core.c revision c5f3939b8fe0c358d35397982e5afdef112afc81
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/**
112 * of_get_regulator - get a regulator device node based on supply name
113 * @dev: Device pointer for the consumer (of regulator) device
114 * @supply: regulator supply name
115 *
116 * Extract the regulator device node corresponding to the supply name.
117 * retruns the device node corresponding to the regulator if found, else
118 * returns NULL.
119 */
120static struct device_node *of_get_regulator(struct device *dev, const char *supply)
121{
122	struct device_node *regnode = NULL;
123	char prop_name[32]; /* 32 is max size of property name */
124
125	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
126
127	snprintf(prop_name, 32, "%s-supply", supply);
128	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
129
130	if (!regnode) {
131		dev_dbg(dev, "Looking up %s property in node %s failed",
132				prop_name, dev->of_node->full_name);
133		return NULL;
134	}
135	return regnode;
136}
137
138static int _regulator_can_change_status(struct regulator_dev *rdev)
139{
140	if (!rdev->constraints)
141		return 0;
142
143	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
144		return 1;
145	else
146		return 0;
147}
148
149/* Platform voltage constraint check */
150static int regulator_check_voltage(struct regulator_dev *rdev,
151				   int *min_uV, int *max_uV)
152{
153	BUG_ON(*min_uV > *max_uV);
154
155	if (!rdev->constraints) {
156		rdev_err(rdev, "no constraints\n");
157		return -ENODEV;
158	}
159	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
160		rdev_err(rdev, "operation not allowed\n");
161		return -EPERM;
162	}
163
164	if (*max_uV > rdev->constraints->max_uV)
165		*max_uV = rdev->constraints->max_uV;
166	if (*min_uV < rdev->constraints->min_uV)
167		*min_uV = rdev->constraints->min_uV;
168
169	if (*min_uV > *max_uV) {
170		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
171			 *min_uV, *max_uV);
172		return -EINVAL;
173	}
174
175	return 0;
176}
177
178/* Make sure we select a voltage that suits the needs of all
179 * regulator consumers
180 */
181static int regulator_check_consumers(struct regulator_dev *rdev,
182				     int *min_uV, int *max_uV)
183{
184	struct regulator *regulator;
185
186	list_for_each_entry(regulator, &rdev->consumer_list, list) {
187		/*
188		 * Assume consumers that didn't say anything are OK
189		 * with anything in the constraint range.
190		 */
191		if (!regulator->min_uV && !regulator->max_uV)
192			continue;
193
194		if (*max_uV > regulator->max_uV)
195			*max_uV = regulator->max_uV;
196		if (*min_uV < regulator->min_uV)
197			*min_uV = regulator->min_uV;
198	}
199
200	if (*min_uV > *max_uV)
201		return -EINVAL;
202
203	return 0;
204}
205
206/* current constraint check */
207static int regulator_check_current_limit(struct regulator_dev *rdev,
208					int *min_uA, int *max_uA)
209{
210	BUG_ON(*min_uA > *max_uA);
211
212	if (!rdev->constraints) {
213		rdev_err(rdev, "no constraints\n");
214		return -ENODEV;
215	}
216	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
217		rdev_err(rdev, "operation not allowed\n");
218		return -EPERM;
219	}
220
221	if (*max_uA > rdev->constraints->max_uA)
222		*max_uA = rdev->constraints->max_uA;
223	if (*min_uA < rdev->constraints->min_uA)
224		*min_uA = rdev->constraints->min_uA;
225
226	if (*min_uA > *max_uA) {
227		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
228			 *min_uA, *max_uA);
229		return -EINVAL;
230	}
231
232	return 0;
233}
234
235/* operating mode constraint check */
236static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
237{
238	switch (*mode) {
239	case REGULATOR_MODE_FAST:
240	case REGULATOR_MODE_NORMAL:
241	case REGULATOR_MODE_IDLE:
242	case REGULATOR_MODE_STANDBY:
243		break;
244	default:
245		rdev_err(rdev, "invalid mode %x specified\n", *mode);
246		return -EINVAL;
247	}
248
249	if (!rdev->constraints) {
250		rdev_err(rdev, "no constraints\n");
251		return -ENODEV;
252	}
253	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
254		rdev_err(rdev, "operation not allowed\n");
255		return -EPERM;
256	}
257
258	/* The modes are bitmasks, the most power hungry modes having
259	 * the lowest values. If the requested mode isn't supported
260	 * try higher modes. */
261	while (*mode) {
262		if (rdev->constraints->valid_modes_mask & *mode)
263			return 0;
264		*mode /= 2;
265	}
266
267	return -EINVAL;
268}
269
270/* dynamic regulator mode switching constraint check */
271static int regulator_check_drms(struct regulator_dev *rdev)
272{
273	if (!rdev->constraints) {
274		rdev_err(rdev, "no constraints\n");
275		return -ENODEV;
276	}
277	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
278		rdev_err(rdev, "operation not allowed\n");
279		return -EPERM;
280	}
281	return 0;
282}
283
284static ssize_t regulator_uV_show(struct device *dev,
285				struct device_attribute *attr, char *buf)
286{
287	struct regulator_dev *rdev = dev_get_drvdata(dev);
288	ssize_t ret;
289
290	mutex_lock(&rdev->mutex);
291	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
292	mutex_unlock(&rdev->mutex);
293
294	return ret;
295}
296static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
297
298static ssize_t regulator_uA_show(struct device *dev,
299				struct device_attribute *attr, char *buf)
300{
301	struct regulator_dev *rdev = dev_get_drvdata(dev);
302
303	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
304}
305static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
306
307static ssize_t regulator_name_show(struct device *dev,
308			     struct device_attribute *attr, char *buf)
309{
310	struct regulator_dev *rdev = dev_get_drvdata(dev);
311
312	return sprintf(buf, "%s\n", rdev_get_name(rdev));
313}
314
315static ssize_t regulator_print_opmode(char *buf, int mode)
316{
317	switch (mode) {
318	case REGULATOR_MODE_FAST:
319		return sprintf(buf, "fast\n");
320	case REGULATOR_MODE_NORMAL:
321		return sprintf(buf, "normal\n");
322	case REGULATOR_MODE_IDLE:
323		return sprintf(buf, "idle\n");
324	case REGULATOR_MODE_STANDBY:
325		return sprintf(buf, "standby\n");
326	}
327	return sprintf(buf, "unknown\n");
328}
329
330static ssize_t regulator_opmode_show(struct device *dev,
331				    struct device_attribute *attr, char *buf)
332{
333	struct regulator_dev *rdev = dev_get_drvdata(dev);
334
335	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
336}
337static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
338
339static ssize_t regulator_print_state(char *buf, int state)
340{
341	if (state > 0)
342		return sprintf(buf, "enabled\n");
343	else if (state == 0)
344		return sprintf(buf, "disabled\n");
345	else
346		return sprintf(buf, "unknown\n");
347}
348
349static ssize_t regulator_state_show(struct device *dev,
350				   struct device_attribute *attr, char *buf)
351{
352	struct regulator_dev *rdev = dev_get_drvdata(dev);
353	ssize_t ret;
354
355	mutex_lock(&rdev->mutex);
356	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
357	mutex_unlock(&rdev->mutex);
358
359	return ret;
360}
361static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
362
363static ssize_t regulator_status_show(struct device *dev,
364				   struct device_attribute *attr, char *buf)
365{
366	struct regulator_dev *rdev = dev_get_drvdata(dev);
367	int status;
368	char *label;
369
370	status = rdev->desc->ops->get_status(rdev);
371	if (status < 0)
372		return status;
373
374	switch (status) {
375	case REGULATOR_STATUS_OFF:
376		label = "off";
377		break;
378	case REGULATOR_STATUS_ON:
379		label = "on";
380		break;
381	case REGULATOR_STATUS_ERROR:
382		label = "error";
383		break;
384	case REGULATOR_STATUS_FAST:
385		label = "fast";
386		break;
387	case REGULATOR_STATUS_NORMAL:
388		label = "normal";
389		break;
390	case REGULATOR_STATUS_IDLE:
391		label = "idle";
392		break;
393	case REGULATOR_STATUS_STANDBY:
394		label = "standby";
395		break;
396	default:
397		return -ERANGE;
398	}
399
400	return sprintf(buf, "%s\n", label);
401}
402static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
403
404static ssize_t regulator_min_uA_show(struct device *dev,
405				    struct device_attribute *attr, char *buf)
406{
407	struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409	if (!rdev->constraints)
410		return sprintf(buf, "constraint not defined\n");
411
412	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
413}
414static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
415
416static ssize_t regulator_max_uA_show(struct device *dev,
417				    struct device_attribute *attr, char *buf)
418{
419	struct regulator_dev *rdev = dev_get_drvdata(dev);
420
421	if (!rdev->constraints)
422		return sprintf(buf, "constraint not defined\n");
423
424	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
425}
426static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
427
428static ssize_t regulator_min_uV_show(struct device *dev,
429				    struct device_attribute *attr, char *buf)
430{
431	struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433	if (!rdev->constraints)
434		return sprintf(buf, "constraint not defined\n");
435
436	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
437}
438static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
439
440static ssize_t regulator_max_uV_show(struct device *dev,
441				    struct device_attribute *attr, char *buf)
442{
443	struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445	if (!rdev->constraints)
446		return sprintf(buf, "constraint not defined\n");
447
448	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
449}
450static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
451
452static ssize_t regulator_total_uA_show(struct device *dev,
453				      struct device_attribute *attr, char *buf)
454{
455	struct regulator_dev *rdev = dev_get_drvdata(dev);
456	struct regulator *regulator;
457	int uA = 0;
458
459	mutex_lock(&rdev->mutex);
460	list_for_each_entry(regulator, &rdev->consumer_list, list)
461		uA += regulator->uA_load;
462	mutex_unlock(&rdev->mutex);
463	return sprintf(buf, "%d\n", uA);
464}
465static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
466
467static ssize_t regulator_num_users_show(struct device *dev,
468				      struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471	return sprintf(buf, "%d\n", rdev->use_count);
472}
473
474static ssize_t regulator_type_show(struct device *dev,
475				  struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	switch (rdev->desc->type) {
480	case REGULATOR_VOLTAGE:
481		return sprintf(buf, "voltage\n");
482	case REGULATOR_CURRENT:
483		return sprintf(buf, "current\n");
484	}
485	return sprintf(buf, "unknown\n");
486}
487
488static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
489				struct device_attribute *attr, char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492
493	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
494}
495static DEVICE_ATTR(suspend_mem_microvolts, 0444,
496		regulator_suspend_mem_uV_show, NULL);
497
498static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
499				struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
504}
505static DEVICE_ATTR(suspend_disk_microvolts, 0444,
506		regulator_suspend_disk_uV_show, NULL);
507
508static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
509				struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
514}
515static DEVICE_ATTR(suspend_standby_microvolts, 0444,
516		regulator_suspend_standby_uV_show, NULL);
517
518static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
519				struct device_attribute *attr, char *buf)
520{
521	struct regulator_dev *rdev = dev_get_drvdata(dev);
522
523	return regulator_print_opmode(buf,
524		rdev->constraints->state_mem.mode);
525}
526static DEVICE_ATTR(suspend_mem_mode, 0444,
527		regulator_suspend_mem_mode_show, NULL);
528
529static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return regulator_print_opmode(buf,
535		rdev->constraints->state_disk.mode);
536}
537static DEVICE_ATTR(suspend_disk_mode, 0444,
538		regulator_suspend_disk_mode_show, NULL);
539
540static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
541				struct device_attribute *attr, char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545	return regulator_print_opmode(buf,
546		rdev->constraints->state_standby.mode);
547}
548static DEVICE_ATTR(suspend_standby_mode, 0444,
549		regulator_suspend_standby_mode_show, NULL);
550
551static ssize_t regulator_suspend_mem_state_show(struct device *dev,
552				   struct device_attribute *attr, char *buf)
553{
554	struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556	return regulator_print_state(buf,
557			rdev->constraints->state_mem.enabled);
558}
559static DEVICE_ATTR(suspend_mem_state, 0444,
560		regulator_suspend_mem_state_show, NULL);
561
562static ssize_t regulator_suspend_disk_state_show(struct device *dev,
563				   struct device_attribute *attr, char *buf)
564{
565	struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567	return regulator_print_state(buf,
568			rdev->constraints->state_disk.enabled);
569}
570static DEVICE_ATTR(suspend_disk_state, 0444,
571		regulator_suspend_disk_state_show, NULL);
572
573static ssize_t regulator_suspend_standby_state_show(struct device *dev,
574				   struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return regulator_print_state(buf,
579			rdev->constraints->state_standby.enabled);
580}
581static DEVICE_ATTR(suspend_standby_state, 0444,
582		regulator_suspend_standby_state_show, NULL);
583
584
585/*
586 * These are the only attributes are present for all regulators.
587 * Other attributes are a function of regulator functionality.
588 */
589static struct device_attribute regulator_dev_attrs[] = {
590	__ATTR(name, 0444, regulator_name_show, NULL),
591	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
592	__ATTR(type, 0444, regulator_type_show, NULL),
593	__ATTR_NULL,
594};
595
596static void regulator_dev_release(struct device *dev)
597{
598	struct regulator_dev *rdev = dev_get_drvdata(dev);
599	kfree(rdev);
600}
601
602static struct class regulator_class = {
603	.name = "regulator",
604	.dev_release = regulator_dev_release,
605	.dev_attrs = regulator_dev_attrs,
606};
607
608/* Calculate the new optimum regulator operating mode based on the new total
609 * consumer load. All locks held by caller */
610static void drms_uA_update(struct regulator_dev *rdev)
611{
612	struct regulator *sibling;
613	int current_uA = 0, output_uV, input_uV, err;
614	unsigned int mode;
615
616	err = regulator_check_drms(rdev);
617	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
618	    (!rdev->desc->ops->get_voltage &&
619	     !rdev->desc->ops->get_voltage_sel) ||
620	    !rdev->desc->ops->set_mode)
621		return;
622
623	/* get output voltage */
624	output_uV = _regulator_get_voltage(rdev);
625	if (output_uV <= 0)
626		return;
627
628	/* get input voltage */
629	input_uV = 0;
630	if (rdev->supply)
631		input_uV = regulator_get_voltage(rdev->supply);
632	if (input_uV <= 0)
633		input_uV = rdev->constraints->input_uV;
634	if (input_uV <= 0)
635		return;
636
637	/* calc total requested load */
638	list_for_each_entry(sibling, &rdev->consumer_list, list)
639		current_uA += sibling->uA_load;
640
641	/* now get the optimum mode for our new total regulator load */
642	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
643						  output_uV, current_uA);
644
645	/* check the new mode is allowed */
646	err = regulator_mode_constrain(rdev, &mode);
647	if (err == 0)
648		rdev->desc->ops->set_mode(rdev, mode);
649}
650
651static int suspend_set_state(struct regulator_dev *rdev,
652	struct regulator_state *rstate)
653{
654	int ret = 0;
655
656	/* If we have no suspend mode configration don't set anything;
657	 * only warn if the driver implements set_suspend_voltage or
658	 * set_suspend_mode callback.
659	 */
660	if (!rstate->enabled && !rstate->disabled) {
661		if (rdev->desc->ops->set_suspend_voltage ||
662		    rdev->desc->ops->set_suspend_mode)
663			rdev_warn(rdev, "No configuration\n");
664		return 0;
665	}
666
667	if (rstate->enabled && rstate->disabled) {
668		rdev_err(rdev, "invalid configuration\n");
669		return -EINVAL;
670	}
671
672	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
673		ret = rdev->desc->ops->set_suspend_enable(rdev);
674	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
675		ret = rdev->desc->ops->set_suspend_disable(rdev);
676	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
677		ret = 0;
678
679	if (ret < 0) {
680		rdev_err(rdev, "failed to enabled/disable\n");
681		return ret;
682	}
683
684	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
685		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
686		if (ret < 0) {
687			rdev_err(rdev, "failed to set voltage\n");
688			return ret;
689		}
690	}
691
692	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
693		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
694		if (ret < 0) {
695			rdev_err(rdev, "failed to set mode\n");
696			return ret;
697		}
698	}
699	return ret;
700}
701
702/* locks held by caller */
703static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
704{
705	if (!rdev->constraints)
706		return -EINVAL;
707
708	switch (state) {
709	case PM_SUSPEND_STANDBY:
710		return suspend_set_state(rdev,
711			&rdev->constraints->state_standby);
712	case PM_SUSPEND_MEM:
713		return suspend_set_state(rdev,
714			&rdev->constraints->state_mem);
715	case PM_SUSPEND_MAX:
716		return suspend_set_state(rdev,
717			&rdev->constraints->state_disk);
718	default:
719		return -EINVAL;
720	}
721}
722
723static void print_constraints(struct regulator_dev *rdev)
724{
725	struct regulation_constraints *constraints = rdev->constraints;
726	char buf[80] = "";
727	int count = 0;
728	int ret;
729
730	if (constraints->min_uV && constraints->max_uV) {
731		if (constraints->min_uV == constraints->max_uV)
732			count += sprintf(buf + count, "%d mV ",
733					 constraints->min_uV / 1000);
734		else
735			count += sprintf(buf + count, "%d <--> %d mV ",
736					 constraints->min_uV / 1000,
737					 constraints->max_uV / 1000);
738	}
739
740	if (!constraints->min_uV ||
741	    constraints->min_uV != constraints->max_uV) {
742		ret = _regulator_get_voltage(rdev);
743		if (ret > 0)
744			count += sprintf(buf + count, "at %d mV ", ret / 1000);
745	}
746
747	if (constraints->uV_offset)
748		count += sprintf(buf, "%dmV offset ",
749				 constraints->uV_offset / 1000);
750
751	if (constraints->min_uA && constraints->max_uA) {
752		if (constraints->min_uA == constraints->max_uA)
753			count += sprintf(buf + count, "%d mA ",
754					 constraints->min_uA / 1000);
755		else
756			count += sprintf(buf + count, "%d <--> %d mA ",
757					 constraints->min_uA / 1000,
758					 constraints->max_uA / 1000);
759	}
760
761	if (!constraints->min_uA ||
762	    constraints->min_uA != constraints->max_uA) {
763		ret = _regulator_get_current_limit(rdev);
764		if (ret > 0)
765			count += sprintf(buf + count, "at %d mA ", ret / 1000);
766	}
767
768	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
769		count += sprintf(buf + count, "fast ");
770	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
771		count += sprintf(buf + count, "normal ");
772	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
773		count += sprintf(buf + count, "idle ");
774	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
775		count += sprintf(buf + count, "standby");
776
777	rdev_info(rdev, "%s\n", buf);
778
779	if ((constraints->min_uV != constraints->max_uV) &&
780	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
781		rdev_warn(rdev,
782			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
783}
784
785static int machine_constraints_voltage(struct regulator_dev *rdev,
786	struct regulation_constraints *constraints)
787{
788	struct regulator_ops *ops = rdev->desc->ops;
789	int ret;
790
791	/* do we need to apply the constraint voltage */
792	if (rdev->constraints->apply_uV &&
793	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
794		ret = _regulator_do_set_voltage(rdev,
795						rdev->constraints->min_uV,
796						rdev->constraints->max_uV);
797		if (ret < 0) {
798			rdev_err(rdev, "failed to apply %duV constraint\n",
799				 rdev->constraints->min_uV);
800			return ret;
801		}
802	}
803
804	/* constrain machine-level voltage specs to fit
805	 * the actual range supported by this regulator.
806	 */
807	if (ops->list_voltage && rdev->desc->n_voltages) {
808		int	count = rdev->desc->n_voltages;
809		int	i;
810		int	min_uV = INT_MAX;
811		int	max_uV = INT_MIN;
812		int	cmin = constraints->min_uV;
813		int	cmax = constraints->max_uV;
814
815		/* it's safe to autoconfigure fixed-voltage supplies
816		   and the constraints are used by list_voltage. */
817		if (count == 1 && !cmin) {
818			cmin = 1;
819			cmax = INT_MAX;
820			constraints->min_uV = cmin;
821			constraints->max_uV = cmax;
822		}
823
824		/* voltage constraints are optional */
825		if ((cmin == 0) && (cmax == 0))
826			return 0;
827
828		/* else require explicit machine-level constraints */
829		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
830			rdev_err(rdev, "invalid voltage constraints\n");
831			return -EINVAL;
832		}
833
834		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
835		for (i = 0; i < count; i++) {
836			int	value;
837
838			value = ops->list_voltage(rdev, i);
839			if (value <= 0)
840				continue;
841
842			/* maybe adjust [min_uV..max_uV] */
843			if (value >= cmin && value < min_uV)
844				min_uV = value;
845			if (value <= cmax && value > max_uV)
846				max_uV = value;
847		}
848
849		/* final: [min_uV..max_uV] valid iff constraints valid */
850		if (max_uV < min_uV) {
851			rdev_err(rdev, "unsupportable voltage constraints\n");
852			return -EINVAL;
853		}
854
855		/* use regulator's subset of machine constraints */
856		if (constraints->min_uV < min_uV) {
857			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
858				 constraints->min_uV, min_uV);
859			constraints->min_uV = min_uV;
860		}
861		if (constraints->max_uV > max_uV) {
862			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
863				 constraints->max_uV, max_uV);
864			constraints->max_uV = max_uV;
865		}
866	}
867
868	return 0;
869}
870
871/**
872 * set_machine_constraints - sets regulator constraints
873 * @rdev: regulator source
874 * @constraints: constraints to apply
875 *
876 * Allows platform initialisation code to define and constrain
877 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
878 * Constraints *must* be set by platform code in order for some
879 * regulator operations to proceed i.e. set_voltage, set_current_limit,
880 * set_mode.
881 */
882static int set_machine_constraints(struct regulator_dev *rdev,
883	const struct regulation_constraints *constraints)
884{
885	int ret = 0;
886	struct regulator_ops *ops = rdev->desc->ops;
887
888	if (constraints)
889		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
890					    GFP_KERNEL);
891	else
892		rdev->constraints = kzalloc(sizeof(*constraints),
893					    GFP_KERNEL);
894	if (!rdev->constraints)
895		return -ENOMEM;
896
897	ret = machine_constraints_voltage(rdev, rdev->constraints);
898	if (ret != 0)
899		goto out;
900
901	/* do we need to setup our suspend state */
902	if (rdev->constraints->initial_state) {
903		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
904		if (ret < 0) {
905			rdev_err(rdev, "failed to set suspend state\n");
906			goto out;
907		}
908	}
909
910	if (rdev->constraints->initial_mode) {
911		if (!ops->set_mode) {
912			rdev_err(rdev, "no set_mode operation\n");
913			ret = -EINVAL;
914			goto out;
915		}
916
917		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
918		if (ret < 0) {
919			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
920			goto out;
921		}
922	}
923
924	/* If the constraints say the regulator should be on at this point
925	 * and we have control then make sure it is enabled.
926	 */
927	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
928	    ops->enable) {
929		ret = ops->enable(rdev);
930		if (ret < 0) {
931			rdev_err(rdev, "failed to enable\n");
932			goto out;
933		}
934	}
935
936	print_constraints(rdev);
937	return 0;
938out:
939	kfree(rdev->constraints);
940	rdev->constraints = NULL;
941	return ret;
942}
943
944/**
945 * set_supply - set regulator supply regulator
946 * @rdev: regulator name
947 * @supply_rdev: supply regulator name
948 *
949 * Called by platform initialisation code to set the supply regulator for this
950 * regulator. This ensures that a regulators supply will also be enabled by the
951 * core if it's child is enabled.
952 */
953static int set_supply(struct regulator_dev *rdev,
954		      struct regulator_dev *supply_rdev)
955{
956	int err;
957
958	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
959
960	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
961	if (rdev->supply == NULL) {
962		err = -ENOMEM;
963		return err;
964	}
965
966	return 0;
967}
968
969/**
970 * set_consumer_device_supply - Bind a regulator to a symbolic supply
971 * @rdev:         regulator source
972 * @consumer_dev_name: dev_name() string for device supply applies to
973 * @supply:       symbolic name for supply
974 *
975 * Allows platform initialisation code to map physical regulator
976 * sources to symbolic names for supplies for use by devices.  Devices
977 * should use these symbolic names to request regulators, avoiding the
978 * need to provide board-specific regulator names as platform data.
979 */
980static int set_consumer_device_supply(struct regulator_dev *rdev,
981				      const char *consumer_dev_name,
982				      const char *supply)
983{
984	struct regulator_map *node;
985	int has_dev;
986
987	if (supply == NULL)
988		return -EINVAL;
989
990	if (consumer_dev_name != NULL)
991		has_dev = 1;
992	else
993		has_dev = 0;
994
995	list_for_each_entry(node, &regulator_map_list, list) {
996		if (node->dev_name && consumer_dev_name) {
997			if (strcmp(node->dev_name, consumer_dev_name) != 0)
998				continue;
999		} else if (node->dev_name || consumer_dev_name) {
1000			continue;
1001		}
1002
1003		if (strcmp(node->supply, supply) != 0)
1004			continue;
1005
1006		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1007			 consumer_dev_name,
1008			 dev_name(&node->regulator->dev),
1009			 node->regulator->desc->name,
1010			 supply,
1011			 dev_name(&rdev->dev), rdev_get_name(rdev));
1012		return -EBUSY;
1013	}
1014
1015	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1016	if (node == NULL)
1017		return -ENOMEM;
1018
1019	node->regulator = rdev;
1020	node->supply = supply;
1021
1022	if (has_dev) {
1023		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1024		if (node->dev_name == NULL) {
1025			kfree(node);
1026			return -ENOMEM;
1027		}
1028	}
1029
1030	list_add(&node->list, &regulator_map_list);
1031	return 0;
1032}
1033
1034static void unset_regulator_supplies(struct regulator_dev *rdev)
1035{
1036	struct regulator_map *node, *n;
1037
1038	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1039		if (rdev == node->regulator) {
1040			list_del(&node->list);
1041			kfree(node->dev_name);
1042			kfree(node);
1043		}
1044	}
1045}
1046
1047#define REG_STR_SIZE	64
1048
1049static struct regulator *create_regulator(struct regulator_dev *rdev,
1050					  struct device *dev,
1051					  const char *supply_name)
1052{
1053	struct regulator *regulator;
1054	char buf[REG_STR_SIZE];
1055	int err, size;
1056
1057	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1058	if (regulator == NULL)
1059		return NULL;
1060
1061	mutex_lock(&rdev->mutex);
1062	regulator->rdev = rdev;
1063	list_add(&regulator->list, &rdev->consumer_list);
1064
1065	if (dev) {
1066		/* Add a link to the device sysfs entry */
1067		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1068				 dev->kobj.name, supply_name);
1069		if (size >= REG_STR_SIZE)
1070			goto overflow_err;
1071
1072		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1073		if (regulator->supply_name == NULL)
1074			goto overflow_err;
1075
1076		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1077					buf);
1078		if (err) {
1079			rdev_warn(rdev, "could not add device link %s err %d\n",
1080				  dev->kobj.name, err);
1081			/* non-fatal */
1082		}
1083	} else {
1084		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1085		if (regulator->supply_name == NULL)
1086			goto overflow_err;
1087	}
1088
1089	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1090						rdev->debugfs);
1091	if (!regulator->debugfs) {
1092		rdev_warn(rdev, "Failed to create debugfs directory\n");
1093	} else {
1094		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1095				   &regulator->uA_load);
1096		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1097				   &regulator->min_uV);
1098		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1099				   &regulator->max_uV);
1100	}
1101
1102	/*
1103	 * Check now if the regulator is an always on regulator - if
1104	 * it is then we don't need to do nearly so much work for
1105	 * enable/disable calls.
1106	 */
1107	if (!_regulator_can_change_status(rdev) &&
1108	    _regulator_is_enabled(rdev))
1109		regulator->always_on = true;
1110
1111	mutex_unlock(&rdev->mutex);
1112	return regulator;
1113overflow_err:
1114	list_del(&regulator->list);
1115	kfree(regulator);
1116	mutex_unlock(&rdev->mutex);
1117	return NULL;
1118}
1119
1120static int _regulator_get_enable_time(struct regulator_dev *rdev)
1121{
1122	if (!rdev->desc->ops->enable_time)
1123		return 0;
1124	return rdev->desc->ops->enable_time(rdev);
1125}
1126
1127static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1128						  const char *supply,
1129						  int *ret)
1130{
1131	struct regulator_dev *r;
1132	struct device_node *node;
1133	struct regulator_map *map;
1134	const char *devname = NULL;
1135
1136	/* first do a dt based lookup */
1137	if (dev && dev->of_node) {
1138		node = of_get_regulator(dev, supply);
1139		if (node) {
1140			list_for_each_entry(r, &regulator_list, list)
1141				if (r->dev.parent &&
1142					node == r->dev.of_node)
1143					return r;
1144		} else {
1145			/*
1146			 * If we couldn't even get the node then it's
1147			 * not just that the device didn't register
1148			 * yet, there's no node and we'll never
1149			 * succeed.
1150			 */
1151			*ret = -ENODEV;
1152		}
1153	}
1154
1155	/* if not found, try doing it non-dt way */
1156	if (dev)
1157		devname = dev_name(dev);
1158
1159	list_for_each_entry(r, &regulator_list, list)
1160		if (strcmp(rdev_get_name(r), supply) == 0)
1161			return r;
1162
1163	list_for_each_entry(map, &regulator_map_list, list) {
1164		/* If the mapping has a device set up it must match */
1165		if (map->dev_name &&
1166		    (!devname || strcmp(map->dev_name, devname)))
1167			continue;
1168
1169		if (strcmp(map->supply, supply) == 0)
1170			return map->regulator;
1171	}
1172
1173
1174	return NULL;
1175}
1176
1177/* Internal regulator request function */
1178static struct regulator *_regulator_get(struct device *dev, const char *id,
1179					int exclusive)
1180{
1181	struct regulator_dev *rdev;
1182	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1183	const char *devname = NULL;
1184	int ret;
1185
1186	if (id == NULL) {
1187		pr_err("get() with no identifier\n");
1188		return regulator;
1189	}
1190
1191	if (dev)
1192		devname = dev_name(dev);
1193
1194	mutex_lock(&regulator_list_mutex);
1195
1196	rdev = regulator_dev_lookup(dev, id, &ret);
1197	if (rdev)
1198		goto found;
1199
1200	if (board_wants_dummy_regulator) {
1201		rdev = dummy_regulator_rdev;
1202		goto found;
1203	}
1204
1205#ifdef CONFIG_REGULATOR_DUMMY
1206	if (!devname)
1207		devname = "deviceless";
1208
1209	/* If the board didn't flag that it was fully constrained then
1210	 * substitute in a dummy regulator so consumers can continue.
1211	 */
1212	if (!has_full_constraints) {
1213		pr_warn("%s supply %s not found, using dummy regulator\n",
1214			devname, id);
1215		rdev = dummy_regulator_rdev;
1216		goto found;
1217	}
1218#endif
1219
1220	mutex_unlock(&regulator_list_mutex);
1221	return regulator;
1222
1223found:
1224	if (rdev->exclusive) {
1225		regulator = ERR_PTR(-EPERM);
1226		goto out;
1227	}
1228
1229	if (exclusive && rdev->open_count) {
1230		regulator = ERR_PTR(-EBUSY);
1231		goto out;
1232	}
1233
1234	if (!try_module_get(rdev->owner))
1235		goto out;
1236
1237	regulator = create_regulator(rdev, dev, id);
1238	if (regulator == NULL) {
1239		regulator = ERR_PTR(-ENOMEM);
1240		module_put(rdev->owner);
1241		goto out;
1242	}
1243
1244	rdev->open_count++;
1245	if (exclusive) {
1246		rdev->exclusive = 1;
1247
1248		ret = _regulator_is_enabled(rdev);
1249		if (ret > 0)
1250			rdev->use_count = 1;
1251		else
1252			rdev->use_count = 0;
1253	}
1254
1255out:
1256	mutex_unlock(&regulator_list_mutex);
1257
1258	return regulator;
1259}
1260
1261/**
1262 * regulator_get - lookup and obtain a reference to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.
1268 *
1269 * Use of supply names configured via regulator_set_device_supply() is
1270 * strongly encouraged.  It is recommended that the supply name used
1271 * should match the name used for the supply and/or the relevant
1272 * device pins in the datasheet.
1273 */
1274struct regulator *regulator_get(struct device *dev, const char *id)
1275{
1276	return _regulator_get(dev, id, 0);
1277}
1278EXPORT_SYMBOL_GPL(regulator_get);
1279
1280static void devm_regulator_release(struct device *dev, void *res)
1281{
1282	regulator_put(*(struct regulator **)res);
1283}
1284
1285/**
1286 * devm_regulator_get - Resource managed regulator_get()
1287 * @dev: device for regulator "consumer"
1288 * @id: Supply name or regulator ID.
1289 *
1290 * Managed regulator_get(). Regulators returned from this function are
1291 * automatically regulator_put() on driver detach. See regulator_get() for more
1292 * information.
1293 */
1294struct regulator *devm_regulator_get(struct device *dev, const char *id)
1295{
1296	struct regulator **ptr, *regulator;
1297
1298	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1299	if (!ptr)
1300		return ERR_PTR(-ENOMEM);
1301
1302	regulator = regulator_get(dev, id);
1303	if (!IS_ERR(regulator)) {
1304		*ptr = regulator;
1305		devres_add(dev, ptr);
1306	} else {
1307		devres_free(ptr);
1308	}
1309
1310	return regulator;
1311}
1312EXPORT_SYMBOL_GPL(devm_regulator_get);
1313
1314/**
1315 * regulator_get_exclusive - obtain exclusive access to a regulator.
1316 * @dev: device for regulator "consumer"
1317 * @id: Supply name or regulator ID.
1318 *
1319 * Returns a struct regulator corresponding to the regulator producer,
1320 * or IS_ERR() condition containing errno.  Other consumers will be
1321 * unable to obtain this reference is held and the use count for the
1322 * regulator will be initialised to reflect the current state of the
1323 * regulator.
1324 *
1325 * This is intended for use by consumers which cannot tolerate shared
1326 * use of the regulator such as those which need to force the
1327 * regulator off for correct operation of the hardware they are
1328 * controlling.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged.  It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1336{
1337	return _regulator_get(dev, id, 1);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1340
1341/**
1342 * regulator_put - "free" the regulator source
1343 * @regulator: regulator source
1344 *
1345 * Note: drivers must ensure that all regulator_enable calls made on this
1346 * regulator source are balanced by regulator_disable calls prior to calling
1347 * this function.
1348 */
1349void regulator_put(struct regulator *regulator)
1350{
1351	struct regulator_dev *rdev;
1352
1353	if (regulator == NULL || IS_ERR(regulator))
1354		return;
1355
1356	mutex_lock(&regulator_list_mutex);
1357	rdev = regulator->rdev;
1358
1359	debugfs_remove_recursive(regulator->debugfs);
1360
1361	/* remove any sysfs entries */
1362	if (regulator->dev) {
1363		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1364		device_remove_file(regulator->dev, &regulator->dev_attr);
1365		kfree(regulator->dev_attr.attr.name);
1366	}
1367	kfree(regulator->supply_name);
1368	list_del(&regulator->list);
1369	kfree(regulator);
1370
1371	rdev->open_count--;
1372	rdev->exclusive = 0;
1373
1374	module_put(rdev->owner);
1375	mutex_unlock(&regulator_list_mutex);
1376}
1377EXPORT_SYMBOL_GPL(regulator_put);
1378
1379static int devm_regulator_match(struct device *dev, void *res, void *data)
1380{
1381	struct regulator **r = res;
1382	if (!r || !*r) {
1383		WARN_ON(!r || !*r);
1384		return 0;
1385	}
1386	return *r == data;
1387}
1388
1389/**
1390 * devm_regulator_put - Resource managed regulator_put()
1391 * @regulator: regulator to free
1392 *
1393 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1394 * this function will not need to be called and the resource management
1395 * code will ensure that the resource is freed.
1396 */
1397void devm_regulator_put(struct regulator *regulator)
1398{
1399	int rc;
1400
1401	rc = devres_release(regulator->dev, devm_regulator_release,
1402			    devm_regulator_match, regulator);
1403	if (rc != 0)
1404		WARN_ON(rc);
1405}
1406EXPORT_SYMBOL_GPL(devm_regulator_put);
1407
1408/* locks held by regulator_enable() */
1409static int _regulator_enable(struct regulator_dev *rdev)
1410{
1411	int ret, delay;
1412
1413	/* check voltage and requested load before enabling */
1414	if (rdev->constraints &&
1415	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1416		drms_uA_update(rdev);
1417
1418	if (rdev->use_count == 0) {
1419		/* The regulator may on if it's not switchable or left on */
1420		ret = _regulator_is_enabled(rdev);
1421		if (ret == -EINVAL || ret == 0) {
1422			if (!_regulator_can_change_status(rdev))
1423				return -EPERM;
1424
1425			if (!rdev->desc->ops->enable)
1426				return -EINVAL;
1427
1428			/* Query before enabling in case configuration
1429			 * dependent.  */
1430			ret = _regulator_get_enable_time(rdev);
1431			if (ret >= 0) {
1432				delay = ret;
1433			} else {
1434				rdev_warn(rdev, "enable_time() failed: %d\n",
1435					   ret);
1436				delay = 0;
1437			}
1438
1439			trace_regulator_enable(rdev_get_name(rdev));
1440
1441			/* Allow the regulator to ramp; it would be useful
1442			 * to extend this for bulk operations so that the
1443			 * regulators can ramp together.  */
1444			ret = rdev->desc->ops->enable(rdev);
1445			if (ret < 0)
1446				return ret;
1447
1448			trace_regulator_enable_delay(rdev_get_name(rdev));
1449
1450			if (delay >= 1000) {
1451				mdelay(delay / 1000);
1452				udelay(delay % 1000);
1453			} else if (delay) {
1454				udelay(delay);
1455			}
1456
1457			trace_regulator_enable_complete(rdev_get_name(rdev));
1458
1459		} else if (ret < 0) {
1460			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1461			return ret;
1462		}
1463		/* Fallthrough on positive return values - already enabled */
1464	}
1465
1466	rdev->use_count++;
1467
1468	return 0;
1469}
1470
1471/**
1472 * regulator_enable - enable regulator output
1473 * @regulator: regulator source
1474 *
1475 * Request that the regulator be enabled with the regulator output at
1476 * the predefined voltage or current value.  Calls to regulator_enable()
1477 * must be balanced with calls to regulator_disable().
1478 *
1479 * NOTE: the output value can be set by other drivers, boot loader or may be
1480 * hardwired in the regulator.
1481 */
1482int regulator_enable(struct regulator *regulator)
1483{
1484	struct regulator_dev *rdev = regulator->rdev;
1485	int ret = 0;
1486
1487	if (regulator->always_on)
1488		return 0;
1489
1490	if (rdev->supply) {
1491		ret = regulator_enable(rdev->supply);
1492		if (ret != 0)
1493			return ret;
1494	}
1495
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_enable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret != 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_enable);
1506
1507/* locks held by regulator_disable() */
1508static int _regulator_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	if (WARN(rdev->use_count <= 0,
1513		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1514		return -EIO;
1515
1516	/* are we the last user and permitted to disable ? */
1517	if (rdev->use_count == 1 &&
1518	    (rdev->constraints && !rdev->constraints->always_on)) {
1519
1520		/* we are last user */
1521		if (_regulator_can_change_status(rdev) &&
1522		    rdev->desc->ops->disable) {
1523			trace_regulator_disable(rdev_get_name(rdev));
1524
1525			ret = rdev->desc->ops->disable(rdev);
1526			if (ret < 0) {
1527				rdev_err(rdev, "failed to disable\n");
1528				return ret;
1529			}
1530
1531			trace_regulator_disable_complete(rdev_get_name(rdev));
1532
1533			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1534					     NULL);
1535		}
1536
1537		rdev->use_count = 0;
1538	} else if (rdev->use_count > 1) {
1539
1540		if (rdev->constraints &&
1541			(rdev->constraints->valid_ops_mask &
1542			REGULATOR_CHANGE_DRMS))
1543			drms_uA_update(rdev);
1544
1545		rdev->use_count--;
1546	}
1547
1548	return ret;
1549}
1550
1551/**
1552 * regulator_disable - disable regulator output
1553 * @regulator: regulator source
1554 *
1555 * Disable the regulator output voltage or current.  Calls to
1556 * regulator_enable() must be balanced with calls to
1557 * regulator_disable().
1558 *
1559 * NOTE: this will only disable the regulator output if no other consumer
1560 * devices have it enabled, the regulator device supports disabling and
1561 * machine constraints permit this operation.
1562 */
1563int regulator_disable(struct regulator *regulator)
1564{
1565	struct regulator_dev *rdev = regulator->rdev;
1566	int ret = 0;
1567
1568	if (regulator->always_on)
1569		return 0;
1570
1571	mutex_lock(&rdev->mutex);
1572	ret = _regulator_disable(rdev);
1573	mutex_unlock(&rdev->mutex);
1574
1575	if (ret == 0 && rdev->supply)
1576		regulator_disable(rdev->supply);
1577
1578	return ret;
1579}
1580EXPORT_SYMBOL_GPL(regulator_disable);
1581
1582/* locks held by regulator_force_disable() */
1583static int _regulator_force_disable(struct regulator_dev *rdev)
1584{
1585	int ret = 0;
1586
1587	/* force disable */
1588	if (rdev->desc->ops->disable) {
1589		/* ah well, who wants to live forever... */
1590		ret = rdev->desc->ops->disable(rdev);
1591		if (ret < 0) {
1592			rdev_err(rdev, "failed to force disable\n");
1593			return ret;
1594		}
1595		/* notify other consumers that power has been forced off */
1596		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1597			REGULATOR_EVENT_DISABLE, NULL);
1598	}
1599
1600	return ret;
1601}
1602
1603/**
1604 * regulator_force_disable - force disable regulator output
1605 * @regulator: regulator source
1606 *
1607 * Forcibly disable the regulator output voltage or current.
1608 * NOTE: this *will* disable the regulator output even if other consumer
1609 * devices have it enabled. This should be used for situations when device
1610 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1611 */
1612int regulator_force_disable(struct regulator *regulator)
1613{
1614	struct regulator_dev *rdev = regulator->rdev;
1615	int ret;
1616
1617	mutex_lock(&rdev->mutex);
1618	regulator->uA_load = 0;
1619	ret = _regulator_force_disable(regulator->rdev);
1620	mutex_unlock(&rdev->mutex);
1621
1622	if (rdev->supply)
1623		while (rdev->open_count--)
1624			regulator_disable(rdev->supply);
1625
1626	return ret;
1627}
1628EXPORT_SYMBOL_GPL(regulator_force_disable);
1629
1630static void regulator_disable_work(struct work_struct *work)
1631{
1632	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1633						  disable_work.work);
1634	int count, i, ret;
1635
1636	mutex_lock(&rdev->mutex);
1637
1638	BUG_ON(!rdev->deferred_disables);
1639
1640	count = rdev->deferred_disables;
1641	rdev->deferred_disables = 0;
1642
1643	for (i = 0; i < count; i++) {
1644		ret = _regulator_disable(rdev);
1645		if (ret != 0)
1646			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1647	}
1648
1649	mutex_unlock(&rdev->mutex);
1650
1651	if (rdev->supply) {
1652		for (i = 0; i < count; i++) {
1653			ret = regulator_disable(rdev->supply);
1654			if (ret != 0) {
1655				rdev_err(rdev,
1656					 "Supply disable failed: %d\n", ret);
1657			}
1658		}
1659	}
1660}
1661
1662/**
1663 * regulator_disable_deferred - disable regulator output with delay
1664 * @regulator: regulator source
1665 * @ms: miliseconds until the regulator is disabled
1666 *
1667 * Execute regulator_disable() on the regulator after a delay.  This
1668 * is intended for use with devices that require some time to quiesce.
1669 *
1670 * NOTE: this will only disable the regulator output if no other consumer
1671 * devices have it enabled, the regulator device supports disabling and
1672 * machine constraints permit this operation.
1673 */
1674int regulator_disable_deferred(struct regulator *regulator, int ms)
1675{
1676	struct regulator_dev *rdev = regulator->rdev;
1677	int ret;
1678
1679	if (regulator->always_on)
1680		return 0;
1681
1682	mutex_lock(&rdev->mutex);
1683	rdev->deferred_disables++;
1684	mutex_unlock(&rdev->mutex);
1685
1686	ret = schedule_delayed_work(&rdev->disable_work,
1687				    msecs_to_jiffies(ms));
1688	if (ret < 0)
1689		return ret;
1690	else
1691		return 0;
1692}
1693EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1694
1695/**
1696 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1697 *
1698 * @rdev: regulator to operate on
1699 *
1700 * Regulators that use regmap for their register I/O can set the
1701 * enable_reg and enable_mask fields in their descriptor and then use
1702 * this as their is_enabled operation, saving some code.
1703 */
1704int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1705{
1706	unsigned int val;
1707	int ret;
1708
1709	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1710	if (ret != 0)
1711		return ret;
1712
1713	return (val & rdev->desc->enable_mask) != 0;
1714}
1715EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1716
1717/**
1718 * regulator_enable_regmap - standard enable() for regmap users
1719 *
1720 * @rdev: regulator to operate on
1721 *
1722 * Regulators that use regmap for their register I/O can set the
1723 * enable_reg and enable_mask fields in their descriptor and then use
1724 * this as their enable() operation, saving some code.
1725 */
1726int regulator_enable_regmap(struct regulator_dev *rdev)
1727{
1728	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1729				  rdev->desc->enable_mask,
1730				  rdev->desc->enable_mask);
1731}
1732EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1733
1734/**
1735 * regulator_disable_regmap - standard disable() for regmap users
1736 *
1737 * @rdev: regulator to operate on
1738 *
1739 * Regulators that use regmap for their register I/O can set the
1740 * enable_reg and enable_mask fields in their descriptor and then use
1741 * this as their disable() operation, saving some code.
1742 */
1743int regulator_disable_regmap(struct regulator_dev *rdev)
1744{
1745	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1746				  rdev->desc->enable_mask, 0);
1747}
1748EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1749
1750static int _regulator_is_enabled(struct regulator_dev *rdev)
1751{
1752	/* If we don't know then assume that the regulator is always on */
1753	if (!rdev->desc->ops->is_enabled)
1754		return 1;
1755
1756	return rdev->desc->ops->is_enabled(rdev);
1757}
1758
1759/**
1760 * regulator_is_enabled - is the regulator output enabled
1761 * @regulator: regulator source
1762 *
1763 * Returns positive if the regulator driver backing the source/client
1764 * has requested that the device be enabled, zero if it hasn't, else a
1765 * negative errno code.
1766 *
1767 * Note that the device backing this regulator handle can have multiple
1768 * users, so it might be enabled even if regulator_enable() was never
1769 * called for this particular source.
1770 */
1771int regulator_is_enabled(struct regulator *regulator)
1772{
1773	int ret;
1774
1775	if (regulator->always_on)
1776		return 1;
1777
1778	mutex_lock(&regulator->rdev->mutex);
1779	ret = _regulator_is_enabled(regulator->rdev);
1780	mutex_unlock(&regulator->rdev->mutex);
1781
1782	return ret;
1783}
1784EXPORT_SYMBOL_GPL(regulator_is_enabled);
1785
1786/**
1787 * regulator_count_voltages - count regulator_list_voltage() selectors
1788 * @regulator: regulator source
1789 *
1790 * Returns number of selectors, or negative errno.  Selectors are
1791 * numbered starting at zero, and typically correspond to bitfields
1792 * in hardware registers.
1793 */
1794int regulator_count_voltages(struct regulator *regulator)
1795{
1796	struct regulator_dev	*rdev = regulator->rdev;
1797
1798	return rdev->desc->n_voltages ? : -EINVAL;
1799}
1800EXPORT_SYMBOL_GPL(regulator_count_voltages);
1801
1802/**
1803 * regulator_list_voltage_linear - List voltages with simple calculation
1804 *
1805 * @rdev: Regulator device
1806 * @selector: Selector to convert into a voltage
1807 *
1808 * Regulators with a simple linear mapping between voltages and
1809 * selectors can set min_uV and uV_step in the regulator descriptor
1810 * and then use this function as their list_voltage() operation,
1811 */
1812int regulator_list_voltage_linear(struct regulator_dev *rdev,
1813				  unsigned int selector)
1814{
1815	if (selector >= rdev->desc->n_voltages)
1816		return -EINVAL;
1817
1818	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1819}
1820EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1821
1822/**
1823 * regulator_list_voltage_table - List voltages with table based mapping
1824 *
1825 * @rdev: Regulator device
1826 * @selector: Selector to convert into a voltage
1827 *
1828 * Regulators with table based mapping between voltages and
1829 * selectors can set volt_table in the regulator descriptor
1830 * and then use this function as their list_voltage() operation.
1831 */
1832int regulator_list_voltage_table(struct regulator_dev *rdev,
1833				 unsigned int selector)
1834{
1835	if (!rdev->desc->volt_table) {
1836		BUG_ON(!rdev->desc->volt_table);
1837		return -EINVAL;
1838	}
1839
1840	if (selector >= rdev->desc->n_voltages)
1841		return -EINVAL;
1842
1843	return rdev->desc->volt_table[selector];
1844}
1845EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1846
1847/**
1848 * regulator_list_voltage - enumerate supported voltages
1849 * @regulator: regulator source
1850 * @selector: identify voltage to list
1851 * Context: can sleep
1852 *
1853 * Returns a voltage that can be passed to @regulator_set_voltage(),
1854 * zero if this selector code can't be used on this system, or a
1855 * negative errno.
1856 */
1857int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1858{
1859	struct regulator_dev	*rdev = regulator->rdev;
1860	struct regulator_ops	*ops = rdev->desc->ops;
1861	int			ret;
1862
1863	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1864		return -EINVAL;
1865
1866	mutex_lock(&rdev->mutex);
1867	ret = ops->list_voltage(rdev, selector);
1868	mutex_unlock(&rdev->mutex);
1869
1870	if (ret > 0) {
1871		if (ret < rdev->constraints->min_uV)
1872			ret = 0;
1873		else if (ret > rdev->constraints->max_uV)
1874			ret = 0;
1875	}
1876
1877	return ret;
1878}
1879EXPORT_SYMBOL_GPL(regulator_list_voltage);
1880
1881/**
1882 * regulator_is_supported_voltage - check if a voltage range can be supported
1883 *
1884 * @regulator: Regulator to check.
1885 * @min_uV: Minimum required voltage in uV.
1886 * @max_uV: Maximum required voltage in uV.
1887 *
1888 * Returns a boolean or a negative error code.
1889 */
1890int regulator_is_supported_voltage(struct regulator *regulator,
1891				   int min_uV, int max_uV)
1892{
1893	struct regulator_dev *rdev = regulator->rdev;
1894	int i, voltages, ret;
1895
1896	/* If we can't change voltage check the current voltage */
1897	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1898		ret = regulator_get_voltage(regulator);
1899		if (ret >= 0)
1900			return (min_uV >= ret && ret <= max_uV);
1901		else
1902			return ret;
1903	}
1904
1905	ret = regulator_count_voltages(regulator);
1906	if (ret < 0)
1907		return ret;
1908	voltages = ret;
1909
1910	for (i = 0; i < voltages; i++) {
1911		ret = regulator_list_voltage(regulator, i);
1912
1913		if (ret >= min_uV && ret <= max_uV)
1914			return 1;
1915	}
1916
1917	return 0;
1918}
1919EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1920
1921/**
1922 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1923 *
1924 * @rdev: regulator to operate on
1925 *
1926 * Regulators that use regmap for their register I/O can set the
1927 * vsel_reg and vsel_mask fields in their descriptor and then use this
1928 * as their get_voltage_vsel operation, saving some code.
1929 */
1930int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1931{
1932	unsigned int val;
1933	int ret;
1934
1935	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1936	if (ret != 0)
1937		return ret;
1938
1939	val &= rdev->desc->vsel_mask;
1940	val >>= ffs(rdev->desc->vsel_mask) - 1;
1941
1942	return val;
1943}
1944EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1945
1946/**
1947 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1948 *
1949 * @rdev: regulator to operate on
1950 * @sel: Selector to set
1951 *
1952 * Regulators that use regmap for their register I/O can set the
1953 * vsel_reg and vsel_mask fields in their descriptor and then use this
1954 * as their set_voltage_vsel operation, saving some code.
1955 */
1956int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1957{
1958	sel <<= ffs(rdev->desc->vsel_mask) - 1;
1959
1960	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1961				  rdev->desc->vsel_mask, sel);
1962}
1963EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1964
1965/**
1966 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1967 *
1968 * @rdev: Regulator to operate on
1969 * @min_uV: Lower bound for voltage
1970 * @max_uV: Upper bound for voltage
1971 *
1972 * Drivers implementing set_voltage_sel() and list_voltage() can use
1973 * this as their map_voltage() operation.  It will find a suitable
1974 * voltage by calling list_voltage() until it gets something in bounds
1975 * for the requested voltages.
1976 */
1977int regulator_map_voltage_iterate(struct regulator_dev *rdev,
1978				  int min_uV, int max_uV)
1979{
1980	int best_val = INT_MAX;
1981	int selector = 0;
1982	int i, ret;
1983
1984	/* Find the smallest voltage that falls within the specified
1985	 * range.
1986	 */
1987	for (i = 0; i < rdev->desc->n_voltages; i++) {
1988		ret = rdev->desc->ops->list_voltage(rdev, i);
1989		if (ret < 0)
1990			continue;
1991
1992		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1993			best_val = ret;
1994			selector = i;
1995		}
1996	}
1997
1998	if (best_val != INT_MAX)
1999		return selector;
2000	else
2001		return -EINVAL;
2002}
2003EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2004
2005/**
2006 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2007 *
2008 * @rdev: Regulator to operate on
2009 * @min_uV: Lower bound for voltage
2010 * @max_uV: Upper bound for voltage
2011 *
2012 * Drivers providing min_uV and uV_step in their regulator_desc can
2013 * use this as their map_voltage() operation.
2014 */
2015int regulator_map_voltage_linear(struct regulator_dev *rdev,
2016				 int min_uV, int max_uV)
2017{
2018	int ret, voltage;
2019
2020	if (!rdev->desc->uV_step) {
2021		BUG_ON(!rdev->desc->uV_step);
2022		return -EINVAL;
2023	}
2024
2025	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2026	if (ret < 0)
2027		return ret;
2028
2029	/* Map back into a voltage to verify we're still in bounds */
2030	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2031	if (voltage < min_uV || voltage > max_uV)
2032		return -EINVAL;
2033
2034	return ret;
2035}
2036EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2037
2038static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2039				     int min_uV, int max_uV)
2040{
2041	int ret;
2042	int delay = 0;
2043	int best_val;
2044	unsigned int selector;
2045	int old_selector = -1;
2046
2047	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2048
2049	min_uV += rdev->constraints->uV_offset;
2050	max_uV += rdev->constraints->uV_offset;
2051
2052	/*
2053	 * If we can't obtain the old selector there is not enough
2054	 * info to call set_voltage_time_sel().
2055	 */
2056	if (_regulator_is_enabled(rdev) &&
2057	    rdev->desc->ops->set_voltage_time_sel &&
2058	    rdev->desc->ops->get_voltage_sel) {
2059		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2060		if (old_selector < 0)
2061			return old_selector;
2062	}
2063
2064	if (rdev->desc->ops->set_voltage) {
2065		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2066						   &selector);
2067	} else if (rdev->desc->ops->set_voltage_sel) {
2068		if (rdev->desc->ops->map_voltage) {
2069			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2070							   max_uV);
2071		} else {
2072			if (rdev->desc->ops->list_voltage ==
2073			    regulator_list_voltage_linear)
2074				ret = regulator_map_voltage_linear(rdev,
2075								min_uV, max_uV);
2076			else
2077				ret = regulator_map_voltage_iterate(rdev,
2078								min_uV, max_uV);
2079		}
2080
2081		if (ret >= 0) {
2082			selector = ret;
2083			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2084		}
2085	} else {
2086		ret = -EINVAL;
2087	}
2088
2089	if (rdev->desc->ops->list_voltage)
2090		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2091	else
2092		best_val = _regulator_get_voltage(rdev);
2093
2094	/* Call set_voltage_time_sel if successfully obtained old_selector */
2095	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2096	    rdev->desc->ops->set_voltage_time_sel) {
2097
2098		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2099						old_selector, selector);
2100		if (delay < 0) {
2101			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2102				  delay);
2103			delay = 0;
2104		}
2105
2106		/* Insert any necessary delays */
2107		if (delay >= 1000) {
2108			mdelay(delay / 1000);
2109			udelay(delay % 1000);
2110		} else if (delay) {
2111			udelay(delay);
2112		}
2113	}
2114
2115	if (ret == 0 && best_val >= 0)
2116		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2117				     (void *)best_val);
2118
2119	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2120
2121	return ret;
2122}
2123
2124/**
2125 * regulator_set_voltage - set regulator output voltage
2126 * @regulator: regulator source
2127 * @min_uV: Minimum required voltage in uV
2128 * @max_uV: Maximum acceptable voltage in uV
2129 *
2130 * Sets a voltage regulator to the desired output voltage. This can be set
2131 * during any regulator state. IOW, regulator can be disabled or enabled.
2132 *
2133 * If the regulator is enabled then the voltage will change to the new value
2134 * immediately otherwise if the regulator is disabled the regulator will
2135 * output at the new voltage when enabled.
2136 *
2137 * NOTE: If the regulator is shared between several devices then the lowest
2138 * request voltage that meets the system constraints will be used.
2139 * Regulator system constraints must be set for this regulator before
2140 * calling this function otherwise this call will fail.
2141 */
2142int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2143{
2144	struct regulator_dev *rdev = regulator->rdev;
2145	int ret = 0;
2146
2147	mutex_lock(&rdev->mutex);
2148
2149	/* If we're setting the same range as last time the change
2150	 * should be a noop (some cpufreq implementations use the same
2151	 * voltage for multiple frequencies, for example).
2152	 */
2153	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2154		goto out;
2155
2156	/* sanity check */
2157	if (!rdev->desc->ops->set_voltage &&
2158	    !rdev->desc->ops->set_voltage_sel) {
2159		ret = -EINVAL;
2160		goto out;
2161	}
2162
2163	/* constraints check */
2164	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2165	if (ret < 0)
2166		goto out;
2167	regulator->min_uV = min_uV;
2168	regulator->max_uV = max_uV;
2169
2170	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2171	if (ret < 0)
2172		goto out;
2173
2174	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2175
2176out:
2177	mutex_unlock(&rdev->mutex);
2178	return ret;
2179}
2180EXPORT_SYMBOL_GPL(regulator_set_voltage);
2181
2182/**
2183 * regulator_set_voltage_time - get raise/fall time
2184 * @regulator: regulator source
2185 * @old_uV: starting voltage in microvolts
2186 * @new_uV: target voltage in microvolts
2187 *
2188 * Provided with the starting and ending voltage, this function attempts to
2189 * calculate the time in microseconds required to rise or fall to this new
2190 * voltage.
2191 */
2192int regulator_set_voltage_time(struct regulator *regulator,
2193			       int old_uV, int new_uV)
2194{
2195	struct regulator_dev	*rdev = regulator->rdev;
2196	struct regulator_ops	*ops = rdev->desc->ops;
2197	int old_sel = -1;
2198	int new_sel = -1;
2199	int voltage;
2200	int i;
2201
2202	/* Currently requires operations to do this */
2203	if (!ops->list_voltage || !ops->set_voltage_time_sel
2204	    || !rdev->desc->n_voltages)
2205		return -EINVAL;
2206
2207	for (i = 0; i < rdev->desc->n_voltages; i++) {
2208		/* We only look for exact voltage matches here */
2209		voltage = regulator_list_voltage(regulator, i);
2210		if (voltage < 0)
2211			return -EINVAL;
2212		if (voltage == 0)
2213			continue;
2214		if (voltage == old_uV)
2215			old_sel = i;
2216		if (voltage == new_uV)
2217			new_sel = i;
2218	}
2219
2220	if (old_sel < 0 || new_sel < 0)
2221		return -EINVAL;
2222
2223	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2224}
2225EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2226
2227/**
2228 * regulator_sync_voltage - re-apply last regulator output voltage
2229 * @regulator: regulator source
2230 *
2231 * Re-apply the last configured voltage.  This is intended to be used
2232 * where some external control source the consumer is cooperating with
2233 * has caused the configured voltage to change.
2234 */
2235int regulator_sync_voltage(struct regulator *regulator)
2236{
2237	struct regulator_dev *rdev = regulator->rdev;
2238	int ret, min_uV, max_uV;
2239
2240	mutex_lock(&rdev->mutex);
2241
2242	if (!rdev->desc->ops->set_voltage &&
2243	    !rdev->desc->ops->set_voltage_sel) {
2244		ret = -EINVAL;
2245		goto out;
2246	}
2247
2248	/* This is only going to work if we've had a voltage configured. */
2249	if (!regulator->min_uV && !regulator->max_uV) {
2250		ret = -EINVAL;
2251		goto out;
2252	}
2253
2254	min_uV = regulator->min_uV;
2255	max_uV = regulator->max_uV;
2256
2257	/* This should be a paranoia check... */
2258	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2259	if (ret < 0)
2260		goto out;
2261
2262	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2263	if (ret < 0)
2264		goto out;
2265
2266	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2267
2268out:
2269	mutex_unlock(&rdev->mutex);
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2273
2274static int _regulator_get_voltage(struct regulator_dev *rdev)
2275{
2276	int sel, ret;
2277
2278	if (rdev->desc->ops->get_voltage_sel) {
2279		sel = rdev->desc->ops->get_voltage_sel(rdev);
2280		if (sel < 0)
2281			return sel;
2282		ret = rdev->desc->ops->list_voltage(rdev, sel);
2283	} else if (rdev->desc->ops->get_voltage) {
2284		ret = rdev->desc->ops->get_voltage(rdev);
2285	} else {
2286		return -EINVAL;
2287	}
2288
2289	if (ret < 0)
2290		return ret;
2291	return ret - rdev->constraints->uV_offset;
2292}
2293
2294/**
2295 * regulator_get_voltage - get regulator output voltage
2296 * @regulator: regulator source
2297 *
2298 * This returns the current regulator voltage in uV.
2299 *
2300 * NOTE: If the regulator is disabled it will return the voltage value. This
2301 * function should not be used to determine regulator state.
2302 */
2303int regulator_get_voltage(struct regulator *regulator)
2304{
2305	int ret;
2306
2307	mutex_lock(&regulator->rdev->mutex);
2308
2309	ret = _regulator_get_voltage(regulator->rdev);
2310
2311	mutex_unlock(&regulator->rdev->mutex);
2312
2313	return ret;
2314}
2315EXPORT_SYMBOL_GPL(regulator_get_voltage);
2316
2317/**
2318 * regulator_set_current_limit - set regulator output current limit
2319 * @regulator: regulator source
2320 * @min_uA: Minimuum supported current in uA
2321 * @max_uA: Maximum supported current in uA
2322 *
2323 * Sets current sink to the desired output current. This can be set during
2324 * any regulator state. IOW, regulator can be disabled or enabled.
2325 *
2326 * If the regulator is enabled then the current will change to the new value
2327 * immediately otherwise if the regulator is disabled the regulator will
2328 * output at the new current when enabled.
2329 *
2330 * NOTE: Regulator system constraints must be set for this regulator before
2331 * calling this function otherwise this call will fail.
2332 */
2333int regulator_set_current_limit(struct regulator *regulator,
2334			       int min_uA, int max_uA)
2335{
2336	struct regulator_dev *rdev = regulator->rdev;
2337	int ret;
2338
2339	mutex_lock(&rdev->mutex);
2340
2341	/* sanity check */
2342	if (!rdev->desc->ops->set_current_limit) {
2343		ret = -EINVAL;
2344		goto out;
2345	}
2346
2347	/* constraints check */
2348	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2349	if (ret < 0)
2350		goto out;
2351
2352	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2353out:
2354	mutex_unlock(&rdev->mutex);
2355	return ret;
2356}
2357EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2358
2359static int _regulator_get_current_limit(struct regulator_dev *rdev)
2360{
2361	int ret;
2362
2363	mutex_lock(&rdev->mutex);
2364
2365	/* sanity check */
2366	if (!rdev->desc->ops->get_current_limit) {
2367		ret = -EINVAL;
2368		goto out;
2369	}
2370
2371	ret = rdev->desc->ops->get_current_limit(rdev);
2372out:
2373	mutex_unlock(&rdev->mutex);
2374	return ret;
2375}
2376
2377/**
2378 * regulator_get_current_limit - get regulator output current
2379 * @regulator: regulator source
2380 *
2381 * This returns the current supplied by the specified current sink in uA.
2382 *
2383 * NOTE: If the regulator is disabled it will return the current value. This
2384 * function should not be used to determine regulator state.
2385 */
2386int regulator_get_current_limit(struct regulator *regulator)
2387{
2388	return _regulator_get_current_limit(regulator->rdev);
2389}
2390EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2391
2392/**
2393 * regulator_set_mode - set regulator operating mode
2394 * @regulator: regulator source
2395 * @mode: operating mode - one of the REGULATOR_MODE constants
2396 *
2397 * Set regulator operating mode to increase regulator efficiency or improve
2398 * regulation performance.
2399 *
2400 * NOTE: Regulator system constraints must be set for this regulator before
2401 * calling this function otherwise this call will fail.
2402 */
2403int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2404{
2405	struct regulator_dev *rdev = regulator->rdev;
2406	int ret;
2407	int regulator_curr_mode;
2408
2409	mutex_lock(&rdev->mutex);
2410
2411	/* sanity check */
2412	if (!rdev->desc->ops->set_mode) {
2413		ret = -EINVAL;
2414		goto out;
2415	}
2416
2417	/* return if the same mode is requested */
2418	if (rdev->desc->ops->get_mode) {
2419		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2420		if (regulator_curr_mode == mode) {
2421			ret = 0;
2422			goto out;
2423		}
2424	}
2425
2426	/* constraints check */
2427	ret = regulator_mode_constrain(rdev, &mode);
2428	if (ret < 0)
2429		goto out;
2430
2431	ret = rdev->desc->ops->set_mode(rdev, mode);
2432out:
2433	mutex_unlock(&rdev->mutex);
2434	return ret;
2435}
2436EXPORT_SYMBOL_GPL(regulator_set_mode);
2437
2438static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2439{
2440	int ret;
2441
2442	mutex_lock(&rdev->mutex);
2443
2444	/* sanity check */
2445	if (!rdev->desc->ops->get_mode) {
2446		ret = -EINVAL;
2447		goto out;
2448	}
2449
2450	ret = rdev->desc->ops->get_mode(rdev);
2451out:
2452	mutex_unlock(&rdev->mutex);
2453	return ret;
2454}
2455
2456/**
2457 * regulator_get_mode - get regulator operating mode
2458 * @regulator: regulator source
2459 *
2460 * Get the current regulator operating mode.
2461 */
2462unsigned int regulator_get_mode(struct regulator *regulator)
2463{
2464	return _regulator_get_mode(regulator->rdev);
2465}
2466EXPORT_SYMBOL_GPL(regulator_get_mode);
2467
2468/**
2469 * regulator_set_optimum_mode - set regulator optimum operating mode
2470 * @regulator: regulator source
2471 * @uA_load: load current
2472 *
2473 * Notifies the regulator core of a new device load. This is then used by
2474 * DRMS (if enabled by constraints) to set the most efficient regulator
2475 * operating mode for the new regulator loading.
2476 *
2477 * Consumer devices notify their supply regulator of the maximum power
2478 * they will require (can be taken from device datasheet in the power
2479 * consumption tables) when they change operational status and hence power
2480 * state. Examples of operational state changes that can affect power
2481 * consumption are :-
2482 *
2483 *    o Device is opened / closed.
2484 *    o Device I/O is about to begin or has just finished.
2485 *    o Device is idling in between work.
2486 *
2487 * This information is also exported via sysfs to userspace.
2488 *
2489 * DRMS will sum the total requested load on the regulator and change
2490 * to the most efficient operating mode if platform constraints allow.
2491 *
2492 * Returns the new regulator mode or error.
2493 */
2494int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2495{
2496	struct regulator_dev *rdev = regulator->rdev;
2497	struct regulator *consumer;
2498	int ret, output_uV, input_uV, total_uA_load = 0;
2499	unsigned int mode;
2500
2501	mutex_lock(&rdev->mutex);
2502
2503	/*
2504	 * first check to see if we can set modes at all, otherwise just
2505	 * tell the consumer everything is OK.
2506	 */
2507	regulator->uA_load = uA_load;
2508	ret = regulator_check_drms(rdev);
2509	if (ret < 0) {
2510		ret = 0;
2511		goto out;
2512	}
2513
2514	if (!rdev->desc->ops->get_optimum_mode)
2515		goto out;
2516
2517	/*
2518	 * we can actually do this so any errors are indicators of
2519	 * potential real failure.
2520	 */
2521	ret = -EINVAL;
2522
2523	if (!rdev->desc->ops->set_mode)
2524		goto out;
2525
2526	/* get output voltage */
2527	output_uV = _regulator_get_voltage(rdev);
2528	if (output_uV <= 0) {
2529		rdev_err(rdev, "invalid output voltage found\n");
2530		goto out;
2531	}
2532
2533	/* get input voltage */
2534	input_uV = 0;
2535	if (rdev->supply)
2536		input_uV = regulator_get_voltage(rdev->supply);
2537	if (input_uV <= 0)
2538		input_uV = rdev->constraints->input_uV;
2539	if (input_uV <= 0) {
2540		rdev_err(rdev, "invalid input voltage found\n");
2541		goto out;
2542	}
2543
2544	/* calc total requested load for this regulator */
2545	list_for_each_entry(consumer, &rdev->consumer_list, list)
2546		total_uA_load += consumer->uA_load;
2547
2548	mode = rdev->desc->ops->get_optimum_mode(rdev,
2549						 input_uV, output_uV,
2550						 total_uA_load);
2551	ret = regulator_mode_constrain(rdev, &mode);
2552	if (ret < 0) {
2553		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2554			 total_uA_load, input_uV, output_uV);
2555		goto out;
2556	}
2557
2558	ret = rdev->desc->ops->set_mode(rdev, mode);
2559	if (ret < 0) {
2560		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2561		goto out;
2562	}
2563	ret = mode;
2564out:
2565	mutex_unlock(&rdev->mutex);
2566	return ret;
2567}
2568EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2569
2570/**
2571 * regulator_register_notifier - register regulator event notifier
2572 * @regulator: regulator source
2573 * @nb: notifier block
2574 *
2575 * Register notifier block to receive regulator events.
2576 */
2577int regulator_register_notifier(struct regulator *regulator,
2578			      struct notifier_block *nb)
2579{
2580	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2581						nb);
2582}
2583EXPORT_SYMBOL_GPL(regulator_register_notifier);
2584
2585/**
2586 * regulator_unregister_notifier - unregister regulator event notifier
2587 * @regulator: regulator source
2588 * @nb: notifier block
2589 *
2590 * Unregister regulator event notifier block.
2591 */
2592int regulator_unregister_notifier(struct regulator *regulator,
2593				struct notifier_block *nb)
2594{
2595	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2596						  nb);
2597}
2598EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2599
2600/* notify regulator consumers and downstream regulator consumers.
2601 * Note mutex must be held by caller.
2602 */
2603static void _notifier_call_chain(struct regulator_dev *rdev,
2604				  unsigned long event, void *data)
2605{
2606	/* call rdev chain first */
2607	blocking_notifier_call_chain(&rdev->notifier, event, data);
2608}
2609
2610/**
2611 * regulator_bulk_get - get multiple regulator consumers
2612 *
2613 * @dev:           Device to supply
2614 * @num_consumers: Number of consumers to register
2615 * @consumers:     Configuration of consumers; clients are stored here.
2616 *
2617 * @return 0 on success, an errno on failure.
2618 *
2619 * This helper function allows drivers to get several regulator
2620 * consumers in one operation.  If any of the regulators cannot be
2621 * acquired then any regulators that were allocated will be freed
2622 * before returning to the caller.
2623 */
2624int regulator_bulk_get(struct device *dev, int num_consumers,
2625		       struct regulator_bulk_data *consumers)
2626{
2627	int i;
2628	int ret;
2629
2630	for (i = 0; i < num_consumers; i++)
2631		consumers[i].consumer = NULL;
2632
2633	for (i = 0; i < num_consumers; i++) {
2634		consumers[i].consumer = regulator_get(dev,
2635						      consumers[i].supply);
2636		if (IS_ERR(consumers[i].consumer)) {
2637			ret = PTR_ERR(consumers[i].consumer);
2638			dev_err(dev, "Failed to get supply '%s': %d\n",
2639				consumers[i].supply, ret);
2640			consumers[i].consumer = NULL;
2641			goto err;
2642		}
2643	}
2644
2645	return 0;
2646
2647err:
2648	while (--i >= 0)
2649		regulator_put(consumers[i].consumer);
2650
2651	return ret;
2652}
2653EXPORT_SYMBOL_GPL(regulator_bulk_get);
2654
2655/**
2656 * devm_regulator_bulk_get - managed get multiple regulator consumers
2657 *
2658 * @dev:           Device to supply
2659 * @num_consumers: Number of consumers to register
2660 * @consumers:     Configuration of consumers; clients are stored here.
2661 *
2662 * @return 0 on success, an errno on failure.
2663 *
2664 * This helper function allows drivers to get several regulator
2665 * consumers in one operation with management, the regulators will
2666 * automatically be freed when the device is unbound.  If any of the
2667 * regulators cannot be acquired then any regulators that were
2668 * allocated will be freed before returning to the caller.
2669 */
2670int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2671			    struct regulator_bulk_data *consumers)
2672{
2673	int i;
2674	int ret;
2675
2676	for (i = 0; i < num_consumers; i++)
2677		consumers[i].consumer = NULL;
2678
2679	for (i = 0; i < num_consumers; i++) {
2680		consumers[i].consumer = devm_regulator_get(dev,
2681							   consumers[i].supply);
2682		if (IS_ERR(consumers[i].consumer)) {
2683			ret = PTR_ERR(consumers[i].consumer);
2684			dev_err(dev, "Failed to get supply '%s': %d\n",
2685				consumers[i].supply, ret);
2686			consumers[i].consumer = NULL;
2687			goto err;
2688		}
2689	}
2690
2691	return 0;
2692
2693err:
2694	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2695		devm_regulator_put(consumers[i].consumer);
2696
2697	return ret;
2698}
2699EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2700
2701static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2702{
2703	struct regulator_bulk_data *bulk = data;
2704
2705	bulk->ret = regulator_enable(bulk->consumer);
2706}
2707
2708/**
2709 * regulator_bulk_enable - enable multiple regulator consumers
2710 *
2711 * @num_consumers: Number of consumers
2712 * @consumers:     Consumer data; clients are stored here.
2713 * @return         0 on success, an errno on failure
2714 *
2715 * This convenience API allows consumers to enable multiple regulator
2716 * clients in a single API call.  If any consumers cannot be enabled
2717 * then any others that were enabled will be disabled again prior to
2718 * return.
2719 */
2720int regulator_bulk_enable(int num_consumers,
2721			  struct regulator_bulk_data *consumers)
2722{
2723	LIST_HEAD(async_domain);
2724	int i;
2725	int ret = 0;
2726
2727	for (i = 0; i < num_consumers; i++) {
2728		if (consumers[i].consumer->always_on)
2729			consumers[i].ret = 0;
2730		else
2731			async_schedule_domain(regulator_bulk_enable_async,
2732					      &consumers[i], &async_domain);
2733	}
2734
2735	async_synchronize_full_domain(&async_domain);
2736
2737	/* If any consumer failed we need to unwind any that succeeded */
2738	for (i = 0; i < num_consumers; i++) {
2739		if (consumers[i].ret != 0) {
2740			ret = consumers[i].ret;
2741			goto err;
2742		}
2743	}
2744
2745	return 0;
2746
2747err:
2748	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2749	while (--i >= 0)
2750		regulator_disable(consumers[i].consumer);
2751
2752	return ret;
2753}
2754EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2755
2756/**
2757 * regulator_bulk_disable - disable multiple regulator consumers
2758 *
2759 * @num_consumers: Number of consumers
2760 * @consumers:     Consumer data; clients are stored here.
2761 * @return         0 on success, an errno on failure
2762 *
2763 * This convenience API allows consumers to disable multiple regulator
2764 * clients in a single API call.  If any consumers cannot be disabled
2765 * then any others that were disabled will be enabled again prior to
2766 * return.
2767 */
2768int regulator_bulk_disable(int num_consumers,
2769			   struct regulator_bulk_data *consumers)
2770{
2771	int i;
2772	int ret, r;
2773
2774	for (i = num_consumers - 1; i >= 0; --i) {
2775		ret = regulator_disable(consumers[i].consumer);
2776		if (ret != 0)
2777			goto err;
2778	}
2779
2780	return 0;
2781
2782err:
2783	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2784	for (++i; i < num_consumers; ++i) {
2785		r = regulator_enable(consumers[i].consumer);
2786		if (r != 0)
2787			pr_err("Failed to reename %s: %d\n",
2788			       consumers[i].supply, r);
2789	}
2790
2791	return ret;
2792}
2793EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2794
2795/**
2796 * regulator_bulk_force_disable - force disable multiple regulator consumers
2797 *
2798 * @num_consumers: Number of consumers
2799 * @consumers:     Consumer data; clients are stored here.
2800 * @return         0 on success, an errno on failure
2801 *
2802 * This convenience API allows consumers to forcibly disable multiple regulator
2803 * clients in a single API call.
2804 * NOTE: This should be used for situations when device damage will
2805 * likely occur if the regulators are not disabled (e.g. over temp).
2806 * Although regulator_force_disable function call for some consumers can
2807 * return error numbers, the function is called for all consumers.
2808 */
2809int regulator_bulk_force_disable(int num_consumers,
2810			   struct regulator_bulk_data *consumers)
2811{
2812	int i;
2813	int ret;
2814
2815	for (i = 0; i < num_consumers; i++)
2816		consumers[i].ret =
2817			    regulator_force_disable(consumers[i].consumer);
2818
2819	for (i = 0; i < num_consumers; i++) {
2820		if (consumers[i].ret != 0) {
2821			ret = consumers[i].ret;
2822			goto out;
2823		}
2824	}
2825
2826	return 0;
2827out:
2828	return ret;
2829}
2830EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2831
2832/**
2833 * regulator_bulk_free - free multiple regulator consumers
2834 *
2835 * @num_consumers: Number of consumers
2836 * @consumers:     Consumer data; clients are stored here.
2837 *
2838 * This convenience API allows consumers to free multiple regulator
2839 * clients in a single API call.
2840 */
2841void regulator_bulk_free(int num_consumers,
2842			 struct regulator_bulk_data *consumers)
2843{
2844	int i;
2845
2846	for (i = 0; i < num_consumers; i++) {
2847		regulator_put(consumers[i].consumer);
2848		consumers[i].consumer = NULL;
2849	}
2850}
2851EXPORT_SYMBOL_GPL(regulator_bulk_free);
2852
2853/**
2854 * regulator_notifier_call_chain - call regulator event notifier
2855 * @rdev: regulator source
2856 * @event: notifier block
2857 * @data: callback-specific data.
2858 *
2859 * Called by regulator drivers to notify clients a regulator event has
2860 * occurred. We also notify regulator clients downstream.
2861 * Note lock must be held by caller.
2862 */
2863int regulator_notifier_call_chain(struct regulator_dev *rdev,
2864				  unsigned long event, void *data)
2865{
2866	_notifier_call_chain(rdev, event, data);
2867	return NOTIFY_DONE;
2868
2869}
2870EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2871
2872/**
2873 * regulator_mode_to_status - convert a regulator mode into a status
2874 *
2875 * @mode: Mode to convert
2876 *
2877 * Convert a regulator mode into a status.
2878 */
2879int regulator_mode_to_status(unsigned int mode)
2880{
2881	switch (mode) {
2882	case REGULATOR_MODE_FAST:
2883		return REGULATOR_STATUS_FAST;
2884	case REGULATOR_MODE_NORMAL:
2885		return REGULATOR_STATUS_NORMAL;
2886	case REGULATOR_MODE_IDLE:
2887		return REGULATOR_STATUS_IDLE;
2888	case REGULATOR_STATUS_STANDBY:
2889		return REGULATOR_STATUS_STANDBY;
2890	default:
2891		return 0;
2892	}
2893}
2894EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2895
2896/*
2897 * To avoid cluttering sysfs (and memory) with useless state, only
2898 * create attributes that can be meaningfully displayed.
2899 */
2900static int add_regulator_attributes(struct regulator_dev *rdev)
2901{
2902	struct device		*dev = &rdev->dev;
2903	struct regulator_ops	*ops = rdev->desc->ops;
2904	int			status = 0;
2905
2906	/* some attributes need specific methods to be displayed */
2907	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2908	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2909		status = device_create_file(dev, &dev_attr_microvolts);
2910		if (status < 0)
2911			return status;
2912	}
2913	if (ops->get_current_limit) {
2914		status = device_create_file(dev, &dev_attr_microamps);
2915		if (status < 0)
2916			return status;
2917	}
2918	if (ops->get_mode) {
2919		status = device_create_file(dev, &dev_attr_opmode);
2920		if (status < 0)
2921			return status;
2922	}
2923	if (ops->is_enabled) {
2924		status = device_create_file(dev, &dev_attr_state);
2925		if (status < 0)
2926			return status;
2927	}
2928	if (ops->get_status) {
2929		status = device_create_file(dev, &dev_attr_status);
2930		if (status < 0)
2931			return status;
2932	}
2933
2934	/* some attributes are type-specific */
2935	if (rdev->desc->type == REGULATOR_CURRENT) {
2936		status = device_create_file(dev, &dev_attr_requested_microamps);
2937		if (status < 0)
2938			return status;
2939	}
2940
2941	/* all the other attributes exist to support constraints;
2942	 * don't show them if there are no constraints, or if the
2943	 * relevant supporting methods are missing.
2944	 */
2945	if (!rdev->constraints)
2946		return status;
2947
2948	/* constraints need specific supporting methods */
2949	if (ops->set_voltage || ops->set_voltage_sel) {
2950		status = device_create_file(dev, &dev_attr_min_microvolts);
2951		if (status < 0)
2952			return status;
2953		status = device_create_file(dev, &dev_attr_max_microvolts);
2954		if (status < 0)
2955			return status;
2956	}
2957	if (ops->set_current_limit) {
2958		status = device_create_file(dev, &dev_attr_min_microamps);
2959		if (status < 0)
2960			return status;
2961		status = device_create_file(dev, &dev_attr_max_microamps);
2962		if (status < 0)
2963			return status;
2964	}
2965
2966	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2967	if (status < 0)
2968		return status;
2969	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2970	if (status < 0)
2971		return status;
2972	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2973	if (status < 0)
2974		return status;
2975
2976	if (ops->set_suspend_voltage) {
2977		status = device_create_file(dev,
2978				&dev_attr_suspend_standby_microvolts);
2979		if (status < 0)
2980			return status;
2981		status = device_create_file(dev,
2982				&dev_attr_suspend_mem_microvolts);
2983		if (status < 0)
2984			return status;
2985		status = device_create_file(dev,
2986				&dev_attr_suspend_disk_microvolts);
2987		if (status < 0)
2988			return status;
2989	}
2990
2991	if (ops->set_suspend_mode) {
2992		status = device_create_file(dev,
2993				&dev_attr_suspend_standby_mode);
2994		if (status < 0)
2995			return status;
2996		status = device_create_file(dev,
2997				&dev_attr_suspend_mem_mode);
2998		if (status < 0)
2999			return status;
3000		status = device_create_file(dev,
3001				&dev_attr_suspend_disk_mode);
3002		if (status < 0)
3003			return status;
3004	}
3005
3006	return status;
3007}
3008
3009static void rdev_init_debugfs(struct regulator_dev *rdev)
3010{
3011	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3012	if (!rdev->debugfs) {
3013		rdev_warn(rdev, "Failed to create debugfs directory\n");
3014		return;
3015	}
3016
3017	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3018			   &rdev->use_count);
3019	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3020			   &rdev->open_count);
3021}
3022
3023/**
3024 * regulator_register - register regulator
3025 * @regulator_desc: regulator to register
3026 * @config: runtime configuration for regulator
3027 *
3028 * Called by regulator drivers to register a regulator.
3029 * Returns 0 on success.
3030 */
3031struct regulator_dev *
3032regulator_register(const struct regulator_desc *regulator_desc,
3033		   const struct regulator_config *config)
3034{
3035	const struct regulation_constraints *constraints = NULL;
3036	const struct regulator_init_data *init_data;
3037	static atomic_t regulator_no = ATOMIC_INIT(0);
3038	struct regulator_dev *rdev;
3039	struct device *dev;
3040	int ret, i;
3041	const char *supply = NULL;
3042
3043	if (regulator_desc == NULL || config == NULL)
3044		return ERR_PTR(-EINVAL);
3045
3046	dev = config->dev;
3047	WARN_ON(!dev);
3048
3049	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3050		return ERR_PTR(-EINVAL);
3051
3052	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3053	    regulator_desc->type != REGULATOR_CURRENT)
3054		return ERR_PTR(-EINVAL);
3055
3056	/* Only one of each should be implemented */
3057	WARN_ON(regulator_desc->ops->get_voltage &&
3058		regulator_desc->ops->get_voltage_sel);
3059	WARN_ON(regulator_desc->ops->set_voltage &&
3060		regulator_desc->ops->set_voltage_sel);
3061
3062	/* If we're using selectors we must implement list_voltage. */
3063	if (regulator_desc->ops->get_voltage_sel &&
3064	    !regulator_desc->ops->list_voltage) {
3065		return ERR_PTR(-EINVAL);
3066	}
3067	if (regulator_desc->ops->set_voltage_sel &&
3068	    !regulator_desc->ops->list_voltage) {
3069		return ERR_PTR(-EINVAL);
3070	}
3071
3072	init_data = config->init_data;
3073
3074	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3075	if (rdev == NULL)
3076		return ERR_PTR(-ENOMEM);
3077
3078	mutex_lock(&regulator_list_mutex);
3079
3080	mutex_init(&rdev->mutex);
3081	rdev->reg_data = config->driver_data;
3082	rdev->owner = regulator_desc->owner;
3083	rdev->desc = regulator_desc;
3084	if (config->regmap)
3085		rdev->regmap = config->regmap;
3086	else
3087		rdev->regmap = dev_get_regmap(dev, NULL);
3088	INIT_LIST_HEAD(&rdev->consumer_list);
3089	INIT_LIST_HEAD(&rdev->list);
3090	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3091	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3092
3093	/* preform any regulator specific init */
3094	if (init_data && init_data->regulator_init) {
3095		ret = init_data->regulator_init(rdev->reg_data);
3096		if (ret < 0)
3097			goto clean;
3098	}
3099
3100	/* register with sysfs */
3101	rdev->dev.class = &regulator_class;
3102	rdev->dev.of_node = config->of_node;
3103	rdev->dev.parent = dev;
3104	dev_set_name(&rdev->dev, "regulator.%d",
3105		     atomic_inc_return(&regulator_no) - 1);
3106	ret = device_register(&rdev->dev);
3107	if (ret != 0) {
3108		put_device(&rdev->dev);
3109		goto clean;
3110	}
3111
3112	dev_set_drvdata(&rdev->dev, rdev);
3113
3114	/* set regulator constraints */
3115	if (init_data)
3116		constraints = &init_data->constraints;
3117
3118	ret = set_machine_constraints(rdev, constraints);
3119	if (ret < 0)
3120		goto scrub;
3121
3122	/* add attributes supported by this regulator */
3123	ret = add_regulator_attributes(rdev);
3124	if (ret < 0)
3125		goto scrub;
3126
3127	if (init_data && init_data->supply_regulator)
3128		supply = init_data->supply_regulator;
3129	else if (regulator_desc->supply_name)
3130		supply = regulator_desc->supply_name;
3131
3132	if (supply) {
3133		struct regulator_dev *r;
3134
3135		r = regulator_dev_lookup(dev, supply, &ret);
3136
3137		if (!r) {
3138			dev_err(dev, "Failed to find supply %s\n", supply);
3139			ret = -EPROBE_DEFER;
3140			goto scrub;
3141		}
3142
3143		ret = set_supply(rdev, r);
3144		if (ret < 0)
3145			goto scrub;
3146
3147		/* Enable supply if rail is enabled */
3148		if (_regulator_is_enabled(rdev)) {
3149			ret = regulator_enable(rdev->supply);
3150			if (ret < 0)
3151				goto scrub;
3152		}
3153	}
3154
3155	/* add consumers devices */
3156	if (init_data) {
3157		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3158			ret = set_consumer_device_supply(rdev,
3159				init_data->consumer_supplies[i].dev_name,
3160				init_data->consumer_supplies[i].supply);
3161			if (ret < 0) {
3162				dev_err(dev, "Failed to set supply %s\n",
3163					init_data->consumer_supplies[i].supply);
3164				goto unset_supplies;
3165			}
3166		}
3167	}
3168
3169	list_add(&rdev->list, &regulator_list);
3170
3171	rdev_init_debugfs(rdev);
3172out:
3173	mutex_unlock(&regulator_list_mutex);
3174	return rdev;
3175
3176unset_supplies:
3177	unset_regulator_supplies(rdev);
3178
3179scrub:
3180	if (rdev->supply)
3181		regulator_put(rdev->supply);
3182	kfree(rdev->constraints);
3183	device_unregister(&rdev->dev);
3184	/* device core frees rdev */
3185	rdev = ERR_PTR(ret);
3186	goto out;
3187
3188clean:
3189	kfree(rdev);
3190	rdev = ERR_PTR(ret);
3191	goto out;
3192}
3193EXPORT_SYMBOL_GPL(regulator_register);
3194
3195/**
3196 * regulator_unregister - unregister regulator
3197 * @rdev: regulator to unregister
3198 *
3199 * Called by regulator drivers to unregister a regulator.
3200 */
3201void regulator_unregister(struct regulator_dev *rdev)
3202{
3203	if (rdev == NULL)
3204		return;
3205
3206	if (rdev->supply)
3207		regulator_put(rdev->supply);
3208	mutex_lock(&regulator_list_mutex);
3209	debugfs_remove_recursive(rdev->debugfs);
3210	flush_work_sync(&rdev->disable_work.work);
3211	WARN_ON(rdev->open_count);
3212	unset_regulator_supplies(rdev);
3213	list_del(&rdev->list);
3214	kfree(rdev->constraints);
3215	device_unregister(&rdev->dev);
3216	mutex_unlock(&regulator_list_mutex);
3217}
3218EXPORT_SYMBOL_GPL(regulator_unregister);
3219
3220/**
3221 * regulator_suspend_prepare - prepare regulators for system wide suspend
3222 * @state: system suspend state
3223 *
3224 * Configure each regulator with it's suspend operating parameters for state.
3225 * This will usually be called by machine suspend code prior to supending.
3226 */
3227int regulator_suspend_prepare(suspend_state_t state)
3228{
3229	struct regulator_dev *rdev;
3230	int ret = 0;
3231
3232	/* ON is handled by regulator active state */
3233	if (state == PM_SUSPEND_ON)
3234		return -EINVAL;
3235
3236	mutex_lock(&regulator_list_mutex);
3237	list_for_each_entry(rdev, &regulator_list, list) {
3238
3239		mutex_lock(&rdev->mutex);
3240		ret = suspend_prepare(rdev, state);
3241		mutex_unlock(&rdev->mutex);
3242
3243		if (ret < 0) {
3244			rdev_err(rdev, "failed to prepare\n");
3245			goto out;
3246		}
3247	}
3248out:
3249	mutex_unlock(&regulator_list_mutex);
3250	return ret;
3251}
3252EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3253
3254/**
3255 * regulator_suspend_finish - resume regulators from system wide suspend
3256 *
3257 * Turn on regulators that might be turned off by regulator_suspend_prepare
3258 * and that should be turned on according to the regulators properties.
3259 */
3260int regulator_suspend_finish(void)
3261{
3262	struct regulator_dev *rdev;
3263	int ret = 0, error;
3264
3265	mutex_lock(&regulator_list_mutex);
3266	list_for_each_entry(rdev, &regulator_list, list) {
3267		struct regulator_ops *ops = rdev->desc->ops;
3268
3269		mutex_lock(&rdev->mutex);
3270		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3271				ops->enable) {
3272			error = ops->enable(rdev);
3273			if (error)
3274				ret = error;
3275		} else {
3276			if (!has_full_constraints)
3277				goto unlock;
3278			if (!ops->disable)
3279				goto unlock;
3280			if (!_regulator_is_enabled(rdev))
3281				goto unlock;
3282
3283			error = ops->disable(rdev);
3284			if (error)
3285				ret = error;
3286		}
3287unlock:
3288		mutex_unlock(&rdev->mutex);
3289	}
3290	mutex_unlock(&regulator_list_mutex);
3291	return ret;
3292}
3293EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3294
3295/**
3296 * regulator_has_full_constraints - the system has fully specified constraints
3297 *
3298 * Calling this function will cause the regulator API to disable all
3299 * regulators which have a zero use count and don't have an always_on
3300 * constraint in a late_initcall.
3301 *
3302 * The intention is that this will become the default behaviour in a
3303 * future kernel release so users are encouraged to use this facility
3304 * now.
3305 */
3306void regulator_has_full_constraints(void)
3307{
3308	has_full_constraints = 1;
3309}
3310EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3311
3312/**
3313 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3314 *
3315 * Calling this function will cause the regulator API to provide a
3316 * dummy regulator to consumers if no physical regulator is found,
3317 * allowing most consumers to proceed as though a regulator were
3318 * configured.  This allows systems such as those with software
3319 * controllable regulators for the CPU core only to be brought up more
3320 * readily.
3321 */
3322void regulator_use_dummy_regulator(void)
3323{
3324	board_wants_dummy_regulator = true;
3325}
3326EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3327
3328/**
3329 * rdev_get_drvdata - get rdev regulator driver data
3330 * @rdev: regulator
3331 *
3332 * Get rdev regulator driver private data. This call can be used in the
3333 * regulator driver context.
3334 */
3335void *rdev_get_drvdata(struct regulator_dev *rdev)
3336{
3337	return rdev->reg_data;
3338}
3339EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3340
3341/**
3342 * regulator_get_drvdata - get regulator driver data
3343 * @regulator: regulator
3344 *
3345 * Get regulator driver private data. This call can be used in the consumer
3346 * driver context when non API regulator specific functions need to be called.
3347 */
3348void *regulator_get_drvdata(struct regulator *regulator)
3349{
3350	return regulator->rdev->reg_data;
3351}
3352EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3353
3354/**
3355 * regulator_set_drvdata - set regulator driver data
3356 * @regulator: regulator
3357 * @data: data
3358 */
3359void regulator_set_drvdata(struct regulator *regulator, void *data)
3360{
3361	regulator->rdev->reg_data = data;
3362}
3363EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3364
3365/**
3366 * regulator_get_id - get regulator ID
3367 * @rdev: regulator
3368 */
3369int rdev_get_id(struct regulator_dev *rdev)
3370{
3371	return rdev->desc->id;
3372}
3373EXPORT_SYMBOL_GPL(rdev_get_id);
3374
3375struct device *rdev_get_dev(struct regulator_dev *rdev)
3376{
3377	return &rdev->dev;
3378}
3379EXPORT_SYMBOL_GPL(rdev_get_dev);
3380
3381void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3382{
3383	return reg_init_data->driver_data;
3384}
3385EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3386
3387#ifdef CONFIG_DEBUG_FS
3388static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3389				    size_t count, loff_t *ppos)
3390{
3391	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3392	ssize_t len, ret = 0;
3393	struct regulator_map *map;
3394
3395	if (!buf)
3396		return -ENOMEM;
3397
3398	list_for_each_entry(map, &regulator_map_list, list) {
3399		len = snprintf(buf + ret, PAGE_SIZE - ret,
3400			       "%s -> %s.%s\n",
3401			       rdev_get_name(map->regulator), map->dev_name,
3402			       map->supply);
3403		if (len >= 0)
3404			ret += len;
3405		if (ret > PAGE_SIZE) {
3406			ret = PAGE_SIZE;
3407			break;
3408		}
3409	}
3410
3411	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3412
3413	kfree(buf);
3414
3415	return ret;
3416}
3417#endif
3418
3419static const struct file_operations supply_map_fops = {
3420#ifdef CONFIG_DEBUG_FS
3421	.read = supply_map_read_file,
3422	.llseek = default_llseek,
3423#endif
3424};
3425
3426static int __init regulator_init(void)
3427{
3428	int ret;
3429
3430	ret = class_register(&regulator_class);
3431
3432	debugfs_root = debugfs_create_dir("regulator", NULL);
3433	if (!debugfs_root)
3434		pr_warn("regulator: Failed to create debugfs directory\n");
3435
3436	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3437			    &supply_map_fops);
3438
3439	regulator_dummy_init();
3440
3441	return ret;
3442}
3443
3444/* init early to allow our consumers to complete system booting */
3445core_initcall(regulator_init);
3446
3447static int __init regulator_init_complete(void)
3448{
3449	struct regulator_dev *rdev;
3450	struct regulator_ops *ops;
3451	struct regulation_constraints *c;
3452	int enabled, ret;
3453
3454	mutex_lock(&regulator_list_mutex);
3455
3456	/* If we have a full configuration then disable any regulators
3457	 * which are not in use or always_on.  This will become the
3458	 * default behaviour in the future.
3459	 */
3460	list_for_each_entry(rdev, &regulator_list, list) {
3461		ops = rdev->desc->ops;
3462		c = rdev->constraints;
3463
3464		if (!ops->disable || (c && c->always_on))
3465			continue;
3466
3467		mutex_lock(&rdev->mutex);
3468
3469		if (rdev->use_count)
3470			goto unlock;
3471
3472		/* If we can't read the status assume it's on. */
3473		if (ops->is_enabled)
3474			enabled = ops->is_enabled(rdev);
3475		else
3476			enabled = 1;
3477
3478		if (!enabled)
3479			goto unlock;
3480
3481		if (has_full_constraints) {
3482			/* We log since this may kill the system if it
3483			 * goes wrong. */
3484			rdev_info(rdev, "disabling\n");
3485			ret = ops->disable(rdev);
3486			if (ret != 0) {
3487				rdev_err(rdev, "couldn't disable: %d\n", ret);
3488			}
3489		} else {
3490			/* The intention is that in future we will
3491			 * assume that full constraints are provided
3492			 * so warn even if we aren't going to do
3493			 * anything here.
3494			 */
3495			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3496		}
3497
3498unlock:
3499		mutex_unlock(&rdev->mutex);
3500	}
3501
3502	mutex_unlock(&regulator_list_mutex);
3503
3504	return 0;
3505}
3506late_initcall(regulator_init_complete);
3507