 */
2376void regulator_set_drvdata(struct regulator *regulator, void *data)
2377{
2378	regulator->rdev->reg_data = data;
2379}
2380EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2381
2382/**
2383 * regulator_get_id - get regulator ID
2384 * @rdev: regulator
2385 */
2386int rdev_get_id(struct regulator_dev *rdev)
2387{
2388	return rdev->desc->id;
2389}
2390EXPORT_SYMBOL_GPL(rdev_get_id);
2391
2392struct device *rdev_get_dev(struct regulator_dev *rdev)
2393{
2394	return &rdev->dev;
2395}
2396EXPORT_SYMBOL_GPL(rdev_get_dev);
2397
2398void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2399{
2400	return reg_init_data->driver_data;
2401}
2402EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2403
2404static int __init regulator_init(void)
2405{
2406	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2407	return class_register(&regulator_class);
2408}
2409
2410/* init early to allow our consumers to complete system booting */
2411core_initcall(regulator_init);
2412
2413static int __init regulator_init_complete(void)
2414{
2415	struct regulator_dev *rdev;
2416	struct regulator_ops *ops;
2417	struct regulation_constraints *c;
2418	int enabled, ret;
2419	const char *name;
2420
2421	mutex_lock(&regulator_list_mutex);
2422
2423	/* If we have a full configuration then disable any regulators
2424	 * which are not in use or always_on.  This will become the
2425	 * default behaviour in the future.
2426	 */
2427	list_for_each_entry(rdev, &regulator_list, list) {
2428		ops = rdev->desc->ops;
2429		c = rdev->constraints;
2430
2431		if (c && c->name)
2432			name = c->name;
2433		else if (rdev->desc->name)
2434			name = rdev->desc->name;
2435		else
2436			name = "regulator";
2437
2438		if (!ops->disable || (c && c->always_on))
2439			continue;
2440
2441		mutex_lock(&rdev->mutex);
2442
2443		if (rdev->use_count)
2444			goto unlock;
2445
2446		/* If we can't read the status assume it's on. */
2447		if (ops->is_enabled)
2448			enabled = ops->is_enabled(rdev);
2449		else
2450			enabled = 1;
2451
2452		if (!enabled)
2453			goto unlock;
2454
2455		if (has_full_constraints) {
2456			/* We log since this may kill the system if it
2457			 * goes wrong. */
2458			printk(KERN_INFO "%s: disabling %s\n",
2459			       __func__, name);
2460			ret = ops->disable(rdev);
2461			if (ret != 0) {
2462				printk(KERN_ERR
2463				       "%s: couldn't disable %s: %d\n",
2464				       __func__, name, ret);
2465			}
2466		} else {
2467			/* The intention is that in future we will
2468			 * assume that full constraints are provided
2469			 * so warn even if we aren't going to do
2470			 * anything here.
2471			 */
2472			printk(KERN_WARNING
2473			       "%s: incomplete constraints, leaving %s on\n",
2474			       __func__, name);
2475		}
2476
2477unlock:
2478		mutex_unlock(&rdev->mutex);
2479	}
2480
2481	mutex_unlock(&regulator_list_mutex);
2482
2483	return 0;
2484}
2485late_initcall(regulator_init_complete);
2486