core.c revision bcda432194fc7c4a2dbe9d7146f00b4b21e66c8c
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/of.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57#ifdef CONFIG_DEBUG_FS
58static struct dentry *debugfs_root;
59#endif
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78struct regulator {
79	struct device *dev;
80	struct list_head list;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87#ifdef CONFIG_DEBUG_FS
88	struct dentry *debugfs;
89#endif
90};
91
92static int _regulator_is_enabled(struct regulator_dev *rdev);
93static int _regulator_disable(struct regulator_dev *rdev);
94static int _regulator_get_voltage(struct regulator_dev *rdev);
95static int _regulator_get_current_limit(struct regulator_dev *rdev);
96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97static void _notifier_call_chain(struct regulator_dev *rdev,
98				  unsigned long event, void *data);
99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100				     int min_uV, int max_uV);
101static struct regulator *create_regulator(struct regulator_dev *rdev,
102					  struct device *dev,
103					  const char *supply_name);
104
105static const char *rdev_get_name(struct regulator_dev *rdev)
106{
107	if (rdev->constraints && rdev->constraints->name)
108		return rdev->constraints->name;
109	else if (rdev->desc->name)
110		return rdev->desc->name;
111	else
112		return "";
113}
114
115/* gets the regulator for a given consumer device */
116static struct regulator *get_device_regulator(struct device *dev)
117{
118	struct regulator *regulator = NULL;
119	struct regulator_dev *rdev;
120
121	mutex_lock(&regulator_list_mutex);
122	list_for_each_entry(rdev, &regulator_list, list) {
123		mutex_lock(&rdev->mutex);
124		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125			if (regulator->dev == dev) {
126				mutex_unlock(&rdev->mutex);
127				mutex_unlock(&regulator_list_mutex);
128				return regulator;
129			}
130		}
131		mutex_unlock(&rdev->mutex);
132	}
133	mutex_unlock(&regulator_list_mutex);
134	return NULL;
135}
136
137/**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147{
148	struct device_node *regnode = NULL;
149	char prop_name[32]; /* 32 is max size of property name */
150
151	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153	snprintf(prop_name, 32, "%s-supply", supply);
154	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156	if (!regnode) {
157		dev_warn(dev, "%s property in node %s references invalid phandle",
158				prop_name, dev->of_node->full_name);
159		return NULL;
160	}
161	return regnode;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV)
216		return -EINVAL;
217
218	return 0;
219}
220
221/* current constraint check */
222static int regulator_check_current_limit(struct regulator_dev *rdev,
223					int *min_uA, int *max_uA)
224{
225	BUG_ON(*min_uA > *max_uA);
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	if (*max_uA > rdev->constraints->max_uA)
237		*max_uA = rdev->constraints->max_uA;
238	if (*min_uA < rdev->constraints->min_uA)
239		*min_uA = rdev->constraints->min_uA;
240
241	if (*min_uA > *max_uA) {
242		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243			 *min_uA, *max_uA);
244		return -EINVAL;
245	}
246
247	return 0;
248}
249
250/* operating mode constraint check */
251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252{
253	switch (*mode) {
254	case REGULATOR_MODE_FAST:
255	case REGULATOR_MODE_NORMAL:
256	case REGULATOR_MODE_IDLE:
257	case REGULATOR_MODE_STANDBY:
258		break;
259	default:
260		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261		return -EINVAL;
262	}
263
264	if (!rdev->constraints) {
265		rdev_err(rdev, "no constraints\n");
266		return -ENODEV;
267	}
268	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269		rdev_err(rdev, "operation not allowed\n");
270		return -EPERM;
271	}
272
273	/* The modes are bitmasks, the most power hungry modes having
274	 * the lowest values. If the requested mode isn't supported
275	 * try higher modes. */
276	while (*mode) {
277		if (rdev->constraints->valid_modes_mask & *mode)
278			return 0;
279		*mode /= 2;
280	}
281
282	return -EINVAL;
283}
284
285/* dynamic regulator mode switching constraint check */
286static int regulator_check_drms(struct regulator_dev *rdev)
287{
288	if (!rdev->constraints) {
289		rdev_err(rdev, "no constraints\n");
290		return -ENODEV;
291	}
292	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293		rdev_err(rdev, "operation not allowed\n");
294		return -EPERM;
295	}
296	return 0;
297}
298
299static ssize_t device_requested_uA_show(struct device *dev,
300			     struct device_attribute *attr, char *buf)
301{
302	struct regulator *regulator;
303
304	regulator = get_device_regulator(dev);
305	if (regulator == NULL)
306		return 0;
307
308	return sprintf(buf, "%d\n", regulator->uA_load);
309}
310
311static ssize_t regulator_uV_show(struct device *dev,
312				struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325static ssize_t regulator_uA_show(struct device *dev,
326				struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331}
332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334static ssize_t regulator_name_show(struct device *dev,
335			     struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340}
341
342static ssize_t regulator_print_opmode(char *buf, int mode)
343{
344	switch (mode) {
345	case REGULATOR_MODE_FAST:
346		return sprintf(buf, "fast\n");
347	case REGULATOR_MODE_NORMAL:
348		return sprintf(buf, "normal\n");
349	case REGULATOR_MODE_IDLE:
350		return sprintf(buf, "idle\n");
351	case REGULATOR_MODE_STANDBY:
352		return sprintf(buf, "standby\n");
353	}
354	return sprintf(buf, "unknown\n");
355}
356
357static ssize_t regulator_opmode_show(struct device *dev,
358				    struct device_attribute *attr, char *buf)
359{
360	struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363}
364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366static ssize_t regulator_print_state(char *buf, int state)
367{
368	if (state > 0)
369		return sprintf(buf, "enabled\n");
370	else if (state == 0)
371		return sprintf(buf, "disabled\n");
372	else
373		return sprintf(buf, "unknown\n");
374}
375
376static ssize_t regulator_state_show(struct device *dev,
377				   struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	ssize_t ret;
381
382	mutex_lock(&rdev->mutex);
383	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384	mutex_unlock(&rdev->mutex);
385
386	return ret;
387}
388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390static ssize_t regulator_status_show(struct device *dev,
391				   struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	int status;
395	char *label;
396
397	status = rdev->desc->ops->get_status(rdev);
398	if (status < 0)
399		return status;
400
401	switch (status) {
402	case REGULATOR_STATUS_OFF:
403		label = "off";
404		break;
405	case REGULATOR_STATUS_ON:
406		label = "on";
407		break;
408	case REGULATOR_STATUS_ERROR:
409		label = "error";
410		break;
411	case REGULATOR_STATUS_FAST:
412		label = "fast";
413		break;
414	case REGULATOR_STATUS_NORMAL:
415		label = "normal";
416		break;
417	case REGULATOR_STATUS_IDLE:
418		label = "idle";
419		break;
420	case REGULATOR_STATUS_STANDBY:
421		label = "standby";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t regulator_num_users_show(struct device *dev,
495				      struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500
501static ssize_t regulator_type_show(struct device *dev,
502				  struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611
612/*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616static struct device_attribute regulator_dev_attrs[] = {
617	__ATTR(name, 0444, regulator_name_show, NULL),
618	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619	__ATTR(type, 0444, regulator_type_show, NULL),
620	__ATTR_NULL,
621};
622
623static void regulator_dev_release(struct device *dev)
624{
625	struct regulator_dev *rdev = dev_get_drvdata(dev);
626	kfree(rdev);
627}
628
629static struct class regulator_class = {
630	.name = "regulator",
631	.dev_release = regulator_dev_release,
632	.dev_attrs = regulator_dev_attrs,
633};
634
635/* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637static void drms_uA_update(struct regulator_dev *rdev)
638{
639	struct regulator *sibling;
640	int current_uA = 0, output_uV, input_uV, err;
641	unsigned int mode;
642
643	err = regulator_check_drms(rdev);
644	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645	    (!rdev->desc->ops->get_voltage &&
646	     !rdev->desc->ops->get_voltage_sel) ||
647	    !rdev->desc->ops->set_mode)
648		return;
649
650	/* get output voltage */
651	output_uV = _regulator_get_voltage(rdev);
652	if (output_uV <= 0)
653		return;
654
655	/* get input voltage */
656	input_uV = 0;
657	if (rdev->supply)
658		input_uV = _regulator_get_voltage(rdev);
659	if (input_uV <= 0)
660		input_uV = rdev->constraints->input_uV;
661	if (input_uV <= 0)
662		return;
663
664	/* calc total requested load */
665	list_for_each_entry(sibling, &rdev->consumer_list, list)
666		current_uA += sibling->uA_load;
667
668	/* now get the optimum mode for our new total regulator load */
669	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670						  output_uV, current_uA);
671
672	/* check the new mode is allowed */
673	err = regulator_mode_constrain(rdev, &mode);
674	if (err == 0)
675		rdev->desc->ops->set_mode(rdev, mode);
676}
677
678static int suspend_set_state(struct regulator_dev *rdev,
679	struct regulator_state *rstate)
680{
681	int ret = 0;
682	bool can_set_state;
683
684	can_set_state = rdev->desc->ops->set_suspend_enable &&
685		rdev->desc->ops->set_suspend_disable;
686
687	/* If we have no suspend mode configration don't set anything;
688	 * only warn if the driver actually makes the suspend mode
689	 * configurable.
690	 */
691	if (!rstate->enabled && !rstate->disabled) {
692		if (can_set_state)
693			rdev_warn(rdev, "No configuration\n");
694		return 0;
695	}
696
697	if (rstate->enabled && rstate->disabled) {
698		rdev_err(rdev, "invalid configuration\n");
699		return -EINVAL;
700	}
701
702	if (!can_set_state) {
703		rdev_err(rdev, "no way to set suspend state\n");
704		return -EINVAL;
705	}
706
707	if (rstate->enabled)
708		ret = rdev->desc->ops->set_suspend_enable(rdev);
709	else
710		ret = rdev->desc->ops->set_suspend_disable(rdev);
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	rdev_info(rdev, "%s\n", buf);
810}
811
812static int machine_constraints_voltage(struct regulator_dev *rdev,
813	struct regulation_constraints *constraints)
814{
815	struct regulator_ops *ops = rdev->desc->ops;
816	int ret;
817
818	/* do we need to apply the constraint voltage */
819	if (rdev->constraints->apply_uV &&
820	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821		ret = _regulator_do_set_voltage(rdev,
822						rdev->constraints->min_uV,
823						rdev->constraints->max_uV);
824		if (ret < 0) {
825			rdev_err(rdev, "failed to apply %duV constraint\n",
826				 rdev->constraints->min_uV);
827			return ret;
828		}
829	}
830
831	/* constrain machine-level voltage specs to fit
832	 * the actual range supported by this regulator.
833	 */
834	if (ops->list_voltage && rdev->desc->n_voltages) {
835		int	count = rdev->desc->n_voltages;
836		int	i;
837		int	min_uV = INT_MAX;
838		int	max_uV = INT_MIN;
839		int	cmin = constraints->min_uV;
840		int	cmax = constraints->max_uV;
841
842		/* it's safe to autoconfigure fixed-voltage supplies
843		   and the constraints are used by list_voltage. */
844		if (count == 1 && !cmin) {
845			cmin = 1;
846			cmax = INT_MAX;
847			constraints->min_uV = cmin;
848			constraints->max_uV = cmax;
849		}
850
851		/* voltage constraints are optional */
852		if ((cmin == 0) && (cmax == 0))
853			return 0;
854
855		/* else require explicit machine-level constraints */
856		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857			rdev_err(rdev, "invalid voltage constraints\n");
858			return -EINVAL;
859		}
860
861		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862		for (i = 0; i < count; i++) {
863			int	value;
864
865			value = ops->list_voltage(rdev, i);
866			if (value <= 0)
867				continue;
868
869			/* maybe adjust [min_uV..max_uV] */
870			if (value >= cmin && value < min_uV)
871				min_uV = value;
872			if (value <= cmax && value > max_uV)
873				max_uV = value;
874		}
875
876		/* final: [min_uV..max_uV] valid iff constraints valid */
877		if (max_uV < min_uV) {
878			rdev_err(rdev, "unsupportable voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* use regulator's subset of machine constraints */
883		if (constraints->min_uV < min_uV) {
884			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885				 constraints->min_uV, min_uV);
886			constraints->min_uV = min_uV;
887		}
888		if (constraints->max_uV > max_uV) {
889			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890				 constraints->max_uV, max_uV);
891			constraints->max_uV = max_uV;
892		}
893	}
894
895	return 0;
896}
897
898/**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909static int set_machine_constraints(struct regulator_dev *rdev,
910	const struct regulation_constraints *constraints)
911{
912	int ret = 0;
913	struct regulator_ops *ops = rdev->desc->ops;
914
915	if (constraints)
916		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917					    GFP_KERNEL);
918	else
919		rdev->constraints = kzalloc(sizeof(*constraints),
920					    GFP_KERNEL);
921	if (!rdev->constraints)
922		return -ENOMEM;
923
924	ret = machine_constraints_voltage(rdev, rdev->constraints);
925	if (ret != 0)
926		goto out;
927
928	/* do we need to setup our suspend state */
929	if (rdev->constraints->initial_state) {
930		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931		if (ret < 0) {
932			rdev_err(rdev, "failed to set suspend state\n");
933			goto out;
934		}
935	}
936
937	if (rdev->constraints->initial_mode) {
938		if (!ops->set_mode) {
939			rdev_err(rdev, "no set_mode operation\n");
940			ret = -EINVAL;
941			goto out;
942		}
943
944		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945		if (ret < 0) {
946			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947			goto out;
948		}
949	}
950
951	/* If the constraints say the regulator should be on at this point
952	 * and we have control then make sure it is enabled.
953	 */
954	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955	    ops->enable) {
956		ret = ops->enable(rdev);
957		if (ret < 0) {
958			rdev_err(rdev, "failed to enable\n");
959			goto out;
960		}
961	}
962
963	print_constraints(rdev);
964	return 0;
965out:
966	kfree(rdev->constraints);
967	rdev->constraints = NULL;
968	return ret;
969}
970
971/**
972 * set_supply - set regulator supply regulator
973 * @rdev: regulator name
974 * @supply_rdev: supply regulator name
975 *
976 * Called by platform initialisation code to set the supply regulator for this
977 * regulator. This ensures that a regulators supply will also be enabled by the
978 * core if it's child is enabled.
979 */
980static int set_supply(struct regulator_dev *rdev,
981		      struct regulator_dev *supply_rdev)
982{
983	int err;
984
985	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988	if (IS_ERR(rdev->supply)) {
989		err = PTR_ERR(rdev->supply);
990		rdev->supply = NULL;
991		return err;
992	}
993
994	return 0;
995}
996
997/**
998 * set_consumer_device_supply - Bind a regulator to a symbolic supply
999 * @rdev:         regulator source
1000 * @consumer_dev: device the supply applies to
1001 * @consumer_dev_name: dev_name() string for device supply applies to
1002 * @supply:       symbolic name for supply
1003 *
1004 * Allows platform initialisation code to map physical regulator
1005 * sources to symbolic names for supplies for use by devices.  Devices
1006 * should use these symbolic names to request regulators, avoiding the
1007 * need to provide board-specific regulator names as platform data.
1008 *
1009 * Only one of consumer_dev and consumer_dev_name may be specified.
1010 */
1011static int set_consumer_device_supply(struct regulator_dev *rdev,
1012	struct device *consumer_dev, const char *consumer_dev_name,
1013	const char *supply)
1014{
1015	struct regulator_map *node;
1016	int has_dev;
1017
1018	if (consumer_dev && consumer_dev_name)
1019		return -EINVAL;
1020
1021	if (!consumer_dev_name && consumer_dev)
1022		consumer_dev_name = dev_name(consumer_dev);
1023
1024	if (supply == NULL)
1025		return -EINVAL;
1026
1027	if (consumer_dev_name != NULL)
1028		has_dev = 1;
1029	else
1030		has_dev = 0;
1031
1032	list_for_each_entry(node, &regulator_map_list, list) {
1033		if (node->dev_name && consumer_dev_name) {
1034			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1035				continue;
1036		} else if (node->dev_name || consumer_dev_name) {
1037			continue;
1038		}
1039
1040		if (strcmp(node->supply, supply) != 0)
1041			continue;
1042
1043		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1044			dev_name(&node->regulator->dev),
1045			node->regulator->desc->name,
1046			supply,
1047			dev_name(&rdev->dev), rdev_get_name(rdev));
1048		return -EBUSY;
1049	}
1050
1051	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1052	if (node == NULL)
1053		return -ENOMEM;
1054
1055	node->regulator = rdev;
1056	node->supply = supply;
1057
1058	if (has_dev) {
1059		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1060		if (node->dev_name == NULL) {
1061			kfree(node);
1062			return -ENOMEM;
1063		}
1064	}
1065
1066	list_add(&node->list, &regulator_map_list);
1067	return 0;
1068}
1069
1070static void unset_regulator_supplies(struct regulator_dev *rdev)
1071{
1072	struct regulator_map *node, *n;
1073
1074	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1075		if (rdev == node->regulator) {
1076			list_del(&node->list);
1077			kfree(node->dev_name);
1078			kfree(node);
1079		}
1080	}
1081}
1082
1083#define REG_STR_SIZE	64
1084
1085static struct regulator *create_regulator(struct regulator_dev *rdev,
1086					  struct device *dev,
1087					  const char *supply_name)
1088{
1089	struct regulator *regulator;
1090	char buf[REG_STR_SIZE];
1091	int err, size;
1092
1093	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1094	if (regulator == NULL)
1095		return NULL;
1096
1097	mutex_lock(&rdev->mutex);
1098	regulator->rdev = rdev;
1099	list_add(&regulator->list, &rdev->consumer_list);
1100
1101	if (dev) {
1102		/* create a 'requested_microamps_name' sysfs entry */
1103		size = scnprintf(buf, REG_STR_SIZE,
1104				 "microamps_requested_%s-%s",
1105				 dev_name(dev), supply_name);
1106		if (size >= REG_STR_SIZE)
1107			goto overflow_err;
1108
1109		regulator->dev = dev;
1110		sysfs_attr_init(&regulator->dev_attr.attr);
1111		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1112		if (regulator->dev_attr.attr.name == NULL)
1113			goto attr_name_err;
1114
1115		regulator->dev_attr.attr.mode = 0444;
1116		regulator->dev_attr.show = device_requested_uA_show;
1117		err = device_create_file(dev, &regulator->dev_attr);
1118		if (err < 0) {
1119			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1120			goto attr_name_err;
1121		}
1122
1123		/* also add a link to the device sysfs entry */
1124		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1125				 dev->kobj.name, supply_name);
1126		if (size >= REG_STR_SIZE)
1127			goto attr_err;
1128
1129		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1130		if (regulator->supply_name == NULL)
1131			goto attr_err;
1132
1133		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1134					buf);
1135		if (err) {
1136			rdev_warn(rdev, "could not add device link %s err %d\n",
1137				  dev->kobj.name, err);
1138			goto link_name_err;
1139		}
1140	} else {
1141		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1142		if (regulator->supply_name == NULL)
1143			goto attr_err;
1144	}
1145
1146#ifdef CONFIG_DEBUG_FS
1147	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1148						rdev->debugfs);
1149	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1150		rdev_warn(rdev, "Failed to create debugfs directory\n");
1151		regulator->debugfs = NULL;
1152	} else {
1153		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1154				   &regulator->uA_load);
1155		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1156				   &regulator->min_uV);
1157		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1158				   &regulator->max_uV);
1159	}
1160#endif
1161
1162	mutex_unlock(&rdev->mutex);
1163	return regulator;
1164link_name_err:
1165	kfree(regulator->supply_name);
1166attr_err:
1167	device_remove_file(regulator->dev, &regulator->dev_attr);
1168attr_name_err:
1169	kfree(regulator->dev_attr.attr.name);
1170overflow_err:
1171	list_del(&regulator->list);
1172	kfree(regulator);
1173	mutex_unlock(&rdev->mutex);
1174	return NULL;
1175}
1176
1177static int _regulator_get_enable_time(struct regulator_dev *rdev)
1178{
1179	if (!rdev->desc->ops->enable_time)
1180		return 0;
1181	return rdev->desc->ops->enable_time(rdev);
1182}
1183
1184static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1185							 const char *supply)
1186{
1187	struct regulator_dev *r;
1188	struct device_node *node;
1189
1190	/* first do a dt based lookup */
1191	if (dev && dev->of_node) {
1192		node = of_get_regulator(dev, supply);
1193		if (node)
1194			list_for_each_entry(r, &regulator_list, list)
1195				if (r->dev.parent &&
1196					node == r->dev.of_node)
1197					return r;
1198	}
1199
1200	/* if not found, try doing it non-dt way */
1201	list_for_each_entry(r, &regulator_list, list)
1202		if (strcmp(rdev_get_name(r), supply) == 0)
1203			return r;
1204
1205	return NULL;
1206}
1207
1208/* Internal regulator request function */
1209static struct regulator *_regulator_get(struct device *dev, const char *id,
1210					int exclusive)
1211{
1212	struct regulator_dev *rdev;
1213	struct regulator_map *map;
1214	struct regulator *regulator = ERR_PTR(-ENODEV);
1215	const char *devname = NULL;
1216	int ret;
1217
1218	if (id == NULL) {
1219		pr_err("get() with no identifier\n");
1220		return regulator;
1221	}
1222
1223	if (dev)
1224		devname = dev_name(dev);
1225
1226	mutex_lock(&regulator_list_mutex);
1227
1228	rdev = regulator_dev_lookup(dev, id);
1229	if (rdev)
1230		goto found;
1231
1232	list_for_each_entry(map, &regulator_map_list, list) {
1233		/* If the mapping has a device set up it must match */
1234		if (map->dev_name &&
1235		    (!devname || strcmp(map->dev_name, devname)))
1236			continue;
1237
1238		if (strcmp(map->supply, id) == 0) {
1239			rdev = map->regulator;
1240			goto found;
1241		}
1242	}
1243
1244	if (board_wants_dummy_regulator) {
1245		rdev = dummy_regulator_rdev;
1246		goto found;
1247	}
1248
1249#ifdef CONFIG_REGULATOR_DUMMY
1250	if (!devname)
1251		devname = "deviceless";
1252
1253	/* If the board didn't flag that it was fully constrained then
1254	 * substitute in a dummy regulator so consumers can continue.
1255	 */
1256	if (!has_full_constraints) {
1257		pr_warn("%s supply %s not found, using dummy regulator\n",
1258			devname, id);
1259		rdev = dummy_regulator_rdev;
1260		goto found;
1261	}
1262#endif
1263
1264	mutex_unlock(&regulator_list_mutex);
1265	return regulator;
1266
1267found:
1268	if (rdev->exclusive) {
1269		regulator = ERR_PTR(-EPERM);
1270		goto out;
1271	}
1272
1273	if (exclusive && rdev->open_count) {
1274		regulator = ERR_PTR(-EBUSY);
1275		goto out;
1276	}
1277
1278	if (!try_module_get(rdev->owner))
1279		goto out;
1280
1281	regulator = create_regulator(rdev, dev, id);
1282	if (regulator == NULL) {
1283		regulator = ERR_PTR(-ENOMEM);
1284		module_put(rdev->owner);
1285		goto out;
1286	}
1287
1288	rdev->open_count++;
1289	if (exclusive) {
1290		rdev->exclusive = 1;
1291
1292		ret = _regulator_is_enabled(rdev);
1293		if (ret > 0)
1294			rdev->use_count = 1;
1295		else
1296			rdev->use_count = 0;
1297	}
1298
1299out:
1300	mutex_unlock(&regulator_list_mutex);
1301
1302	return regulator;
1303}
1304
1305/**
1306 * regulator_get - lookup and obtain a reference to a regulator.
1307 * @dev: device for regulator "consumer"
1308 * @id: Supply name or regulator ID.
1309 *
1310 * Returns a struct regulator corresponding to the regulator producer,
1311 * or IS_ERR() condition containing errno.
1312 *
1313 * Use of supply names configured via regulator_set_device_supply() is
1314 * strongly encouraged.  It is recommended that the supply name used
1315 * should match the name used for the supply and/or the relevant
1316 * device pins in the datasheet.
1317 */
1318struct regulator *regulator_get(struct device *dev, const char *id)
1319{
1320	return _regulator_get(dev, id, 0);
1321}
1322EXPORT_SYMBOL_GPL(regulator_get);
1323
1324/**
1325 * regulator_get_exclusive - obtain exclusive access to a regulator.
1326 * @dev: device for regulator "consumer"
1327 * @id: Supply name or regulator ID.
1328 *
1329 * Returns a struct regulator corresponding to the regulator producer,
1330 * or IS_ERR() condition containing errno.  Other consumers will be
1331 * unable to obtain this reference is held and the use count for the
1332 * regulator will be initialised to reflect the current state of the
1333 * regulator.
1334 *
1335 * This is intended for use by consumers which cannot tolerate shared
1336 * use of the regulator such as those which need to force the
1337 * regulator off for correct operation of the hardware they are
1338 * controlling.
1339 *
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged.  It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1344 */
1345struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1346{
1347	return _regulator_get(dev, id, 1);
1348}
1349EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1350
1351/**
1352 * regulator_put - "free" the regulator source
1353 * @regulator: regulator source
1354 *
1355 * Note: drivers must ensure that all regulator_enable calls made on this
1356 * regulator source are balanced by regulator_disable calls prior to calling
1357 * this function.
1358 */
1359void regulator_put(struct regulator *regulator)
1360{
1361	struct regulator_dev *rdev;
1362
1363	if (regulator == NULL || IS_ERR(regulator))
1364		return;
1365
1366	mutex_lock(&regulator_list_mutex);
1367	rdev = regulator->rdev;
1368
1369#ifdef CONFIG_DEBUG_FS
1370	debugfs_remove_recursive(regulator->debugfs);
1371#endif
1372
1373	/* remove any sysfs entries */
1374	if (regulator->dev) {
1375		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1376		device_remove_file(regulator->dev, &regulator->dev_attr);
1377		kfree(regulator->dev_attr.attr.name);
1378	}
1379	kfree(regulator->supply_name);
1380	list_del(&regulator->list);
1381	kfree(regulator);
1382
1383	rdev->open_count--;
1384	rdev->exclusive = 0;
1385
1386	module_put(rdev->owner);
1387	mutex_unlock(&regulator_list_mutex);
1388}
1389EXPORT_SYMBOL_GPL(regulator_put);
1390
1391static int _regulator_can_change_status(struct regulator_dev *rdev)
1392{
1393	if (!rdev->constraints)
1394		return 0;
1395
1396	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1397		return 1;
1398	else
1399		return 0;
1400}
1401
1402/* locks held by regulator_enable() */
1403static int _regulator_enable(struct regulator_dev *rdev)
1404{
1405	int ret, delay;
1406
1407	/* check voltage and requested load before enabling */
1408	if (rdev->constraints &&
1409	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1410		drms_uA_update(rdev);
1411
1412	if (rdev->use_count == 0) {
1413		/* The regulator may on if it's not switchable or left on */
1414		ret = _regulator_is_enabled(rdev);
1415		if (ret == -EINVAL || ret == 0) {
1416			if (!_regulator_can_change_status(rdev))
1417				return -EPERM;
1418
1419			if (!rdev->desc->ops->enable)
1420				return -EINVAL;
1421
1422			/* Query before enabling in case configuration
1423			 * dependent.  */
1424			ret = _regulator_get_enable_time(rdev);
1425			if (ret >= 0) {
1426				delay = ret;
1427			} else {
1428				rdev_warn(rdev, "enable_time() failed: %d\n",
1429					   ret);
1430				delay = 0;
1431			}
1432
1433			trace_regulator_enable(rdev_get_name(rdev));
1434
1435			/* Allow the regulator to ramp; it would be useful
1436			 * to extend this for bulk operations so that the
1437			 * regulators can ramp together.  */
1438			ret = rdev->desc->ops->enable(rdev);
1439			if (ret < 0)
1440				return ret;
1441
1442			trace_regulator_enable_delay(rdev_get_name(rdev));
1443
1444			if (delay >= 1000) {
1445				mdelay(delay / 1000);
1446				udelay(delay % 1000);
1447			} else if (delay) {
1448				udelay(delay);
1449			}
1450
1451			trace_regulator_enable_complete(rdev_get_name(rdev));
1452
1453		} else if (ret < 0) {
1454			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1455			return ret;
1456		}
1457		/* Fallthrough on positive return values - already enabled */
1458	}
1459
1460	rdev->use_count++;
1461
1462	return 0;
1463}
1464
1465/**
1466 * regulator_enable - enable regulator output
1467 * @regulator: regulator source
1468 *
1469 * Request that the regulator be enabled with the regulator output at
1470 * the predefined voltage or current value.  Calls to regulator_enable()
1471 * must be balanced with calls to regulator_disable().
1472 *
1473 * NOTE: the output value can be set by other drivers, boot loader or may be
1474 * hardwired in the regulator.
1475 */
1476int regulator_enable(struct regulator *regulator)
1477{
1478	struct regulator_dev *rdev = regulator->rdev;
1479	int ret = 0;
1480
1481	if (rdev->supply) {
1482		ret = regulator_enable(rdev->supply);
1483		if (ret != 0)
1484			return ret;
1485	}
1486
1487	mutex_lock(&rdev->mutex);
1488	ret = _regulator_enable(rdev);
1489	mutex_unlock(&rdev->mutex);
1490
1491	if (ret != 0 && rdev->supply)
1492		regulator_disable(rdev->supply);
1493
1494	return ret;
1495}
1496EXPORT_SYMBOL_GPL(regulator_enable);
1497
1498/* locks held by regulator_disable() */
1499static int _regulator_disable(struct regulator_dev *rdev)
1500{
1501	int ret = 0;
1502
1503	if (WARN(rdev->use_count <= 0,
1504		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1505		return -EIO;
1506
1507	/* are we the last user and permitted to disable ? */
1508	if (rdev->use_count == 1 &&
1509	    (rdev->constraints && !rdev->constraints->always_on)) {
1510
1511		/* we are last user */
1512		if (_regulator_can_change_status(rdev) &&
1513		    rdev->desc->ops->disable) {
1514			trace_regulator_disable(rdev_get_name(rdev));
1515
1516			ret = rdev->desc->ops->disable(rdev);
1517			if (ret < 0) {
1518				rdev_err(rdev, "failed to disable\n");
1519				return ret;
1520			}
1521
1522			trace_regulator_disable_complete(rdev_get_name(rdev));
1523
1524			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1525					     NULL);
1526		}
1527
1528		rdev->use_count = 0;
1529	} else if (rdev->use_count > 1) {
1530
1531		if (rdev->constraints &&
1532			(rdev->constraints->valid_ops_mask &
1533			REGULATOR_CHANGE_DRMS))
1534			drms_uA_update(rdev);
1535
1536		rdev->use_count--;
1537	}
1538
1539	return ret;
1540}
1541
1542/**
1543 * regulator_disable - disable regulator output
1544 * @regulator: regulator source
1545 *
1546 * Disable the regulator output voltage or current.  Calls to
1547 * regulator_enable() must be balanced with calls to
1548 * regulator_disable().
1549 *
1550 * NOTE: this will only disable the regulator output if no other consumer
1551 * devices have it enabled, the regulator device supports disabling and
1552 * machine constraints permit this operation.
1553 */
1554int regulator_disable(struct regulator *regulator)
1555{
1556	struct regulator_dev *rdev = regulator->rdev;
1557	int ret = 0;
1558
1559	mutex_lock(&rdev->mutex);
1560	ret = _regulator_disable(rdev);
1561	mutex_unlock(&rdev->mutex);
1562
1563	if (ret == 0 && rdev->supply)
1564		regulator_disable(rdev->supply);
1565
1566	return ret;
1567}
1568EXPORT_SYMBOL_GPL(regulator_disable);
1569
1570/* locks held by regulator_force_disable() */
1571static int _regulator_force_disable(struct regulator_dev *rdev)
1572{
1573	int ret = 0;
1574
1575	/* force disable */
1576	if (rdev->desc->ops->disable) {
1577		/* ah well, who wants to live forever... */
1578		ret = rdev->desc->ops->disable(rdev);
1579		if (ret < 0) {
1580			rdev_err(rdev, "failed to force disable\n");
1581			return ret;
1582		}
1583		/* notify other consumers that power has been forced off */
1584		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1585			REGULATOR_EVENT_DISABLE, NULL);
1586	}
1587
1588	return ret;
1589}
1590
1591/**
1592 * regulator_force_disable - force disable regulator output
1593 * @regulator: regulator source
1594 *
1595 * Forcibly disable the regulator output voltage or current.
1596 * NOTE: this *will* disable the regulator output even if other consumer
1597 * devices have it enabled. This should be used for situations when device
1598 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1599 */
1600int regulator_force_disable(struct regulator *regulator)
1601{
1602	struct regulator_dev *rdev = regulator->rdev;
1603	int ret;
1604
1605	mutex_lock(&rdev->mutex);
1606	regulator->uA_load = 0;
1607	ret = _regulator_force_disable(regulator->rdev);
1608	mutex_unlock(&rdev->mutex);
1609
1610	if (rdev->supply)
1611		while (rdev->open_count--)
1612			regulator_disable(rdev->supply);
1613
1614	return ret;
1615}
1616EXPORT_SYMBOL_GPL(regulator_force_disable);
1617
1618static void regulator_disable_work(struct work_struct *work)
1619{
1620	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1621						  disable_work.work);
1622	int count, i, ret;
1623
1624	mutex_lock(&rdev->mutex);
1625
1626	BUG_ON(!rdev->deferred_disables);
1627
1628	count = rdev->deferred_disables;
1629	rdev->deferred_disables = 0;
1630
1631	for (i = 0; i < count; i++) {
1632		ret = _regulator_disable(rdev);
1633		if (ret != 0)
1634			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1635	}
1636
1637	mutex_unlock(&rdev->mutex);
1638
1639	if (rdev->supply) {
1640		for (i = 0; i < count; i++) {
1641			ret = regulator_disable(rdev->supply);
1642			if (ret != 0) {
1643				rdev_err(rdev,
1644					 "Supply disable failed: %d\n", ret);
1645			}
1646		}
1647	}
1648}
1649
1650/**
1651 * regulator_disable_deferred - disable regulator output with delay
1652 * @regulator: regulator source
1653 * @ms: miliseconds until the regulator is disabled
1654 *
1655 * Execute regulator_disable() on the regulator after a delay.  This
1656 * is intended for use with devices that require some time to quiesce.
1657 *
1658 * NOTE: this will only disable the regulator output if no other consumer
1659 * devices have it enabled, the regulator device supports disabling and
1660 * machine constraints permit this operation.
1661 */
1662int regulator_disable_deferred(struct regulator *regulator, int ms)
1663{
1664	struct regulator_dev *rdev = regulator->rdev;
1665	int ret;
1666
1667	mutex_lock(&rdev->mutex);
1668	rdev->deferred_disables++;
1669	mutex_unlock(&rdev->mutex);
1670
1671	ret = schedule_delayed_work(&rdev->disable_work,
1672				    msecs_to_jiffies(ms));
1673	if (ret < 0)
1674		return ret;
1675	else
1676		return 0;
1677}
1678EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1679
1680static int _regulator_is_enabled(struct regulator_dev *rdev)
1681{
1682	/* If we don't know then assume that the regulator is always on */
1683	if (!rdev->desc->ops->is_enabled)
1684		return 1;
1685
1686	return rdev->desc->ops->is_enabled(rdev);
1687}
1688
1689/**
1690 * regulator_is_enabled - is the regulator output enabled
1691 * @regulator: regulator source
1692 *
1693 * Returns positive if the regulator driver backing the source/client
1694 * has requested that the device be enabled, zero if it hasn't, else a
1695 * negative errno code.
1696 *
1697 * Note that the device backing this regulator handle can have multiple
1698 * users, so it might be enabled even if regulator_enable() was never
1699 * called for this particular source.
1700 */
1701int regulator_is_enabled(struct regulator *regulator)
1702{
1703	int ret;
1704
1705	mutex_lock(&regulator->rdev->mutex);
1706	ret = _regulator_is_enabled(regulator->rdev);
1707	mutex_unlock(&regulator->rdev->mutex);
1708
1709	return ret;
1710}
1711EXPORT_SYMBOL_GPL(regulator_is_enabled);
1712
1713/**
1714 * regulator_count_voltages - count regulator_list_voltage() selectors
1715 * @regulator: regulator source
1716 *
1717 * Returns number of selectors, or negative errno.  Selectors are
1718 * numbered starting at zero, and typically correspond to bitfields
1719 * in hardware registers.
1720 */
1721int regulator_count_voltages(struct regulator *regulator)
1722{
1723	struct regulator_dev	*rdev = regulator->rdev;
1724
1725	return rdev->desc->n_voltages ? : -EINVAL;
1726}
1727EXPORT_SYMBOL_GPL(regulator_count_voltages);
1728
1729/**
1730 * regulator_list_voltage - enumerate supported voltages
1731 * @regulator: regulator source
1732 * @selector: identify voltage to list
1733 * Context: can sleep
1734 *
1735 * Returns a voltage that can be passed to @regulator_set_voltage(),
1736 * zero if this selector code can't be used on this system, or a
1737 * negative errno.
1738 */
1739int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1740{
1741	struct regulator_dev	*rdev = regulator->rdev;
1742	struct regulator_ops	*ops = rdev->desc->ops;
1743	int			ret;
1744
1745	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1746		return -EINVAL;
1747
1748	mutex_lock(&rdev->mutex);
1749	ret = ops->list_voltage(rdev, selector);
1750	mutex_unlock(&rdev->mutex);
1751
1752	if (ret > 0) {
1753		if (ret < rdev->constraints->min_uV)
1754			ret = 0;
1755		else if (ret > rdev->constraints->max_uV)
1756			ret = 0;
1757	}
1758
1759	return ret;
1760}
1761EXPORT_SYMBOL_GPL(regulator_list_voltage);
1762
1763/**
1764 * regulator_is_supported_voltage - check if a voltage range can be supported
1765 *
1766 * @regulator: Regulator to check.
1767 * @min_uV: Minimum required voltage in uV.
1768 * @max_uV: Maximum required voltage in uV.
1769 *
1770 * Returns a boolean or a negative error code.
1771 */
1772int regulator_is_supported_voltage(struct regulator *regulator,
1773				   int min_uV, int max_uV)
1774{
1775	int i, voltages, ret;
1776
1777	ret = regulator_count_voltages(regulator);
1778	if (ret < 0)
1779		return ret;
1780	voltages = ret;
1781
1782	for (i = 0; i < voltages; i++) {
1783		ret = regulator_list_voltage(regulator, i);
1784
1785		if (ret >= min_uV && ret <= max_uV)
1786			return 1;
1787	}
1788
1789	return 0;
1790}
1791EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1792
1793static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1794				     int min_uV, int max_uV)
1795{
1796	int ret;
1797	int delay = 0;
1798	unsigned int selector;
1799
1800	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1801
1802	min_uV += rdev->constraints->uV_offset;
1803	max_uV += rdev->constraints->uV_offset;
1804
1805	if (rdev->desc->ops->set_voltage) {
1806		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1807						   &selector);
1808
1809		if (rdev->desc->ops->list_voltage)
1810			selector = rdev->desc->ops->list_voltage(rdev,
1811								 selector);
1812		else
1813			selector = -1;
1814	} else if (rdev->desc->ops->set_voltage_sel) {
1815		int best_val = INT_MAX;
1816		int i;
1817
1818		selector = 0;
1819
1820		/* Find the smallest voltage that falls within the specified
1821		 * range.
1822		 */
1823		for (i = 0; i < rdev->desc->n_voltages; i++) {
1824			ret = rdev->desc->ops->list_voltage(rdev, i);
1825			if (ret < 0)
1826				continue;
1827
1828			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1829				best_val = ret;
1830				selector = i;
1831			}
1832		}
1833
1834		/*
1835		 * If we can't obtain the old selector there is not enough
1836		 * info to call set_voltage_time_sel().
1837		 */
1838		if (rdev->desc->ops->set_voltage_time_sel &&
1839		    rdev->desc->ops->get_voltage_sel) {
1840			unsigned int old_selector = 0;
1841
1842			ret = rdev->desc->ops->get_voltage_sel(rdev);
1843			if (ret < 0)
1844				return ret;
1845			old_selector = ret;
1846			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1847						old_selector, selector);
1848		}
1849
1850		if (best_val != INT_MAX) {
1851			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1852			selector = best_val;
1853		} else {
1854			ret = -EINVAL;
1855		}
1856	} else {
1857		ret = -EINVAL;
1858	}
1859
1860	/* Insert any necessary delays */
1861	if (delay >= 1000) {
1862		mdelay(delay / 1000);
1863		udelay(delay % 1000);
1864	} else if (delay) {
1865		udelay(delay);
1866	}
1867
1868	if (ret == 0)
1869		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1870				     NULL);
1871
1872	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1873
1874	return ret;
1875}
1876
1877/**
1878 * regulator_set_voltage - set regulator output voltage
1879 * @regulator: regulator source
1880 * @min_uV: Minimum required voltage in uV
1881 * @max_uV: Maximum acceptable voltage in uV
1882 *
1883 * Sets a voltage regulator to the desired output voltage. This can be set
1884 * during any regulator state. IOW, regulator can be disabled or enabled.
1885 *
1886 * If the regulator is enabled then the voltage will change to the new value
1887 * immediately otherwise if the regulator is disabled the regulator will
1888 * output at the new voltage when enabled.
1889 *
1890 * NOTE: If the regulator is shared between several devices then the lowest
1891 * request voltage that meets the system constraints will be used.
1892 * Regulator system constraints must be set for this regulator before
1893 * calling this function otherwise this call will fail.
1894 */
1895int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1896{
1897	struct regulator_dev *rdev = regulator->rdev;
1898	int ret = 0;
1899
1900	mutex_lock(&rdev->mutex);
1901
1902	/* If we're setting the same range as last time the change
1903	 * should be a noop (some cpufreq implementations use the same
1904	 * voltage for multiple frequencies, for example).
1905	 */
1906	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1907		goto out;
1908
1909	/* sanity check */
1910	if (!rdev->desc->ops->set_voltage &&
1911	    !rdev->desc->ops->set_voltage_sel) {
1912		ret = -EINVAL;
1913		goto out;
1914	}
1915
1916	/* constraints check */
1917	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1918	if (ret < 0)
1919		goto out;
1920	regulator->min_uV = min_uV;
1921	regulator->max_uV = max_uV;
1922
1923	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1924	if (ret < 0)
1925		goto out;
1926
1927	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1928
1929out:
1930	mutex_unlock(&rdev->mutex);
1931	return ret;
1932}
1933EXPORT_SYMBOL_GPL(regulator_set_voltage);
1934
1935/**
1936 * regulator_set_voltage_time - get raise/fall time
1937 * @regulator: regulator source
1938 * @old_uV: starting voltage in microvolts
1939 * @new_uV: target voltage in microvolts
1940 *
1941 * Provided with the starting and ending voltage, this function attempts to
1942 * calculate the time in microseconds required to rise or fall to this new
1943 * voltage.
1944 */
1945int regulator_set_voltage_time(struct regulator *regulator,
1946			       int old_uV, int new_uV)
1947{
1948	struct regulator_dev	*rdev = regulator->rdev;
1949	struct regulator_ops	*ops = rdev->desc->ops;
1950	int old_sel = -1;
1951	int new_sel = -1;
1952	int voltage;
1953	int i;
1954
1955	/* Currently requires operations to do this */
1956	if (!ops->list_voltage || !ops->set_voltage_time_sel
1957	    || !rdev->desc->n_voltages)
1958		return -EINVAL;
1959
1960	for (i = 0; i < rdev->desc->n_voltages; i++) {
1961		/* We only look for exact voltage matches here */
1962		voltage = regulator_list_voltage(regulator, i);
1963		if (voltage < 0)
1964			return -EINVAL;
1965		if (voltage == 0)
1966			continue;
1967		if (voltage == old_uV)
1968			old_sel = i;
1969		if (voltage == new_uV)
1970			new_sel = i;
1971	}
1972
1973	if (old_sel < 0 || new_sel < 0)
1974		return -EINVAL;
1975
1976	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1977}
1978EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1979
1980/**
1981 * regulator_sync_voltage - re-apply last regulator output voltage
1982 * @regulator: regulator source
1983 *
1984 * Re-apply the last configured voltage.  This is intended to be used
1985 * where some external control source the consumer is cooperating with
1986 * has caused the configured voltage to change.
1987 */
1988int regulator_sync_voltage(struct regulator *regulator)
1989{
1990	struct regulator_dev *rdev = regulator->rdev;
1991	int ret, min_uV, max_uV;
1992
1993	mutex_lock(&rdev->mutex);
1994
1995	if (!rdev->desc->ops->set_voltage &&
1996	    !rdev->desc->ops->set_voltage_sel) {
1997		ret = -EINVAL;
1998		goto out;
1999	}
2000
2001	/* This is only going to work if we've had a voltage configured. */
2002	if (!regulator->min_uV && !regulator->max_uV) {
2003		ret = -EINVAL;
2004		goto out;
2005	}
2006
2007	min_uV = regulator->min_uV;
2008	max_uV = regulator->max_uV;
2009
2010	/* This should be a paranoia check... */
2011	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2012	if (ret < 0)
2013		goto out;
2014
2015	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2016	if (ret < 0)
2017		goto out;
2018
2019	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2020
2021out:
2022	mutex_unlock(&rdev->mutex);
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2026
2027static int _regulator_get_voltage(struct regulator_dev *rdev)
2028{
2029	int sel, ret;
2030
2031	if (rdev->desc->ops->get_voltage_sel) {
2032		sel = rdev->desc->ops->get_voltage_sel(rdev);
2033		if (sel < 0)
2034			return sel;
2035		ret = rdev->desc->ops->list_voltage(rdev, sel);
2036	} else if (rdev->desc->ops->get_voltage) {
2037		ret = rdev->desc->ops->get_voltage(rdev);
2038	} else {
2039		return -EINVAL;
2040	}
2041
2042	if (ret < 0)
2043		return ret;
2044	return ret - rdev->constraints->uV_offset;
2045}
2046
2047/**
2048 * regulator_get_voltage - get regulator output voltage
2049 * @regulator: regulator source
2050 *
2051 * This returns the current regulator voltage in uV.
2052 *
2053 * NOTE: If the regulator is disabled it will return the voltage value. This
2054 * function should not be used to determine regulator state.
2055 */
2056int regulator_get_voltage(struct regulator *regulator)
2057{
2058	int ret;
2059
2060	mutex_lock(&regulator->rdev->mutex);
2061
2062	ret = _regulator_get_voltage(regulator->rdev);
2063
2064	mutex_unlock(&regulator->rdev->mutex);
2065
2066	return ret;
2067}
2068EXPORT_SYMBOL_GPL(regulator_get_voltage);
2069
2070/**
2071 * regulator_set_current_limit - set regulator output current limit
2072 * @regulator: regulator source
2073 * @min_uA: Minimuum supported current in uA
2074 * @max_uA: Maximum supported current in uA
2075 *
2076 * Sets current sink to the desired output current. This can be set during
2077 * any regulator state. IOW, regulator can be disabled or enabled.
2078 *
2079 * If the regulator is enabled then the current will change to the new value
2080 * immediately otherwise if the regulator is disabled the regulator will
2081 * output at the new current when enabled.
2082 *
2083 * NOTE: Regulator system constraints must be set for this regulator before
2084 * calling this function otherwise this call will fail.
2085 */
2086int regulator_set_current_limit(struct regulator *regulator,
2087			       int min_uA, int max_uA)
2088{
2089	struct regulator_dev *rdev = regulator->rdev;
2090	int ret;
2091
2092	mutex_lock(&rdev->mutex);
2093
2094	/* sanity check */
2095	if (!rdev->desc->ops->set_current_limit) {
2096		ret = -EINVAL;
2097		goto out;
2098	}
2099
2100	/* constraints check */
2101	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2102	if (ret < 0)
2103		goto out;
2104
2105	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2106out:
2107	mutex_unlock(&rdev->mutex);
2108	return ret;
2109}
2110EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2111
2112static int _regulator_get_current_limit(struct regulator_dev *rdev)
2113{
2114	int ret;
2115
2116	mutex_lock(&rdev->mutex);
2117
2118	/* sanity check */
2119	if (!rdev->desc->ops->get_current_limit) {
2120		ret = -EINVAL;
2121		goto out;
2122	}
2123
2124	ret = rdev->desc->ops->get_current_limit(rdev);
2125out:
2126	mutex_unlock(&rdev->mutex);
2127	return ret;
2128}
2129
2130/**
2131 * regulator_get_current_limit - get regulator output current
2132 * @regulator: regulator source
2133 *
2134 * This returns the current supplied by the specified current sink in uA.
2135 *
2136 * NOTE: If the regulator is disabled it will return the current value. This
2137 * function should not be used to determine regulator state.
2138 */
2139int regulator_get_current_limit(struct regulator *regulator)
2140{
2141	return _regulator_get_current_limit(regulator->rdev);
2142}
2143EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2144
2145/**
2146 * regulator_set_mode - set regulator operating mode
2147 * @regulator: regulator source
2148 * @mode: operating mode - one of the REGULATOR_MODE constants
2149 *
2150 * Set regulator operating mode to increase regulator efficiency or improve
2151 * regulation performance.
2152 *
2153 * NOTE: Regulator system constraints must be set for this regulator before
2154 * calling this function otherwise this call will fail.
2155 */
2156int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2157{
2158	struct regulator_dev *rdev = regulator->rdev;
2159	int ret;
2160	int regulator_curr_mode;
2161
2162	mutex_lock(&rdev->mutex);
2163
2164	/* sanity check */
2165	if (!rdev->desc->ops->set_mode) {
2166		ret = -EINVAL;
2167		goto out;
2168	}
2169
2170	/* return if the same mode is requested */
2171	if (rdev->desc->ops->get_mode) {
2172		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2173		if (regulator_curr_mode == mode) {
2174			ret = 0;
2175			goto out;
2176		}
2177	}
2178
2179	/* constraints check */
2180	ret = regulator_mode_constrain(rdev, &mode);
2181	if (ret < 0)
2182		goto out;
2183
2184	ret = rdev->desc->ops->set_mode(rdev, mode);
2185out:
2186	mutex_unlock(&rdev->mutex);
2187	return ret;
2188}
2189EXPORT_SYMBOL_GPL(regulator_set_mode);
2190
2191static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2192{
2193	int ret;
2194
2195	mutex_lock(&rdev->mutex);
2196
2197	/* sanity check */
2198	if (!rdev->desc->ops->get_mode) {
2199		ret = -EINVAL;
2200		goto out;
2201	}
2202
2203	ret = rdev->desc->ops->get_mode(rdev);
2204out:
2205	mutex_unlock(&rdev->mutex);
2206	return ret;
2207}
2208
2209/**
2210 * regulator_get_mode - get regulator operating mode
2211 * @regulator: regulator source
2212 *
2213 * Get the current regulator operating mode.
2214 */
2215unsigned int regulator_get_mode(struct regulator *regulator)
2216{
2217	return _regulator_get_mode(regulator->rdev);
2218}
2219EXPORT_SYMBOL_GPL(regulator_get_mode);
2220
2221/**
2222 * regulator_set_optimum_mode - set regulator optimum operating mode
2223 * @regulator: regulator source
2224 * @uA_load: load current
2225 *
2226 * Notifies the regulator core of a new device load. This is then used by
2227 * DRMS (if enabled by constraints) to set the most efficient regulator
2228 * operating mode for the new regulator loading.
2229 *
2230 * Consumer devices notify their supply regulator of the maximum power
2231 * they will require (can be taken from device datasheet in the power
2232 * consumption tables) when they change operational status and hence power
2233 * state. Examples of operational state changes that can affect power
2234 * consumption are :-
2235 *
2236 *    o Device is opened / closed.
2237 *    o Device I/O is about to begin or has just finished.
2238 *    o Device is idling in between work.
2239 *
2240 * This information is also exported via sysfs to userspace.
2241 *
2242 * DRMS will sum the total requested load on the regulator and change
2243 * to the most efficient operating mode if platform constraints allow.
2244 *
2245 * Returns the new regulator mode or error.
2246 */
2247int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2248{
2249	struct regulator_dev *rdev = regulator->rdev;
2250	struct regulator *consumer;
2251	int ret, output_uV, input_uV, total_uA_load = 0;
2252	unsigned int mode;
2253
2254	mutex_lock(&rdev->mutex);
2255
2256	/*
2257	 * first check to see if we can set modes at all, otherwise just
2258	 * tell the consumer everything is OK.
2259	 */
2260	regulator->uA_load = uA_load;
2261	ret = regulator_check_drms(rdev);
2262	if (ret < 0) {
2263		ret = 0;
2264		goto out;
2265	}
2266
2267	if (!rdev->desc->ops->get_optimum_mode)
2268		goto out;
2269
2270	/*
2271	 * we can actually do this so any errors are indicators of
2272	 * potential real failure.
2273	 */
2274	ret = -EINVAL;
2275
2276	/* get output voltage */
2277	output_uV = _regulator_get_voltage(rdev);
2278	if (output_uV <= 0) {
2279		rdev_err(rdev, "invalid output voltage found\n");
2280		goto out;
2281	}
2282
2283	/* get input voltage */
2284	input_uV = 0;
2285	if (rdev->supply)
2286		input_uV = regulator_get_voltage(rdev->supply);
2287	if (input_uV <= 0)
2288		input_uV = rdev->constraints->input_uV;
2289	if (input_uV <= 0) {
2290		rdev_err(rdev, "invalid input voltage found\n");
2291		goto out;
2292	}
2293
2294	/* calc total requested load for this regulator */
2295	list_for_each_entry(consumer, &rdev->consumer_list, list)
2296		total_uA_load += consumer->uA_load;
2297
2298	mode = rdev->desc->ops->get_optimum_mode(rdev,
2299						 input_uV, output_uV,
2300						 total_uA_load);
2301	ret = regulator_mode_constrain(rdev, &mode);
2302	if (ret < 0) {
2303		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2304			 total_uA_load, input_uV, output_uV);
2305		goto out;
2306	}
2307
2308	ret = rdev->desc->ops->set_mode(rdev, mode);
2309	if (ret < 0) {
2310		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2311		goto out;
2312	}
2313	ret = mode;
2314out:
2315	mutex_unlock(&rdev->mutex);
2316	return ret;
2317}
2318EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2319
2320/**
2321 * regulator_register_notifier - register regulator event notifier
2322 * @regulator: regulator source
2323 * @nb: notifier block
2324 *
2325 * Register notifier block to receive regulator events.
2326 */
2327int regulator_register_notifier(struct regulator *regulator,
2328			      struct notifier_block *nb)
2329{
2330	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2331						nb);
2332}
2333EXPORT_SYMBOL_GPL(regulator_register_notifier);
2334
2335/**
2336 * regulator_unregister_notifier - unregister regulator event notifier
2337 * @regulator: regulator source
2338 * @nb: notifier block
2339 *
2340 * Unregister regulator event notifier block.
2341 */
2342int regulator_unregister_notifier(struct regulator *regulator,
2343				struct notifier_block *nb)
2344{
2345	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2346						  nb);
2347}
2348EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2349
2350/* notify regulator consumers and downstream regulator consumers.
2351 * Note mutex must be held by caller.
2352 */
2353static void _notifier_call_chain(struct regulator_dev *rdev,
2354				  unsigned long event, void *data)
2355{
2356	/* call rdev chain first */
2357	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2358}
2359
2360/**
2361 * regulator_bulk_get - get multiple regulator consumers
2362 *
2363 * @dev:           Device to supply
2364 * @num_consumers: Number of consumers to register
2365 * @consumers:     Configuration of consumers; clients are stored here.
2366 *
2367 * @return 0 on success, an errno on failure.
2368 *
2369 * This helper function allows drivers to get several regulator
2370 * consumers in one operation.  If any of the regulators cannot be
2371 * acquired then any regulators that were allocated will be freed
2372 * before returning to the caller.
2373 */
2374int regulator_bulk_get(struct device *dev, int num_consumers,
2375		       struct regulator_bulk_data *consumers)
2376{
2377	int i;
2378	int ret;
2379
2380	for (i = 0; i < num_consumers; i++)
2381		consumers[i].consumer = NULL;
2382
2383	for (i = 0; i < num_consumers; i++) {
2384		consumers[i].consumer = regulator_get(dev,
2385						      consumers[i].supply);
2386		if (IS_ERR(consumers[i].consumer)) {
2387			ret = PTR_ERR(consumers[i].consumer);
2388			dev_err(dev, "Failed to get supply '%s': %d\n",
2389				consumers[i].supply, ret);
2390			consumers[i].consumer = NULL;
2391			goto err;
2392		}
2393	}
2394
2395	return 0;
2396
2397err:
2398	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2399		regulator_put(consumers[i].consumer);
2400
2401	return ret;
2402}
2403EXPORT_SYMBOL_GPL(regulator_bulk_get);
2404
2405static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2406{
2407	struct regulator_bulk_data *bulk = data;
2408
2409	bulk->ret = regulator_enable(bulk->consumer);
2410}
2411
2412/**
2413 * regulator_bulk_enable - enable multiple regulator consumers
2414 *
2415 * @num_consumers: Number of consumers
2416 * @consumers:     Consumer data; clients are stored here.
2417 * @return         0 on success, an errno on failure
2418 *
2419 * This convenience API allows consumers to enable multiple regulator
2420 * clients in a single API call.  If any consumers cannot be enabled
2421 * then any others that were enabled will be disabled again prior to
2422 * return.
2423 */
2424int regulator_bulk_enable(int num_consumers,
2425			  struct regulator_bulk_data *consumers)
2426{
2427	LIST_HEAD(async_domain);
2428	int i;
2429	int ret = 0;
2430
2431	for (i = 0; i < num_consumers; i++)
2432		async_schedule_domain(regulator_bulk_enable_async,
2433				      &consumers[i], &async_domain);
2434
2435	async_synchronize_full_domain(&async_domain);
2436
2437	/* If any consumer failed we need to unwind any that succeeded */
2438	for (i = 0; i < num_consumers; i++) {
2439		if (consumers[i].ret != 0) {
2440			ret = consumers[i].ret;
2441			goto err;
2442		}
2443	}
2444
2445	return 0;
2446
2447err:
2448	for (i = 0; i < num_consumers; i++)
2449		if (consumers[i].ret == 0)
2450			regulator_disable(consumers[i].consumer);
2451		else
2452			pr_err("Failed to enable %s: %d\n",
2453			       consumers[i].supply, consumers[i].ret);
2454
2455	return ret;
2456}
2457EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2458
2459/**
2460 * regulator_bulk_disable - disable multiple regulator consumers
2461 *
2462 * @num_consumers: Number of consumers
2463 * @consumers:     Consumer data; clients are stored here.
2464 * @return         0 on success, an errno on failure
2465 *
2466 * This convenience API allows consumers to disable multiple regulator
2467 * clients in a single API call.  If any consumers cannot be enabled
2468 * then any others that were disabled will be disabled again prior to
2469 * return.
2470 */
2471int regulator_bulk_disable(int num_consumers,
2472			   struct regulator_bulk_data *consumers)
2473{
2474	int i;
2475	int ret;
2476
2477	for (i = 0; i < num_consumers; i++) {
2478		ret = regulator_disable(consumers[i].consumer);
2479		if (ret != 0)
2480			goto err;
2481	}
2482
2483	return 0;
2484
2485err:
2486	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2487	for (--i; i >= 0; --i)
2488		regulator_enable(consumers[i].consumer);
2489
2490	return ret;
2491}
2492EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2493
2494/**
2495 * regulator_bulk_free - free multiple regulator consumers
2496 *
2497 * @num_consumers: Number of consumers
2498 * @consumers:     Consumer data; clients are stored here.
2499 *
2500 * This convenience API allows consumers to free multiple regulator
2501 * clients in a single API call.
2502 */
2503void regulator_bulk_free(int num_consumers,
2504			 struct regulator_bulk_data *consumers)
2505{
2506	int i;
2507
2508	for (i = 0; i < num_consumers; i++) {
2509		regulator_put(consumers[i].consumer);
2510		consumers[i].consumer = NULL;
2511	}
2512}
2513EXPORT_SYMBOL_GPL(regulator_bulk_free);
2514
2515/**
2516 * regulator_notifier_call_chain - call regulator event notifier
2517 * @rdev: regulator source
2518 * @event: notifier block
2519 * @data: callback-specific data.
2520 *
2521 * Called by regulator drivers to notify clients a regulator event has
2522 * occurred. We also notify regulator clients downstream.
2523 * Note lock must be held by caller.
2524 */
2525int regulator_notifier_call_chain(struct regulator_dev *rdev,
2526				  unsigned long event, void *data)
2527{
2528	_notifier_call_chain(rdev, event, data);
2529	return NOTIFY_DONE;
2530
2531}
2532EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2533
2534/**
2535 * regulator_mode_to_status - convert a regulator mode into a status
2536 *
2537 * @mode: Mode to convert
2538 *
2539 * Convert a regulator mode into a status.
2540 */
2541int regulator_mode_to_status(unsigned int mode)
2542{
2543	switch (mode) {
2544	case REGULATOR_MODE_FAST:
2545		return REGULATOR_STATUS_FAST;
2546	case REGULATOR_MODE_NORMAL:
2547		return REGULATOR_STATUS_NORMAL;
2548	case REGULATOR_MODE_IDLE:
2549		return REGULATOR_STATUS_IDLE;
2550	case REGULATOR_STATUS_STANDBY:
2551		return REGULATOR_STATUS_STANDBY;
2552	default:
2553		return 0;
2554	}
2555}
2556EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2557
2558/*
2559 * To avoid cluttering sysfs (and memory) with useless state, only
2560 * create attributes that can be meaningfully displayed.
2561 */
2562static int add_regulator_attributes(struct regulator_dev *rdev)
2563{
2564	struct device		*dev = &rdev->dev;
2565	struct regulator_ops	*ops = rdev->desc->ops;
2566	int			status = 0;
2567
2568	/* some attributes need specific methods to be displayed */
2569	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2570	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2571		status = device_create_file(dev, &dev_attr_microvolts);
2572		if (status < 0)
2573			return status;
2574	}
2575	if (ops->get_current_limit) {
2576		status = device_create_file(dev, &dev_attr_microamps);
2577		if (status < 0)
2578			return status;
2579	}
2580	if (ops->get_mode) {
2581		status = device_create_file(dev, &dev_attr_opmode);
2582		if (status < 0)
2583			return status;
2584	}
2585	if (ops->is_enabled) {
2586		status = device_create_file(dev, &dev_attr_state);
2587		if (status < 0)
2588			return status;
2589	}
2590	if (ops->get_status) {
2591		status = device_create_file(dev, &dev_attr_status);
2592		if (status < 0)
2593			return status;
2594	}
2595
2596	/* some attributes are type-specific */
2597	if (rdev->desc->type == REGULATOR_CURRENT) {
2598		status = device_create_file(dev, &dev_attr_requested_microamps);
2599		if (status < 0)
2600			return status;
2601	}
2602
2603	/* all the other attributes exist to support constraints;
2604	 * don't show them if there are no constraints, or if the
2605	 * relevant supporting methods are missing.
2606	 */
2607	if (!rdev->constraints)
2608		return status;
2609
2610	/* constraints need specific supporting methods */
2611	if (ops->set_voltage || ops->set_voltage_sel) {
2612		status = device_create_file(dev, &dev_attr_min_microvolts);
2613		if (status < 0)
2614			return status;
2615		status = device_create_file(dev, &dev_attr_max_microvolts);
2616		if (status < 0)
2617			return status;
2618	}
2619	if (ops->set_current_limit) {
2620		status = device_create_file(dev, &dev_attr_min_microamps);
2621		if (status < 0)
2622			return status;
2623		status = device_create_file(dev, &dev_attr_max_microamps);
2624		if (status < 0)
2625			return status;
2626	}
2627
2628	/* suspend mode constraints need multiple supporting methods */
2629	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2630		return status;
2631
2632	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2633	if (status < 0)
2634		return status;
2635	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2636	if (status < 0)
2637		return status;
2638	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2639	if (status < 0)
2640		return status;
2641
2642	if (ops->set_suspend_voltage) {
2643		status = device_create_file(dev,
2644				&dev_attr_suspend_standby_microvolts);
2645		if (status < 0)
2646			return status;
2647		status = device_create_file(dev,
2648				&dev_attr_suspend_mem_microvolts);
2649		if (status < 0)
2650			return status;
2651		status = device_create_file(dev,
2652				&dev_attr_suspend_disk_microvolts);
2653		if (status < 0)
2654			return status;
2655	}
2656
2657	if (ops->set_suspend_mode) {
2658		status = device_create_file(dev,
2659				&dev_attr_suspend_standby_mode);
2660		if (status < 0)
2661			return status;
2662		status = device_create_file(dev,
2663				&dev_attr_suspend_mem_mode);
2664		if (status < 0)
2665			return status;
2666		status = device_create_file(dev,
2667				&dev_attr_suspend_disk_mode);
2668		if (status < 0)
2669			return status;
2670	}
2671
2672	return status;
2673}
2674
2675static void rdev_init_debugfs(struct regulator_dev *rdev)
2676{
2677#ifdef CONFIG_DEBUG_FS
2678	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2679	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2680		rdev_warn(rdev, "Failed to create debugfs directory\n");
2681		rdev->debugfs = NULL;
2682		return;
2683	}
2684
2685	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2686			   &rdev->use_count);
2687	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2688			   &rdev->open_count);
2689#endif
2690}
2691
2692/**
2693 * regulator_register - register regulator
2694 * @regulator_desc: regulator to register
2695 * @dev: struct device for the regulator
2696 * @init_data: platform provided init data, passed through by driver
2697 * @driver_data: private regulator data
2698 *
2699 * Called by regulator drivers to register a regulator.
2700 * Returns 0 on success.
2701 */
2702struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2703	struct device *dev, const struct regulator_init_data *init_data,
2704	void *driver_data, struct device_node *of_node)
2705{
2706	const struct regulation_constraints *constraints = NULL;
2707	static atomic_t regulator_no = ATOMIC_INIT(0);
2708	struct regulator_dev *rdev;
2709	int ret, i;
2710	const char *supply = NULL;
2711
2712	if (regulator_desc == NULL)
2713		return ERR_PTR(-EINVAL);
2714
2715	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2716		return ERR_PTR(-EINVAL);
2717
2718	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2719	    regulator_desc->type != REGULATOR_CURRENT)
2720		return ERR_PTR(-EINVAL);
2721
2722	/* Only one of each should be implemented */
2723	WARN_ON(regulator_desc->ops->get_voltage &&
2724		regulator_desc->ops->get_voltage_sel);
2725	WARN_ON(regulator_desc->ops->set_voltage &&
2726		regulator_desc->ops->set_voltage_sel);
2727
2728	/* If we're using selectors we must implement list_voltage. */
2729	if (regulator_desc->ops->get_voltage_sel &&
2730	    !regulator_desc->ops->list_voltage) {
2731		return ERR_PTR(-EINVAL);
2732	}
2733	if (regulator_desc->ops->set_voltage_sel &&
2734	    !regulator_desc->ops->list_voltage) {
2735		return ERR_PTR(-EINVAL);
2736	}
2737
2738	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2739	if (rdev == NULL)
2740		return ERR_PTR(-ENOMEM);
2741
2742	mutex_lock(&regulator_list_mutex);
2743
2744	mutex_init(&rdev->mutex);
2745	rdev->reg_data = driver_data;
2746	rdev->owner = regulator_desc->owner;
2747	rdev->desc = regulator_desc;
2748	INIT_LIST_HEAD(&rdev->consumer_list);
2749	INIT_LIST_HEAD(&rdev->list);
2750	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2751	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2752
2753	/* preform any regulator specific init */
2754	if (init_data && init_data->regulator_init) {
2755		ret = init_data->regulator_init(rdev->reg_data);
2756		if (ret < 0)
2757			goto clean;
2758	}
2759
2760	/* register with sysfs */
2761	rdev->dev.class = &regulator_class;
2762	rdev->dev.of_node = of_node;
2763	rdev->dev.parent = dev;
2764	dev_set_name(&rdev->dev, "regulator.%d",
2765		     atomic_inc_return(&regulator_no) - 1);
2766	ret = device_register(&rdev->dev);
2767	if (ret != 0) {
2768		put_device(&rdev->dev);
2769		goto clean;
2770	}
2771
2772	dev_set_drvdata(&rdev->dev, rdev);
2773
2774	/* set regulator constraints */
2775	if (init_data)
2776		constraints = &init_data->constraints;
2777
2778	ret = set_machine_constraints(rdev, constraints);
2779	if (ret < 0)
2780		goto scrub;
2781
2782	/* add attributes supported by this regulator */
2783	ret = add_regulator_attributes(rdev);
2784	if (ret < 0)
2785		goto scrub;
2786
2787	if (init_data && init_data->supply_regulator)
2788		supply = init_data->supply_regulator;
2789	else if (regulator_desc->supply_name)
2790		supply = regulator_desc->supply_name;
2791
2792	if (supply) {
2793		struct regulator_dev *r;
2794
2795		r = regulator_dev_lookup(dev, supply);
2796
2797		if (!r) {
2798			dev_err(dev, "Failed to find supply %s\n", supply);
2799			ret = -ENODEV;
2800			goto scrub;
2801		}
2802
2803		ret = set_supply(rdev, r);
2804		if (ret < 0)
2805			goto scrub;
2806	}
2807
2808	/* add consumers devices */
2809	if (init_data) {
2810		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2811			ret = set_consumer_device_supply(rdev,
2812				init_data->consumer_supplies[i].dev,
2813				init_data->consumer_supplies[i].dev_name,
2814				init_data->consumer_supplies[i].supply);
2815			if (ret < 0) {
2816				dev_err(dev, "Failed to set supply %s\n",
2817					init_data->consumer_supplies[i].supply);
2818				goto unset_supplies;
2819			}
2820		}
2821	}
2822
2823	list_add(&rdev->list, &regulator_list);
2824
2825	rdev_init_debugfs(rdev);
2826out:
2827	mutex_unlock(&regulator_list_mutex);
2828	return rdev;
2829
2830unset_supplies:
2831	unset_regulator_supplies(rdev);
2832
2833scrub:
2834	kfree(rdev->constraints);
2835	device_unregister(&rdev->dev);
2836	/* device core frees rdev */
2837	rdev = ERR_PTR(ret);
2838	goto out;
2839
2840clean:
2841	kfree(rdev);
2842	rdev = ERR_PTR(ret);
2843	goto out;
2844}
2845EXPORT_SYMBOL_GPL(regulator_register);
2846
2847/**
2848 * regulator_unregister - unregister regulator
2849 * @rdev: regulator to unregister
2850 *
2851 * Called by regulator drivers to unregister a regulator.
2852 */
2853void regulator_unregister(struct regulator_dev *rdev)
2854{
2855	if (rdev == NULL)
2856		return;
2857
2858	mutex_lock(&regulator_list_mutex);
2859#ifdef CONFIG_DEBUG_FS
2860	debugfs_remove_recursive(rdev->debugfs);
2861#endif
2862	flush_work_sync(&rdev->disable_work.work);
2863	WARN_ON(rdev->open_count);
2864	unset_regulator_supplies(rdev);
2865	list_del(&rdev->list);
2866	if (rdev->supply)
2867		regulator_put(rdev->supply);
2868	kfree(rdev->constraints);
2869	device_unregister(&rdev->dev);
2870	mutex_unlock(&regulator_list_mutex);
2871}
2872EXPORT_SYMBOL_GPL(regulator_unregister);
2873
2874/**
2875 * regulator_suspend_prepare - prepare regulators for system wide suspend
2876 * @state: system suspend state
2877 *
2878 * Configure each regulator with it's suspend operating parameters for state.
2879 * This will usually be called by machine suspend code prior to supending.
2880 */
2881int regulator_suspend_prepare(suspend_state_t state)
2882{
2883	struct regulator_dev *rdev;
2884	int ret = 0;
2885
2886	/* ON is handled by regulator active state */
2887	if (state == PM_SUSPEND_ON)
2888		return -EINVAL;
2889
2890	mutex_lock(&regulator_list_mutex);
2891	list_for_each_entry(rdev, &regulator_list, list) {
2892
2893		mutex_lock(&rdev->mutex);
2894		ret = suspend_prepare(rdev, state);
2895		mutex_unlock(&rdev->mutex);
2896
2897		if (ret < 0) {
2898			rdev_err(rdev, "failed to prepare\n");
2899			goto out;
2900		}
2901	}
2902out:
2903	mutex_unlock(&regulator_list_mutex);
2904	return ret;
2905}
2906EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2907
2908/**
2909 * regulator_suspend_finish - resume regulators from system wide suspend
2910 *
2911 * Turn on regulators that might be turned off by regulator_suspend_prepare
2912 * and that should be turned on according to the regulators properties.
2913 */
2914int regulator_suspend_finish(void)
2915{
2916	struct regulator_dev *rdev;
2917	int ret = 0, error;
2918
2919	mutex_lock(&regulator_list_mutex);
2920	list_for_each_entry(rdev, &regulator_list, list) {
2921		struct regulator_ops *ops = rdev->desc->ops;
2922
2923		mutex_lock(&rdev->mutex);
2924		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2925				ops->enable) {
2926			error = ops->enable(rdev);
2927			if (error)
2928				ret = error;
2929		} else {
2930			if (!has_full_constraints)
2931				goto unlock;
2932			if (!ops->disable)
2933				goto unlock;
2934			if (ops->is_enabled && !ops->is_enabled(rdev))
2935				goto unlock;
2936
2937			error = ops->disable(rdev);
2938			if (error)
2939				ret = error;
2940		}
2941unlock:
2942		mutex_unlock(&rdev->mutex);
2943	}
2944	mutex_unlock(&regulator_list_mutex);
2945	return ret;
2946}
2947EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2948
2949/**
2950 * regulator_has_full_constraints - the system has fully specified constraints
2951 *
2952 * Calling this function will cause the regulator API to disable all
2953 * regulators which have a zero use count and don't have an always_on
2954 * constraint in a late_initcall.
2955 *
2956 * The intention is that this will become the default behaviour in a
2957 * future kernel release so users are encouraged to use this facility
2958 * now.
2959 */
2960void regulator_has_full_constraints(void)
2961{
2962	has_full_constraints = 1;
2963}
2964EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2965
2966/**
2967 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2968 *
2969 * Calling this function will cause the regulator API to provide a
2970 * dummy regulator to consumers if no physical regulator is found,
2971 * allowing most consumers to proceed as though a regulator were
2972 * configured.  This allows systems such as those with software
2973 * controllable regulators for the CPU core only to be brought up more
2974 * readily.
2975 */
2976void regulator_use_dummy_regulator(void)
2977{
2978	board_wants_dummy_regulator = true;
2979}
2980EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2981
2982/**
2983 * rdev_get_drvdata - get rdev regulator driver data
2984 * @rdev: regulator
2985 *
2986 * Get rdev regulator driver private data. This call can be used in the
2987 * regulator driver context.
2988 */
2989void *rdev_get_drvdata(struct regulator_dev *rdev)
2990{
2991	return rdev->reg_data;
2992}
2993EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2994
2995/**
2996 * regulator_get_drvdata - get regulator driver data
2997 * @regulator: regulator
2998 *
2999 * Get regulator driver private data. This call can be used in the consumer
3000 * driver context when non API regulator specific functions need to be called.
3001 */
3002void *regulator_get_drvdata(struct regulator *regulator)
3003{
3004	return regulator->rdev->reg_data;
3005}
3006EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3007
3008/**
3009 * regulator_set_drvdata - set regulator driver data
3010 * @regulator: regulator
3011 * @data: data
3012 */
3013void regulator_set_drvdata(struct regulator *regulator, void *data)
3014{
3015	regulator->rdev->reg_data = data;
3016}
3017EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3018
3019/**
3020 * regulator_get_id - get regulator ID
3021 * @rdev: regulator
3022 */
3023int rdev_get_id(struct regulator_dev *rdev)
3024{
3025	return rdev->desc->id;
3026}
3027EXPORT_SYMBOL_GPL(rdev_get_id);
3028
3029struct device *rdev_get_dev(struct regulator_dev *rdev)
3030{
3031	return &rdev->dev;
3032}
3033EXPORT_SYMBOL_GPL(rdev_get_dev);
3034
3035void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3036{
3037	return reg_init_data->driver_data;
3038}
3039EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3040
3041#ifdef CONFIG_DEBUG_FS
3042static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3043				    size_t count, loff_t *ppos)
3044{
3045	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3046	ssize_t len, ret = 0;
3047	struct regulator_map *map;
3048
3049	if (!buf)
3050		return -ENOMEM;
3051
3052	list_for_each_entry(map, &regulator_map_list, list) {
3053		len = snprintf(buf + ret, PAGE_SIZE - ret,
3054			       "%s -> %s.%s\n",
3055			       rdev_get_name(map->regulator), map->dev_name,
3056			       map->supply);
3057		if (len >= 0)
3058			ret += len;
3059		if (ret > PAGE_SIZE) {
3060			ret = PAGE_SIZE;
3061			break;
3062		}
3063	}
3064
3065	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3066
3067	kfree(buf);
3068
3069	return ret;
3070}
3071
3072static const struct file_operations supply_map_fops = {
3073	.read = supply_map_read_file,
3074	.llseek = default_llseek,
3075};
3076#endif
3077
3078static int __init regulator_init(void)
3079{
3080	int ret;
3081
3082	ret = class_register(&regulator_class);
3083
3084#ifdef CONFIG_DEBUG_FS
3085	debugfs_root = debugfs_create_dir("regulator", NULL);
3086	if (IS_ERR(debugfs_root) || !debugfs_root) {
3087		pr_warn("regulator: Failed to create debugfs directory\n");
3088		debugfs_root = NULL;
3089	}
3090
3091	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3092				       NULL, &supply_map_fops)))
3093		pr_warn("regulator: Failed to create supplies debugfs\n");
3094#endif
3095
3096	regulator_dummy_init();
3097
3098	return ret;
3099}
3100
3101/* init early to allow our consumers to complete system booting */
3102core_initcall(regulator_init);
3103
3104static int __init regulator_init_complete(void)
3105{
3106	struct regulator_dev *rdev;
3107	struct regulator_ops *ops;
3108	struct regulation_constraints *c;
3109	int enabled, ret;
3110
3111	mutex_lock(&regulator_list_mutex);
3112
3113	/* If we have a full configuration then disable any regulators
3114	 * which are not in use or always_on.  This will become the
3115	 * default behaviour in the future.
3116	 */
3117	list_for_each_entry(rdev, &regulator_list, list) {
3118		ops = rdev->desc->ops;
3119		c = rdev->constraints;
3120
3121		if (!ops->disable || (c && c->always_on))
3122			continue;
3123
3124		mutex_lock(&rdev->mutex);
3125
3126		if (rdev->use_count)
3127			goto unlock;
3128
3129		/* If we can't read the status assume it's on. */
3130		if (ops->is_enabled)
3131			enabled = ops->is_enabled(rdev);
3132		else
3133			enabled = 1;
3134
3135		if (!enabled)
3136			goto unlock;
3137
3138		if (has_full_constraints) {
3139			/* We log since this may kill the system if it
3140			 * goes wrong. */
3141			rdev_info(rdev, "disabling\n");
3142			ret = ops->disable(rdev);
3143			if (ret != 0) {
3144				rdev_err(rdev, "couldn't disable: %d\n", ret);
3145			}
3146		} else {
3147			/* The intention is that in future we will
3148			 * assume that full constraints are provided
3149			 * so warn even if we aren't going to do
3150			 * anything here.
3151			 */
3152			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3153		}
3154
3155unlock:
3156		mutex_unlock(&rdev->mutex);
3157	}
3158
3159	mutex_unlock(&regulator_list_mutex);
3160
3161	return 0;
3162}
3163late_initcall(regulator_init_complete);
3164