core.c revision b2da55d9441cbdaf73c12403ed801b644d5ae5e3
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV)
203		return -EINVAL;
204
205	return 0;
206}
207
208/* current constraint check */
209static int regulator_check_current_limit(struct regulator_dev *rdev,
210					int *min_uA, int *max_uA)
211{
212	BUG_ON(*min_uA > *max_uA);
213
214	if (!rdev->constraints) {
215		rdev_err(rdev, "no constraints\n");
216		return -ENODEV;
217	}
218	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219		rdev_err(rdev, "operation not allowed\n");
220		return -EPERM;
221	}
222
223	if (*max_uA > rdev->constraints->max_uA)
224		*max_uA = rdev->constraints->max_uA;
225	if (*min_uA < rdev->constraints->min_uA)
226		*min_uA = rdev->constraints->min_uA;
227
228	if (*min_uA > *max_uA) {
229		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230			 *min_uA, *max_uA);
231		return -EINVAL;
232	}
233
234	return 0;
235}
236
237/* operating mode constraint check */
238static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239{
240	switch (*mode) {
241	case REGULATOR_MODE_FAST:
242	case REGULATOR_MODE_NORMAL:
243	case REGULATOR_MODE_IDLE:
244	case REGULATOR_MODE_STANDBY:
245		break;
246	default:
247		rdev_err(rdev, "invalid mode %x specified\n", *mode);
248		return -EINVAL;
249	}
250
251	if (!rdev->constraints) {
252		rdev_err(rdev, "no constraints\n");
253		return -ENODEV;
254	}
255	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256		rdev_err(rdev, "operation not allowed\n");
257		return -EPERM;
258	}
259
260	/* The modes are bitmasks, the most power hungry modes having
261	 * the lowest values. If the requested mode isn't supported
262	 * try higher modes. */
263	while (*mode) {
264		if (rdev->constraints->valid_modes_mask & *mode)
265			return 0;
266		*mode /= 2;
267	}
268
269	return -EINVAL;
270}
271
272/* dynamic regulator mode switching constraint check */
273static int regulator_check_drms(struct regulator_dev *rdev)
274{
275	if (!rdev->constraints) {
276		rdev_err(rdev, "no constraints\n");
277		return -ENODEV;
278	}
279	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280		rdev_err(rdev, "operation not allowed\n");
281		return -EPERM;
282	}
283	return 0;
284}
285
286static ssize_t regulator_uV_show(struct device *dev,
287				struct device_attribute *attr, char *buf)
288{
289	struct regulator_dev *rdev = dev_get_drvdata(dev);
290	ssize_t ret;
291
292	mutex_lock(&rdev->mutex);
293	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294	mutex_unlock(&rdev->mutex);
295
296	return ret;
297}
298static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300static ssize_t regulator_uA_show(struct device *dev,
301				struct device_attribute *attr, char *buf)
302{
303	struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306}
307static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309static ssize_t regulator_name_show(struct device *dev,
310			     struct device_attribute *attr, char *buf)
311{
312	struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314	return sprintf(buf, "%s\n", rdev_get_name(rdev));
315}
316
317static ssize_t regulator_print_opmode(char *buf, int mode)
318{
319	switch (mode) {
320	case REGULATOR_MODE_FAST:
321		return sprintf(buf, "fast\n");
322	case REGULATOR_MODE_NORMAL:
323		return sprintf(buf, "normal\n");
324	case REGULATOR_MODE_IDLE:
325		return sprintf(buf, "idle\n");
326	case REGULATOR_MODE_STANDBY:
327		return sprintf(buf, "standby\n");
328	}
329	return sprintf(buf, "unknown\n");
330}
331
332static ssize_t regulator_opmode_show(struct device *dev,
333				    struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338}
339static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341static ssize_t regulator_print_state(char *buf, int state)
342{
343	if (state > 0)
344		return sprintf(buf, "enabled\n");
345	else if (state == 0)
346		return sprintf(buf, "disabled\n");
347	else
348		return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_state_show(struct device *dev,
352				   struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355	ssize_t ret;
356
357	mutex_lock(&rdev->mutex);
358	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359	mutex_unlock(&rdev->mutex);
360
361	return ret;
362}
363static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365static ssize_t regulator_status_show(struct device *dev,
366				   struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369	int status;
370	char *label;
371
372	status = rdev->desc->ops->get_status(rdev);
373	if (status < 0)
374		return status;
375
376	switch (status) {
377	case REGULATOR_STATUS_OFF:
378		label = "off";
379		break;
380	case REGULATOR_STATUS_ON:
381		label = "on";
382		break;
383	case REGULATOR_STATUS_ERROR:
384		label = "error";
385		break;
386	case REGULATOR_STATUS_FAST:
387		label = "fast";
388		break;
389	case REGULATOR_STATUS_NORMAL:
390		label = "normal";
391		break;
392	case REGULATOR_STATUS_IDLE:
393		label = "idle";
394		break;
395	case REGULATOR_STATUS_STANDBY:
396		label = "standby";
397		break;
398	case REGULATOR_STATUS_BYPASS:
399		label = "bypass";
400		break;
401	case REGULATOR_STATUS_UNDEFINED:
402		label = "undefined";
403		break;
404	default:
405		return -ERANGE;
406	}
407
408	return sprintf(buf, "%s\n", label);
409}
410static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412static ssize_t regulator_min_uA_show(struct device *dev,
413				    struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	if (!rdev->constraints)
418		return sprintf(buf, "constraint not defined\n");
419
420	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421}
422static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424static ssize_t regulator_max_uA_show(struct device *dev,
425				    struct device_attribute *attr, char *buf)
426{
427	struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429	if (!rdev->constraints)
430		return sprintf(buf, "constraint not defined\n");
431
432	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433}
434static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436static ssize_t regulator_min_uV_show(struct device *dev,
437				    struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	if (!rdev->constraints)
442		return sprintf(buf, "constraint not defined\n");
443
444	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445}
446static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448static ssize_t regulator_max_uV_show(struct device *dev,
449				    struct device_attribute *attr, char *buf)
450{
451	struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453	if (!rdev->constraints)
454		return sprintf(buf, "constraint not defined\n");
455
456	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457}
458static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460static ssize_t regulator_total_uA_show(struct device *dev,
461				      struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464	struct regulator *regulator;
465	int uA = 0;
466
467	mutex_lock(&rdev->mutex);
468	list_for_each_entry(regulator, &rdev->consumer_list, list)
469		uA += regulator->uA_load;
470	mutex_unlock(&rdev->mutex);
471	return sprintf(buf, "%d\n", uA);
472}
473static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475static ssize_t regulator_num_users_show(struct device *dev,
476				      struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479	return sprintf(buf, "%d\n", rdev->use_count);
480}
481
482static ssize_t regulator_type_show(struct device *dev,
483				  struct device_attribute *attr, char *buf)
484{
485	struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487	switch (rdev->desc->type) {
488	case REGULATOR_VOLTAGE:
489		return sprintf(buf, "voltage\n");
490	case REGULATOR_CURRENT:
491		return sprintf(buf, "current\n");
492	}
493	return sprintf(buf, "unknown\n");
494}
495
496static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497				struct device_attribute *attr, char *buf)
498{
499	struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502}
503static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504		regulator_suspend_mem_uV_show, NULL);
505
506static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507				struct device_attribute *attr, char *buf)
508{
509	struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512}
513static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514		regulator_suspend_disk_uV_show, NULL);
515
516static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522}
523static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524		regulator_suspend_standby_uV_show, NULL);
525
526static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return regulator_print_opmode(buf,
532		rdev->constraints->state_mem.mode);
533}
534static DEVICE_ATTR(suspend_mem_mode, 0444,
535		regulator_suspend_mem_mode_show, NULL);
536
537static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538				struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return regulator_print_opmode(buf,
543		rdev->constraints->state_disk.mode);
544}
545static DEVICE_ATTR(suspend_disk_mode, 0444,
546		regulator_suspend_disk_mode_show, NULL);
547
548static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549				struct device_attribute *attr, char *buf)
550{
551	struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553	return regulator_print_opmode(buf,
554		rdev->constraints->state_standby.mode);
555}
556static DEVICE_ATTR(suspend_standby_mode, 0444,
557		regulator_suspend_standby_mode_show, NULL);
558
559static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560				   struct device_attribute *attr, char *buf)
561{
562	struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564	return regulator_print_state(buf,
565			rdev->constraints->state_mem.enabled);
566}
567static DEVICE_ATTR(suspend_mem_state, 0444,
568		regulator_suspend_mem_state_show, NULL);
569
570static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571				   struct device_attribute *attr, char *buf)
572{
573	struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575	return regulator_print_state(buf,
576			rdev->constraints->state_disk.enabled);
577}
578static DEVICE_ATTR(suspend_disk_state, 0444,
579		regulator_suspend_disk_state_show, NULL);
580
581static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582				   struct device_attribute *attr, char *buf)
583{
584	struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586	return regulator_print_state(buf,
587			rdev->constraints->state_standby.enabled);
588}
589static DEVICE_ATTR(suspend_standby_state, 0444,
590		regulator_suspend_standby_state_show, NULL);
591
592static ssize_t regulator_bypass_show(struct device *dev,
593				     struct device_attribute *attr, char *buf)
594{
595	struct regulator_dev *rdev = dev_get_drvdata(dev);
596	const char *report;
597	bool bypass;
598	int ret;
599
600	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602	if (ret != 0)
603		report = "unknown";
604	else if (bypass)
605		report = "enabled";
606	else
607		report = "disabled";
608
609	return sprintf(buf, "%s\n", report);
610}
611static DEVICE_ATTR(bypass, 0444,
612		   regulator_bypass_show, NULL);
613
614/*
615 * These are the only attributes are present for all regulators.
616 * Other attributes are a function of regulator functionality.
617 */
618static struct device_attribute regulator_dev_attrs[] = {
619	__ATTR(name, 0444, regulator_name_show, NULL),
620	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
621	__ATTR(type, 0444, regulator_type_show, NULL),
622	__ATTR_NULL,
623};
624
625static void regulator_dev_release(struct device *dev)
626{
627	struct regulator_dev *rdev = dev_get_drvdata(dev);
628	kfree(rdev);
629}
630
631static struct class regulator_class = {
632	.name = "regulator",
633	.dev_release = regulator_dev_release,
634	.dev_attrs = regulator_dev_attrs,
635};
636
637/* Calculate the new optimum regulator operating mode based on the new total
638 * consumer load. All locks held by caller */
639static void drms_uA_update(struct regulator_dev *rdev)
640{
641	struct regulator *sibling;
642	int current_uA = 0, output_uV, input_uV, err;
643	unsigned int mode;
644
645	err = regulator_check_drms(rdev);
646	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647	    (!rdev->desc->ops->get_voltage &&
648	     !rdev->desc->ops->get_voltage_sel) ||
649	    !rdev->desc->ops->set_mode)
650		return;
651
652	/* get output voltage */
653	output_uV = _regulator_get_voltage(rdev);
654	if (output_uV <= 0)
655		return;
656
657	/* get input voltage */
658	input_uV = 0;
659	if (rdev->supply)
660		input_uV = regulator_get_voltage(rdev->supply);
661	if (input_uV <= 0)
662		input_uV = rdev->constraints->input_uV;
663	if (input_uV <= 0)
664		return;
665
666	/* calc total requested load */
667	list_for_each_entry(sibling, &rdev->consumer_list, list)
668		current_uA += sibling->uA_load;
669
670	/* now get the optimum mode for our new total regulator load */
671	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672						  output_uV, current_uA);
673
674	/* check the new mode is allowed */
675	err = regulator_mode_constrain(rdev, &mode);
676	if (err == 0)
677		rdev->desc->ops->set_mode(rdev, mode);
678}
679
680static int suspend_set_state(struct regulator_dev *rdev,
681	struct regulator_state *rstate)
682{
683	int ret = 0;
684
685	/* If we have no suspend mode configration don't set anything;
686	 * only warn if the driver implements set_suspend_voltage or
687	 * set_suspend_mode callback.
688	 */
689	if (!rstate->enabled && !rstate->disabled) {
690		if (rdev->desc->ops->set_suspend_voltage ||
691		    rdev->desc->ops->set_suspend_mode)
692			rdev_warn(rdev, "No configuration\n");
693		return 0;
694	}
695
696	if (rstate->enabled && rstate->disabled) {
697		rdev_err(rdev, "invalid configuration\n");
698		return -EINVAL;
699	}
700
701	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702		ret = rdev->desc->ops->set_suspend_enable(rdev);
703	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704		ret = rdev->desc->ops->set_suspend_disable(rdev);
705	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706		ret = 0;
707
708	if (ret < 0) {
709		rdev_err(rdev, "failed to enabled/disable\n");
710		return ret;
711	}
712
713	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715		if (ret < 0) {
716			rdev_err(rdev, "failed to set voltage\n");
717			return ret;
718		}
719	}
720
721	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723		if (ret < 0) {
724			rdev_err(rdev, "failed to set mode\n");
725			return ret;
726		}
727	}
728	return ret;
729}
730
731/* locks held by caller */
732static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733{
734	if (!rdev->constraints)
735		return -EINVAL;
736
737	switch (state) {
738	case PM_SUSPEND_STANDBY:
739		return suspend_set_state(rdev,
740			&rdev->constraints->state_standby);
741	case PM_SUSPEND_MEM:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_mem);
744	case PM_SUSPEND_MAX:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_disk);
747	default:
748		return -EINVAL;
749	}
750}
751
752static void print_constraints(struct regulator_dev *rdev)
753{
754	struct regulation_constraints *constraints = rdev->constraints;
755	char buf[80] = "";
756	int count = 0;
757	int ret;
758
759	if (constraints->min_uV && constraints->max_uV) {
760		if (constraints->min_uV == constraints->max_uV)
761			count += sprintf(buf + count, "%d mV ",
762					 constraints->min_uV / 1000);
763		else
764			count += sprintf(buf + count, "%d <--> %d mV ",
765					 constraints->min_uV / 1000,
766					 constraints->max_uV / 1000);
767	}
768
769	if (!constraints->min_uV ||
770	    constraints->min_uV != constraints->max_uV) {
771		ret = _regulator_get_voltage(rdev);
772		if (ret > 0)
773			count += sprintf(buf + count, "at %d mV ", ret / 1000);
774	}
775
776	if (constraints->uV_offset)
777		count += sprintf(buf, "%dmV offset ",
778				 constraints->uV_offset / 1000);
779
780	if (constraints->min_uA && constraints->max_uA) {
781		if (constraints->min_uA == constraints->max_uA)
782			count += sprintf(buf + count, "%d mA ",
783					 constraints->min_uA / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mA ",
786					 constraints->min_uA / 1000,
787					 constraints->max_uA / 1000);
788	}
789
790	if (!constraints->min_uA ||
791	    constraints->min_uA != constraints->max_uA) {
792		ret = _regulator_get_current_limit(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mA ", ret / 1000);
795	}
796
797	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798		count += sprintf(buf + count, "fast ");
799	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800		count += sprintf(buf + count, "normal ");
801	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802		count += sprintf(buf + count, "idle ");
803	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804		count += sprintf(buf + count, "standby");
805
806	if (!count)
807		sprintf(buf, "no parameters");
808
809	rdev_info(rdev, "%s\n", buf);
810
811	if ((constraints->min_uV != constraints->max_uV) &&
812	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813		rdev_warn(rdev,
814			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815}
816
817static int machine_constraints_voltage(struct regulator_dev *rdev,
818	struct regulation_constraints *constraints)
819{
820	struct regulator_ops *ops = rdev->desc->ops;
821	int ret;
822
823	/* do we need to apply the constraint voltage */
824	if (rdev->constraints->apply_uV &&
825	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
826		ret = _regulator_do_set_voltage(rdev,
827						rdev->constraints->min_uV,
828						rdev->constraints->max_uV);
829		if (ret < 0) {
830			rdev_err(rdev, "failed to apply %duV constraint\n",
831				 rdev->constraints->min_uV);
832			return ret;
833		}
834	}
835
836	/* constrain machine-level voltage specs to fit
837	 * the actual range supported by this regulator.
838	 */
839	if (ops->list_voltage && rdev->desc->n_voltages) {
840		int	count = rdev->desc->n_voltages;
841		int	i;
842		int	min_uV = INT_MAX;
843		int	max_uV = INT_MIN;
844		int	cmin = constraints->min_uV;
845		int	cmax = constraints->max_uV;
846
847		/* it's safe to autoconfigure fixed-voltage supplies
848		   and the constraints are used by list_voltage. */
849		if (count == 1 && !cmin) {
850			cmin = 1;
851			cmax = INT_MAX;
852			constraints->min_uV = cmin;
853			constraints->max_uV = cmax;
854		}
855
856		/* voltage constraints are optional */
857		if ((cmin == 0) && (cmax == 0))
858			return 0;
859
860		/* else require explicit machine-level constraints */
861		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862			rdev_err(rdev, "invalid voltage constraints\n");
863			return -EINVAL;
864		}
865
866		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867		for (i = 0; i < count; i++) {
868			int	value;
869
870			value = ops->list_voltage(rdev, i);
871			if (value <= 0)
872				continue;
873
874			/* maybe adjust [min_uV..max_uV] */
875			if (value >= cmin && value < min_uV)
876				min_uV = value;
877			if (value <= cmax && value > max_uV)
878				max_uV = value;
879		}
880
881		/* final: [min_uV..max_uV] valid iff constraints valid */
882		if (max_uV < min_uV) {
883			rdev_err(rdev, "unsupportable voltage constraints\n");
884			return -EINVAL;
885		}
886
887		/* use regulator's subset of machine constraints */
888		if (constraints->min_uV < min_uV) {
889			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890				 constraints->min_uV, min_uV);
891			constraints->min_uV = min_uV;
892		}
893		if (constraints->max_uV > max_uV) {
894			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895				 constraints->max_uV, max_uV);
896			constraints->max_uV = max_uV;
897		}
898	}
899
900	return 0;
901}
902
903/**
904 * set_machine_constraints - sets regulator constraints
905 * @rdev: regulator source
906 * @constraints: constraints to apply
907 *
908 * Allows platform initialisation code to define and constrain
909 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
910 * Constraints *must* be set by platform code in order for some
911 * regulator operations to proceed i.e. set_voltage, set_current_limit,
912 * set_mode.
913 */
914static int set_machine_constraints(struct regulator_dev *rdev,
915	const struct regulation_constraints *constraints)
916{
917	int ret = 0;
918	struct regulator_ops *ops = rdev->desc->ops;
919
920	if (constraints)
921		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922					    GFP_KERNEL);
923	else
924		rdev->constraints = kzalloc(sizeof(*constraints),
925					    GFP_KERNEL);
926	if (!rdev->constraints)
927		return -ENOMEM;
928
929	ret = machine_constraints_voltage(rdev, rdev->constraints);
930	if (ret != 0)
931		goto out;
932
933	/* do we need to setup our suspend state */
934	if (rdev->constraints->initial_state) {
935		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936		if (ret < 0) {
937			rdev_err(rdev, "failed to set suspend state\n");
938			goto out;
939		}
940	}
941
942	if (rdev->constraints->initial_mode) {
943		if (!ops->set_mode) {
944			rdev_err(rdev, "no set_mode operation\n");
945			ret = -EINVAL;
946			goto out;
947		}
948
949		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950		if (ret < 0) {
951			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952			goto out;
953		}
954	}
955
956	/* If the constraints say the regulator should be on at this point
957	 * and we have control then make sure it is enabled.
958	 */
959	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960	    ops->enable) {
961		ret = ops->enable(rdev);
962		if (ret < 0) {
963			rdev_err(rdev, "failed to enable\n");
964			goto out;
965		}
966	}
967
968	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970		if (ret < 0) {
971			rdev_err(rdev, "failed to set ramp_delay\n");
972			goto out;
973		}
974	}
975
976	print_constraints(rdev);
977	return 0;
978out:
979	kfree(rdev->constraints);
980	rdev->constraints = NULL;
981	return ret;
982}
983
984/**
985 * set_supply - set regulator supply regulator
986 * @rdev: regulator name
987 * @supply_rdev: supply regulator name
988 *
989 * Called by platform initialisation code to set the supply regulator for this
990 * regulator. This ensures that a regulators supply will also be enabled by the
991 * core if it's child is enabled.
992 */
993static int set_supply(struct regulator_dev *rdev,
994		      struct regulator_dev *supply_rdev)
995{
996	int err;
997
998	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999
1000	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001	if (rdev->supply == NULL) {
1002		err = -ENOMEM;
1003		return err;
1004	}
1005	supply_rdev->open_count++;
1006
1007	return 0;
1008}
1009
1010/**
1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012 * @rdev:         regulator source
1013 * @consumer_dev_name: dev_name() string for device supply applies to
1014 * @supply:       symbolic name for supply
1015 *
1016 * Allows platform initialisation code to map physical regulator
1017 * sources to symbolic names for supplies for use by devices.  Devices
1018 * should use these symbolic names to request regulators, avoiding the
1019 * need to provide board-specific regulator names as platform data.
1020 */
1021static int set_consumer_device_supply(struct regulator_dev *rdev,
1022				      const char *consumer_dev_name,
1023				      const char *supply)
1024{
1025	struct regulator_map *node;
1026	int has_dev;
1027
1028	if (supply == NULL)
1029		return -EINVAL;
1030
1031	if (consumer_dev_name != NULL)
1032		has_dev = 1;
1033	else
1034		has_dev = 0;
1035
1036	list_for_each_entry(node, &regulator_map_list, list) {
1037		if (node->dev_name && consumer_dev_name) {
1038			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039				continue;
1040		} else if (node->dev_name || consumer_dev_name) {
1041			continue;
1042		}
1043
1044		if (strcmp(node->supply, supply) != 0)
1045			continue;
1046
1047		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048			 consumer_dev_name,
1049			 dev_name(&node->regulator->dev),
1050			 node->regulator->desc->name,
1051			 supply,
1052			 dev_name(&rdev->dev), rdev_get_name(rdev));
1053		return -EBUSY;
1054	}
1055
1056	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057	if (node == NULL)
1058		return -ENOMEM;
1059
1060	node->regulator = rdev;
1061	node->supply = supply;
1062
1063	if (has_dev) {
1064		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065		if (node->dev_name == NULL) {
1066			kfree(node);
1067			return -ENOMEM;
1068		}
1069	}
1070
1071	list_add(&node->list, &regulator_map_list);
1072	return 0;
1073}
1074
1075static void unset_regulator_supplies(struct regulator_dev *rdev)
1076{
1077	struct regulator_map *node, *n;
1078
1079	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080		if (rdev == node->regulator) {
1081			list_del(&node->list);
1082			kfree(node->dev_name);
1083			kfree(node);
1084		}
1085	}
1086}
1087
1088#define REG_STR_SIZE	64
1089
1090static struct regulator *create_regulator(struct regulator_dev *rdev,
1091					  struct device *dev,
1092					  const char *supply_name)
1093{
1094	struct regulator *regulator;
1095	char buf[REG_STR_SIZE];
1096	int err, size;
1097
1098	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099	if (regulator == NULL)
1100		return NULL;
1101
1102	mutex_lock(&rdev->mutex);
1103	regulator->rdev = rdev;
1104	list_add(&regulator->list, &rdev->consumer_list);
1105
1106	if (dev) {
1107		regulator->dev = dev;
1108
1109		/* Add a link to the device sysfs entry */
1110		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111				 dev->kobj.name, supply_name);
1112		if (size >= REG_STR_SIZE)
1113			goto overflow_err;
1114
1115		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116		if (regulator->supply_name == NULL)
1117			goto overflow_err;
1118
1119		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120					buf);
1121		if (err) {
1122			rdev_warn(rdev, "could not add device link %s err %d\n",
1123				  dev->kobj.name, err);
1124			/* non-fatal */
1125		}
1126	} else {
1127		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto overflow_err;
1130	}
1131
1132	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133						rdev->debugfs);
1134	if (!regulator->debugfs) {
1135		rdev_warn(rdev, "Failed to create debugfs directory\n");
1136	} else {
1137		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138				   &regulator->uA_load);
1139		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140				   &regulator->min_uV);
1141		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142				   &regulator->max_uV);
1143	}
1144
1145	/*
1146	 * Check now if the regulator is an always on regulator - if
1147	 * it is then we don't need to do nearly so much work for
1148	 * enable/disable calls.
1149	 */
1150	if (!_regulator_can_change_status(rdev) &&
1151	    _regulator_is_enabled(rdev))
1152		regulator->always_on = true;
1153
1154	mutex_unlock(&rdev->mutex);
1155	return regulator;
1156overflow_err:
1157	list_del(&regulator->list);
1158	kfree(regulator);
1159	mutex_unlock(&rdev->mutex);
1160	return NULL;
1161}
1162
1163static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164{
1165	if (!rdev->desc->ops->enable_time)
1166		return rdev->desc->enable_time;
1167	return rdev->desc->ops->enable_time(rdev);
1168}
1169
1170static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171						  const char *supply,
1172						  int *ret)
1173{
1174	struct regulator_dev *r;
1175	struct device_node *node;
1176	struct regulator_map *map;
1177	const char *devname = NULL;
1178
1179	/* first do a dt based lookup */
1180	if (dev && dev->of_node) {
1181		node = of_get_regulator(dev, supply);
1182		if (node) {
1183			list_for_each_entry(r, &regulator_list, list)
1184				if (r->dev.parent &&
1185					node == r->dev.of_node)
1186					return r;
1187		} else {
1188			/*
1189			 * If we couldn't even get the node then it's
1190			 * not just that the device didn't register
1191			 * yet, there's no node and we'll never
1192			 * succeed.
1193			 */
1194			*ret = -ENODEV;
1195		}
1196	}
1197
1198	/* if not found, try doing it non-dt way */
1199	if (dev)
1200		devname = dev_name(dev);
1201
1202	list_for_each_entry(r, &regulator_list, list)
1203		if (strcmp(rdev_get_name(r), supply) == 0)
1204			return r;
1205
1206	list_for_each_entry(map, &regulator_map_list, list) {
1207		/* If the mapping has a device set up it must match */
1208		if (map->dev_name &&
1209		    (!devname || strcmp(map->dev_name, devname)))
1210			continue;
1211
1212		if (strcmp(map->supply, supply) == 0)
1213			return map->regulator;
1214	}
1215
1216
1217	return NULL;
1218}
1219
1220/* Internal regulator request function */
1221static struct regulator *_regulator_get(struct device *dev, const char *id,
1222					int exclusive)
1223{
1224	struct regulator_dev *rdev;
1225	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226	const char *devname = NULL;
1227	int ret;
1228
1229	if (id == NULL) {
1230		pr_err("get() with no identifier\n");
1231		return regulator;
1232	}
1233
1234	if (dev)
1235		devname = dev_name(dev);
1236
1237	mutex_lock(&regulator_list_mutex);
1238
1239	rdev = regulator_dev_lookup(dev, id, &ret);
1240	if (rdev)
1241		goto found;
1242
1243	if (board_wants_dummy_regulator) {
1244		rdev = dummy_regulator_rdev;
1245		goto found;
1246	}
1247
1248#ifdef CONFIG_REGULATOR_DUMMY
1249	if (!devname)
1250		devname = "deviceless";
1251
1252	/* If the board didn't flag that it was fully constrained then
1253	 * substitute in a dummy regulator so consumers can continue.
1254	 */
1255	if (!has_full_constraints) {
1256		pr_warn("%s supply %s not found, using dummy regulator\n",
1257			devname, id);
1258		rdev = dummy_regulator_rdev;
1259		goto found;
1260	}
1261#endif
1262
1263	mutex_unlock(&regulator_list_mutex);
1264	return regulator;
1265
1266found:
1267	if (rdev->exclusive) {
1268		regulator = ERR_PTR(-EPERM);
1269		goto out;
1270	}
1271
1272	if (exclusive && rdev->open_count) {
1273		regulator = ERR_PTR(-EBUSY);
1274		goto out;
1275	}
1276
1277	if (!try_module_get(rdev->owner))
1278		goto out;
1279
1280	regulator = create_regulator(rdev, dev, id);
1281	if (regulator == NULL) {
1282		regulator = ERR_PTR(-ENOMEM);
1283		module_put(rdev->owner);
1284		goto out;
1285	}
1286
1287	rdev->open_count++;
1288	if (exclusive) {
1289		rdev->exclusive = 1;
1290
1291		ret = _regulator_is_enabled(rdev);
1292		if (ret > 0)
1293			rdev->use_count = 1;
1294		else
1295			rdev->use_count = 0;
1296	}
1297
1298out:
1299	mutex_unlock(&regulator_list_mutex);
1300
1301	return regulator;
1302}
1303
1304/**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged.  It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317struct regulator *regulator_get(struct device *dev, const char *id)
1318{
1319	return _regulator_get(dev, id, 0);
1320}
1321EXPORT_SYMBOL_GPL(regulator_get);
1322
1323static void devm_regulator_release(struct device *dev, void *res)
1324{
1325	regulator_put(*(struct regulator **)res);
1326}
1327
1328/**
1329 * devm_regulator_get - Resource managed regulator_get()
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Managed regulator_get(). Regulators returned from this function are
1334 * automatically regulator_put() on driver detach. See regulator_get() for more
1335 * information.
1336 */
1337struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338{
1339	struct regulator **ptr, *regulator;
1340
1341	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342	if (!ptr)
1343		return ERR_PTR(-ENOMEM);
1344
1345	regulator = regulator_get(dev, id);
1346	if (!IS_ERR(regulator)) {
1347		*ptr = regulator;
1348		devres_add(dev, ptr);
1349	} else {
1350		devres_free(ptr);
1351	}
1352
1353	return regulator;
1354}
1355EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357/**
1358 * regulator_get_exclusive - obtain exclusive access to a regulator.
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Returns a struct regulator corresponding to the regulator producer,
1363 * or IS_ERR() condition containing errno.  Other consumers will be
1364 * unable to obtain this reference is held and the use count for the
1365 * regulator will be initialised to reflect the current state of the
1366 * regulator.
1367 *
1368 * This is intended for use by consumers which cannot tolerate shared
1369 * use of the regulator such as those which need to force the
1370 * regulator off for correct operation of the hardware they are
1371 * controlling.
1372 *
1373 * Use of supply names configured via regulator_set_device_supply() is
1374 * strongly encouraged.  It is recommended that the supply name used
1375 * should match the name used for the supply and/or the relevant
1376 * device pins in the datasheet.
1377 */
1378struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379{
1380	return _regulator_get(dev, id, 1);
1381}
1382EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384/**
1385 * regulator_put - "free" the regulator source
1386 * @regulator: regulator source
1387 *
1388 * Note: drivers must ensure that all regulator_enable calls made on this
1389 * regulator source are balanced by regulator_disable calls prior to calling
1390 * this function.
1391 */
1392void regulator_put(struct regulator *regulator)
1393{
1394	struct regulator_dev *rdev;
1395
1396	if (regulator == NULL || IS_ERR(regulator))
1397		return;
1398
1399	mutex_lock(&regulator_list_mutex);
1400	rdev = regulator->rdev;
1401
1402	debugfs_remove_recursive(regulator->debugfs);
1403
1404	/* remove any sysfs entries */
1405	if (regulator->dev)
1406		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1407	kfree(regulator->supply_name);
1408	list_del(&regulator->list);
1409	kfree(regulator);
1410
1411	rdev->open_count--;
1412	rdev->exclusive = 0;
1413
1414	module_put(rdev->owner);
1415	mutex_unlock(&regulator_list_mutex);
1416}
1417EXPORT_SYMBOL_GPL(regulator_put);
1418
1419static int devm_regulator_match(struct device *dev, void *res, void *data)
1420{
1421	struct regulator **r = res;
1422	if (!r || !*r) {
1423		WARN_ON(!r || !*r);
1424		return 0;
1425	}
1426	return *r == data;
1427}
1428
1429/**
1430 * devm_regulator_put - Resource managed regulator_put()
1431 * @regulator: regulator to free
1432 *
1433 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1434 * this function will not need to be called and the resource management
1435 * code will ensure that the resource is freed.
1436 */
1437void devm_regulator_put(struct regulator *regulator)
1438{
1439	int rc;
1440
1441	rc = devres_release(regulator->dev, devm_regulator_release,
1442			    devm_regulator_match, regulator);
1443	if (rc != 0)
1444		WARN_ON(rc);
1445}
1446EXPORT_SYMBOL_GPL(devm_regulator_put);
1447
1448static int _regulator_do_enable(struct regulator_dev *rdev)
1449{
1450	int ret, delay;
1451
1452	/* Query before enabling in case configuration dependent.  */
1453	ret = _regulator_get_enable_time(rdev);
1454	if (ret >= 0) {
1455		delay = ret;
1456	} else {
1457		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1458		delay = 0;
1459	}
1460
1461	trace_regulator_enable(rdev_get_name(rdev));
1462
1463	if (rdev->ena_gpio) {
1464		gpio_set_value_cansleep(rdev->ena_gpio,
1465					!rdev->ena_gpio_invert);
1466		rdev->ena_gpio_state = 1;
1467	} else if (rdev->desc->ops->enable) {
1468		ret = rdev->desc->ops->enable(rdev);
1469		if (ret < 0)
1470			return ret;
1471	} else {
1472		return -EINVAL;
1473	}
1474
1475	/* Allow the regulator to ramp; it would be useful to extend
1476	 * this for bulk operations so that the regulators can ramp
1477	 * together.  */
1478	trace_regulator_enable_delay(rdev_get_name(rdev));
1479
1480	if (delay >= 1000) {
1481		mdelay(delay / 1000);
1482		udelay(delay % 1000);
1483	} else if (delay) {
1484		udelay(delay);
1485	}
1486
1487	trace_regulator_enable_complete(rdev_get_name(rdev));
1488
1489	return 0;
1490}
1491
1492/* locks held by regulator_enable() */
1493static int _regulator_enable(struct regulator_dev *rdev)
1494{
1495	int ret;
1496
1497	/* check voltage and requested load before enabling */
1498	if (rdev->constraints &&
1499	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1500		drms_uA_update(rdev);
1501
1502	if (rdev->use_count == 0) {
1503		/* The regulator may on if it's not switchable or left on */
1504		ret = _regulator_is_enabled(rdev);
1505		if (ret == -EINVAL || ret == 0) {
1506			if (!_regulator_can_change_status(rdev))
1507				return -EPERM;
1508
1509			ret = _regulator_do_enable(rdev);
1510			if (ret < 0)
1511				return ret;
1512
1513		} else if (ret < 0) {
1514			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1515			return ret;
1516		}
1517		/* Fallthrough on positive return values - already enabled */
1518	}
1519
1520	rdev->use_count++;
1521
1522	return 0;
1523}
1524
1525/**
1526 * regulator_enable - enable regulator output
1527 * @regulator: regulator source
1528 *
1529 * Request that the regulator be enabled with the regulator output at
1530 * the predefined voltage or current value.  Calls to regulator_enable()
1531 * must be balanced with calls to regulator_disable().
1532 *
1533 * NOTE: the output value can be set by other drivers, boot loader or may be
1534 * hardwired in the regulator.
1535 */
1536int regulator_enable(struct regulator *regulator)
1537{
1538	struct regulator_dev *rdev = regulator->rdev;
1539	int ret = 0;
1540
1541	if (regulator->always_on)
1542		return 0;
1543
1544	if (rdev->supply) {
1545		ret = regulator_enable(rdev->supply);
1546		if (ret != 0)
1547			return ret;
1548	}
1549
1550	mutex_lock(&rdev->mutex);
1551	ret = _regulator_enable(rdev);
1552	mutex_unlock(&rdev->mutex);
1553
1554	if (ret != 0 && rdev->supply)
1555		regulator_disable(rdev->supply);
1556
1557	return ret;
1558}
1559EXPORT_SYMBOL_GPL(regulator_enable);
1560
1561static int _regulator_do_disable(struct regulator_dev *rdev)
1562{
1563	int ret;
1564
1565	trace_regulator_disable(rdev_get_name(rdev));
1566
1567	if (rdev->ena_gpio) {
1568		gpio_set_value_cansleep(rdev->ena_gpio,
1569					rdev->ena_gpio_invert);
1570		rdev->ena_gpio_state = 0;
1571
1572	} else if (rdev->desc->ops->disable) {
1573		ret = rdev->desc->ops->disable(rdev);
1574		if (ret != 0)
1575			return ret;
1576	}
1577
1578	trace_regulator_disable_complete(rdev_get_name(rdev));
1579
1580	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1581			     NULL);
1582	return 0;
1583}
1584
1585/* locks held by regulator_disable() */
1586static int _regulator_disable(struct regulator_dev *rdev)
1587{
1588	int ret = 0;
1589
1590	if (WARN(rdev->use_count <= 0,
1591		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1592		return -EIO;
1593
1594	/* are we the last user and permitted to disable ? */
1595	if (rdev->use_count == 1 &&
1596	    (rdev->constraints && !rdev->constraints->always_on)) {
1597
1598		/* we are last user */
1599		if (_regulator_can_change_status(rdev)) {
1600			ret = _regulator_do_disable(rdev);
1601			if (ret < 0) {
1602				rdev_err(rdev, "failed to disable\n");
1603				return ret;
1604			}
1605		}
1606
1607		rdev->use_count = 0;
1608	} else if (rdev->use_count > 1) {
1609
1610		if (rdev->constraints &&
1611			(rdev->constraints->valid_ops_mask &
1612			REGULATOR_CHANGE_DRMS))
1613			drms_uA_update(rdev);
1614
1615		rdev->use_count--;
1616	}
1617
1618	return ret;
1619}
1620
1621/**
1622 * regulator_disable - disable regulator output
1623 * @regulator: regulator source
1624 *
1625 * Disable the regulator output voltage or current.  Calls to
1626 * regulator_enable() must be balanced with calls to
1627 * regulator_disable().
1628 *
1629 * NOTE: this will only disable the regulator output if no other consumer
1630 * devices have it enabled, the regulator device supports disabling and
1631 * machine constraints permit this operation.
1632 */
1633int regulator_disable(struct regulator *regulator)
1634{
1635	struct regulator_dev *rdev = regulator->rdev;
1636	int ret = 0;
1637
1638	if (regulator->always_on)
1639		return 0;
1640
1641	mutex_lock(&rdev->mutex);
1642	ret = _regulator_disable(rdev);
1643	mutex_unlock(&rdev->mutex);
1644
1645	if (ret == 0 && rdev->supply)
1646		regulator_disable(rdev->supply);
1647
1648	return ret;
1649}
1650EXPORT_SYMBOL_GPL(regulator_disable);
1651
1652/* locks held by regulator_force_disable() */
1653static int _regulator_force_disable(struct regulator_dev *rdev)
1654{
1655	int ret = 0;
1656
1657	/* force disable */
1658	if (rdev->desc->ops->disable) {
1659		/* ah well, who wants to live forever... */
1660		ret = rdev->desc->ops->disable(rdev);
1661		if (ret < 0) {
1662			rdev_err(rdev, "failed to force disable\n");
1663			return ret;
1664		}
1665		/* notify other consumers that power has been forced off */
1666		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1667			REGULATOR_EVENT_DISABLE, NULL);
1668	}
1669
1670	return ret;
1671}
1672
1673/**
1674 * regulator_force_disable - force disable regulator output
1675 * @regulator: regulator source
1676 *
1677 * Forcibly disable the regulator output voltage or current.
1678 * NOTE: this *will* disable the regulator output even if other consumer
1679 * devices have it enabled. This should be used for situations when device
1680 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1681 */
1682int regulator_force_disable(struct regulator *regulator)
1683{
1684	struct regulator_dev *rdev = regulator->rdev;
1685	int ret;
1686
1687	mutex_lock(&rdev->mutex);
1688	regulator->uA_load = 0;
1689	ret = _regulator_force_disable(regulator->rdev);
1690	mutex_unlock(&rdev->mutex);
1691
1692	if (rdev->supply)
1693		while (rdev->open_count--)
1694			regulator_disable(rdev->supply);
1695
1696	return ret;
1697}
1698EXPORT_SYMBOL_GPL(regulator_force_disable);
1699
1700static void regulator_disable_work(struct work_struct *work)
1701{
1702	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1703						  disable_work.work);
1704	int count, i, ret;
1705
1706	mutex_lock(&rdev->mutex);
1707
1708	BUG_ON(!rdev->deferred_disables);
1709
1710	count = rdev->deferred_disables;
1711	rdev->deferred_disables = 0;
1712
1713	for (i = 0; i < count; i++) {
1714		ret = _regulator_disable(rdev);
1715		if (ret != 0)
1716			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1717	}
1718
1719	mutex_unlock(&rdev->mutex);
1720
1721	if (rdev->supply) {
1722		for (i = 0; i < count; i++) {
1723			ret = regulator_disable(rdev->supply);
1724			if (ret != 0) {
1725				rdev_err(rdev,
1726					 "Supply disable failed: %d\n", ret);
1727			}
1728		}
1729	}
1730}
1731
1732/**
1733 * regulator_disable_deferred - disable regulator output with delay
1734 * @regulator: regulator source
1735 * @ms: miliseconds until the regulator is disabled
1736 *
1737 * Execute regulator_disable() on the regulator after a delay.  This
1738 * is intended for use with devices that require some time to quiesce.
1739 *
1740 * NOTE: this will only disable the regulator output if no other consumer
1741 * devices have it enabled, the regulator device supports disabling and
1742 * machine constraints permit this operation.
1743 */
1744int regulator_disable_deferred(struct regulator *regulator, int ms)
1745{
1746	struct regulator_dev *rdev = regulator->rdev;
1747	int ret;
1748
1749	if (regulator->always_on)
1750		return 0;
1751
1752	if (!ms)
1753		return regulator_disable(regulator);
1754
1755	mutex_lock(&rdev->mutex);
1756	rdev->deferred_disables++;
1757	mutex_unlock(&rdev->mutex);
1758
1759	ret = schedule_delayed_work(&rdev->disable_work,
1760				    msecs_to_jiffies(ms));
1761	if (ret < 0)
1762		return ret;
1763	else
1764		return 0;
1765}
1766EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1767
1768/**
1769 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1770 *
1771 * @rdev: regulator to operate on
1772 *
1773 * Regulators that use regmap for their register I/O can set the
1774 * enable_reg and enable_mask fields in their descriptor and then use
1775 * this as their is_enabled operation, saving some code.
1776 */
1777int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1778{
1779	unsigned int val;
1780	int ret;
1781
1782	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1783	if (ret != 0)
1784		return ret;
1785
1786	return (val & rdev->desc->enable_mask) != 0;
1787}
1788EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1789
1790/**
1791 * regulator_enable_regmap - standard enable() for regmap users
1792 *
1793 * @rdev: regulator to operate on
1794 *
1795 * Regulators that use regmap for their register I/O can set the
1796 * enable_reg and enable_mask fields in their descriptor and then use
1797 * this as their enable() operation, saving some code.
1798 */
1799int regulator_enable_regmap(struct regulator_dev *rdev)
1800{
1801	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1802				  rdev->desc->enable_mask,
1803				  rdev->desc->enable_mask);
1804}
1805EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1806
1807/**
1808 * regulator_disable_regmap - standard disable() for regmap users
1809 *
1810 * @rdev: regulator to operate on
1811 *
1812 * Regulators that use regmap for their register I/O can set the
1813 * enable_reg and enable_mask fields in their descriptor and then use
1814 * this as their disable() operation, saving some code.
1815 */
1816int regulator_disable_regmap(struct regulator_dev *rdev)
1817{
1818	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1819				  rdev->desc->enable_mask, 0);
1820}
1821EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1822
1823static int _regulator_is_enabled(struct regulator_dev *rdev)
1824{
1825	/* A GPIO control always takes precedence */
1826	if (rdev->ena_gpio)
1827		return rdev->ena_gpio_state;
1828
1829	/* If we don't know then assume that the regulator is always on */
1830	if (!rdev->desc->ops->is_enabled)
1831		return 1;
1832
1833	return rdev->desc->ops->is_enabled(rdev);
1834}
1835
1836/**
1837 * regulator_is_enabled - is the regulator output enabled
1838 * @regulator: regulator source
1839 *
1840 * Returns positive if the regulator driver backing the source/client
1841 * has requested that the device be enabled, zero if it hasn't, else a
1842 * negative errno code.
1843 *
1844 * Note that the device backing this regulator handle can have multiple
1845 * users, so it might be enabled even if regulator_enable() was never
1846 * called for this particular source.
1847 */
1848int regulator_is_enabled(struct regulator *regulator)
1849{
1850	int ret;
1851
1852	if (regulator->always_on)
1853		return 1;
1854
1855	mutex_lock(&regulator->rdev->mutex);
1856	ret = _regulator_is_enabled(regulator->rdev);
1857	mutex_unlock(&regulator->rdev->mutex);
1858
1859	return ret;
1860}
1861EXPORT_SYMBOL_GPL(regulator_is_enabled);
1862
1863/**
1864 * regulator_count_voltages - count regulator_list_voltage() selectors
1865 * @regulator: regulator source
1866 *
1867 * Returns number of selectors, or negative errno.  Selectors are
1868 * numbered starting at zero, and typically correspond to bitfields
1869 * in hardware registers.
1870 */
1871int regulator_count_voltages(struct regulator *regulator)
1872{
1873	struct regulator_dev	*rdev = regulator->rdev;
1874
1875	return rdev->desc->n_voltages ? : -EINVAL;
1876}
1877EXPORT_SYMBOL_GPL(regulator_count_voltages);
1878
1879/**
1880 * regulator_list_voltage_linear - List voltages with simple calculation
1881 *
1882 * @rdev: Regulator device
1883 * @selector: Selector to convert into a voltage
1884 *
1885 * Regulators with a simple linear mapping between voltages and
1886 * selectors can set min_uV and uV_step in the regulator descriptor
1887 * and then use this function as their list_voltage() operation,
1888 */
1889int regulator_list_voltage_linear(struct regulator_dev *rdev,
1890				  unsigned int selector)
1891{
1892	if (selector >= rdev->desc->n_voltages)
1893		return -EINVAL;
1894
1895	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1896}
1897EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1898
1899/**
1900 * regulator_list_voltage_table - List voltages with table based mapping
1901 *
1902 * @rdev: Regulator device
1903 * @selector: Selector to convert into a voltage
1904 *
1905 * Regulators with table based mapping between voltages and
1906 * selectors can set volt_table in the regulator descriptor
1907 * and then use this function as their list_voltage() operation.
1908 */
1909int regulator_list_voltage_table(struct regulator_dev *rdev,
1910				 unsigned int selector)
1911{
1912	if (!rdev->desc->volt_table) {
1913		BUG_ON(!rdev->desc->volt_table);
1914		return -EINVAL;
1915	}
1916
1917	if (selector >= rdev->desc->n_voltages)
1918		return -EINVAL;
1919
1920	return rdev->desc->volt_table[selector];
1921}
1922EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1923
1924/**
1925 * regulator_list_voltage - enumerate supported voltages
1926 * @regulator: regulator source
1927 * @selector: identify voltage to list
1928 * Context: can sleep
1929 *
1930 * Returns a voltage that can be passed to @regulator_set_voltage(),
1931 * zero if this selector code can't be used on this system, or a
1932 * negative errno.
1933 */
1934int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1935{
1936	struct regulator_dev	*rdev = regulator->rdev;
1937	struct regulator_ops	*ops = rdev->desc->ops;
1938	int			ret;
1939
1940	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1941		return -EINVAL;
1942
1943	mutex_lock(&rdev->mutex);
1944	ret = ops->list_voltage(rdev, selector);
1945	mutex_unlock(&rdev->mutex);
1946
1947	if (ret > 0) {
1948		if (ret < rdev->constraints->min_uV)
1949			ret = 0;
1950		else if (ret > rdev->constraints->max_uV)
1951			ret = 0;
1952	}
1953
1954	return ret;
1955}
1956EXPORT_SYMBOL_GPL(regulator_list_voltage);
1957
1958/**
1959 * regulator_is_supported_voltage - check if a voltage range can be supported
1960 *
1961 * @regulator: Regulator to check.
1962 * @min_uV: Minimum required voltage in uV.
1963 * @max_uV: Maximum required voltage in uV.
1964 *
1965 * Returns a boolean or a negative error code.
1966 */
1967int regulator_is_supported_voltage(struct regulator *regulator,
1968				   int min_uV, int max_uV)
1969{
1970	struct regulator_dev *rdev = regulator->rdev;
1971	int i, voltages, ret;
1972
1973	/* If we can't change voltage check the current voltage */
1974	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1975		ret = regulator_get_voltage(regulator);
1976		if (ret >= 0)
1977			return (min_uV >= ret && ret <= max_uV);
1978		else
1979			return ret;
1980	}
1981
1982	ret = regulator_count_voltages(regulator);
1983	if (ret < 0)
1984		return ret;
1985	voltages = ret;
1986
1987	for (i = 0; i < voltages; i++) {
1988		ret = regulator_list_voltage(regulator, i);
1989
1990		if (ret >= min_uV && ret <= max_uV)
1991			return 1;
1992	}
1993
1994	return 0;
1995}
1996EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1997
1998/**
1999 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2000 *
2001 * @rdev: regulator to operate on
2002 *
2003 * Regulators that use regmap for their register I/O can set the
2004 * vsel_reg and vsel_mask fields in their descriptor and then use this
2005 * as their get_voltage_vsel operation, saving some code.
2006 */
2007int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2008{
2009	unsigned int val;
2010	int ret;
2011
2012	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2013	if (ret != 0)
2014		return ret;
2015
2016	val &= rdev->desc->vsel_mask;
2017	val >>= ffs(rdev->desc->vsel_mask) - 1;
2018
2019	return val;
2020}
2021EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2022
2023/**
2024 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2025 *
2026 * @rdev: regulator to operate on
2027 * @sel: Selector to set
2028 *
2029 * Regulators that use regmap for their register I/O can set the
2030 * vsel_reg and vsel_mask fields in their descriptor and then use this
2031 * as their set_voltage_vsel operation, saving some code.
2032 */
2033int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2034{
2035	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2036
2037	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2038				  rdev->desc->vsel_mask, sel);
2039}
2040EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2041
2042/**
2043 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2044 *
2045 * @rdev: Regulator to operate on
2046 * @min_uV: Lower bound for voltage
2047 * @max_uV: Upper bound for voltage
2048 *
2049 * Drivers implementing set_voltage_sel() and list_voltage() can use
2050 * this as their map_voltage() operation.  It will find a suitable
2051 * voltage by calling list_voltage() until it gets something in bounds
2052 * for the requested voltages.
2053 */
2054int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2055				  int min_uV, int max_uV)
2056{
2057	int best_val = INT_MAX;
2058	int selector = 0;
2059	int i, ret;
2060
2061	/* Find the smallest voltage that falls within the specified
2062	 * range.
2063	 */
2064	for (i = 0; i < rdev->desc->n_voltages; i++) {
2065		ret = rdev->desc->ops->list_voltage(rdev, i);
2066		if (ret < 0)
2067			continue;
2068
2069		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2070			best_val = ret;
2071			selector = i;
2072		}
2073	}
2074
2075	if (best_val != INT_MAX)
2076		return selector;
2077	else
2078		return -EINVAL;
2079}
2080EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2081
2082/**
2083 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2084 *
2085 * @rdev: Regulator to operate on
2086 * @min_uV: Lower bound for voltage
2087 * @max_uV: Upper bound for voltage
2088 *
2089 * Drivers providing min_uV and uV_step in their regulator_desc can
2090 * use this as their map_voltage() operation.
2091 */
2092int regulator_map_voltage_linear(struct regulator_dev *rdev,
2093				 int min_uV, int max_uV)
2094{
2095	int ret, voltage;
2096
2097	/* Allow uV_step to be 0 for fixed voltage */
2098	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2099		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2100			return 0;
2101		else
2102			return -EINVAL;
2103	}
2104
2105	if (!rdev->desc->uV_step) {
2106		BUG_ON(!rdev->desc->uV_step);
2107		return -EINVAL;
2108	}
2109
2110	if (min_uV < rdev->desc->min_uV)
2111		min_uV = rdev->desc->min_uV;
2112
2113	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2114	if (ret < 0)
2115		return ret;
2116
2117	/* Map back into a voltage to verify we're still in bounds */
2118	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2119	if (voltage < min_uV || voltage > max_uV)
2120		return -EINVAL;
2121
2122	return ret;
2123}
2124EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2125
2126static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2127				     int min_uV, int max_uV)
2128{
2129	int ret;
2130	int delay = 0;
2131	int best_val = 0;
2132	unsigned int selector;
2133	int old_selector = -1;
2134
2135	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2136
2137	min_uV += rdev->constraints->uV_offset;
2138	max_uV += rdev->constraints->uV_offset;
2139
2140	/*
2141	 * If we can't obtain the old selector there is not enough
2142	 * info to call set_voltage_time_sel().
2143	 */
2144	if (_regulator_is_enabled(rdev) &&
2145	    rdev->desc->ops->set_voltage_time_sel &&
2146	    rdev->desc->ops->get_voltage_sel) {
2147		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2148		if (old_selector < 0)
2149			return old_selector;
2150	}
2151
2152	if (rdev->desc->ops->set_voltage) {
2153		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2154						   &selector);
2155
2156		if (ret >= 0) {
2157			if (rdev->desc->ops->list_voltage)
2158				best_val = rdev->desc->ops->list_voltage(rdev,
2159									 selector);
2160			else
2161				best_val = _regulator_get_voltage(rdev);
2162		}
2163
2164	} else if (rdev->desc->ops->set_voltage_sel) {
2165		if (rdev->desc->ops->map_voltage) {
2166			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2167							   max_uV);
2168		} else {
2169			if (rdev->desc->ops->list_voltage ==
2170			    regulator_list_voltage_linear)
2171				ret = regulator_map_voltage_linear(rdev,
2172								min_uV, max_uV);
2173			else
2174				ret = regulator_map_voltage_iterate(rdev,
2175								min_uV, max_uV);
2176		}
2177
2178		if (ret >= 0) {
2179			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2180			if (min_uV <= best_val && max_uV >= best_val) {
2181				selector = ret;
2182				ret = rdev->desc->ops->set_voltage_sel(rdev,
2183								       ret);
2184			} else {
2185				ret = -EINVAL;
2186			}
2187		}
2188	} else {
2189		ret = -EINVAL;
2190	}
2191
2192	/* Call set_voltage_time_sel if successfully obtained old_selector */
2193	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2194	    rdev->desc->ops->set_voltage_time_sel) {
2195
2196		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2197						old_selector, selector);
2198		if (delay < 0) {
2199			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2200				  delay);
2201			delay = 0;
2202		}
2203
2204		/* Insert any necessary delays */
2205		if (delay >= 1000) {
2206			mdelay(delay / 1000);
2207			udelay(delay % 1000);
2208		} else if (delay) {
2209			udelay(delay);
2210		}
2211	}
2212
2213	if (ret == 0 && best_val >= 0) {
2214		unsigned long data = best_val;
2215
2216		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2217				     (void *)data);
2218	}
2219
2220	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2221
2222	return ret;
2223}
2224
2225/**
2226 * regulator_set_voltage - set regulator output voltage
2227 * @regulator: regulator source
2228 * @min_uV: Minimum required voltage in uV
2229 * @max_uV: Maximum acceptable voltage in uV
2230 *
2231 * Sets a voltage regulator to the desired output voltage. This can be set
2232 * during any regulator state. IOW, regulator can be disabled or enabled.
2233 *
2234 * If the regulator is enabled then the voltage will change to the new value
2235 * immediately otherwise if the regulator is disabled the regulator will
2236 * output at the new voltage when enabled.
2237 *
2238 * NOTE: If the regulator is shared between several devices then the lowest
2239 * request voltage that meets the system constraints will be used.
2240 * Regulator system constraints must be set for this regulator before
2241 * calling this function otherwise this call will fail.
2242 */
2243int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2244{
2245	struct regulator_dev *rdev = regulator->rdev;
2246	int ret = 0;
2247
2248	mutex_lock(&rdev->mutex);
2249
2250	/* If we're setting the same range as last time the change
2251	 * should be a noop (some cpufreq implementations use the same
2252	 * voltage for multiple frequencies, for example).
2253	 */
2254	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2255		goto out;
2256
2257	/* sanity check */
2258	if (!rdev->desc->ops->set_voltage &&
2259	    !rdev->desc->ops->set_voltage_sel) {
2260		ret = -EINVAL;
2261		goto out;
2262	}
2263
2264	/* constraints check */
2265	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2266	if (ret < 0)
2267		goto out;
2268	regulator->min_uV = min_uV;
2269	regulator->max_uV = max_uV;
2270
2271	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2272	if (ret < 0)
2273		goto out;
2274
2275	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2276
2277out:
2278	mutex_unlock(&rdev->mutex);
2279	return ret;
2280}
2281EXPORT_SYMBOL_GPL(regulator_set_voltage);
2282
2283/**
2284 * regulator_set_voltage_time - get raise/fall time
2285 * @regulator: regulator source
2286 * @old_uV: starting voltage in microvolts
2287 * @new_uV: target voltage in microvolts
2288 *
2289 * Provided with the starting and ending voltage, this function attempts to
2290 * calculate the time in microseconds required to rise or fall to this new
2291 * voltage.
2292 */
2293int regulator_set_voltage_time(struct regulator *regulator,
2294			       int old_uV, int new_uV)
2295{
2296	struct regulator_dev	*rdev = regulator->rdev;
2297	struct regulator_ops	*ops = rdev->desc->ops;
2298	int old_sel = -1;
2299	int new_sel = -1;
2300	int voltage;
2301	int i;
2302
2303	/* Currently requires operations to do this */
2304	if (!ops->list_voltage || !ops->set_voltage_time_sel
2305	    || !rdev->desc->n_voltages)
2306		return -EINVAL;
2307
2308	for (i = 0; i < rdev->desc->n_voltages; i++) {
2309		/* We only look for exact voltage matches here */
2310		voltage = regulator_list_voltage(regulator, i);
2311		if (voltage < 0)
2312			return -EINVAL;
2313		if (voltage == 0)
2314			continue;
2315		if (voltage == old_uV)
2316			old_sel = i;
2317		if (voltage == new_uV)
2318			new_sel = i;
2319	}
2320
2321	if (old_sel < 0 || new_sel < 0)
2322		return -EINVAL;
2323
2324	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2325}
2326EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2327
2328/**
2329 * regulator_set_voltage_time_sel - get raise/fall time
2330 * @rdev: regulator source device
2331 * @old_selector: selector for starting voltage
2332 * @new_selector: selector for target voltage
2333 *
2334 * Provided with the starting and target voltage selectors, this function
2335 * returns time in microseconds required to rise or fall to this new voltage
2336 *
2337 * Drivers providing ramp_delay in regulation_constraints can use this as their
2338 * set_voltage_time_sel() operation.
2339 */
2340int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2341				   unsigned int old_selector,
2342				   unsigned int new_selector)
2343{
2344	unsigned int ramp_delay = 0;
2345	int old_volt, new_volt;
2346
2347	if (rdev->constraints->ramp_delay)
2348		ramp_delay = rdev->constraints->ramp_delay;
2349	else if (rdev->desc->ramp_delay)
2350		ramp_delay = rdev->desc->ramp_delay;
2351
2352	if (ramp_delay == 0) {
2353		rdev_warn(rdev, "ramp_delay not set\n");
2354		return 0;
2355	}
2356
2357	/* sanity check */
2358	if (!rdev->desc->ops->list_voltage)
2359		return -EINVAL;
2360
2361	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2362	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2363
2364	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2365}
2366EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2367
2368/**
2369 * regulator_sync_voltage - re-apply last regulator output voltage
2370 * @regulator: regulator source
2371 *
2372 * Re-apply the last configured voltage.  This is intended to be used
2373 * where some external control source the consumer is cooperating with
2374 * has caused the configured voltage to change.
2375 */
2376int regulator_sync_voltage(struct regulator *regulator)
2377{
2378	struct regulator_dev *rdev = regulator->rdev;
2379	int ret, min_uV, max_uV;
2380
2381	mutex_lock(&rdev->mutex);
2382
2383	if (!rdev->desc->ops->set_voltage &&
2384	    !rdev->desc->ops->set_voltage_sel) {
2385		ret = -EINVAL;
2386		goto out;
2387	}
2388
2389	/* This is only going to work if we've had a voltage configured. */
2390	if (!regulator->min_uV && !regulator->max_uV) {
2391		ret = -EINVAL;
2392		goto out;
2393	}
2394
2395	min_uV = regulator->min_uV;
2396	max_uV = regulator->max_uV;
2397
2398	/* This should be a paranoia check... */
2399	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2400	if (ret < 0)
2401		goto out;
2402
2403	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2404	if (ret < 0)
2405		goto out;
2406
2407	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2408
2409out:
2410	mutex_unlock(&rdev->mutex);
2411	return ret;
2412}
2413EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2414
2415static int _regulator_get_voltage(struct regulator_dev *rdev)
2416{
2417	int sel, ret;
2418
2419	if (rdev->desc->ops->get_voltage_sel) {
2420		sel = rdev->desc->ops->get_voltage_sel(rdev);
2421		if (sel < 0)
2422			return sel;
2423		ret = rdev->desc->ops->list_voltage(rdev, sel);
2424	} else if (rdev->desc->ops->get_voltage) {
2425		ret = rdev->desc->ops->get_voltage(rdev);
2426	} else if (rdev->desc->ops->list_voltage) {
2427		ret = rdev->desc->ops->list_voltage(rdev, 0);
2428	} else {
2429		return -EINVAL;
2430	}
2431
2432	if (ret < 0)
2433		return ret;
2434	return ret - rdev->constraints->uV_offset;
2435}
2436
2437/**
2438 * regulator_get_voltage - get regulator output voltage
2439 * @regulator: regulator source
2440 *
2441 * This returns the current regulator voltage in uV.
2442 *
2443 * NOTE: If the regulator is disabled it will return the voltage value. This
2444 * function should not be used to determine regulator state.
2445 */
2446int regulator_get_voltage(struct regulator *regulator)
2447{
2448	int ret;
2449
2450	mutex_lock(&regulator->rdev->mutex);
2451
2452	ret = _regulator_get_voltage(regulator->rdev);
2453
2454	mutex_unlock(&regulator->rdev->mutex);
2455
2456	return ret;
2457}
2458EXPORT_SYMBOL_GPL(regulator_get_voltage);
2459
2460/**
2461 * regulator_set_current_limit - set regulator output current limit
2462 * @regulator: regulator source
2463 * @min_uA: Minimuum supported current in uA
2464 * @max_uA: Maximum supported current in uA
2465 *
2466 * Sets current sink to the desired output current. This can be set during
2467 * any regulator state. IOW, regulator can be disabled or enabled.
2468 *
2469 * If the regulator is enabled then the current will change to the new value
2470 * immediately otherwise if the regulator is disabled the regulator will
2471 * output at the new current when enabled.
2472 *
2473 * NOTE: Regulator system constraints must be set for this regulator before
2474 * calling this function otherwise this call will fail.
2475 */
2476int regulator_set_current_limit(struct regulator *regulator,
2477			       int min_uA, int max_uA)
2478{
2479	struct regulator_dev *rdev = regulator->rdev;
2480	int ret;
2481
2482	mutex_lock(&rdev->mutex);
2483
2484	/* sanity check */
2485	if (!rdev->desc->ops->set_current_limit) {
2486		ret = -EINVAL;
2487		goto out;
2488	}
2489
2490	/* constraints check */
2491	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2492	if (ret < 0)
2493		goto out;
2494
2495	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2496out:
2497	mutex_unlock(&rdev->mutex);
2498	return ret;
2499}
2500EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2501
2502static int _regulator_get_current_limit(struct regulator_dev *rdev)
2503{
2504	int ret;
2505
2506	mutex_lock(&rdev->mutex);
2507
2508	/* sanity check */
2509	if (!rdev->desc->ops->get_current_limit) {
2510		ret = -EINVAL;
2511		goto out;
2512	}
2513
2514	ret = rdev->desc->ops->get_current_limit(rdev);
2515out:
2516	mutex_unlock(&rdev->mutex);
2517	return ret;
2518}
2519
2520/**
2521 * regulator_get_current_limit - get regulator output current
2522 * @regulator: regulator source
2523 *
2524 * This returns the current supplied by the specified current sink in uA.
2525 *
2526 * NOTE: If the regulator is disabled it will return the current value. This
2527 * function should not be used to determine regulator state.
2528 */
2529int regulator_get_current_limit(struct regulator *regulator)
2530{
2531	return _regulator_get_current_limit(regulator->rdev);
2532}
2533EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2534
2535/**
2536 * regulator_set_mode - set regulator operating mode
2537 * @regulator: regulator source
2538 * @mode: operating mode - one of the REGULATOR_MODE constants
2539 *
2540 * Set regulator operating mode to increase regulator efficiency or improve
2541 * regulation performance.
2542 *
2543 * NOTE: Regulator system constraints must be set for this regulator before
2544 * calling this function otherwise this call will fail.
2545 */
2546int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2547{
2548	struct regulator_dev *rdev = regulator->rdev;
2549	int ret;
2550	int regulator_curr_mode;
2551
2552	mutex_lock(&rdev->mutex);
2553
2554	/* sanity check */
2555	if (!rdev->desc->ops->set_mode) {
2556		ret = -EINVAL;
2557		goto out;
2558	}
2559
2560	/* return if the same mode is requested */
2561	if (rdev->desc->ops->get_mode) {
2562		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2563		if (regulator_curr_mode == mode) {
2564			ret = 0;
2565			goto out;
2566		}
2567	}
2568
2569	/* constraints check */
2570	ret = regulator_mode_constrain(rdev, &mode);
2571	if (ret < 0)
2572		goto out;
2573
2574	ret = rdev->desc->ops->set_mode(rdev, mode);
2575out:
2576	mutex_unlock(&rdev->mutex);
2577	return ret;
2578}
2579EXPORT_SYMBOL_GPL(regulator_set_mode);
2580
2581static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2582{
2583	int ret;
2584
2585	mutex_lock(&rdev->mutex);
2586
2587	/* sanity check */
2588	if (!rdev->desc->ops->get_mode) {
2589		ret = -EINVAL;
2590		goto out;
2591	}
2592
2593	ret = rdev->desc->ops->get_mode(rdev);
2594out:
2595	mutex_unlock(&rdev->mutex);
2596	return ret;
2597}
2598
2599/**
2600 * regulator_get_mode - get regulator operating mode
2601 * @regulator: regulator source
2602 *
2603 * Get the current regulator operating mode.
2604 */
2605unsigned int regulator_get_mode(struct regulator *regulator)
2606{
2607	return _regulator_get_mode(regulator->rdev);
2608}
2609EXPORT_SYMBOL_GPL(regulator_get_mode);
2610
2611/**
2612 * regulator_set_optimum_mode - set regulator optimum operating mode
2613 * @regulator: regulator source
2614 * @uA_load: load current
2615 *
2616 * Notifies the regulator core of a new device load. This is then used by
2617 * DRMS (if enabled by constraints) to set the most efficient regulator
2618 * operating mode for the new regulator loading.
2619 *
2620 * Consumer devices notify their supply regulator of the maximum power
2621 * they will require (can be taken from device datasheet in the power
2622 * consumption tables) when they change operational status and hence power
2623 * state. Examples of operational state changes that can affect power
2624 * consumption are :-
2625 *
2626 *    o Device is opened / closed.
2627 *    o Device I/O is about to begin or has just finished.
2628 *    o Device is idling in between work.
2629 *
2630 * This information is also exported via sysfs to userspace.
2631 *
2632 * DRMS will sum the total requested load on the regulator and change
2633 * to the most efficient operating mode if platform constraints allow.
2634 *
2635 * Returns the new regulator mode or error.
2636 */
2637int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2638{
2639	struct regulator_dev *rdev = regulator->rdev;
2640	struct regulator *consumer;
2641	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2642	unsigned int mode;
2643
2644	if (rdev->supply)
2645		input_uV = regulator_get_voltage(rdev->supply);
2646
2647	mutex_lock(&rdev->mutex);
2648
2649	/*
2650	 * first check to see if we can set modes at all, otherwise just
2651	 * tell the consumer everything is OK.
2652	 */
2653	regulator->uA_load = uA_load;
2654	ret = regulator_check_drms(rdev);
2655	if (ret < 0) {
2656		ret = 0;
2657		goto out;
2658	}
2659
2660	if (!rdev->desc->ops->get_optimum_mode)
2661		goto out;
2662
2663	/*
2664	 * we can actually do this so any errors are indicators of
2665	 * potential real failure.
2666	 */
2667	ret = -EINVAL;
2668
2669	if (!rdev->desc->ops->set_mode)
2670		goto out;
2671
2672	/* get output voltage */
2673	output_uV = _regulator_get_voltage(rdev);
2674	if (output_uV <= 0) {
2675		rdev_err(rdev, "invalid output voltage found\n");
2676		goto out;
2677	}
2678
2679	/* No supply? Use constraint voltage */
2680	if (input_uV <= 0)
2681		input_uV = rdev->constraints->input_uV;
2682	if (input_uV <= 0) {
2683		rdev_err(rdev, "invalid input voltage found\n");
2684		goto out;
2685	}
2686
2687	/* calc total requested load for this regulator */
2688	list_for_each_entry(consumer, &rdev->consumer_list, list)
2689		total_uA_load += consumer->uA_load;
2690
2691	mode = rdev->desc->ops->get_optimum_mode(rdev,
2692						 input_uV, output_uV,
2693						 total_uA_load);
2694	ret = regulator_mode_constrain(rdev, &mode);
2695	if (ret < 0) {
2696		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2697			 total_uA_load, input_uV, output_uV);
2698		goto out;
2699	}
2700
2701	ret = rdev->desc->ops->set_mode(rdev, mode);
2702	if (ret < 0) {
2703		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2704		goto out;
2705	}
2706	ret = mode;
2707out:
2708	mutex_unlock(&rdev->mutex);
2709	return ret;
2710}
2711EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2712
2713/**
2714 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2715 *
2716 * @rdev: device to operate on.
2717 * @enable: state to set.
2718 */
2719int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2720{
2721	unsigned int val;
2722
2723	if (enable)
2724		val = rdev->desc->bypass_mask;
2725	else
2726		val = 0;
2727
2728	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2729				  rdev->desc->bypass_mask, val);
2730}
2731EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2732
2733/**
2734 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2735 *
2736 * @rdev: device to operate on.
2737 * @enable: current state.
2738 */
2739int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2740{
2741	unsigned int val;
2742	int ret;
2743
2744	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2745	if (ret != 0)
2746		return ret;
2747
2748	*enable = val & rdev->desc->bypass_mask;
2749
2750	return 0;
2751}
2752EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2753
2754/**
2755 * regulator_allow_bypass - allow the regulator to go into bypass mode
2756 *
2757 * @regulator: Regulator to configure
2758 * @allow: enable or disable bypass mode
2759 *
2760 * Allow the regulator to go into bypass mode if all other consumers
2761 * for the regulator also enable bypass mode and the machine
2762 * constraints allow this.  Bypass mode means that the regulator is
2763 * simply passing the input directly to the output with no regulation.
2764 */
2765int regulator_allow_bypass(struct regulator *regulator, bool enable)
2766{
2767	struct regulator_dev *rdev = regulator->rdev;
2768	int ret = 0;
2769
2770	if (!rdev->desc->ops->set_bypass)
2771		return 0;
2772
2773	if (rdev->constraints &&
2774	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2775		return 0;
2776
2777	mutex_lock(&rdev->mutex);
2778
2779	if (enable && !regulator->bypass) {
2780		rdev->bypass_count++;
2781
2782		if (rdev->bypass_count == rdev->open_count) {
2783			ret = rdev->desc->ops->set_bypass(rdev, enable);
2784			if (ret != 0)
2785				rdev->bypass_count--;
2786		}
2787
2788	} else if (!enable && regulator->bypass) {
2789		rdev->bypass_count--;
2790
2791		if (rdev->bypass_count != rdev->open_count) {
2792			ret = rdev->desc->ops->set_bypass(rdev, enable);
2793			if (ret != 0)
2794				rdev->bypass_count++;
2795		}
2796	}
2797
2798	if (ret == 0)
2799		regulator->bypass = enable;
2800
2801	mutex_unlock(&rdev->mutex);
2802
2803	return ret;
2804}
2805EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2806
2807/**
2808 * regulator_register_notifier - register regulator event notifier
2809 * @regulator: regulator source
2810 * @nb: notifier block
2811 *
2812 * Register notifier block to receive regulator events.
2813 */
2814int regulator_register_notifier(struct regulator *regulator,
2815			      struct notifier_block *nb)
2816{
2817	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2818						nb);
2819}
2820EXPORT_SYMBOL_GPL(regulator_register_notifier);
2821
2822/**
2823 * regulator_unregister_notifier - unregister regulator event notifier
2824 * @regulator: regulator source
2825 * @nb: notifier block
2826 *
2827 * Unregister regulator event notifier block.
2828 */
2829int regulator_unregister_notifier(struct regulator *regulator,
2830				struct notifier_block *nb)
2831{
2832	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2833						  nb);
2834}
2835EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2836
2837/* notify regulator consumers and downstream regulator consumers.
2838 * Note mutex must be held by caller.
2839 */
2840static void _notifier_call_chain(struct regulator_dev *rdev,
2841				  unsigned long event, void *data)
2842{
2843	/* call rdev chain first */
2844	blocking_notifier_call_chain(&rdev->notifier, event, data);
2845}
2846
2847/**
2848 * regulator_bulk_get - get multiple regulator consumers
2849 *
2850 * @dev:           Device to supply
2851 * @num_consumers: Number of consumers to register
2852 * @consumers:     Configuration of consumers; clients are stored here.
2853 *
2854 * @return 0 on success, an errno on failure.
2855 *
2856 * This helper function allows drivers to get several regulator
2857 * consumers in one operation.  If any of the regulators cannot be
2858 * acquired then any regulators that were allocated will be freed
2859 * before returning to the caller.
2860 */
2861int regulator_bulk_get(struct device *dev, int num_consumers,
2862		       struct regulator_bulk_data *consumers)
2863{
2864	int i;
2865	int ret;
2866
2867	for (i = 0; i < num_consumers; i++)
2868		consumers[i].consumer = NULL;
2869
2870	for (i = 0; i < num_consumers; i++) {
2871		consumers[i].consumer = regulator_get(dev,
2872						      consumers[i].supply);
2873		if (IS_ERR(consumers[i].consumer)) {
2874			ret = PTR_ERR(consumers[i].consumer);
2875			dev_err(dev, "Failed to get supply '%s': %d\n",
2876				consumers[i].supply, ret);
2877			consumers[i].consumer = NULL;
2878			goto err;
2879		}
2880	}
2881
2882	return 0;
2883
2884err:
2885	while (--i >= 0)
2886		regulator_put(consumers[i].consumer);
2887
2888	return ret;
2889}
2890EXPORT_SYMBOL_GPL(regulator_bulk_get);
2891
2892/**
2893 * devm_regulator_bulk_get - managed get multiple regulator consumers
2894 *
2895 * @dev:           Device to supply
2896 * @num_consumers: Number of consumers to register
2897 * @consumers:     Configuration of consumers; clients are stored here.
2898 *
2899 * @return 0 on success, an errno on failure.
2900 *
2901 * This helper function allows drivers to get several regulator
2902 * consumers in one operation with management, the regulators will
2903 * automatically be freed when the device is unbound.  If any of the
2904 * regulators cannot be acquired then any regulators that were
2905 * allocated will be freed before returning to the caller.
2906 */
2907int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2908			    struct regulator_bulk_data *consumers)
2909{
2910	int i;
2911	int ret;
2912
2913	for (i = 0; i < num_consumers; i++)
2914		consumers[i].consumer = NULL;
2915
2916	for (i = 0; i < num_consumers; i++) {
2917		consumers[i].consumer = devm_regulator_get(dev,
2918							   consumers[i].supply);
2919		if (IS_ERR(consumers[i].consumer)) {
2920			ret = PTR_ERR(consumers[i].consumer);
2921			dev_err(dev, "Failed to get supply '%s': %d\n",
2922				consumers[i].supply, ret);
2923			consumers[i].consumer = NULL;
2924			goto err;
2925		}
2926	}
2927
2928	return 0;
2929
2930err:
2931	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2932		devm_regulator_put(consumers[i].consumer);
2933
2934	return ret;
2935}
2936EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2937
2938static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2939{
2940	struct regulator_bulk_data *bulk = data;
2941
2942	bulk->ret = regulator_enable(bulk->consumer);
2943}
2944
2945/**
2946 * regulator_bulk_enable - enable multiple regulator consumers
2947 *
2948 * @num_consumers: Number of consumers
2949 * @consumers:     Consumer data; clients are stored here.
2950 * @return         0 on success, an errno on failure
2951 *
2952 * This convenience API allows consumers to enable multiple regulator
2953 * clients in a single API call.  If any consumers cannot be enabled
2954 * then any others that were enabled will be disabled again prior to
2955 * return.
2956 */
2957int regulator_bulk_enable(int num_consumers,
2958			  struct regulator_bulk_data *consumers)
2959{
2960	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2961	int i;
2962	int ret = 0;
2963
2964	for (i = 0; i < num_consumers; i++) {
2965		if (consumers[i].consumer->always_on)
2966			consumers[i].ret = 0;
2967		else
2968			async_schedule_domain(regulator_bulk_enable_async,
2969					      &consumers[i], &async_domain);
2970	}
2971
2972	async_synchronize_full_domain(&async_domain);
2973
2974	/* If any consumer failed we need to unwind any that succeeded */
2975	for (i = 0; i < num_consumers; i++) {
2976		if (consumers[i].ret != 0) {
2977			ret = consumers[i].ret;
2978			goto err;
2979		}
2980	}
2981
2982	return 0;
2983
2984err:
2985	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2986	while (--i >= 0)
2987		regulator_disable(consumers[i].consumer);
2988
2989	return ret;
2990}
2991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2992
2993/**
2994 * regulator_bulk_disable - disable multiple regulator consumers
2995 *
2996 * @num_consumers: Number of consumers
2997 * @consumers:     Consumer data; clients are stored here.
2998 * @return         0 on success, an errno on failure
2999 *
3000 * This convenience API allows consumers to disable multiple regulator
3001 * clients in a single API call.  If any consumers cannot be disabled
3002 * then any others that were disabled will be enabled again prior to
3003 * return.
3004 */
3005int regulator_bulk_disable(int num_consumers,
3006			   struct regulator_bulk_data *consumers)
3007{
3008	int i;
3009	int ret, r;
3010
3011	for (i = num_consumers - 1; i >= 0; --i) {
3012		ret = regulator_disable(consumers[i].consumer);
3013		if (ret != 0)
3014			goto err;
3015	}
3016
3017	return 0;
3018
3019err:
3020	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3021	for (++i; i < num_consumers; ++i) {
3022		r = regulator_enable(consumers[i].consumer);
3023		if (r != 0)
3024			pr_err("Failed to reename %s: %d\n",
3025			       consumers[i].supply, r);
3026	}
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3031
3032/**
3033 * regulator_bulk_force_disable - force disable multiple regulator consumers
3034 *
3035 * @num_consumers: Number of consumers
3036 * @consumers:     Consumer data; clients are stored here.
3037 * @return         0 on success, an errno on failure
3038 *
3039 * This convenience API allows consumers to forcibly disable multiple regulator
3040 * clients in a single API call.
3041 * NOTE: This should be used for situations when device damage will
3042 * likely occur if the regulators are not disabled (e.g. over temp).
3043 * Although regulator_force_disable function call for some consumers can
3044 * return error numbers, the function is called for all consumers.
3045 */
3046int regulator_bulk_force_disable(int num_consumers,
3047			   struct regulator_bulk_data *consumers)
3048{
3049	int i;
3050	int ret;
3051
3052	for (i = 0; i < num_consumers; i++)
3053		consumers[i].ret =
3054			    regulator_force_disable(consumers[i].consumer);
3055
3056	for (i = 0; i < num_consumers; i++) {
3057		if (consumers[i].ret != 0) {
3058			ret = consumers[i].ret;
3059			goto out;
3060		}
3061	}
3062
3063	return 0;
3064out:
3065	return ret;
3066}
3067EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3068
3069/**
3070 * regulator_bulk_free - free multiple regulator consumers
3071 *
3072 * @num_consumers: Number of consumers
3073 * @consumers:     Consumer data; clients are stored here.
3074 *
3075 * This convenience API allows consumers to free multiple regulator
3076 * clients in a single API call.
3077 */
3078void regulator_bulk_free(int num_consumers,
3079			 struct regulator_bulk_data *consumers)
3080{
3081	int i;
3082
3083	for (i = 0; i < num_consumers; i++) {
3084		regulator_put(consumers[i].consumer);
3085		consumers[i].consumer = NULL;
3086	}
3087}
3088EXPORT_SYMBOL_GPL(regulator_bulk_free);
3089
3090/**
3091 * regulator_notifier_call_chain - call regulator event notifier
3092 * @rdev: regulator source
3093 * @event: notifier block
3094 * @data: callback-specific data.
3095 *
3096 * Called by regulator drivers to notify clients a regulator event has
3097 * occurred. We also notify regulator clients downstream.
3098 * Note lock must be held by caller.
3099 */
3100int regulator_notifier_call_chain(struct regulator_dev *rdev,
3101				  unsigned long event, void *data)
3102{
3103	_notifier_call_chain(rdev, event, data);
3104	return NOTIFY_DONE;
3105
3106}
3107EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3108
3109/**
3110 * regulator_mode_to_status - convert a regulator mode into a status
3111 *
3112 * @mode: Mode to convert
3113 *
3114 * Convert a regulator mode into a status.
3115 */
3116int regulator_mode_to_status(unsigned int mode)
3117{
3118	switch (mode) {
3119	case REGULATOR_MODE_FAST:
3120		return REGULATOR_STATUS_FAST;
3121	case REGULATOR_MODE_NORMAL:
3122		return REGULATOR_STATUS_NORMAL;
3123	case REGULATOR_MODE_IDLE:
3124		return REGULATOR_STATUS_IDLE;
3125	case REGULATOR_MODE_STANDBY:
3126		return REGULATOR_STATUS_STANDBY;
3127	default:
3128		return REGULATOR_STATUS_UNDEFINED;
3129	}
3130}
3131EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3132
3133/*
3134 * To avoid cluttering sysfs (and memory) with useless state, only
3135 * create attributes that can be meaningfully displayed.
3136 */
3137static int add_regulator_attributes(struct regulator_dev *rdev)
3138{
3139	struct device		*dev = &rdev->dev;
3140	struct regulator_ops	*ops = rdev->desc->ops;
3141	int			status = 0;
3142
3143	/* some attributes need specific methods to be displayed */
3144	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3145	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3146	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3147		status = device_create_file(dev, &dev_attr_microvolts);
3148		if (status < 0)
3149			return status;
3150	}
3151	if (ops->get_current_limit) {
3152		status = device_create_file(dev, &dev_attr_microamps);
3153		if (status < 0)
3154			return status;
3155	}
3156	if (ops->get_mode) {
3157		status = device_create_file(dev, &dev_attr_opmode);
3158		if (status < 0)
3159			return status;
3160	}
3161	if (ops->is_enabled) {
3162		status = device_create_file(dev, &dev_attr_state);
3163		if (status < 0)
3164			return status;
3165	}
3166	if (ops->get_status) {
3167		status = device_create_file(dev, &dev_attr_status);
3168		if (status < 0)
3169			return status;
3170	}
3171	if (ops->get_bypass) {
3172		status = device_create_file(dev, &dev_attr_bypass);
3173		if (status < 0)
3174			return status;
3175	}
3176
3177	/* some attributes are type-specific */
3178	if (rdev->desc->type == REGULATOR_CURRENT) {
3179		status = device_create_file(dev, &dev_attr_requested_microamps);
3180		if (status < 0)
3181			return status;
3182	}
3183
3184	/* all the other attributes exist to support constraints;
3185	 * don't show them if there are no constraints, or if the
3186	 * relevant supporting methods are missing.
3187	 */
3188	if (!rdev->constraints)
3189		return status;
3190
3191	/* constraints need specific supporting methods */
3192	if (ops->set_voltage || ops->set_voltage_sel) {
3193		status = device_create_file(dev, &dev_attr_min_microvolts);
3194		if (status < 0)
3195			return status;
3196		status = device_create_file(dev, &dev_attr_max_microvolts);
3197		if (status < 0)
3198			return status;
3199	}
3200	if (ops->set_current_limit) {
3201		status = device_create_file(dev, &dev_attr_min_microamps);
3202		if (status < 0)
3203			return status;
3204		status = device_create_file(dev, &dev_attr_max_microamps);
3205		if (status < 0)
3206			return status;
3207	}
3208
3209	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3210	if (status < 0)
3211		return status;
3212	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3213	if (status < 0)
3214		return status;
3215	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3216	if (status < 0)
3217		return status;
3218
3219	if (ops->set_suspend_voltage) {
3220		status = device_create_file(dev,
3221				&dev_attr_suspend_standby_microvolts);
3222		if (status < 0)
3223			return status;
3224		status = device_create_file(dev,
3225				&dev_attr_suspend_mem_microvolts);
3226		if (status < 0)
3227			return status;
3228		status = device_create_file(dev,
3229				&dev_attr_suspend_disk_microvolts);
3230		if (status < 0)
3231			return status;
3232	}
3233
3234	if (ops->set_suspend_mode) {
3235		status = device_create_file(dev,
3236				&dev_attr_suspend_standby_mode);
3237		if (status < 0)
3238			return status;
3239		status = device_create_file(dev,
3240				&dev_attr_suspend_mem_mode);
3241		if (status < 0)
3242			return status;
3243		status = device_create_file(dev,
3244				&dev_attr_suspend_disk_mode);
3245		if (status < 0)
3246			return status;
3247	}
3248
3249	return status;
3250}
3251
3252static void rdev_init_debugfs(struct regulator_dev *rdev)
3253{
3254	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3255	if (!rdev->debugfs) {
3256		rdev_warn(rdev, "Failed to create debugfs directory\n");
3257		return;
3258	}
3259
3260	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3261			   &rdev->use_count);
3262	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3263			   &rdev->open_count);
3264	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3265			   &rdev->bypass_count);
3266}
3267
3268/**
3269 * regulator_register - register regulator
3270 * @regulator_desc: regulator to register
3271 * @config: runtime configuration for regulator
3272 *
3273 * Called by regulator drivers to register a regulator.
3274 * Returns 0 on success.
3275 */
3276struct regulator_dev *
3277regulator_register(const struct regulator_desc *regulator_desc,
3278		   const struct regulator_config *config)
3279{
3280	const struct regulation_constraints *constraints = NULL;
3281	const struct regulator_init_data *init_data;
3282	static atomic_t regulator_no = ATOMIC_INIT(0);
3283	struct regulator_dev *rdev;
3284	struct device *dev;
3285	int ret, i;
3286	const char *supply = NULL;
3287
3288	if (regulator_desc == NULL || config == NULL)
3289		return ERR_PTR(-EINVAL);
3290
3291	dev = config->dev;
3292	WARN_ON(!dev);
3293
3294	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3295		return ERR_PTR(-EINVAL);
3296
3297	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3298	    regulator_desc->type != REGULATOR_CURRENT)
3299		return ERR_PTR(-EINVAL);
3300
3301	/* Only one of each should be implemented */
3302	WARN_ON(regulator_desc->ops->get_voltage &&
3303		regulator_desc->ops->get_voltage_sel);
3304	WARN_ON(regulator_desc->ops->set_voltage &&
3305		regulator_desc->ops->set_voltage_sel);
3306
3307	/* If we're using selectors we must implement list_voltage. */
3308	if (regulator_desc->ops->get_voltage_sel &&
3309	    !regulator_desc->ops->list_voltage) {
3310		return ERR_PTR(-EINVAL);
3311	}
3312	if (regulator_desc->ops->set_voltage_sel &&
3313	    !regulator_desc->ops->list_voltage) {
3314		return ERR_PTR(-EINVAL);
3315	}
3316
3317	init_data = config->init_data;
3318
3319	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3320	if (rdev == NULL)
3321		return ERR_PTR(-ENOMEM);
3322
3323	mutex_lock(&regulator_list_mutex);
3324
3325	mutex_init(&rdev->mutex);
3326	rdev->reg_data = config->driver_data;
3327	rdev->owner = regulator_desc->owner;
3328	rdev->desc = regulator_desc;
3329	if (config->regmap)
3330		rdev->regmap = config->regmap;
3331	else if (dev_get_regmap(dev, NULL))
3332		rdev->regmap = dev_get_regmap(dev, NULL);
3333	else if (dev->parent)
3334		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3335	INIT_LIST_HEAD(&rdev->consumer_list);
3336	INIT_LIST_HEAD(&rdev->list);
3337	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3338	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3339
3340	/* preform any regulator specific init */
3341	if (init_data && init_data->regulator_init) {
3342		ret = init_data->regulator_init(rdev->reg_data);
3343		if (ret < 0)
3344			goto clean;
3345	}
3346
3347	/* register with sysfs */
3348	rdev->dev.class = &regulator_class;
3349	rdev->dev.of_node = config->of_node;
3350	rdev->dev.parent = dev;
3351	dev_set_name(&rdev->dev, "regulator.%d",
3352		     atomic_inc_return(&regulator_no) - 1);
3353	ret = device_register(&rdev->dev);
3354	if (ret != 0) {
3355		put_device(&rdev->dev);
3356		goto clean;
3357	}
3358
3359	dev_set_drvdata(&rdev->dev, rdev);
3360
3361	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3362		ret = gpio_request_one(config->ena_gpio,
3363				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3364				       rdev_get_name(rdev));
3365		if (ret != 0) {
3366			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3367				 config->ena_gpio, ret);
3368			goto wash;
3369		}
3370
3371		rdev->ena_gpio = config->ena_gpio;
3372		rdev->ena_gpio_invert = config->ena_gpio_invert;
3373
3374		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3375			rdev->ena_gpio_state = 1;
3376
3377		if (rdev->ena_gpio_invert)
3378			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3379	}
3380
3381	/* set regulator constraints */
3382	if (init_data)
3383		constraints = &init_data->constraints;
3384
3385	ret = set_machine_constraints(rdev, constraints);
3386	if (ret < 0)
3387		goto scrub;
3388
3389	/* add attributes supported by this regulator */
3390	ret = add_regulator_attributes(rdev);
3391	if (ret < 0)
3392		goto scrub;
3393
3394	if (init_data && init_data->supply_regulator)
3395		supply = init_data->supply_regulator;
3396	else if (regulator_desc->supply_name)
3397		supply = regulator_desc->supply_name;
3398
3399	if (supply) {
3400		struct regulator_dev *r;
3401
3402		r = regulator_dev_lookup(dev, supply, &ret);
3403
3404		if (!r) {
3405			dev_err(dev, "Failed to find supply %s\n", supply);
3406			ret = -EPROBE_DEFER;
3407			goto scrub;
3408		}
3409
3410		ret = set_supply(rdev, r);
3411		if (ret < 0)
3412			goto scrub;
3413
3414		/* Enable supply if rail is enabled */
3415		if (_regulator_is_enabled(rdev)) {
3416			ret = regulator_enable(rdev->supply);
3417			if (ret < 0)
3418				goto scrub;
3419		}
3420	}
3421
3422	/* add consumers devices */
3423	if (init_data) {
3424		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3425			ret = set_consumer_device_supply(rdev,
3426				init_data->consumer_supplies[i].dev_name,
3427				init_data->consumer_supplies[i].supply);
3428			if (ret < 0) {
3429				dev_err(dev, "Failed to set supply %s\n",
3430					init_data->consumer_supplies[i].supply);
3431				goto unset_supplies;
3432			}
3433		}
3434	}
3435
3436	list_add(&rdev->list, &regulator_list);
3437
3438	rdev_init_debugfs(rdev);
3439out:
3440	mutex_unlock(&regulator_list_mutex);
3441	return rdev;
3442
3443unset_supplies:
3444	unset_regulator_supplies(rdev);
3445
3446scrub:
3447	if (rdev->supply)
3448		regulator_put(rdev->supply);
3449	if (rdev->ena_gpio)
3450		gpio_free(rdev->ena_gpio);
3451	kfree(rdev->constraints);
3452wash:
3453	device_unregister(&rdev->dev);
3454	/* device core frees rdev */
3455	rdev = ERR_PTR(ret);
3456	goto out;
3457
3458clean:
3459	kfree(rdev);
3460	rdev = ERR_PTR(ret);
3461	goto out;
3462}
3463EXPORT_SYMBOL_GPL(regulator_register);
3464
3465/**
3466 * regulator_unregister - unregister regulator
3467 * @rdev: regulator to unregister
3468 *
3469 * Called by regulator drivers to unregister a regulator.
3470 */
3471void regulator_unregister(struct regulator_dev *rdev)
3472{
3473	if (rdev == NULL)
3474		return;
3475
3476	if (rdev->supply)
3477		regulator_put(rdev->supply);
3478	mutex_lock(&regulator_list_mutex);
3479	debugfs_remove_recursive(rdev->debugfs);
3480	flush_work(&rdev->disable_work.work);
3481	WARN_ON(rdev->open_count);
3482	unset_regulator_supplies(rdev);
3483	list_del(&rdev->list);
3484	kfree(rdev->constraints);
3485	if (rdev->ena_gpio)
3486		gpio_free(rdev->ena_gpio);
3487	device_unregister(&rdev->dev);
3488	mutex_unlock(&regulator_list_mutex);
3489}
3490EXPORT_SYMBOL_GPL(regulator_unregister);
3491
3492/**
3493 * regulator_suspend_prepare - prepare regulators for system wide suspend
3494 * @state: system suspend state
3495 *
3496 * Configure each regulator with it's suspend operating parameters for state.
3497 * This will usually be called by machine suspend code prior to supending.
3498 */
3499int regulator_suspend_prepare(suspend_state_t state)
3500{
3501	struct regulator_dev *rdev;
3502	int ret = 0;
3503
3504	/* ON is handled by regulator active state */
3505	if (state == PM_SUSPEND_ON)
3506		return -EINVAL;
3507
3508	mutex_lock(&regulator_list_mutex);
3509	list_for_each_entry(rdev, &regulator_list, list) {
3510
3511		mutex_lock(&rdev->mutex);
3512		ret = suspend_prepare(rdev, state);
3513		mutex_unlock(&rdev->mutex);
3514
3515		if (ret < 0) {
3516			rdev_err(rdev, "failed to prepare\n");
3517			goto out;
3518		}
3519	}
3520out:
3521	mutex_unlock(&regulator_list_mutex);
3522	return ret;
3523}
3524EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3525
3526/**
3527 * regulator_suspend_finish - resume regulators from system wide suspend
3528 *
3529 * Turn on regulators that might be turned off by regulator_suspend_prepare
3530 * and that should be turned on according to the regulators properties.
3531 */
3532int regulator_suspend_finish(void)
3533{
3534	struct regulator_dev *rdev;
3535	int ret = 0, error;
3536
3537	mutex_lock(&regulator_list_mutex);
3538	list_for_each_entry(rdev, &regulator_list, list) {
3539		struct regulator_ops *ops = rdev->desc->ops;
3540
3541		mutex_lock(&rdev->mutex);
3542		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3543				ops->enable) {
3544			error = ops->enable(rdev);
3545			if (error)
3546				ret = error;
3547		} else {
3548			if (!has_full_constraints)
3549				goto unlock;
3550			if (!ops->disable)
3551				goto unlock;
3552			if (!_regulator_is_enabled(rdev))
3553				goto unlock;
3554
3555			error = ops->disable(rdev);
3556			if (error)
3557				ret = error;
3558		}
3559unlock:
3560		mutex_unlock(&rdev->mutex);
3561	}
3562	mutex_unlock(&regulator_list_mutex);
3563	return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3566
3567/**
3568 * regulator_has_full_constraints - the system has fully specified constraints
3569 *
3570 * Calling this function will cause the regulator API to disable all
3571 * regulators which have a zero use count and don't have an always_on
3572 * constraint in a late_initcall.
3573 *
3574 * The intention is that this will become the default behaviour in a
3575 * future kernel release so users are encouraged to use this facility
3576 * now.
3577 */
3578void regulator_has_full_constraints(void)
3579{
3580	has_full_constraints = 1;
3581}
3582EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3583
3584/**
3585 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3586 *
3587 * Calling this function will cause the regulator API to provide a
3588 * dummy regulator to consumers if no physical regulator is found,
3589 * allowing most consumers to proceed as though a regulator were
3590 * configured.  This allows systems such as those with software
3591 * controllable regulators for the CPU core only to be brought up more
3592 * readily.
3593 */
3594void regulator_use_dummy_regulator(void)
3595{
3596	board_wants_dummy_regulator = true;
3597}
3598EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3599
3600/**
3601 * rdev_get_drvdata - get rdev regulator driver data
3602 * @rdev: regulator
3603 *
3604 * Get rdev regulator driver private data. This call can be used in the
3605 * regulator driver context.
3606 */
3607void *rdev_get_drvdata(struct regulator_dev *rdev)
3608{
3609	return rdev->reg_data;
3610}
3611EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3612
3613/**
3614 * regulator_get_drvdata - get regulator driver data
3615 * @regulator: regulator
3616 *
3617 * Get regulator driver private data. This call can be used in the consumer
3618 * driver context when non API regulator specific functions need to be called.
3619 */
3620void *regulator_get_drvdata(struct regulator *regulator)
3621{
3622	return regulator->rdev->reg_data;
3623}
3624EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3625
3626/**
3627 * regulator_set_drvdata - set regulator driver data
3628 * @regulator: regulator
3629 * @data: data
3630 */
3631void regulator_set_drvdata(struct regulator *regulator, void *data)
3632{
3633	regulator->rdev->reg_data = data;
3634}
3635EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3636
3637/**
3638 * regulator_get_id - get regulator ID
3639 * @rdev: regulator
3640 */
3641int rdev_get_id(struct regulator_dev *rdev)
3642{
3643	return rdev->desc->id;
3644}
3645EXPORT_SYMBOL_GPL(rdev_get_id);
3646
3647struct device *rdev_get_dev(struct regulator_dev *rdev)
3648{
3649	return &rdev->dev;
3650}
3651EXPORT_SYMBOL_GPL(rdev_get_dev);
3652
3653void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3654{
3655	return reg_init_data->driver_data;
3656}
3657EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3658
3659#ifdef CONFIG_DEBUG_FS
3660static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3661				    size_t count, loff_t *ppos)
3662{
3663	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3664	ssize_t len, ret = 0;
3665	struct regulator_map *map;
3666
3667	if (!buf)
3668		return -ENOMEM;
3669
3670	list_for_each_entry(map, &regulator_map_list, list) {
3671		len = snprintf(buf + ret, PAGE_SIZE - ret,
3672			       "%s -> %s.%s\n",
3673			       rdev_get_name(map->regulator), map->dev_name,
3674			       map->supply);
3675		if (len >= 0)
3676			ret += len;
3677		if (ret > PAGE_SIZE) {
3678			ret = PAGE_SIZE;
3679			break;
3680		}
3681	}
3682
3683	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3684
3685	kfree(buf);
3686
3687	return ret;
3688}
3689#endif
3690
3691static const struct file_operations supply_map_fops = {
3692#ifdef CONFIG_DEBUG_FS
3693	.read = supply_map_read_file,
3694	.llseek = default_llseek,
3695#endif
3696};
3697
3698static int __init regulator_init(void)
3699{
3700	int ret;
3701
3702	ret = class_register(&regulator_class);
3703
3704	debugfs_root = debugfs_create_dir("regulator", NULL);
3705	if (!debugfs_root)
3706		pr_warn("regulator: Failed to create debugfs directory\n");
3707
3708	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3709			    &supply_map_fops);
3710
3711	regulator_dummy_init();
3712
3713	return ret;
3714}
3715
3716/* init early to allow our consumers to complete system booting */
3717core_initcall(regulator_init);
3718
3719static int __init regulator_init_complete(void)
3720{
3721	struct regulator_dev *rdev;
3722	struct regulator_ops *ops;
3723	struct regulation_constraints *c;
3724	int enabled, ret;
3725
3726	/*
3727	 * Since DT doesn't provide an idiomatic mechanism for
3728	 * enabling full constraints and since it's much more natural
3729	 * with DT to provide them just assume that a DT enabled
3730	 * system has full constraints.
3731	 */
3732	if (of_have_populated_dt())
3733		has_full_constraints = true;
3734
3735	mutex_lock(&regulator_list_mutex);
3736
3737	/* If we have a full configuration then disable any regulators
3738	 * which are not in use or always_on.  This will become the
3739	 * default behaviour in the future.
3740	 */
3741	list_for_each_entry(rdev, &regulator_list, list) {
3742		ops = rdev->desc->ops;
3743		c = rdev->constraints;
3744
3745		if (!ops->disable || (c && c->always_on))
3746			continue;
3747
3748		mutex_lock(&rdev->mutex);
3749
3750		if (rdev->use_count)
3751			goto unlock;
3752
3753		/* If we can't read the status assume it's on. */
3754		if (ops->is_enabled)
3755			enabled = ops->is_enabled(rdev);
3756		else
3757			enabled = 1;
3758
3759		if (!enabled)
3760			goto unlock;
3761
3762		if (has_full_constraints) {
3763			/* We log since this may kill the system if it
3764			 * goes wrong. */
3765			rdev_info(rdev, "disabling\n");
3766			ret = ops->disable(rdev);
3767			if (ret != 0) {
3768				rdev_err(rdev, "couldn't disable: %d\n", ret);
3769			}
3770		} else {
3771			/* The intention is that in future we will
3772			 * assume that full constraints are provided
3773			 * so warn even if we aren't going to do
3774			 * anything here.
3775			 */
3776			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3777		}
3778
3779unlock:
3780		mutex_unlock(&rdev->mutex);
3781	}
3782
3783	mutex_unlock(&regulator_list_mutex);
3784
3785	return 0;
3786}
3787late_initcall(regulator_init_complete);
3788