core.c revision c5e28ed78274468b92522e7f1e9a5e6080559100
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s:" fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/regulator/consumer.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34
35#define REGULATOR_VERSION "0.5"
36
37static DEFINE_MUTEX(regulator_list_mutex);
38static LIST_HEAD(regulator_list);
39static LIST_HEAD(regulator_map_list);
40static int has_full_constraints;
41static bool board_wants_dummy_regulator;
42
43/*
44 * struct regulator_map
45 *
46 * Used to provide symbolic supply names to devices.
47 */
48struct regulator_map {
49	struct list_head list;
50	const char *dev_name;   /* The dev_name() for the consumer */
51	const char *supply;
52	struct regulator_dev *regulator;
53};
54
55/*
56 * struct regulator
57 *
58 * One for each consumer device.
59 */
60struct regulator {
61	struct device *dev;
62	struct list_head list;
63	int uA_load;
64	int min_uV;
65	int max_uV;
66	char *supply_name;
67	struct device_attribute dev_attr;
68	struct regulator_dev *rdev;
69};
70
71static int _regulator_is_enabled(struct regulator_dev *rdev);
72static int _regulator_disable(struct regulator_dev *rdev,
73		struct regulator_dev **supply_rdev_ptr);
74static int _regulator_get_voltage(struct regulator_dev *rdev);
75static int _regulator_get_current_limit(struct regulator_dev *rdev);
76static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
77static void _notifier_call_chain(struct regulator_dev *rdev,
78				  unsigned long event, void *data);
79
80static const char *rdev_get_name(struct regulator_dev *rdev)
81{
82	if (rdev->constraints && rdev->constraints->name)
83		return rdev->constraints->name;
84	else if (rdev->desc->name)
85		return rdev->desc->name;
86	else
87		return "";
88}
89
90/* gets the regulator for a given consumer device */
91static struct regulator *get_device_regulator(struct device *dev)
92{
93	struct regulator *regulator = NULL;
94	struct regulator_dev *rdev;
95
96	mutex_lock(&regulator_list_mutex);
97	list_for_each_entry(rdev, &regulator_list, list) {
98		mutex_lock(&rdev->mutex);
99		list_for_each_entry(regulator, &rdev->consumer_list, list) {
100			if (regulator->dev == dev) {
101				mutex_unlock(&rdev->mutex);
102				mutex_unlock(&regulator_list_mutex);
103				return regulator;
104			}
105		}
106		mutex_unlock(&rdev->mutex);
107	}
108	mutex_unlock(&regulator_list_mutex);
109	return NULL;
110}
111
112/* Platform voltage constraint check */
113static int regulator_check_voltage(struct regulator_dev *rdev,
114				   int *min_uV, int *max_uV)
115{
116	BUG_ON(*min_uV > *max_uV);
117
118	if (!rdev->constraints) {
119		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
120		       rdev_get_name(rdev));
121		return -ENODEV;
122	}
123	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
124		printk(KERN_ERR "%s: operation not allowed for %s\n",
125		       __func__, rdev_get_name(rdev));
126		return -EPERM;
127	}
128
129	if (*max_uV > rdev->constraints->max_uV)
130		*max_uV = rdev->constraints->max_uV;
131	if (*min_uV < rdev->constraints->min_uV)
132		*min_uV = rdev->constraints->min_uV;
133
134	if (*min_uV > *max_uV)
135		return -EINVAL;
136
137	return 0;
138}
139
140/* current constraint check */
141static int regulator_check_current_limit(struct regulator_dev *rdev,
142					int *min_uA, int *max_uA)
143{
144	BUG_ON(*min_uA > *max_uA);
145
146	if (!rdev->constraints) {
147		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
148		       rdev_get_name(rdev));
149		return -ENODEV;
150	}
151	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
152		printk(KERN_ERR "%s: operation not allowed for %s\n",
153		       __func__, rdev_get_name(rdev));
154		return -EPERM;
155	}
156
157	if (*max_uA > rdev->constraints->max_uA)
158		*max_uA = rdev->constraints->max_uA;
159	if (*min_uA < rdev->constraints->min_uA)
160		*min_uA = rdev->constraints->min_uA;
161
162	if (*min_uA > *max_uA)
163		return -EINVAL;
164
165	return 0;
166}
167
168/* operating mode constraint check */
169static int regulator_check_mode(struct regulator_dev *rdev, int mode)
170{
171	switch (mode) {
172	case REGULATOR_MODE_FAST:
173	case REGULATOR_MODE_NORMAL:
174	case REGULATOR_MODE_IDLE:
175	case REGULATOR_MODE_STANDBY:
176		break;
177	default:
178		return -EINVAL;
179	}
180
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev_get_name(rdev));
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev_get_name(rdev));
189		return -EPERM;
190	}
191	if (!(rdev->constraints->valid_modes_mask & mode)) {
192		printk(KERN_ERR "%s: invalid mode %x for %s\n",
193		       __func__, mode, rdev_get_name(rdev));
194		return -EINVAL;
195	}
196	return 0;
197}
198
199/* dynamic regulator mode switching constraint check */
200static int regulator_check_drms(struct regulator_dev *rdev)
201{
202	if (!rdev->constraints) {
203		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
204		       rdev_get_name(rdev));
205		return -ENODEV;
206	}
207	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
208		printk(KERN_ERR "%s: operation not allowed for %s\n",
209		       __func__, rdev_get_name(rdev));
210		return -EPERM;
211	}
212	return 0;
213}
214
215static ssize_t device_requested_uA_show(struct device *dev,
216			     struct device_attribute *attr, char *buf)
217{
218	struct regulator *regulator;
219
220	regulator = get_device_regulator(dev);
221	if (regulator == NULL)
222		return 0;
223
224	return sprintf(buf, "%d\n", regulator->uA_load);
225}
226
227static ssize_t regulator_uV_show(struct device *dev,
228				struct device_attribute *attr, char *buf)
229{
230	struct regulator_dev *rdev = dev_get_drvdata(dev);
231	ssize_t ret;
232
233	mutex_lock(&rdev->mutex);
234	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
235	mutex_unlock(&rdev->mutex);
236
237	return ret;
238}
239static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
240
241static ssize_t regulator_uA_show(struct device *dev,
242				struct device_attribute *attr, char *buf)
243{
244	struct regulator_dev *rdev = dev_get_drvdata(dev);
245
246	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
247}
248static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
249
250static ssize_t regulator_name_show(struct device *dev,
251			     struct device_attribute *attr, char *buf)
252{
253	struct regulator_dev *rdev = dev_get_drvdata(dev);
254
255	return sprintf(buf, "%s\n", rdev_get_name(rdev));
256}
257
258static ssize_t regulator_print_opmode(char *buf, int mode)
259{
260	switch (mode) {
261	case REGULATOR_MODE_FAST:
262		return sprintf(buf, "fast\n");
263	case REGULATOR_MODE_NORMAL:
264		return sprintf(buf, "normal\n");
265	case REGULATOR_MODE_IDLE:
266		return sprintf(buf, "idle\n");
267	case REGULATOR_MODE_STANDBY:
268		return sprintf(buf, "standby\n");
269	}
270	return sprintf(buf, "unknown\n");
271}
272
273static ssize_t regulator_opmode_show(struct device *dev,
274				    struct device_attribute *attr, char *buf)
275{
276	struct regulator_dev *rdev = dev_get_drvdata(dev);
277
278	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
279}
280static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
281
282static ssize_t regulator_print_state(char *buf, int state)
283{
284	if (state > 0)
285		return sprintf(buf, "enabled\n");
286	else if (state == 0)
287		return sprintf(buf, "disabled\n");
288	else
289		return sprintf(buf, "unknown\n");
290}
291
292static ssize_t regulator_state_show(struct device *dev,
293				   struct device_attribute *attr, char *buf)
294{
295	struct regulator_dev *rdev = dev_get_drvdata(dev);
296	ssize_t ret;
297
298	mutex_lock(&rdev->mutex);
299	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
300	mutex_unlock(&rdev->mutex);
301
302	return ret;
303}
304static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
305
306static ssize_t regulator_status_show(struct device *dev,
307				   struct device_attribute *attr, char *buf)
308{
309	struct regulator_dev *rdev = dev_get_drvdata(dev);
310	int status;
311	char *label;
312
313	status = rdev->desc->ops->get_status(rdev);
314	if (status < 0)
315		return status;
316
317	switch (status) {
318	case REGULATOR_STATUS_OFF:
319		label = "off";
320		break;
321	case REGULATOR_STATUS_ON:
322		label = "on";
323		break;
324	case REGULATOR_STATUS_ERROR:
325		label = "error";
326		break;
327	case REGULATOR_STATUS_FAST:
328		label = "fast";
329		break;
330	case REGULATOR_STATUS_NORMAL:
331		label = "normal";
332		break;
333	case REGULATOR_STATUS_IDLE:
334		label = "idle";
335		break;
336	case REGULATOR_STATUS_STANDBY:
337		label = "standby";
338		break;
339	default:
340		return -ERANGE;
341	}
342
343	return sprintf(buf, "%s\n", label);
344}
345static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
346
347static ssize_t regulator_min_uA_show(struct device *dev,
348				    struct device_attribute *attr, char *buf)
349{
350	struct regulator_dev *rdev = dev_get_drvdata(dev);
351
352	if (!rdev->constraints)
353		return sprintf(buf, "constraint not defined\n");
354
355	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
356}
357static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
358
359static ssize_t regulator_max_uA_show(struct device *dev,
360				    struct device_attribute *attr, char *buf)
361{
362	struct regulator_dev *rdev = dev_get_drvdata(dev);
363
364	if (!rdev->constraints)
365		return sprintf(buf, "constraint not defined\n");
366
367	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
368}
369static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
370
371static ssize_t regulator_min_uV_show(struct device *dev,
372				    struct device_attribute *attr, char *buf)
373{
374	struct regulator_dev *rdev = dev_get_drvdata(dev);
375
376	if (!rdev->constraints)
377		return sprintf(buf, "constraint not defined\n");
378
379	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
380}
381static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
382
383static ssize_t regulator_max_uV_show(struct device *dev,
384				    struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387
388	if (!rdev->constraints)
389		return sprintf(buf, "constraint not defined\n");
390
391	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
392}
393static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
394
395static ssize_t regulator_total_uA_show(struct device *dev,
396				      struct device_attribute *attr, char *buf)
397{
398	struct regulator_dev *rdev = dev_get_drvdata(dev);
399	struct regulator *regulator;
400	int uA = 0;
401
402	mutex_lock(&rdev->mutex);
403	list_for_each_entry(regulator, &rdev->consumer_list, list)
404		uA += regulator->uA_load;
405	mutex_unlock(&rdev->mutex);
406	return sprintf(buf, "%d\n", uA);
407}
408static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
409
410static ssize_t regulator_num_users_show(struct device *dev,
411				      struct device_attribute *attr, char *buf)
412{
413	struct regulator_dev *rdev = dev_get_drvdata(dev);
414	return sprintf(buf, "%d\n", rdev->use_count);
415}
416
417static ssize_t regulator_type_show(struct device *dev,
418				  struct device_attribute *attr, char *buf)
419{
420	struct regulator_dev *rdev = dev_get_drvdata(dev);
421
422	switch (rdev->desc->type) {
423	case REGULATOR_VOLTAGE:
424		return sprintf(buf, "voltage\n");
425	case REGULATOR_CURRENT:
426		return sprintf(buf, "current\n");
427	}
428	return sprintf(buf, "unknown\n");
429}
430
431static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
432				struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
437}
438static DEVICE_ATTR(suspend_mem_microvolts, 0444,
439		regulator_suspend_mem_uV_show, NULL);
440
441static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
442				struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
447}
448static DEVICE_ATTR(suspend_disk_microvolts, 0444,
449		regulator_suspend_disk_uV_show, NULL);
450
451static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
452				struct device_attribute *attr, char *buf)
453{
454	struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
457}
458static DEVICE_ATTR(suspend_standby_microvolts, 0444,
459		regulator_suspend_standby_uV_show, NULL);
460
461static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
462				struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	return regulator_print_opmode(buf,
467		rdev->constraints->state_mem.mode);
468}
469static DEVICE_ATTR(suspend_mem_mode, 0444,
470		regulator_suspend_mem_mode_show, NULL);
471
472static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
473				struct device_attribute *attr, char *buf)
474{
475	struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477	return regulator_print_opmode(buf,
478		rdev->constraints->state_disk.mode);
479}
480static DEVICE_ATTR(suspend_disk_mode, 0444,
481		regulator_suspend_disk_mode_show, NULL);
482
483static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
484				struct device_attribute *attr, char *buf)
485{
486	struct regulator_dev *rdev = dev_get_drvdata(dev);
487
488	return regulator_print_opmode(buf,
489		rdev->constraints->state_standby.mode);
490}
491static DEVICE_ATTR(suspend_standby_mode, 0444,
492		regulator_suspend_standby_mode_show, NULL);
493
494static ssize_t regulator_suspend_mem_state_show(struct device *dev,
495				   struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498
499	return regulator_print_state(buf,
500			rdev->constraints->state_mem.enabled);
501}
502static DEVICE_ATTR(suspend_mem_state, 0444,
503		regulator_suspend_mem_state_show, NULL);
504
505static ssize_t regulator_suspend_disk_state_show(struct device *dev,
506				   struct device_attribute *attr, char *buf)
507{
508	struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510	return regulator_print_state(buf,
511			rdev->constraints->state_disk.enabled);
512}
513static DEVICE_ATTR(suspend_disk_state, 0444,
514		regulator_suspend_disk_state_show, NULL);
515
516static ssize_t regulator_suspend_standby_state_show(struct device *dev,
517				   struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return regulator_print_state(buf,
522			rdev->constraints->state_standby.enabled);
523}
524static DEVICE_ATTR(suspend_standby_state, 0444,
525		regulator_suspend_standby_state_show, NULL);
526
527
528/*
529 * These are the only attributes are present for all regulators.
530 * Other attributes are a function of regulator functionality.
531 */
532static struct device_attribute regulator_dev_attrs[] = {
533	__ATTR(name, 0444, regulator_name_show, NULL),
534	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
535	__ATTR(type, 0444, regulator_type_show, NULL),
536	__ATTR_NULL,
537};
538
539static void regulator_dev_release(struct device *dev)
540{
541	struct regulator_dev *rdev = dev_get_drvdata(dev);
542	kfree(rdev);
543}
544
545static struct class regulator_class = {
546	.name = "regulator",
547	.dev_release = regulator_dev_release,
548	.dev_attrs = regulator_dev_attrs,
549};
550
551/* Calculate the new optimum regulator operating mode based on the new total
552 * consumer load. All locks held by caller */
553static void drms_uA_update(struct regulator_dev *rdev)
554{
555	struct regulator *sibling;
556	int current_uA = 0, output_uV, input_uV, err;
557	unsigned int mode;
558
559	err = regulator_check_drms(rdev);
560	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
561	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
562		return;
563
564	/* get output voltage */
565	output_uV = rdev->desc->ops->get_voltage(rdev);
566	if (output_uV <= 0)
567		return;
568
569	/* get input voltage */
570	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
571		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
572	else
573		input_uV = rdev->constraints->input_uV;
574	if (input_uV <= 0)
575		return;
576
577	/* calc total requested load */
578	list_for_each_entry(sibling, &rdev->consumer_list, list)
579		current_uA += sibling->uA_load;
580
581	/* now get the optimum mode for our new total regulator load */
582	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
583						  output_uV, current_uA);
584
585	/* check the new mode is allowed */
586	err = regulator_check_mode(rdev, mode);
587	if (err == 0)
588		rdev->desc->ops->set_mode(rdev, mode);
589}
590
591static int suspend_set_state(struct regulator_dev *rdev,
592	struct regulator_state *rstate)
593{
594	int ret = 0;
595	bool can_set_state;
596
597	can_set_state = rdev->desc->ops->set_suspend_enable &&
598		rdev->desc->ops->set_suspend_disable;
599
600	/* If we have no suspend mode configration don't set anything;
601	 * only warn if the driver actually makes the suspend mode
602	 * configurable.
603	 */
604	if (!rstate->enabled && !rstate->disabled) {
605		if (can_set_state)
606			printk(KERN_WARNING "%s: No configuration for %s\n",
607			       __func__, rdev_get_name(rdev));
608		return 0;
609	}
610
611	if (rstate->enabled && rstate->disabled) {
612		printk(KERN_ERR "%s: invalid configuration for %s\n",
613		       __func__, rdev_get_name(rdev));
614		return -EINVAL;
615	}
616
617	if (!can_set_state) {
618		printk(KERN_ERR "%s: no way to set suspend state\n",
619			__func__);
620		return -EINVAL;
621	}
622
623	if (rstate->enabled)
624		ret = rdev->desc->ops->set_suspend_enable(rdev);
625	else
626		ret = rdev->desc->ops->set_suspend_disable(rdev);
627	if (ret < 0) {
628		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
629		return ret;
630	}
631
632	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
633		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
634		if (ret < 0) {
635			printk(KERN_ERR "%s: failed to set voltage\n",
636				__func__);
637			return ret;
638		}
639	}
640
641	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
642		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
643		if (ret < 0) {
644			printk(KERN_ERR "%s: failed to set mode\n", __func__);
645			return ret;
646		}
647	}
648	return ret;
649}
650
651/* locks held by caller */
652static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
653{
654	if (!rdev->constraints)
655		return -EINVAL;
656
657	switch (state) {
658	case PM_SUSPEND_STANDBY:
659		return suspend_set_state(rdev,
660			&rdev->constraints->state_standby);
661	case PM_SUSPEND_MEM:
662		return suspend_set_state(rdev,
663			&rdev->constraints->state_mem);
664	case PM_SUSPEND_MAX:
665		return suspend_set_state(rdev,
666			&rdev->constraints->state_disk);
667	default:
668		return -EINVAL;
669	}
670}
671
672static void print_constraints(struct regulator_dev *rdev)
673{
674	struct regulation_constraints *constraints = rdev->constraints;
675	char buf[80] = "";
676	int count = 0;
677	int ret;
678
679	if (constraints->min_uV && constraints->max_uV) {
680		if (constraints->min_uV == constraints->max_uV)
681			count += sprintf(buf + count, "%d mV ",
682					 constraints->min_uV / 1000);
683		else
684			count += sprintf(buf + count, "%d <--> %d mV ",
685					 constraints->min_uV / 1000,
686					 constraints->max_uV / 1000);
687	}
688
689	if (!constraints->min_uV ||
690	    constraints->min_uV != constraints->max_uV) {
691		ret = _regulator_get_voltage(rdev);
692		if (ret > 0)
693			count += sprintf(buf + count, "at %d mV ", ret / 1000);
694	}
695
696	if (constraints->min_uA && constraints->max_uA) {
697		if (constraints->min_uA == constraints->max_uA)
698			count += sprintf(buf + count, "%d mA ",
699					 constraints->min_uA / 1000);
700		else
701			count += sprintf(buf + count, "%d <--> %d mA ",
702					 constraints->min_uA / 1000,
703					 constraints->max_uA / 1000);
704	}
705
706	if (!constraints->min_uA ||
707	    constraints->min_uA != constraints->max_uA) {
708		ret = _regulator_get_current_limit(rdev);
709		if (ret > 0)
710			count += sprintf(buf + count, "at %d mA ", ret / 1000);
711	}
712
713	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
714		count += sprintf(buf + count, "fast ");
715	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
716		count += sprintf(buf + count, "normal ");
717	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
718		count += sprintf(buf + count, "idle ");
719	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
720		count += sprintf(buf + count, "standby");
721
722	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
723}
724
725static int machine_constraints_voltage(struct regulator_dev *rdev,
726	struct regulation_constraints *constraints)
727{
728	struct regulator_ops *ops = rdev->desc->ops;
729	const char *name = rdev_get_name(rdev);
730	int ret;
731	unsigned selector;
732
733	/* do we need to apply the constraint voltage */
734	if (rdev->constraints->apply_uV &&
735		rdev->constraints->min_uV == rdev->constraints->max_uV &&
736		ops->set_voltage) {
737		ret = ops->set_voltage(rdev,
738				       rdev->constraints->min_uV,
739				       rdev->constraints->max_uV,
740				       &selector);
741			if (ret < 0) {
742				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
743				       __func__,
744				       rdev->constraints->min_uV, name);
745				rdev->constraints = NULL;
746				return ret;
747			}
748	}
749
750	/* constrain machine-level voltage specs to fit
751	 * the actual range supported by this regulator.
752	 */
753	if (ops->list_voltage && rdev->desc->n_voltages) {
754		int	count = rdev->desc->n_voltages;
755		int	i;
756		int	min_uV = INT_MAX;
757		int	max_uV = INT_MIN;
758		int	cmin = constraints->min_uV;
759		int	cmax = constraints->max_uV;
760
761		/* it's safe to autoconfigure fixed-voltage supplies
762		   and the constraints are used by list_voltage. */
763		if (count == 1 && !cmin) {
764			cmin = 1;
765			cmax = INT_MAX;
766			constraints->min_uV = cmin;
767			constraints->max_uV = cmax;
768		}
769
770		/* voltage constraints are optional */
771		if ((cmin == 0) && (cmax == 0))
772			return 0;
773
774		/* else require explicit machine-level constraints */
775		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
776			pr_err("%s '%s' voltage constraints\n", "invalid",
777				name);
778			return -EINVAL;
779		}
780
781		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
782		for (i = 0; i < count; i++) {
783			int	value;
784
785			value = ops->list_voltage(rdev, i);
786			if (value <= 0)
787				continue;
788
789			/* maybe adjust [min_uV..max_uV] */
790			if (value >= cmin && value < min_uV)
791				min_uV = value;
792			if (value <= cmax && value > max_uV)
793				max_uV = value;
794		}
795
796		/* final: [min_uV..max_uV] valid iff constraints valid */
797		if (max_uV < min_uV) {
798			pr_err("%s '%s' voltage constraints\n", "unsupportable",
799				name);
800			return -EINVAL;
801		}
802
803		/* use regulator's subset of machine constraints */
804		if (constraints->min_uV < min_uV) {
805			pr_debug("override '%s' %s, %d -> %d\n",
806				 name, "min_uV",
807				 constraints->min_uV, min_uV);
808			constraints->min_uV = min_uV;
809		}
810		if (constraints->max_uV > max_uV) {
811			pr_debug("override '%s' %s, %d -> %d\n",
812				 name, "max_uV",
813				 constraints->max_uV, max_uV);
814			constraints->max_uV = max_uV;
815		}
816	}
817
818	return 0;
819}
820
821/**
822 * set_machine_constraints - sets regulator constraints
823 * @rdev: regulator source
824 * @constraints: constraints to apply
825 *
826 * Allows platform initialisation code to define and constrain
827 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
828 * Constraints *must* be set by platform code in order for some
829 * regulator operations to proceed i.e. set_voltage, set_current_limit,
830 * set_mode.
831 */
832static int set_machine_constraints(struct regulator_dev *rdev,
833	struct regulation_constraints *constraints)
834{
835	int ret = 0;
836	const char *name;
837	struct regulator_ops *ops = rdev->desc->ops;
838
839	rdev->constraints = constraints;
840
841	name = rdev_get_name(rdev);
842
843	ret = machine_constraints_voltage(rdev, constraints);
844	if (ret != 0)
845		goto out;
846
847	/* do we need to setup our suspend state */
848	if (constraints->initial_state) {
849		ret = suspend_prepare(rdev, constraints->initial_state);
850		if (ret < 0) {
851			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
852			       __func__, name);
853			rdev->constraints = NULL;
854			goto out;
855		}
856	}
857
858	if (constraints->initial_mode) {
859		if (!ops->set_mode) {
860			printk(KERN_ERR "%s: no set_mode operation for %s\n",
861			       __func__, name);
862			ret = -EINVAL;
863			goto out;
864		}
865
866		ret = ops->set_mode(rdev, constraints->initial_mode);
867		if (ret < 0) {
868			printk(KERN_ERR
869			       "%s: failed to set initial mode for %s: %d\n",
870			       __func__, name, ret);
871			goto out;
872		}
873	}
874
875	/* If the constraints say the regulator should be on at this point
876	 * and we have control then make sure it is enabled.
877	 */
878	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
879		ret = ops->enable(rdev);
880		if (ret < 0) {
881			printk(KERN_ERR "%s: failed to enable %s\n",
882			       __func__, name);
883			rdev->constraints = NULL;
884			goto out;
885		}
886	}
887
888	print_constraints(rdev);
889out:
890	return ret;
891}
892
893/**
894 * set_supply - set regulator supply regulator
895 * @rdev: regulator name
896 * @supply_rdev: supply regulator name
897 *
898 * Called by platform initialisation code to set the supply regulator for this
899 * regulator. This ensures that a regulators supply will also be enabled by the
900 * core if it's child is enabled.
901 */
902static int set_supply(struct regulator_dev *rdev,
903	struct regulator_dev *supply_rdev)
904{
905	int err;
906
907	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
908				"supply");
909	if (err) {
910		printk(KERN_ERR
911		       "%s: could not add device link %s err %d\n",
912		       __func__, supply_rdev->dev.kobj.name, err);
913		       goto out;
914	}
915	rdev->supply = supply_rdev;
916	list_add(&rdev->slist, &supply_rdev->supply_list);
917out:
918	return err;
919}
920
921/**
922 * set_consumer_device_supply - Bind a regulator to a symbolic supply
923 * @rdev:         regulator source
924 * @consumer_dev: device the supply applies to
925 * @consumer_dev_name: dev_name() string for device supply applies to
926 * @supply:       symbolic name for supply
927 *
928 * Allows platform initialisation code to map physical regulator
929 * sources to symbolic names for supplies for use by devices.  Devices
930 * should use these symbolic names to request regulators, avoiding the
931 * need to provide board-specific regulator names as platform data.
932 *
933 * Only one of consumer_dev and consumer_dev_name may be specified.
934 */
935static int set_consumer_device_supply(struct regulator_dev *rdev,
936	struct device *consumer_dev, const char *consumer_dev_name,
937	const char *supply)
938{
939	struct regulator_map *node;
940	int has_dev;
941
942	if (consumer_dev && consumer_dev_name)
943		return -EINVAL;
944
945	if (!consumer_dev_name && consumer_dev)
946		consumer_dev_name = dev_name(consumer_dev);
947
948	if (supply == NULL)
949		return -EINVAL;
950
951	if (consumer_dev_name != NULL)
952		has_dev = 1;
953	else
954		has_dev = 0;
955
956	list_for_each_entry(node, &regulator_map_list, list) {
957		if (node->dev_name && consumer_dev_name) {
958			if (strcmp(node->dev_name, consumer_dev_name) != 0)
959				continue;
960		} else if (node->dev_name || consumer_dev_name) {
961			continue;
962		}
963
964		if (strcmp(node->supply, supply) != 0)
965			continue;
966
967		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
968				dev_name(&node->regulator->dev),
969				node->regulator->desc->name,
970				supply,
971				dev_name(&rdev->dev), rdev_get_name(rdev));
972		return -EBUSY;
973	}
974
975	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
976	if (node == NULL)
977		return -ENOMEM;
978
979	node->regulator = rdev;
980	node->supply = supply;
981
982	if (has_dev) {
983		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
984		if (node->dev_name == NULL) {
985			kfree(node);
986			return -ENOMEM;
987		}
988	}
989
990	list_add(&node->list, &regulator_map_list);
991	return 0;
992}
993
994static void unset_regulator_supplies(struct regulator_dev *rdev)
995{
996	struct regulator_map *node, *n;
997
998	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
999		if (rdev == node->regulator) {
1000			list_del(&node->list);
1001			kfree(node->dev_name);
1002			kfree(node);
1003		}
1004	}
1005}
1006
1007#define REG_STR_SIZE	32
1008
1009static struct regulator *create_regulator(struct regulator_dev *rdev,
1010					  struct device *dev,
1011					  const char *supply_name)
1012{
1013	struct regulator *regulator;
1014	char buf[REG_STR_SIZE];
1015	int err, size;
1016
1017	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1018	if (regulator == NULL)
1019		return NULL;
1020
1021	mutex_lock(&rdev->mutex);
1022	regulator->rdev = rdev;
1023	list_add(&regulator->list, &rdev->consumer_list);
1024
1025	if (dev) {
1026		/* create a 'requested_microamps_name' sysfs entry */
1027		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1028			supply_name);
1029		if (size >= REG_STR_SIZE)
1030			goto overflow_err;
1031
1032		regulator->dev = dev;
1033		sysfs_attr_init(&regulator->dev_attr.attr);
1034		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1035		if (regulator->dev_attr.attr.name == NULL)
1036			goto attr_name_err;
1037
1038		regulator->dev_attr.attr.mode = 0444;
1039		regulator->dev_attr.show = device_requested_uA_show;
1040		err = device_create_file(dev, &regulator->dev_attr);
1041		if (err < 0) {
1042			printk(KERN_WARNING "%s: could not add regulator_dev"
1043				" load sysfs\n", __func__);
1044			goto attr_name_err;
1045		}
1046
1047		/* also add a link to the device sysfs entry */
1048		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1049				 dev->kobj.name, supply_name);
1050		if (size >= REG_STR_SIZE)
1051			goto attr_err;
1052
1053		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1054		if (regulator->supply_name == NULL)
1055			goto attr_err;
1056
1057		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1058					buf);
1059		if (err) {
1060			printk(KERN_WARNING
1061			       "%s: could not add device link %s err %d\n",
1062			       __func__, dev->kobj.name, err);
1063			goto link_name_err;
1064		}
1065	}
1066	mutex_unlock(&rdev->mutex);
1067	return regulator;
1068link_name_err:
1069	kfree(regulator->supply_name);
1070attr_err:
1071	device_remove_file(regulator->dev, &regulator->dev_attr);
1072attr_name_err:
1073	kfree(regulator->dev_attr.attr.name);
1074overflow_err:
1075	list_del(&regulator->list);
1076	kfree(regulator);
1077	mutex_unlock(&rdev->mutex);
1078	return NULL;
1079}
1080
1081static int _regulator_get_enable_time(struct regulator_dev *rdev)
1082{
1083	if (!rdev->desc->ops->enable_time)
1084		return 0;
1085	return rdev->desc->ops->enable_time(rdev);
1086}
1087
1088/* Internal regulator request function */
1089static struct regulator *_regulator_get(struct device *dev, const char *id,
1090					int exclusive)
1091{
1092	struct regulator_dev *rdev;
1093	struct regulator_map *map;
1094	struct regulator *regulator = ERR_PTR(-ENODEV);
1095	const char *devname = NULL;
1096	int ret;
1097
1098	if (id == NULL) {
1099		printk(KERN_ERR "regulator: get() with no identifier\n");
1100		return regulator;
1101	}
1102
1103	if (dev)
1104		devname = dev_name(dev);
1105
1106	mutex_lock(&regulator_list_mutex);
1107
1108	list_for_each_entry(map, &regulator_map_list, list) {
1109		/* If the mapping has a device set up it must match */
1110		if (map->dev_name &&
1111		    (!devname || strcmp(map->dev_name, devname)))
1112			continue;
1113
1114		if (strcmp(map->supply, id) == 0) {
1115			rdev = map->regulator;
1116			goto found;
1117		}
1118	}
1119
1120	if (board_wants_dummy_regulator) {
1121		rdev = dummy_regulator_rdev;
1122		goto found;
1123	}
1124
1125#ifdef CONFIG_REGULATOR_DUMMY
1126	if (!devname)
1127		devname = "deviceless";
1128
1129	/* If the board didn't flag that it was fully constrained then
1130	 * substitute in a dummy regulator so consumers can continue.
1131	 */
1132	if (!has_full_constraints) {
1133		pr_warning("%s supply %s not found, using dummy regulator\n",
1134			   devname, id);
1135		rdev = dummy_regulator_rdev;
1136		goto found;
1137	}
1138#endif
1139
1140	mutex_unlock(&regulator_list_mutex);
1141	return regulator;
1142
1143found:
1144	if (rdev->exclusive) {
1145		regulator = ERR_PTR(-EPERM);
1146		goto out;
1147	}
1148
1149	if (exclusive && rdev->open_count) {
1150		regulator = ERR_PTR(-EBUSY);
1151		goto out;
1152	}
1153
1154	if (!try_module_get(rdev->owner))
1155		goto out;
1156
1157	regulator = create_regulator(rdev, dev, id);
1158	if (regulator == NULL) {
1159		regulator = ERR_PTR(-ENOMEM);
1160		module_put(rdev->owner);
1161	}
1162
1163	rdev->open_count++;
1164	if (exclusive) {
1165		rdev->exclusive = 1;
1166
1167		ret = _regulator_is_enabled(rdev);
1168		if (ret > 0)
1169			rdev->use_count = 1;
1170		else
1171			rdev->use_count = 0;
1172	}
1173
1174out:
1175	mutex_unlock(&regulator_list_mutex);
1176
1177	return regulator;
1178}
1179
1180/**
1181 * regulator_get - lookup and obtain a reference to a regulator.
1182 * @dev: device for regulator "consumer"
1183 * @id: Supply name or regulator ID.
1184 *
1185 * Returns a struct regulator corresponding to the regulator producer,
1186 * or IS_ERR() condition containing errno.
1187 *
1188 * Use of supply names configured via regulator_set_device_supply() is
1189 * strongly encouraged.  It is recommended that the supply name used
1190 * should match the name used for the supply and/or the relevant
1191 * device pins in the datasheet.
1192 */
1193struct regulator *regulator_get(struct device *dev, const char *id)
1194{
1195	return _regulator_get(dev, id, 0);
1196}
1197EXPORT_SYMBOL_GPL(regulator_get);
1198
1199/**
1200 * regulator_get_exclusive - obtain exclusive access to a regulator.
1201 * @dev: device for regulator "consumer"
1202 * @id: Supply name or regulator ID.
1203 *
1204 * Returns a struct regulator corresponding to the regulator producer,
1205 * or IS_ERR() condition containing errno.  Other consumers will be
1206 * unable to obtain this reference is held and the use count for the
1207 * regulator will be initialised to reflect the current state of the
1208 * regulator.
1209 *
1210 * This is intended for use by consumers which cannot tolerate shared
1211 * use of the regulator such as those which need to force the
1212 * regulator off for correct operation of the hardware they are
1213 * controlling.
1214 *
1215 * Use of supply names configured via regulator_set_device_supply() is
1216 * strongly encouraged.  It is recommended that the supply name used
1217 * should match the name used for the supply and/or the relevant
1218 * device pins in the datasheet.
1219 */
1220struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1221{
1222	return _regulator_get(dev, id, 1);
1223}
1224EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1225
1226/**
1227 * regulator_put - "free" the regulator source
1228 * @regulator: regulator source
1229 *
1230 * Note: drivers must ensure that all regulator_enable calls made on this
1231 * regulator source are balanced by regulator_disable calls prior to calling
1232 * this function.
1233 */
1234void regulator_put(struct regulator *regulator)
1235{
1236	struct regulator_dev *rdev;
1237
1238	if (regulator == NULL || IS_ERR(regulator))
1239		return;
1240
1241	mutex_lock(&regulator_list_mutex);
1242	rdev = regulator->rdev;
1243
1244	/* remove any sysfs entries */
1245	if (regulator->dev) {
1246		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1247		kfree(regulator->supply_name);
1248		device_remove_file(regulator->dev, &regulator->dev_attr);
1249		kfree(regulator->dev_attr.attr.name);
1250	}
1251	list_del(&regulator->list);
1252	kfree(regulator);
1253
1254	rdev->open_count--;
1255	rdev->exclusive = 0;
1256
1257	module_put(rdev->owner);
1258	mutex_unlock(&regulator_list_mutex);
1259}
1260EXPORT_SYMBOL_GPL(regulator_put);
1261
1262static int _regulator_can_change_status(struct regulator_dev *rdev)
1263{
1264	if (!rdev->constraints)
1265		return 0;
1266
1267	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1268		return 1;
1269	else
1270		return 0;
1271}
1272
1273/* locks held by regulator_enable() */
1274static int _regulator_enable(struct regulator_dev *rdev)
1275{
1276	int ret, delay;
1277
1278	if (rdev->use_count == 0) {
1279		/* do we need to enable the supply regulator first */
1280		if (rdev->supply) {
1281			mutex_lock(&rdev->supply->mutex);
1282			ret = _regulator_enable(rdev->supply);
1283			mutex_unlock(&rdev->supply->mutex);
1284			if (ret < 0) {
1285				printk(KERN_ERR "%s: failed to enable %s: %d\n",
1286				       __func__, rdev_get_name(rdev), ret);
1287				return ret;
1288			}
1289		}
1290	}
1291
1292	/* check voltage and requested load before enabling */
1293	if (rdev->constraints &&
1294	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1295		drms_uA_update(rdev);
1296
1297	if (rdev->use_count == 0) {
1298		/* The regulator may on if it's not switchable or left on */
1299		ret = _regulator_is_enabled(rdev);
1300		if (ret == -EINVAL || ret == 0) {
1301			if (!_regulator_can_change_status(rdev))
1302				return -EPERM;
1303
1304			if (!rdev->desc->ops->enable)
1305				return -EINVAL;
1306
1307			/* Query before enabling in case configuration
1308			 * dependant.  */
1309			ret = _regulator_get_enable_time(rdev);
1310			if (ret >= 0) {
1311				delay = ret;
1312			} else {
1313				printk(KERN_WARNING
1314					"%s: enable_time() failed for %s: %d\n",
1315					__func__, rdev_get_name(rdev),
1316					ret);
1317				delay = 0;
1318			}
1319
1320			trace_regulator_enable(rdev_get_name(rdev));
1321
1322			/* Allow the regulator to ramp; it would be useful
1323			 * to extend this for bulk operations so that the
1324			 * regulators can ramp together.  */
1325			ret = rdev->desc->ops->enable(rdev);
1326			if (ret < 0)
1327				return ret;
1328
1329			trace_regulator_enable_delay(rdev_get_name(rdev));
1330
1331			if (delay >= 1000) {
1332				mdelay(delay / 1000);
1333				udelay(delay % 1000);
1334			} else if (delay) {
1335				udelay(delay);
1336			}
1337
1338			trace_regulator_enable_complete(rdev_get_name(rdev));
1339
1340		} else if (ret < 0) {
1341			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1342			       __func__, rdev_get_name(rdev), ret);
1343			return ret;
1344		}
1345		/* Fallthrough on positive return values - already enabled */
1346	}
1347
1348	rdev->use_count++;
1349
1350	return 0;
1351}
1352
1353/**
1354 * regulator_enable - enable regulator output
1355 * @regulator: regulator source
1356 *
1357 * Request that the regulator be enabled with the regulator output at
1358 * the predefined voltage or current value.  Calls to regulator_enable()
1359 * must be balanced with calls to regulator_disable().
1360 *
1361 * NOTE: the output value can be set by other drivers, boot loader or may be
1362 * hardwired in the regulator.
1363 */
1364int regulator_enable(struct regulator *regulator)
1365{
1366	struct regulator_dev *rdev = regulator->rdev;
1367	int ret = 0;
1368
1369	mutex_lock(&rdev->mutex);
1370	ret = _regulator_enable(rdev);
1371	mutex_unlock(&rdev->mutex);
1372	return ret;
1373}
1374EXPORT_SYMBOL_GPL(regulator_enable);
1375
1376/* locks held by regulator_disable() */
1377static int _regulator_disable(struct regulator_dev *rdev,
1378		struct regulator_dev **supply_rdev_ptr)
1379{
1380	int ret = 0;
1381	*supply_rdev_ptr = NULL;
1382
1383	if (WARN(rdev->use_count <= 0,
1384			"unbalanced disables for %s\n",
1385			rdev_get_name(rdev)))
1386		return -EIO;
1387
1388	/* are we the last user and permitted to disable ? */
1389	if (rdev->use_count == 1 &&
1390	    (rdev->constraints && !rdev->constraints->always_on)) {
1391
1392		/* we are last user */
1393		if (_regulator_can_change_status(rdev) &&
1394		    rdev->desc->ops->disable) {
1395			trace_regulator_disable(rdev_get_name(rdev));
1396
1397			ret = rdev->desc->ops->disable(rdev);
1398			if (ret < 0) {
1399				printk(KERN_ERR "%s: failed to disable %s\n",
1400				       __func__, rdev_get_name(rdev));
1401				return ret;
1402			}
1403
1404			trace_regulator_disable_complete(rdev_get_name(rdev));
1405
1406			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1407					     NULL);
1408		}
1409
1410		/* decrease our supplies ref count and disable if required */
1411		*supply_rdev_ptr = rdev->supply;
1412
1413		rdev->use_count = 0;
1414	} else if (rdev->use_count > 1) {
1415
1416		if (rdev->constraints &&
1417			(rdev->constraints->valid_ops_mask &
1418			REGULATOR_CHANGE_DRMS))
1419			drms_uA_update(rdev);
1420
1421		rdev->use_count--;
1422	}
1423	return ret;
1424}
1425
1426/**
1427 * regulator_disable - disable regulator output
1428 * @regulator: regulator source
1429 *
1430 * Disable the regulator output voltage or current.  Calls to
1431 * regulator_enable() must be balanced with calls to
1432 * regulator_disable().
1433 *
1434 * NOTE: this will only disable the regulator output if no other consumer
1435 * devices have it enabled, the regulator device supports disabling and
1436 * machine constraints permit this operation.
1437 */
1438int regulator_disable(struct regulator *regulator)
1439{
1440	struct regulator_dev *rdev = regulator->rdev;
1441	struct regulator_dev *supply_rdev = NULL;
1442	int ret = 0;
1443
1444	mutex_lock(&rdev->mutex);
1445	ret = _regulator_disable(rdev, &supply_rdev);
1446	mutex_unlock(&rdev->mutex);
1447
1448	/* decrease our supplies ref count and disable if required */
1449	while (supply_rdev != NULL) {
1450		rdev = supply_rdev;
1451
1452		mutex_lock(&rdev->mutex);
1453		_regulator_disable(rdev, &supply_rdev);
1454		mutex_unlock(&rdev->mutex);
1455	}
1456
1457	return ret;
1458}
1459EXPORT_SYMBOL_GPL(regulator_disable);
1460
1461/* locks held by regulator_force_disable() */
1462static int _regulator_force_disable(struct regulator_dev *rdev,
1463		struct regulator_dev **supply_rdev_ptr)
1464{
1465	int ret = 0;
1466
1467	/* force disable */
1468	if (rdev->desc->ops->disable) {
1469		/* ah well, who wants to live forever... */
1470		ret = rdev->desc->ops->disable(rdev);
1471		if (ret < 0) {
1472			printk(KERN_ERR "%s: failed to force disable %s\n",
1473			       __func__, rdev_get_name(rdev));
1474			return ret;
1475		}
1476		/* notify other consumers that power has been forced off */
1477		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1478			REGULATOR_EVENT_DISABLE, NULL);
1479	}
1480
1481	/* decrease our supplies ref count and disable if required */
1482	*supply_rdev_ptr = rdev->supply;
1483
1484	rdev->use_count = 0;
1485	return ret;
1486}
1487
1488/**
1489 * regulator_force_disable - force disable regulator output
1490 * @regulator: regulator source
1491 *
1492 * Forcibly disable the regulator output voltage or current.
1493 * NOTE: this *will* disable the regulator output even if other consumer
1494 * devices have it enabled. This should be used for situations when device
1495 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1496 */
1497int regulator_force_disable(struct regulator *regulator)
1498{
1499	struct regulator_dev *supply_rdev = NULL;
1500	int ret;
1501
1502	mutex_lock(&regulator->rdev->mutex);
1503	regulator->uA_load = 0;
1504	ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1505	mutex_unlock(&regulator->rdev->mutex);
1506
1507	if (supply_rdev)
1508		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1509
1510	return ret;
1511}
1512EXPORT_SYMBOL_GPL(regulator_force_disable);
1513
1514static int _regulator_is_enabled(struct regulator_dev *rdev)
1515{
1516	/* If we don't know then assume that the regulator is always on */
1517	if (!rdev->desc->ops->is_enabled)
1518		return 1;
1519
1520	return rdev->desc->ops->is_enabled(rdev);
1521}
1522
1523/**
1524 * regulator_is_enabled - is the regulator output enabled
1525 * @regulator: regulator source
1526 *
1527 * Returns positive if the regulator driver backing the source/client
1528 * has requested that the device be enabled, zero if it hasn't, else a
1529 * negative errno code.
1530 *
1531 * Note that the device backing this regulator handle can have multiple
1532 * users, so it might be enabled even if regulator_enable() was never
1533 * called for this particular source.
1534 */
1535int regulator_is_enabled(struct regulator *regulator)
1536{
1537	int ret;
1538
1539	mutex_lock(&regulator->rdev->mutex);
1540	ret = _regulator_is_enabled(regulator->rdev);
1541	mutex_unlock(&regulator->rdev->mutex);
1542
1543	return ret;
1544}
1545EXPORT_SYMBOL_GPL(regulator_is_enabled);
1546
1547/**
1548 * regulator_count_voltages - count regulator_list_voltage() selectors
1549 * @regulator: regulator source
1550 *
1551 * Returns number of selectors, or negative errno.  Selectors are
1552 * numbered starting at zero, and typically correspond to bitfields
1553 * in hardware registers.
1554 */
1555int regulator_count_voltages(struct regulator *regulator)
1556{
1557	struct regulator_dev	*rdev = regulator->rdev;
1558
1559	return rdev->desc->n_voltages ? : -EINVAL;
1560}
1561EXPORT_SYMBOL_GPL(regulator_count_voltages);
1562
1563/**
1564 * regulator_list_voltage - enumerate supported voltages
1565 * @regulator: regulator source
1566 * @selector: identify voltage to list
1567 * Context: can sleep
1568 *
1569 * Returns a voltage that can be passed to @regulator_set_voltage(),
1570 * zero if this selector code can't be used on this system, or a
1571 * negative errno.
1572 */
1573int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1574{
1575	struct regulator_dev	*rdev = regulator->rdev;
1576	struct regulator_ops	*ops = rdev->desc->ops;
1577	int			ret;
1578
1579	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1580		return -EINVAL;
1581
1582	mutex_lock(&rdev->mutex);
1583	ret = ops->list_voltage(rdev, selector);
1584	mutex_unlock(&rdev->mutex);
1585
1586	if (ret > 0) {
1587		if (ret < rdev->constraints->min_uV)
1588			ret = 0;
1589		else if (ret > rdev->constraints->max_uV)
1590			ret = 0;
1591	}
1592
1593	return ret;
1594}
1595EXPORT_SYMBOL_GPL(regulator_list_voltage);
1596
1597/**
1598 * regulator_is_supported_voltage - check if a voltage range can be supported
1599 *
1600 * @regulator: Regulator to check.
1601 * @min_uV: Minimum required voltage in uV.
1602 * @max_uV: Maximum required voltage in uV.
1603 *
1604 * Returns a boolean or a negative error code.
1605 */
1606int regulator_is_supported_voltage(struct regulator *regulator,
1607				   int min_uV, int max_uV)
1608{
1609	int i, voltages, ret;
1610
1611	ret = regulator_count_voltages(regulator);
1612	if (ret < 0)
1613		return ret;
1614	voltages = ret;
1615
1616	for (i = 0; i < voltages; i++) {
1617		ret = regulator_list_voltage(regulator, i);
1618
1619		if (ret >= min_uV && ret <= max_uV)
1620			return 1;
1621	}
1622
1623	return 0;
1624}
1625
1626/**
1627 * regulator_set_voltage - set regulator output voltage
1628 * @regulator: regulator source
1629 * @min_uV: Minimum required voltage in uV
1630 * @max_uV: Maximum acceptable voltage in uV
1631 *
1632 * Sets a voltage regulator to the desired output voltage. This can be set
1633 * during any regulator state. IOW, regulator can be disabled or enabled.
1634 *
1635 * If the regulator is enabled then the voltage will change to the new value
1636 * immediately otherwise if the regulator is disabled the regulator will
1637 * output at the new voltage when enabled.
1638 *
1639 * NOTE: If the regulator is shared between several devices then the lowest
1640 * request voltage that meets the system constraints will be used.
1641 * Regulator system constraints must be set for this regulator before
1642 * calling this function otherwise this call will fail.
1643 */
1644int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1645{
1646	struct regulator_dev *rdev = regulator->rdev;
1647	int ret;
1648	unsigned selector;
1649
1650	mutex_lock(&rdev->mutex);
1651
1652	/* sanity check */
1653	if (!rdev->desc->ops->set_voltage) {
1654		ret = -EINVAL;
1655		goto out;
1656	}
1657
1658	/* constraints check */
1659	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1660	if (ret < 0)
1661		goto out;
1662	regulator->min_uV = min_uV;
1663	regulator->max_uV = max_uV;
1664
1665	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1666
1667	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1668
1669	if (rdev->desc->ops->list_voltage)
1670		selector = rdev->desc->ops->list_voltage(rdev, selector);
1671	else
1672		selector = -1;
1673
1674	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1675
1676out:
1677	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1678	mutex_unlock(&rdev->mutex);
1679	return ret;
1680}
1681EXPORT_SYMBOL_GPL(regulator_set_voltage);
1682
1683static int _regulator_get_voltage(struct regulator_dev *rdev)
1684{
1685	/* sanity check */
1686	if (rdev->desc->ops->get_voltage)
1687		return rdev->desc->ops->get_voltage(rdev);
1688	else
1689		return -EINVAL;
1690}
1691
1692/**
1693 * regulator_get_voltage - get regulator output voltage
1694 * @regulator: regulator source
1695 *
1696 * This returns the current regulator voltage in uV.
1697 *
1698 * NOTE: If the regulator is disabled it will return the voltage value. This
1699 * function should not be used to determine regulator state.
1700 */
1701int regulator_get_voltage(struct regulator *regulator)
1702{
1703	int ret;
1704
1705	mutex_lock(&regulator->rdev->mutex);
1706
1707	ret = _regulator_get_voltage(regulator->rdev);
1708
1709	mutex_unlock(&regulator->rdev->mutex);
1710
1711	return ret;
1712}
1713EXPORT_SYMBOL_GPL(regulator_get_voltage);
1714
1715/**
1716 * regulator_set_current_limit - set regulator output current limit
1717 * @regulator: regulator source
1718 * @min_uA: Minimuum supported current in uA
1719 * @max_uA: Maximum supported current in uA
1720 *
1721 * Sets current sink to the desired output current. This can be set during
1722 * any regulator state. IOW, regulator can be disabled or enabled.
1723 *
1724 * If the regulator is enabled then the current will change to the new value
1725 * immediately otherwise if the regulator is disabled the regulator will
1726 * output at the new current when enabled.
1727 *
1728 * NOTE: Regulator system constraints must be set for this regulator before
1729 * calling this function otherwise this call will fail.
1730 */
1731int regulator_set_current_limit(struct regulator *regulator,
1732			       int min_uA, int max_uA)
1733{
1734	struct regulator_dev *rdev = regulator->rdev;
1735	int ret;
1736
1737	mutex_lock(&rdev->mutex);
1738
1739	/* sanity check */
1740	if (!rdev->desc->ops->set_current_limit) {
1741		ret = -EINVAL;
1742		goto out;
1743	}
1744
1745	/* constraints check */
1746	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1747	if (ret < 0)
1748		goto out;
1749
1750	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1751out:
1752	mutex_unlock(&rdev->mutex);
1753	return ret;
1754}
1755EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1756
1757static int _regulator_get_current_limit(struct regulator_dev *rdev)
1758{
1759	int ret;
1760
1761	mutex_lock(&rdev->mutex);
1762
1763	/* sanity check */
1764	if (!rdev->desc->ops->get_current_limit) {
1765		ret = -EINVAL;
1766		goto out;
1767	}
1768
1769	ret = rdev->desc->ops->get_current_limit(rdev);
1770out:
1771	mutex_unlock(&rdev->mutex);
1772	return ret;
1773}
1774
1775/**
1776 * regulator_get_current_limit - get regulator output current
1777 * @regulator: regulator source
1778 *
1779 * This returns the current supplied by the specified current sink in uA.
1780 *
1781 * NOTE: If the regulator is disabled it will return the current value. This
1782 * function should not be used to determine regulator state.
1783 */
1784int regulator_get_current_limit(struct regulator *regulator)
1785{
1786	return _regulator_get_current_limit(regulator->rdev);
1787}
1788EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1789
1790/**
1791 * regulator_set_mode - set regulator operating mode
1792 * @regulator: regulator source
1793 * @mode: operating mode - one of the REGULATOR_MODE constants
1794 *
1795 * Set regulator operating mode to increase regulator efficiency or improve
1796 * regulation performance.
1797 *
1798 * NOTE: Regulator system constraints must be set for this regulator before
1799 * calling this function otherwise this call will fail.
1800 */
1801int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1802{
1803	struct regulator_dev *rdev = regulator->rdev;
1804	int ret;
1805	int regulator_curr_mode;
1806
1807	mutex_lock(&rdev->mutex);
1808
1809	/* sanity check */
1810	if (!rdev->desc->ops->set_mode) {
1811		ret = -EINVAL;
1812		goto out;
1813	}
1814
1815	/* return if the same mode is requested */
1816	if (rdev->desc->ops->get_mode) {
1817		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1818		if (regulator_curr_mode == mode) {
1819			ret = 0;
1820			goto out;
1821		}
1822	}
1823
1824	/* constraints check */
1825	ret = regulator_check_mode(rdev, mode);
1826	if (ret < 0)
1827		goto out;
1828
1829	ret = rdev->desc->ops->set_mode(rdev, mode);
1830out:
1831	mutex_unlock(&rdev->mutex);
1832	return ret;
1833}
1834EXPORT_SYMBOL_GPL(regulator_set_mode);
1835
1836static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1837{
1838	int ret;
1839
1840	mutex_lock(&rdev->mutex);
1841
1842	/* sanity check */
1843	if (!rdev->desc->ops->get_mode) {
1844		ret = -EINVAL;
1845		goto out;
1846	}
1847
1848	ret = rdev->desc->ops->get_mode(rdev);
1849out:
1850	mutex_unlock(&rdev->mutex);
1851	return ret;
1852}
1853
1854/**
1855 * regulator_get_mode - get regulator operating mode
1856 * @regulator: regulator source
1857 *
1858 * Get the current regulator operating mode.
1859 */
1860unsigned int regulator_get_mode(struct regulator *regulator)
1861{
1862	return _regulator_get_mode(regulator->rdev);
1863}
1864EXPORT_SYMBOL_GPL(regulator_get_mode);
1865
1866/**
1867 * regulator_set_optimum_mode - set regulator optimum operating mode
1868 * @regulator: regulator source
1869 * @uA_load: load current
1870 *
1871 * Notifies the regulator core of a new device load. This is then used by
1872 * DRMS (if enabled by constraints) to set the most efficient regulator
1873 * operating mode for the new regulator loading.
1874 *
1875 * Consumer devices notify their supply regulator of the maximum power
1876 * they will require (can be taken from device datasheet in the power
1877 * consumption tables) when they change operational status and hence power
1878 * state. Examples of operational state changes that can affect power
1879 * consumption are :-
1880 *
1881 *    o Device is opened / closed.
1882 *    o Device I/O is about to begin or has just finished.
1883 *    o Device is idling in between work.
1884 *
1885 * This information is also exported via sysfs to userspace.
1886 *
1887 * DRMS will sum the total requested load on the regulator and change
1888 * to the most efficient operating mode if platform constraints allow.
1889 *
1890 * Returns the new regulator mode or error.
1891 */
1892int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1893{
1894	struct regulator_dev *rdev = regulator->rdev;
1895	struct regulator *consumer;
1896	int ret, output_uV, input_uV, total_uA_load = 0;
1897	unsigned int mode;
1898
1899	mutex_lock(&rdev->mutex);
1900
1901	regulator->uA_load = uA_load;
1902	ret = regulator_check_drms(rdev);
1903	if (ret < 0)
1904		goto out;
1905	ret = -EINVAL;
1906
1907	/* sanity check */
1908	if (!rdev->desc->ops->get_optimum_mode)
1909		goto out;
1910
1911	/* get output voltage */
1912	output_uV = rdev->desc->ops->get_voltage(rdev);
1913	if (output_uV <= 0) {
1914		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1915			__func__, rdev_get_name(rdev));
1916		goto out;
1917	}
1918
1919	/* get input voltage */
1920	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1921		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1922	else
1923		input_uV = rdev->constraints->input_uV;
1924	if (input_uV <= 0) {
1925		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1926			__func__, rdev_get_name(rdev));
1927		goto out;
1928	}
1929
1930	/* calc total requested load for this regulator */
1931	list_for_each_entry(consumer, &rdev->consumer_list, list)
1932		total_uA_load += consumer->uA_load;
1933
1934	mode = rdev->desc->ops->get_optimum_mode(rdev,
1935						 input_uV, output_uV,
1936						 total_uA_load);
1937	ret = regulator_check_mode(rdev, mode);
1938	if (ret < 0) {
1939		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1940			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1941			total_uA_load, input_uV, output_uV);
1942		goto out;
1943	}
1944
1945	ret = rdev->desc->ops->set_mode(rdev, mode);
1946	if (ret < 0) {
1947		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1948			__func__, mode, rdev_get_name(rdev));
1949		goto out;
1950	}
1951	ret = mode;
1952out:
1953	mutex_unlock(&rdev->mutex);
1954	return ret;
1955}
1956EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1957
1958/**
1959 * regulator_register_notifier - register regulator event notifier
1960 * @regulator: regulator source
1961 * @nb: notifier block
1962 *
1963 * Register notifier block to receive regulator events.
1964 */
1965int regulator_register_notifier(struct regulator *regulator,
1966			      struct notifier_block *nb)
1967{
1968	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1969						nb);
1970}
1971EXPORT_SYMBOL_GPL(regulator_register_notifier);
1972
1973/**
1974 * regulator_unregister_notifier - unregister regulator event notifier
1975 * @regulator: regulator source
1976 * @nb: notifier block
1977 *
1978 * Unregister regulator event notifier block.
1979 */
1980int regulator_unregister_notifier(struct regulator *regulator,
1981				struct notifier_block *nb)
1982{
1983	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1984						  nb);
1985}
1986EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1987
1988/* notify regulator consumers and downstream regulator consumers.
1989 * Note mutex must be held by caller.
1990 */
1991static void _notifier_call_chain(struct regulator_dev *rdev,
1992				  unsigned long event, void *data)
1993{
1994	struct regulator_dev *_rdev;
1995
1996	/* call rdev chain first */
1997	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1998
1999	/* now notify regulator we supply */
2000	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2001		mutex_lock(&_rdev->mutex);
2002		_notifier_call_chain(_rdev, event, data);
2003		mutex_unlock(&_rdev->mutex);
2004	}
2005}
2006
2007/**
2008 * regulator_bulk_get - get multiple regulator consumers
2009 *
2010 * @dev:           Device to supply
2011 * @num_consumers: Number of consumers to register
2012 * @consumers:     Configuration of consumers; clients are stored here.
2013 *
2014 * @return 0 on success, an errno on failure.
2015 *
2016 * This helper function allows drivers to get several regulator
2017 * consumers in one operation.  If any of the regulators cannot be
2018 * acquired then any regulators that were allocated will be freed
2019 * before returning to the caller.
2020 */
2021int regulator_bulk_get(struct device *dev, int num_consumers,
2022		       struct regulator_bulk_data *consumers)
2023{
2024	int i;
2025	int ret;
2026
2027	for (i = 0; i < num_consumers; i++)
2028		consumers[i].consumer = NULL;
2029
2030	for (i = 0; i < num_consumers; i++) {
2031		consumers[i].consumer = regulator_get(dev,
2032						      consumers[i].supply);
2033		if (IS_ERR(consumers[i].consumer)) {
2034			ret = PTR_ERR(consumers[i].consumer);
2035			dev_err(dev, "Failed to get supply '%s': %d\n",
2036				consumers[i].supply, ret);
2037			consumers[i].consumer = NULL;
2038			goto err;
2039		}
2040	}
2041
2042	return 0;
2043
2044err:
2045	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2046		regulator_put(consumers[i].consumer);
2047
2048	return ret;
2049}
2050EXPORT_SYMBOL_GPL(regulator_bulk_get);
2051
2052/**
2053 * regulator_bulk_enable - enable multiple regulator consumers
2054 *
2055 * @num_consumers: Number of consumers
2056 * @consumers:     Consumer data; clients are stored here.
2057 * @return         0 on success, an errno on failure
2058 *
2059 * This convenience API allows consumers to enable multiple regulator
2060 * clients in a single API call.  If any consumers cannot be enabled
2061 * then any others that were enabled will be disabled again prior to
2062 * return.
2063 */
2064int regulator_bulk_enable(int num_consumers,
2065			  struct regulator_bulk_data *consumers)
2066{
2067	int i;
2068	int ret;
2069
2070	for (i = 0; i < num_consumers; i++) {
2071		ret = regulator_enable(consumers[i].consumer);
2072		if (ret != 0)
2073			goto err;
2074	}
2075
2076	return 0;
2077
2078err:
2079	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2080	for (--i; i >= 0; --i)
2081		regulator_disable(consumers[i].consumer);
2082
2083	return ret;
2084}
2085EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2086
2087/**
2088 * regulator_bulk_disable - disable multiple regulator consumers
2089 *
2090 * @num_consumers: Number of consumers
2091 * @consumers:     Consumer data; clients are stored here.
2092 * @return         0 on success, an errno on failure
2093 *
2094 * This convenience API allows consumers to disable multiple regulator
2095 * clients in a single API call.  If any consumers cannot be enabled
2096 * then any others that were disabled will be disabled again prior to
2097 * return.
2098 */
2099int regulator_bulk_disable(int num_consumers,
2100			   struct regulator_bulk_data *consumers)
2101{
2102	int i;
2103	int ret;
2104
2105	for (i = 0; i < num_consumers; i++) {
2106		ret = regulator_disable(consumers[i].consumer);
2107		if (ret != 0)
2108			goto err;
2109	}
2110
2111	return 0;
2112
2113err:
2114	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2115	       ret);
2116	for (--i; i >= 0; --i)
2117		regulator_enable(consumers[i].consumer);
2118
2119	return ret;
2120}
2121EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2122
2123/**
2124 * regulator_bulk_free - free multiple regulator consumers
2125 *
2126 * @num_consumers: Number of consumers
2127 * @consumers:     Consumer data; clients are stored here.
2128 *
2129 * This convenience API allows consumers to free multiple regulator
2130 * clients in a single API call.
2131 */
2132void regulator_bulk_free(int num_consumers,
2133			 struct regulator_bulk_data *consumers)
2134{
2135	int i;
2136
2137	for (i = 0; i < num_consumers; i++) {
2138		regulator_put(consumers[i].consumer);
2139		consumers[i].consumer = NULL;
2140	}
2141}
2142EXPORT_SYMBOL_GPL(regulator_bulk_free);
2143
2144/**
2145 * regulator_notifier_call_chain - call regulator event notifier
2146 * @rdev: regulator source
2147 * @event: notifier block
2148 * @data: callback-specific data.
2149 *
2150 * Called by regulator drivers to notify clients a regulator event has
2151 * occurred. We also notify regulator clients downstream.
2152 * Note lock must be held by caller.
2153 */
2154int regulator_notifier_call_chain(struct regulator_dev *rdev,
2155				  unsigned long event, void *data)
2156{
2157	_notifier_call_chain(rdev, event, data);
2158	return NOTIFY_DONE;
2159
2160}
2161EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2162
2163/**
2164 * regulator_mode_to_status - convert a regulator mode into a status
2165 *
2166 * @mode: Mode to convert
2167 *
2168 * Convert a regulator mode into a status.
2169 */
2170int regulator_mode_to_status(unsigned int mode)
2171{
2172	switch (mode) {
2173	case REGULATOR_MODE_FAST:
2174		return REGULATOR_STATUS_FAST;
2175	case REGULATOR_MODE_NORMAL:
2176		return REGULATOR_STATUS_NORMAL;
2177	case REGULATOR_MODE_IDLE:
2178		return REGULATOR_STATUS_IDLE;
2179	case REGULATOR_STATUS_STANDBY:
2180		return REGULATOR_STATUS_STANDBY;
2181	default:
2182		return 0;
2183	}
2184}
2185EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2186
2187/*
2188 * To avoid cluttering sysfs (and memory) with useless state, only
2189 * create attributes that can be meaningfully displayed.
2190 */
2191static int add_regulator_attributes(struct regulator_dev *rdev)
2192{
2193	struct device		*dev = &rdev->dev;
2194	struct regulator_ops	*ops = rdev->desc->ops;
2195	int			status = 0;
2196
2197	/* some attributes need specific methods to be displayed */
2198	if (ops->get_voltage) {
2199		status = device_create_file(dev, &dev_attr_microvolts);
2200		if (status < 0)
2201			return status;
2202	}
2203	if (ops->get_current_limit) {
2204		status = device_create_file(dev, &dev_attr_microamps);
2205		if (status < 0)
2206			return status;
2207	}
2208	if (ops->get_mode) {
2209		status = device_create_file(dev, &dev_attr_opmode);
2210		if (status < 0)
2211			return status;
2212	}
2213	if (ops->is_enabled) {
2214		status = device_create_file(dev, &dev_attr_state);
2215		if (status < 0)
2216			return status;
2217	}
2218	if (ops->get_status) {
2219		status = device_create_file(dev, &dev_attr_status);
2220		if (status < 0)
2221			return status;
2222	}
2223
2224	/* some attributes are type-specific */
2225	if (rdev->desc->type == REGULATOR_CURRENT) {
2226		status = device_create_file(dev, &dev_attr_requested_microamps);
2227		if (status < 0)
2228			return status;
2229	}
2230
2231	/* all the other attributes exist to support constraints;
2232	 * don't show them if there are no constraints, or if the
2233	 * relevant supporting methods are missing.
2234	 */
2235	if (!rdev->constraints)
2236		return status;
2237
2238	/* constraints need specific supporting methods */
2239	if (ops->set_voltage) {
2240		status = device_create_file(dev, &dev_attr_min_microvolts);
2241		if (status < 0)
2242			return status;
2243		status = device_create_file(dev, &dev_attr_max_microvolts);
2244		if (status < 0)
2245			return status;
2246	}
2247	if (ops->set_current_limit) {
2248		status = device_create_file(dev, &dev_attr_min_microamps);
2249		if (status < 0)
2250			return status;
2251		status = device_create_file(dev, &dev_attr_max_microamps);
2252		if (status < 0)
2253			return status;
2254	}
2255
2256	/* suspend mode constraints need multiple supporting methods */
2257	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2258		return status;
2259
2260	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2261	if (status < 0)
2262		return status;
2263	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2264	if (status < 0)
2265		return status;
2266	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2267	if (status < 0)
2268		return status;
2269
2270	if (ops->set_suspend_voltage) {
2271		status = device_create_file(dev,
2272				&dev_attr_suspend_standby_microvolts);
2273		if (status < 0)
2274			return status;
2275		status = device_create_file(dev,
2276				&dev_attr_suspend_mem_microvolts);
2277		if (status < 0)
2278			return status;
2279		status = device_create_file(dev,
2280				&dev_attr_suspend_disk_microvolts);
2281		if (status < 0)
2282			return status;
2283	}
2284
2285	if (ops->set_suspend_mode) {
2286		status = device_create_file(dev,
2287				&dev_attr_suspend_standby_mode);
2288		if (status < 0)
2289			return status;
2290		status = device_create_file(dev,
2291				&dev_attr_suspend_mem_mode);
2292		if (status < 0)
2293			return status;
2294		status = device_create_file(dev,
2295				&dev_attr_suspend_disk_mode);
2296		if (status < 0)
2297			return status;
2298	}
2299
2300	return status;
2301}
2302
2303/**
2304 * regulator_register - register regulator
2305 * @regulator_desc: regulator to register
2306 * @dev: struct device for the regulator
2307 * @init_data: platform provided init data, passed through by driver
2308 * @driver_data: private regulator data
2309 *
2310 * Called by regulator drivers to register a regulator.
2311 * Returns 0 on success.
2312 */
2313struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2314	struct device *dev, struct regulator_init_data *init_data,
2315	void *driver_data)
2316{
2317	static atomic_t regulator_no = ATOMIC_INIT(0);
2318	struct regulator_dev *rdev;
2319	int ret, i;
2320
2321	if (regulator_desc == NULL)
2322		return ERR_PTR(-EINVAL);
2323
2324	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2325		return ERR_PTR(-EINVAL);
2326
2327	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2328	    regulator_desc->type != REGULATOR_CURRENT)
2329		return ERR_PTR(-EINVAL);
2330
2331	if (!init_data)
2332		return ERR_PTR(-EINVAL);
2333
2334	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2335	if (rdev == NULL)
2336		return ERR_PTR(-ENOMEM);
2337
2338	mutex_lock(&regulator_list_mutex);
2339
2340	mutex_init(&rdev->mutex);
2341	rdev->reg_data = driver_data;
2342	rdev->owner = regulator_desc->owner;
2343	rdev->desc = regulator_desc;
2344	INIT_LIST_HEAD(&rdev->consumer_list);
2345	INIT_LIST_HEAD(&rdev->supply_list);
2346	INIT_LIST_HEAD(&rdev->list);
2347	INIT_LIST_HEAD(&rdev->slist);
2348	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2349
2350	/* preform any regulator specific init */
2351	if (init_data->regulator_init) {
2352		ret = init_data->regulator_init(rdev->reg_data);
2353		if (ret < 0)
2354			goto clean;
2355	}
2356
2357	/* register with sysfs */
2358	rdev->dev.class = &regulator_class;
2359	rdev->dev.parent = dev;
2360	dev_set_name(&rdev->dev, "regulator.%d",
2361		     atomic_inc_return(&regulator_no) - 1);
2362	ret = device_register(&rdev->dev);
2363	if (ret != 0) {
2364		put_device(&rdev->dev);
2365		goto clean;
2366	}
2367
2368	dev_set_drvdata(&rdev->dev, rdev);
2369
2370	/* set regulator constraints */
2371	ret = set_machine_constraints(rdev, &init_data->constraints);
2372	if (ret < 0)
2373		goto scrub;
2374
2375	/* add attributes supported by this regulator */
2376	ret = add_regulator_attributes(rdev);
2377	if (ret < 0)
2378		goto scrub;
2379
2380	/* set supply regulator if it exists */
2381	if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2382		dev_err(dev,
2383			"Supply regulator specified by both name and dev\n");
2384		ret = -EINVAL;
2385		goto scrub;
2386	}
2387
2388	if (init_data->supply_regulator) {
2389		struct regulator_dev *r;
2390		int found = 0;
2391
2392		list_for_each_entry(r, &regulator_list, list) {
2393			if (strcmp(rdev_get_name(r),
2394				   init_data->supply_regulator) == 0) {
2395				found = 1;
2396				break;
2397			}
2398		}
2399
2400		if (!found) {
2401			dev_err(dev, "Failed to find supply %s\n",
2402				init_data->supply_regulator);
2403			ret = -ENODEV;
2404			goto scrub;
2405		}
2406
2407		ret = set_supply(rdev, r);
2408		if (ret < 0)
2409			goto scrub;
2410	}
2411
2412	if (init_data->supply_regulator_dev) {
2413		dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2414		ret = set_supply(rdev,
2415			dev_get_drvdata(init_data->supply_regulator_dev));
2416		if (ret < 0)
2417			goto scrub;
2418	}
2419
2420	/* add consumers devices */
2421	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2422		ret = set_consumer_device_supply(rdev,
2423			init_data->consumer_supplies[i].dev,
2424			init_data->consumer_supplies[i].dev_name,
2425			init_data->consumer_supplies[i].supply);
2426		if (ret < 0)
2427			goto unset_supplies;
2428	}
2429
2430	list_add(&rdev->list, &regulator_list);
2431out:
2432	mutex_unlock(&regulator_list_mutex);
2433	return rdev;
2434
2435unset_supplies:
2436	unset_regulator_supplies(rdev);
2437
2438scrub:
2439	device_unregister(&rdev->dev);
2440	/* device core frees rdev */
2441	rdev = ERR_PTR(ret);
2442	goto out;
2443
2444clean:
2445	kfree(rdev);
2446	rdev = ERR_PTR(ret);
2447	goto out;
2448}
2449EXPORT_SYMBOL_GPL(regulator_register);
2450
2451/**
2452 * regulator_unregister - unregister regulator
2453 * @rdev: regulator to unregister
2454 *
2455 * Called by regulator drivers to unregister a regulator.
2456 */
2457void regulator_unregister(struct regulator_dev *rdev)
2458{
2459	if (rdev == NULL)
2460		return;
2461
2462	mutex_lock(&regulator_list_mutex);
2463	WARN_ON(rdev->open_count);
2464	unset_regulator_supplies(rdev);
2465	list_del(&rdev->list);
2466	if (rdev->supply)
2467		sysfs_remove_link(&rdev->dev.kobj, "supply");
2468	device_unregister(&rdev->dev);
2469	mutex_unlock(&regulator_list_mutex);
2470}
2471EXPORT_SYMBOL_GPL(regulator_unregister);
2472
2473/**
2474 * regulator_suspend_prepare - prepare regulators for system wide suspend
2475 * @state: system suspend state
2476 *
2477 * Configure each regulator with it's suspend operating parameters for state.
2478 * This will usually be called by machine suspend code prior to supending.
2479 */
2480int regulator_suspend_prepare(suspend_state_t state)
2481{
2482	struct regulator_dev *rdev;
2483	int ret = 0;
2484
2485	/* ON is handled by regulator active state */
2486	if (state == PM_SUSPEND_ON)
2487		return -EINVAL;
2488
2489	mutex_lock(&regulator_list_mutex);
2490	list_for_each_entry(rdev, &regulator_list, list) {
2491
2492		mutex_lock(&rdev->mutex);
2493		ret = suspend_prepare(rdev, state);
2494		mutex_unlock(&rdev->mutex);
2495
2496		if (ret < 0) {
2497			printk(KERN_ERR "%s: failed to prepare %s\n",
2498				__func__, rdev_get_name(rdev));
2499			goto out;
2500		}
2501	}
2502out:
2503	mutex_unlock(&regulator_list_mutex);
2504	return ret;
2505}
2506EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2507
2508/**
2509 * regulator_has_full_constraints - the system has fully specified constraints
2510 *
2511 * Calling this function will cause the regulator API to disable all
2512 * regulators which have a zero use count and don't have an always_on
2513 * constraint in a late_initcall.
2514 *
2515 * The intention is that this will become the default behaviour in a
2516 * future kernel release so users are encouraged to use this facility
2517 * now.
2518 */
2519void regulator_has_full_constraints(void)
2520{
2521	has_full_constraints = 1;
2522}
2523EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2524
2525/**
2526 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2527 *
2528 * Calling this function will cause the regulator API to provide a
2529 * dummy regulator to consumers if no physical regulator is found,
2530 * allowing most consumers to proceed as though a regulator were
2531 * configured.  This allows systems such as those with software
2532 * controllable regulators for the CPU core only to be brought up more
2533 * readily.
2534 */
2535void regulator_use_dummy_regulator(void)
2536{
2537	board_wants_dummy_regulator = true;
2538}
2539EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2540
2541/**
2542 * rdev_get_drvdata - get rdev regulator driver data
2543 * @rdev: regulator
2544 *
2545 * Get rdev regulator driver private data. This call can be used in the
2546 * regulator driver context.
2547 */
2548void *rdev_get_drvdata(struct regulator_dev *rdev)
2549{
2550	return rdev->reg_data;
2551}
2552EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2553
2554/**
2555 * regulator_get_drvdata - get regulator driver data
2556 * @regulator: regulator
2557 *
2558 * Get regulator driver private data. This call can be used in the consumer
2559 * driver context when non API regulator specific functions need to be called.
2560 */
2561void *regulator_get_drvdata(struct regulator *regulator)
2562{
2563	return regulator->rdev->reg_data;
2564}
2565EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2566
2567/**
2568 * regulator_set_drvdata - set regulator driver data
2569 * @regulator: regulator
2570 * @data: data
2571 */
2572void regulator_set_drvdata(struct regulator *regulator, void *data)
2573{
2574	regulator->rdev->reg_data = data;
2575}
2576EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2577
2578/**
2579 * regulator_get_id - get regulator ID
2580 * @rdev: regulator
2581 */
2582int rdev_get_id(struct regulator_dev *rdev)
2583{
2584	return rdev->desc->id;
2585}
2586EXPORT_SYMBOL_GPL(rdev_get_id);
2587
2588struct device *rdev_get_dev(struct regulator_dev *rdev)
2589{
2590	return &rdev->dev;
2591}
2592EXPORT_SYMBOL_GPL(rdev_get_dev);
2593
2594void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2595{
2596	return reg_init_data->driver_data;
2597}
2598EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2599
2600static int __init regulator_init(void)
2601{
2602	int ret;
2603
2604	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2605
2606	ret = class_register(&regulator_class);
2607
2608	regulator_dummy_init();
2609
2610	return ret;
2611}
2612
2613/* init early to allow our consumers to complete system booting */
2614core_initcall(regulator_init);
2615
2616static int __init regulator_init_complete(void)
2617{
2618	struct regulator_dev *rdev;
2619	struct regulator_ops *ops;
2620	struct regulation_constraints *c;
2621	int enabled, ret;
2622	const char *name;
2623
2624	mutex_lock(&regulator_list_mutex);
2625
2626	/* If we have a full configuration then disable any regulators
2627	 * which are not in use or always_on.  This will become the
2628	 * default behaviour in the future.
2629	 */
2630	list_for_each_entry(rdev, &regulator_list, list) {
2631		ops = rdev->desc->ops;
2632		c = rdev->constraints;
2633
2634		name = rdev_get_name(rdev);
2635
2636		if (!ops->disable || (c && c->always_on))
2637			continue;
2638
2639		mutex_lock(&rdev->mutex);
2640
2641		if (rdev->use_count)
2642			goto unlock;
2643
2644		/* If we can't read the status assume it's on. */
2645		if (ops->is_enabled)
2646			enabled = ops->is_enabled(rdev);
2647		else
2648			enabled = 1;
2649
2650		if (!enabled)
2651			goto unlock;
2652
2653		if (has_full_constraints) {
2654			/* We log since this may kill the system if it
2655			 * goes wrong. */
2656			printk(KERN_INFO "%s: disabling %s\n",
2657			       __func__, name);
2658			ret = ops->disable(rdev);
2659			if (ret != 0) {
2660				printk(KERN_ERR
2661				       "%s: couldn't disable %s: %d\n",
2662				       __func__, name, ret);
2663			}
2664		} else {
2665			/* The intention is that in future we will
2666			 * assume that full constraints are provided
2667			 * so warn even if we aren't going to do
2668			 * anything here.
2669			 */
2670			printk(KERN_WARNING
2671			       "%s: incomplete constraints, leaving %s on\n",
2672			       __func__, name);
2673		}
2674
2675unlock:
2676		mutex_unlock(&rdev->mutex);
2677	}
2678
2679	mutex_unlock(&regulator_list_mutex);
2680
2681	return 0;
2682}
2683late_initcall(regulator_init_complete);
2684