core.c revision c8520b4c5d25eb7b8b54f1ae9ba7da71375f2b2c
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV) {
203		dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
204			regulator->min_uV, regulator->max_uV);
205		return -EINVAL;
206	}
207
208	return 0;
209}
210
211/* current constraint check */
212static int regulator_check_current_limit(struct regulator_dev *rdev,
213					int *min_uA, int *max_uA)
214{
215	BUG_ON(*min_uA > *max_uA);
216
217	if (!rdev->constraints) {
218		rdev_err(rdev, "no constraints\n");
219		return -ENODEV;
220	}
221	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222		rdev_err(rdev, "operation not allowed\n");
223		return -EPERM;
224	}
225
226	if (*max_uA > rdev->constraints->max_uA)
227		*max_uA = rdev->constraints->max_uA;
228	if (*min_uA < rdev->constraints->min_uA)
229		*min_uA = rdev->constraints->min_uA;
230
231	if (*min_uA > *max_uA) {
232		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233			 *min_uA, *max_uA);
234		return -EINVAL;
235	}
236
237	return 0;
238}
239
240/* operating mode constraint check */
241static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242{
243	switch (*mode) {
244	case REGULATOR_MODE_FAST:
245	case REGULATOR_MODE_NORMAL:
246	case REGULATOR_MODE_IDLE:
247	case REGULATOR_MODE_STANDBY:
248		break;
249	default:
250		rdev_err(rdev, "invalid mode %x specified\n", *mode);
251		return -EINVAL;
252	}
253
254	if (!rdev->constraints) {
255		rdev_err(rdev, "no constraints\n");
256		return -ENODEV;
257	}
258	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259		rdev_err(rdev, "operation not allowed\n");
260		return -EPERM;
261	}
262
263	/* The modes are bitmasks, the most power hungry modes having
264	 * the lowest values. If the requested mode isn't supported
265	 * try higher modes. */
266	while (*mode) {
267		if (rdev->constraints->valid_modes_mask & *mode)
268			return 0;
269		*mode /= 2;
270	}
271
272	return -EINVAL;
273}
274
275/* dynamic regulator mode switching constraint check */
276static int regulator_check_drms(struct regulator_dev *rdev)
277{
278	if (!rdev->constraints) {
279		rdev_err(rdev, "no constraints\n");
280		return -ENODEV;
281	}
282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283		rdev_err(rdev, "operation not allowed\n");
284		return -EPERM;
285	}
286	return 0;
287}
288
289static ssize_t regulator_uV_show(struct device *dev,
290				struct device_attribute *attr, char *buf)
291{
292	struct regulator_dev *rdev = dev_get_drvdata(dev);
293	ssize_t ret;
294
295	mutex_lock(&rdev->mutex);
296	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297	mutex_unlock(&rdev->mutex);
298
299	return ret;
300}
301static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303static ssize_t regulator_uA_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309}
310static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312static ssize_t regulator_name_show(struct device *dev,
313			     struct device_attribute *attr, char *buf)
314{
315	struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317	return sprintf(buf, "%s\n", rdev_get_name(rdev));
318}
319
320static ssize_t regulator_print_opmode(char *buf, int mode)
321{
322	switch (mode) {
323	case REGULATOR_MODE_FAST:
324		return sprintf(buf, "fast\n");
325	case REGULATOR_MODE_NORMAL:
326		return sprintf(buf, "normal\n");
327	case REGULATOR_MODE_IDLE:
328		return sprintf(buf, "idle\n");
329	case REGULATOR_MODE_STANDBY:
330		return sprintf(buf, "standby\n");
331	}
332	return sprintf(buf, "unknown\n");
333}
334
335static ssize_t regulator_opmode_show(struct device *dev,
336				    struct device_attribute *attr, char *buf)
337{
338	struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341}
342static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344static ssize_t regulator_print_state(char *buf, int state)
345{
346	if (state > 0)
347		return sprintf(buf, "enabled\n");
348	else if (state == 0)
349		return sprintf(buf, "disabled\n");
350	else
351		return sprintf(buf, "unknown\n");
352}
353
354static ssize_t regulator_state_show(struct device *dev,
355				   struct device_attribute *attr, char *buf)
356{
357	struct regulator_dev *rdev = dev_get_drvdata(dev);
358	ssize_t ret;
359
360	mutex_lock(&rdev->mutex);
361	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362	mutex_unlock(&rdev->mutex);
363
364	return ret;
365}
366static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368static ssize_t regulator_status_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	int status;
373	char *label;
374
375	status = rdev->desc->ops->get_status(rdev);
376	if (status < 0)
377		return status;
378
379	switch (status) {
380	case REGULATOR_STATUS_OFF:
381		label = "off";
382		break;
383	case REGULATOR_STATUS_ON:
384		label = "on";
385		break;
386	case REGULATOR_STATUS_ERROR:
387		label = "error";
388		break;
389	case REGULATOR_STATUS_FAST:
390		label = "fast";
391		break;
392	case REGULATOR_STATUS_NORMAL:
393		label = "normal";
394		break;
395	case REGULATOR_STATUS_IDLE:
396		label = "idle";
397		break;
398	case REGULATOR_STATUS_STANDBY:
399		label = "standby";
400		break;
401	case REGULATOR_STATUS_BYPASS:
402		label = "bypass";
403		break;
404	case REGULATOR_STATUS_UNDEFINED:
405		label = "undefined";
406		break;
407	default:
408		return -ERANGE;
409	}
410
411	return sprintf(buf, "%s\n", label);
412}
413static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415static ssize_t regulator_min_uA_show(struct device *dev,
416				    struct device_attribute *attr, char *buf)
417{
418	struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420	if (!rdev->constraints)
421		return sprintf(buf, "constraint not defined\n");
422
423	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424}
425static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427static ssize_t regulator_max_uA_show(struct device *dev,
428				    struct device_attribute *attr, char *buf)
429{
430	struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432	if (!rdev->constraints)
433		return sprintf(buf, "constraint not defined\n");
434
435	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436}
437static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439static ssize_t regulator_min_uV_show(struct device *dev,
440				    struct device_attribute *attr, char *buf)
441{
442	struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444	if (!rdev->constraints)
445		return sprintf(buf, "constraint not defined\n");
446
447	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448}
449static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451static ssize_t regulator_max_uV_show(struct device *dev,
452				    struct device_attribute *attr, char *buf)
453{
454	struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456	if (!rdev->constraints)
457		return sprintf(buf, "constraint not defined\n");
458
459	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460}
461static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463static ssize_t regulator_total_uA_show(struct device *dev,
464				      struct device_attribute *attr, char *buf)
465{
466	struct regulator_dev *rdev = dev_get_drvdata(dev);
467	struct regulator *regulator;
468	int uA = 0;
469
470	mutex_lock(&rdev->mutex);
471	list_for_each_entry(regulator, &rdev->consumer_list, list)
472		uA += regulator->uA_load;
473	mutex_unlock(&rdev->mutex);
474	return sprintf(buf, "%d\n", uA);
475}
476static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478static ssize_t regulator_num_users_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	return sprintf(buf, "%d\n", rdev->use_count);
483}
484
485static ssize_t regulator_type_show(struct device *dev,
486				  struct device_attribute *attr, char *buf)
487{
488	struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490	switch (rdev->desc->type) {
491	case REGULATOR_VOLTAGE:
492		return sprintf(buf, "voltage\n");
493	case REGULATOR_CURRENT:
494		return sprintf(buf, "current\n");
495	}
496	return sprintf(buf, "unknown\n");
497}
498
499static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500				struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505}
506static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507		regulator_suspend_mem_uV_show, NULL);
508
509static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515}
516static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517		regulator_suspend_disk_uV_show, NULL);
518
519static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525}
526static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527		regulator_suspend_standby_uV_show, NULL);
528
529static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return regulator_print_opmode(buf,
535		rdev->constraints->state_mem.mode);
536}
537static DEVICE_ATTR(suspend_mem_mode, 0444,
538		regulator_suspend_mem_mode_show, NULL);
539
540static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541				struct device_attribute *attr, char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545	return regulator_print_opmode(buf,
546		rdev->constraints->state_disk.mode);
547}
548static DEVICE_ATTR(suspend_disk_mode, 0444,
549		regulator_suspend_disk_mode_show, NULL);
550
551static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552				struct device_attribute *attr, char *buf)
553{
554	struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556	return regulator_print_opmode(buf,
557		rdev->constraints->state_standby.mode);
558}
559static DEVICE_ATTR(suspend_standby_mode, 0444,
560		regulator_suspend_standby_mode_show, NULL);
561
562static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563				   struct device_attribute *attr, char *buf)
564{
565	struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567	return regulator_print_state(buf,
568			rdev->constraints->state_mem.enabled);
569}
570static DEVICE_ATTR(suspend_mem_state, 0444,
571		regulator_suspend_mem_state_show, NULL);
572
573static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574				   struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return regulator_print_state(buf,
579			rdev->constraints->state_disk.enabled);
580}
581static DEVICE_ATTR(suspend_disk_state, 0444,
582		regulator_suspend_disk_state_show, NULL);
583
584static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585				   struct device_attribute *attr, char *buf)
586{
587	struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589	return regulator_print_state(buf,
590			rdev->constraints->state_standby.enabled);
591}
592static DEVICE_ATTR(suspend_standby_state, 0444,
593		regulator_suspend_standby_state_show, NULL);
594
595static ssize_t regulator_bypass_show(struct device *dev,
596				     struct device_attribute *attr, char *buf)
597{
598	struct regulator_dev *rdev = dev_get_drvdata(dev);
599	const char *report;
600	bool bypass;
601	int ret;
602
603	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605	if (ret != 0)
606		report = "unknown";
607	else if (bypass)
608		report = "enabled";
609	else
610		report = "disabled";
611
612	return sprintf(buf, "%s\n", report);
613}
614static DEVICE_ATTR(bypass, 0444,
615		   regulator_bypass_show, NULL);
616
617/*
618 * These are the only attributes are present for all regulators.
619 * Other attributes are a function of regulator functionality.
620 */
621static struct device_attribute regulator_dev_attrs[] = {
622	__ATTR(name, 0444, regulator_name_show, NULL),
623	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
624	__ATTR(type, 0444, regulator_type_show, NULL),
625	__ATTR_NULL,
626};
627
628static void regulator_dev_release(struct device *dev)
629{
630	struct regulator_dev *rdev = dev_get_drvdata(dev);
631	kfree(rdev);
632}
633
634static struct class regulator_class = {
635	.name = "regulator",
636	.dev_release = regulator_dev_release,
637	.dev_attrs = regulator_dev_attrs,
638};
639
640/* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
642static void drms_uA_update(struct regulator_dev *rdev)
643{
644	struct regulator *sibling;
645	int current_uA = 0, output_uV, input_uV, err;
646	unsigned int mode;
647
648	err = regulator_check_drms(rdev);
649	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650	    (!rdev->desc->ops->get_voltage &&
651	     !rdev->desc->ops->get_voltage_sel) ||
652	    !rdev->desc->ops->set_mode)
653		return;
654
655	/* get output voltage */
656	output_uV = _regulator_get_voltage(rdev);
657	if (output_uV <= 0)
658		return;
659
660	/* get input voltage */
661	input_uV = 0;
662	if (rdev->supply)
663		input_uV = regulator_get_voltage(rdev->supply);
664	if (input_uV <= 0)
665		input_uV = rdev->constraints->input_uV;
666	if (input_uV <= 0)
667		return;
668
669	/* calc total requested load */
670	list_for_each_entry(sibling, &rdev->consumer_list, list)
671		current_uA += sibling->uA_load;
672
673	/* now get the optimum mode for our new total regulator load */
674	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675						  output_uV, current_uA);
676
677	/* check the new mode is allowed */
678	err = regulator_mode_constrain(rdev, &mode);
679	if (err == 0)
680		rdev->desc->ops->set_mode(rdev, mode);
681}
682
683static int suspend_set_state(struct regulator_dev *rdev,
684	struct regulator_state *rstate)
685{
686	int ret = 0;
687
688	/* If we have no suspend mode configration don't set anything;
689	 * only warn if the driver implements set_suspend_voltage or
690	 * set_suspend_mode callback.
691	 */
692	if (!rstate->enabled && !rstate->disabled) {
693		if (rdev->desc->ops->set_suspend_voltage ||
694		    rdev->desc->ops->set_suspend_mode)
695			rdev_warn(rdev, "No configuration\n");
696		return 0;
697	}
698
699	if (rstate->enabled && rstate->disabled) {
700		rdev_err(rdev, "invalid configuration\n");
701		return -EINVAL;
702	}
703
704	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705		ret = rdev->desc->ops->set_suspend_enable(rdev);
706	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707		ret = rdev->desc->ops->set_suspend_disable(rdev);
708	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709		ret = 0;
710
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	if (!count)
810		sprintf(buf, "no parameters");
811
812	rdev_info(rdev, "%s\n", buf);
813
814	if ((constraints->min_uV != constraints->max_uV) &&
815	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816		rdev_warn(rdev,
817			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818}
819
820static int machine_constraints_voltage(struct regulator_dev *rdev,
821	struct regulation_constraints *constraints)
822{
823	struct regulator_ops *ops = rdev->desc->ops;
824	int ret;
825
826	/* do we need to apply the constraint voltage */
827	if (rdev->constraints->apply_uV &&
828	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
829		ret = _regulator_do_set_voltage(rdev,
830						rdev->constraints->min_uV,
831						rdev->constraints->max_uV);
832		if (ret < 0) {
833			rdev_err(rdev, "failed to apply %duV constraint\n",
834				 rdev->constraints->min_uV);
835			return ret;
836		}
837	}
838
839	/* constrain machine-level voltage specs to fit
840	 * the actual range supported by this regulator.
841	 */
842	if (ops->list_voltage && rdev->desc->n_voltages) {
843		int	count = rdev->desc->n_voltages;
844		int	i;
845		int	min_uV = INT_MAX;
846		int	max_uV = INT_MIN;
847		int	cmin = constraints->min_uV;
848		int	cmax = constraints->max_uV;
849
850		/* it's safe to autoconfigure fixed-voltage supplies
851		   and the constraints are used by list_voltage. */
852		if (count == 1 && !cmin) {
853			cmin = 1;
854			cmax = INT_MAX;
855			constraints->min_uV = cmin;
856			constraints->max_uV = cmax;
857		}
858
859		/* voltage constraints are optional */
860		if ((cmin == 0) && (cmax == 0))
861			return 0;
862
863		/* else require explicit machine-level constraints */
864		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865			rdev_err(rdev, "invalid voltage constraints\n");
866			return -EINVAL;
867		}
868
869		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870		for (i = 0; i < count; i++) {
871			int	value;
872
873			value = ops->list_voltage(rdev, i);
874			if (value <= 0)
875				continue;
876
877			/* maybe adjust [min_uV..max_uV] */
878			if (value >= cmin && value < min_uV)
879				min_uV = value;
880			if (value <= cmax && value > max_uV)
881				max_uV = value;
882		}
883
884		/* final: [min_uV..max_uV] valid iff constraints valid */
885		if (max_uV < min_uV) {
886			rdev_err(rdev,
887				 "unsupportable voltage constraints %u-%uuV\n",
888				 min_uV, max_uV);
889			return -EINVAL;
890		}
891
892		/* use regulator's subset of machine constraints */
893		if (constraints->min_uV < min_uV) {
894			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895				 constraints->min_uV, min_uV);
896			constraints->min_uV = min_uV;
897		}
898		if (constraints->max_uV > max_uV) {
899			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900				 constraints->max_uV, max_uV);
901			constraints->max_uV = max_uV;
902		}
903	}
904
905	return 0;
906}
907
908/**
909 * set_machine_constraints - sets regulator constraints
910 * @rdev: regulator source
911 * @constraints: constraints to apply
912 *
913 * Allows platform initialisation code to define and constrain
914 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915 * Constraints *must* be set by platform code in order for some
916 * regulator operations to proceed i.e. set_voltage, set_current_limit,
917 * set_mode.
918 */
919static int set_machine_constraints(struct regulator_dev *rdev,
920	const struct regulation_constraints *constraints)
921{
922	int ret = 0;
923	struct regulator_ops *ops = rdev->desc->ops;
924
925	if (constraints)
926		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927					    GFP_KERNEL);
928	else
929		rdev->constraints = kzalloc(sizeof(*constraints),
930					    GFP_KERNEL);
931	if (!rdev->constraints)
932		return -ENOMEM;
933
934	ret = machine_constraints_voltage(rdev, rdev->constraints);
935	if (ret != 0)
936		goto out;
937
938	/* do we need to setup our suspend state */
939	if (rdev->constraints->initial_state) {
940		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941		if (ret < 0) {
942			rdev_err(rdev, "failed to set suspend state\n");
943			goto out;
944		}
945	}
946
947	if (rdev->constraints->initial_mode) {
948		if (!ops->set_mode) {
949			rdev_err(rdev, "no set_mode operation\n");
950			ret = -EINVAL;
951			goto out;
952		}
953
954		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957			goto out;
958		}
959	}
960
961	/* If the constraints say the regulator should be on at this point
962	 * and we have control then make sure it is enabled.
963	 */
964	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965	    ops->enable) {
966		ret = ops->enable(rdev);
967		if (ret < 0) {
968			rdev_err(rdev, "failed to enable\n");
969			goto out;
970		}
971	}
972
973	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975		if (ret < 0) {
976			rdev_err(rdev, "failed to set ramp_delay\n");
977			goto out;
978		}
979	}
980
981	print_constraints(rdev);
982	return 0;
983out:
984	kfree(rdev->constraints);
985	rdev->constraints = NULL;
986	return ret;
987}
988
989/**
990 * set_supply - set regulator supply regulator
991 * @rdev: regulator name
992 * @supply_rdev: supply regulator name
993 *
994 * Called by platform initialisation code to set the supply regulator for this
995 * regulator. This ensures that a regulators supply will also be enabled by the
996 * core if it's child is enabled.
997 */
998static int set_supply(struct regulator_dev *rdev,
999		      struct regulator_dev *supply_rdev)
1000{
1001	int err;
1002
1003	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006	if (rdev->supply == NULL) {
1007		err = -ENOMEM;
1008		return err;
1009	}
1010	supply_rdev->open_count++;
1011
1012	return 0;
1013}
1014
1015/**
1016 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017 * @rdev:         regulator source
1018 * @consumer_dev_name: dev_name() string for device supply applies to
1019 * @supply:       symbolic name for supply
1020 *
1021 * Allows platform initialisation code to map physical regulator
1022 * sources to symbolic names for supplies for use by devices.  Devices
1023 * should use these symbolic names to request regulators, avoiding the
1024 * need to provide board-specific regulator names as platform data.
1025 */
1026static int set_consumer_device_supply(struct regulator_dev *rdev,
1027				      const char *consumer_dev_name,
1028				      const char *supply)
1029{
1030	struct regulator_map *node;
1031	int has_dev;
1032
1033	if (supply == NULL)
1034		return -EINVAL;
1035
1036	if (consumer_dev_name != NULL)
1037		has_dev = 1;
1038	else
1039		has_dev = 0;
1040
1041	list_for_each_entry(node, &regulator_map_list, list) {
1042		if (node->dev_name && consumer_dev_name) {
1043			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044				continue;
1045		} else if (node->dev_name || consumer_dev_name) {
1046			continue;
1047		}
1048
1049		if (strcmp(node->supply, supply) != 0)
1050			continue;
1051
1052		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053			 consumer_dev_name,
1054			 dev_name(&node->regulator->dev),
1055			 node->regulator->desc->name,
1056			 supply,
1057			 dev_name(&rdev->dev), rdev_get_name(rdev));
1058		return -EBUSY;
1059	}
1060
1061	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062	if (node == NULL)
1063		return -ENOMEM;
1064
1065	node->regulator = rdev;
1066	node->supply = supply;
1067
1068	if (has_dev) {
1069		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070		if (node->dev_name == NULL) {
1071			kfree(node);
1072			return -ENOMEM;
1073		}
1074	}
1075
1076	list_add(&node->list, &regulator_map_list);
1077	return 0;
1078}
1079
1080static void unset_regulator_supplies(struct regulator_dev *rdev)
1081{
1082	struct regulator_map *node, *n;
1083
1084	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085		if (rdev == node->regulator) {
1086			list_del(&node->list);
1087			kfree(node->dev_name);
1088			kfree(node);
1089		}
1090	}
1091}
1092
1093#define REG_STR_SIZE	64
1094
1095static struct regulator *create_regulator(struct regulator_dev *rdev,
1096					  struct device *dev,
1097					  const char *supply_name)
1098{
1099	struct regulator *regulator;
1100	char buf[REG_STR_SIZE];
1101	int err, size;
1102
1103	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104	if (regulator == NULL)
1105		return NULL;
1106
1107	mutex_lock(&rdev->mutex);
1108	regulator->rdev = rdev;
1109	list_add(&regulator->list, &rdev->consumer_list);
1110
1111	if (dev) {
1112		regulator->dev = dev;
1113
1114		/* Add a link to the device sysfs entry */
1115		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116				 dev->kobj.name, supply_name);
1117		if (size >= REG_STR_SIZE)
1118			goto overflow_err;
1119
1120		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121		if (regulator->supply_name == NULL)
1122			goto overflow_err;
1123
1124		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125					buf);
1126		if (err) {
1127			rdev_warn(rdev, "could not add device link %s err %d\n",
1128				  dev->kobj.name, err);
1129			/* non-fatal */
1130		}
1131	} else {
1132		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133		if (regulator->supply_name == NULL)
1134			goto overflow_err;
1135	}
1136
1137	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138						rdev->debugfs);
1139	if (!regulator->debugfs) {
1140		rdev_warn(rdev, "Failed to create debugfs directory\n");
1141	} else {
1142		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143				   &regulator->uA_load);
1144		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145				   &regulator->min_uV);
1146		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147				   &regulator->max_uV);
1148	}
1149
1150	/*
1151	 * Check now if the regulator is an always on regulator - if
1152	 * it is then we don't need to do nearly so much work for
1153	 * enable/disable calls.
1154	 */
1155	if (!_regulator_can_change_status(rdev) &&
1156	    _regulator_is_enabled(rdev))
1157		regulator->always_on = true;
1158
1159	mutex_unlock(&rdev->mutex);
1160	return regulator;
1161overflow_err:
1162	list_del(&regulator->list);
1163	kfree(regulator);
1164	mutex_unlock(&rdev->mutex);
1165	return NULL;
1166}
1167
1168static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169{
1170	if (!rdev->desc->ops->enable_time)
1171		return rdev->desc->enable_time;
1172	return rdev->desc->ops->enable_time(rdev);
1173}
1174
1175static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176						  const char *supply,
1177						  int *ret)
1178{
1179	struct regulator_dev *r;
1180	struct device_node *node;
1181	struct regulator_map *map;
1182	const char *devname = NULL;
1183
1184	/* first do a dt based lookup */
1185	if (dev && dev->of_node) {
1186		node = of_get_regulator(dev, supply);
1187		if (node) {
1188			list_for_each_entry(r, &regulator_list, list)
1189				if (r->dev.parent &&
1190					node == r->dev.of_node)
1191					return r;
1192		} else {
1193			/*
1194			 * If we couldn't even get the node then it's
1195			 * not just that the device didn't register
1196			 * yet, there's no node and we'll never
1197			 * succeed.
1198			 */
1199			*ret = -ENODEV;
1200		}
1201	}
1202
1203	/* if not found, try doing it non-dt way */
1204	if (dev)
1205		devname = dev_name(dev);
1206
1207	list_for_each_entry(r, &regulator_list, list)
1208		if (strcmp(rdev_get_name(r), supply) == 0)
1209			return r;
1210
1211	list_for_each_entry(map, &regulator_map_list, list) {
1212		/* If the mapping has a device set up it must match */
1213		if (map->dev_name &&
1214		    (!devname || strcmp(map->dev_name, devname)))
1215			continue;
1216
1217		if (strcmp(map->supply, supply) == 0)
1218			return map->regulator;
1219	}
1220
1221
1222	return NULL;
1223}
1224
1225/* Internal regulator request function */
1226static struct regulator *_regulator_get(struct device *dev, const char *id,
1227					int exclusive)
1228{
1229	struct regulator_dev *rdev;
1230	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231	const char *devname = NULL;
1232	int ret;
1233
1234	if (id == NULL) {
1235		pr_err("get() with no identifier\n");
1236		return regulator;
1237	}
1238
1239	if (dev)
1240		devname = dev_name(dev);
1241
1242	mutex_lock(&regulator_list_mutex);
1243
1244	rdev = regulator_dev_lookup(dev, id, &ret);
1245	if (rdev)
1246		goto found;
1247
1248	if (board_wants_dummy_regulator) {
1249		rdev = dummy_regulator_rdev;
1250		goto found;
1251	}
1252
1253#ifdef CONFIG_REGULATOR_DUMMY
1254	if (!devname)
1255		devname = "deviceless";
1256
1257	/* If the board didn't flag that it was fully constrained then
1258	 * substitute in a dummy regulator so consumers can continue.
1259	 */
1260	if (!has_full_constraints) {
1261		pr_warn("%s supply %s not found, using dummy regulator\n",
1262			devname, id);
1263		rdev = dummy_regulator_rdev;
1264		goto found;
1265	}
1266#endif
1267
1268	mutex_unlock(&regulator_list_mutex);
1269	return regulator;
1270
1271found:
1272	if (rdev->exclusive) {
1273		regulator = ERR_PTR(-EPERM);
1274		goto out;
1275	}
1276
1277	if (exclusive && rdev->open_count) {
1278		regulator = ERR_PTR(-EBUSY);
1279		goto out;
1280	}
1281
1282	if (!try_module_get(rdev->owner))
1283		goto out;
1284
1285	regulator = create_regulator(rdev, dev, id);
1286	if (regulator == NULL) {
1287		regulator = ERR_PTR(-ENOMEM);
1288		module_put(rdev->owner);
1289		goto out;
1290	}
1291
1292	rdev->open_count++;
1293	if (exclusive) {
1294		rdev->exclusive = 1;
1295
1296		ret = _regulator_is_enabled(rdev);
1297		if (ret > 0)
1298			rdev->use_count = 1;
1299		else
1300			rdev->use_count = 0;
1301	}
1302
1303out:
1304	mutex_unlock(&regulator_list_mutex);
1305
1306	return regulator;
1307}
1308
1309/**
1310 * regulator_get - lookup and obtain a reference to a regulator.
1311 * @dev: device for regulator "consumer"
1312 * @id: Supply name or regulator ID.
1313 *
1314 * Returns a struct regulator corresponding to the regulator producer,
1315 * or IS_ERR() condition containing errno.
1316 *
1317 * Use of supply names configured via regulator_set_device_supply() is
1318 * strongly encouraged.  It is recommended that the supply name used
1319 * should match the name used for the supply and/or the relevant
1320 * device pins in the datasheet.
1321 */
1322struct regulator *regulator_get(struct device *dev, const char *id)
1323{
1324	return _regulator_get(dev, id, 0);
1325}
1326EXPORT_SYMBOL_GPL(regulator_get);
1327
1328static void devm_regulator_release(struct device *dev, void *res)
1329{
1330	regulator_put(*(struct regulator **)res);
1331}
1332
1333/**
1334 * devm_regulator_get - Resource managed regulator_get()
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Managed regulator_get(). Regulators returned from this function are
1339 * automatically regulator_put() on driver detach. See regulator_get() for more
1340 * information.
1341 */
1342struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343{
1344	struct regulator **ptr, *regulator;
1345
1346	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347	if (!ptr)
1348		return ERR_PTR(-ENOMEM);
1349
1350	regulator = regulator_get(dev, id);
1351	if (!IS_ERR(regulator)) {
1352		*ptr = regulator;
1353		devres_add(dev, ptr);
1354	} else {
1355		devres_free(ptr);
1356	}
1357
1358	return regulator;
1359}
1360EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362/**
1363 * regulator_get_exclusive - obtain exclusive access to a regulator.
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1366 *
1367 * Returns a struct regulator corresponding to the regulator producer,
1368 * or IS_ERR() condition containing errno.  Other consumers will be
1369 * unable to obtain this reference is held and the use count for the
1370 * regulator will be initialised to reflect the current state of the
1371 * regulator.
1372 *
1373 * This is intended for use by consumers which cannot tolerate shared
1374 * use of the regulator such as those which need to force the
1375 * regulator off for correct operation of the hardware they are
1376 * controlling.
1377 *
1378 * Use of supply names configured via regulator_set_device_supply() is
1379 * strongly encouraged.  It is recommended that the supply name used
1380 * should match the name used for the supply and/or the relevant
1381 * device pins in the datasheet.
1382 */
1383struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384{
1385	return _regulator_get(dev, id, 1);
1386}
1387EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389/* Locks held by regulator_put() */
1390static void _regulator_put(struct regulator *regulator)
1391{
1392	struct regulator_dev *rdev;
1393
1394	if (regulator == NULL || IS_ERR(regulator))
1395		return;
1396
1397	rdev = regulator->rdev;
1398
1399	debugfs_remove_recursive(regulator->debugfs);
1400
1401	/* remove any sysfs entries */
1402	if (regulator->dev)
1403		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404	kfree(regulator->supply_name);
1405	list_del(&regulator->list);
1406	kfree(regulator);
1407
1408	rdev->open_count--;
1409	rdev->exclusive = 0;
1410
1411	module_put(rdev->owner);
1412}
1413
1414/**
1415 * regulator_put - "free" the regulator source
1416 * @regulator: regulator source
1417 *
1418 * Note: drivers must ensure that all regulator_enable calls made on this
1419 * regulator source are balanced by regulator_disable calls prior to calling
1420 * this function.
1421 */
1422void regulator_put(struct regulator *regulator)
1423{
1424	mutex_lock(&regulator_list_mutex);
1425	_regulator_put(regulator);
1426	mutex_unlock(&regulator_list_mutex);
1427}
1428EXPORT_SYMBOL_GPL(regulator_put);
1429
1430static int devm_regulator_match(struct device *dev, void *res, void *data)
1431{
1432	struct regulator **r = res;
1433	if (!r || !*r) {
1434		WARN_ON(!r || !*r);
1435		return 0;
1436	}
1437	return *r == data;
1438}
1439
1440/**
1441 * devm_regulator_put - Resource managed regulator_put()
1442 * @regulator: regulator to free
1443 *
1444 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445 * this function will not need to be called and the resource management
1446 * code will ensure that the resource is freed.
1447 */
1448void devm_regulator_put(struct regulator *regulator)
1449{
1450	int rc;
1451
1452	rc = devres_release(regulator->dev, devm_regulator_release,
1453			    devm_regulator_match, regulator);
1454	if (rc != 0)
1455		WARN_ON(rc);
1456}
1457EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459static int _regulator_do_enable(struct regulator_dev *rdev)
1460{
1461	int ret, delay;
1462
1463	/* Query before enabling in case configuration dependent.  */
1464	ret = _regulator_get_enable_time(rdev);
1465	if (ret >= 0) {
1466		delay = ret;
1467	} else {
1468		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469		delay = 0;
1470	}
1471
1472	trace_regulator_enable(rdev_get_name(rdev));
1473
1474	if (rdev->ena_gpio) {
1475		gpio_set_value_cansleep(rdev->ena_gpio,
1476					!rdev->ena_gpio_invert);
1477		rdev->ena_gpio_state = 1;
1478	} else if (rdev->desc->ops->enable) {
1479		ret = rdev->desc->ops->enable(rdev);
1480		if (ret < 0)
1481			return ret;
1482	} else {
1483		return -EINVAL;
1484	}
1485
1486	/* Allow the regulator to ramp; it would be useful to extend
1487	 * this for bulk operations so that the regulators can ramp
1488	 * together.  */
1489	trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491	if (delay >= 1000) {
1492		mdelay(delay / 1000);
1493		udelay(delay % 1000);
1494	} else if (delay) {
1495		udelay(delay);
1496	}
1497
1498	trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500	return 0;
1501}
1502
1503/* locks held by regulator_enable() */
1504static int _regulator_enable(struct regulator_dev *rdev)
1505{
1506	int ret;
1507
1508	/* check voltage and requested load before enabling */
1509	if (rdev->constraints &&
1510	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511		drms_uA_update(rdev);
1512
1513	if (rdev->use_count == 0) {
1514		/* The regulator may on if it's not switchable or left on */
1515		ret = _regulator_is_enabled(rdev);
1516		if (ret == -EINVAL || ret == 0) {
1517			if (!_regulator_can_change_status(rdev))
1518				return -EPERM;
1519
1520			ret = _regulator_do_enable(rdev);
1521			if (ret < 0)
1522				return ret;
1523
1524		} else if (ret < 0) {
1525			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526			return ret;
1527		}
1528		/* Fallthrough on positive return values - already enabled */
1529	}
1530
1531	rdev->use_count++;
1532
1533	return 0;
1534}
1535
1536/**
1537 * regulator_enable - enable regulator output
1538 * @regulator: regulator source
1539 *
1540 * Request that the regulator be enabled with the regulator output at
1541 * the predefined voltage or current value.  Calls to regulator_enable()
1542 * must be balanced with calls to regulator_disable().
1543 *
1544 * NOTE: the output value can be set by other drivers, boot loader or may be
1545 * hardwired in the regulator.
1546 */
1547int regulator_enable(struct regulator *regulator)
1548{
1549	struct regulator_dev *rdev = regulator->rdev;
1550	int ret = 0;
1551
1552	if (regulator->always_on)
1553		return 0;
1554
1555	if (rdev->supply) {
1556		ret = regulator_enable(rdev->supply);
1557		if (ret != 0)
1558			return ret;
1559	}
1560
1561	mutex_lock(&rdev->mutex);
1562	ret = _regulator_enable(rdev);
1563	mutex_unlock(&rdev->mutex);
1564
1565	if (ret != 0 && rdev->supply)
1566		regulator_disable(rdev->supply);
1567
1568	return ret;
1569}
1570EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572static int _regulator_do_disable(struct regulator_dev *rdev)
1573{
1574	int ret;
1575
1576	trace_regulator_disable(rdev_get_name(rdev));
1577
1578	if (rdev->ena_gpio) {
1579		gpio_set_value_cansleep(rdev->ena_gpio,
1580					rdev->ena_gpio_invert);
1581		rdev->ena_gpio_state = 0;
1582
1583	} else if (rdev->desc->ops->disable) {
1584		ret = rdev->desc->ops->disable(rdev);
1585		if (ret != 0)
1586			return ret;
1587	}
1588
1589	trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592			     NULL);
1593	return 0;
1594}
1595
1596/* locks held by regulator_disable() */
1597static int _regulator_disable(struct regulator_dev *rdev)
1598{
1599	int ret = 0;
1600
1601	if (WARN(rdev->use_count <= 0,
1602		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603		return -EIO;
1604
1605	/* are we the last user and permitted to disable ? */
1606	if (rdev->use_count == 1 &&
1607	    (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609		/* we are last user */
1610		if (_regulator_can_change_status(rdev)) {
1611			ret = _regulator_do_disable(rdev);
1612			if (ret < 0) {
1613				rdev_err(rdev, "failed to disable\n");
1614				return ret;
1615			}
1616		}
1617
1618		rdev->use_count = 0;
1619	} else if (rdev->use_count > 1) {
1620
1621		if (rdev->constraints &&
1622			(rdev->constraints->valid_ops_mask &
1623			REGULATOR_CHANGE_DRMS))
1624			drms_uA_update(rdev);
1625
1626		rdev->use_count--;
1627	}
1628
1629	return ret;
1630}
1631
1632/**
1633 * regulator_disable - disable regulator output
1634 * @regulator: regulator source
1635 *
1636 * Disable the regulator output voltage or current.  Calls to
1637 * regulator_enable() must be balanced with calls to
1638 * regulator_disable().
1639 *
1640 * NOTE: this will only disable the regulator output if no other consumer
1641 * devices have it enabled, the regulator device supports disabling and
1642 * machine constraints permit this operation.
1643 */
1644int regulator_disable(struct regulator *regulator)
1645{
1646	struct regulator_dev *rdev = regulator->rdev;
1647	int ret = 0;
1648
1649	if (regulator->always_on)
1650		return 0;
1651
1652	mutex_lock(&rdev->mutex);
1653	ret = _regulator_disable(rdev);
1654	mutex_unlock(&rdev->mutex);
1655
1656	if (ret == 0 && rdev->supply)
1657		regulator_disable(rdev->supply);
1658
1659	return ret;
1660}
1661EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663/* locks held by regulator_force_disable() */
1664static int _regulator_force_disable(struct regulator_dev *rdev)
1665{
1666	int ret = 0;
1667
1668	/* force disable */
1669	if (rdev->desc->ops->disable) {
1670		/* ah well, who wants to live forever... */
1671		ret = rdev->desc->ops->disable(rdev);
1672		if (ret < 0) {
1673			rdev_err(rdev, "failed to force disable\n");
1674			return ret;
1675		}
1676		/* notify other consumers that power has been forced off */
1677		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678			REGULATOR_EVENT_DISABLE, NULL);
1679	}
1680
1681	return ret;
1682}
1683
1684/**
1685 * regulator_force_disable - force disable regulator output
1686 * @regulator: regulator source
1687 *
1688 * Forcibly disable the regulator output voltage or current.
1689 * NOTE: this *will* disable the regulator output even if other consumer
1690 * devices have it enabled. This should be used for situations when device
1691 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692 */
1693int regulator_force_disable(struct regulator *regulator)
1694{
1695	struct regulator_dev *rdev = regulator->rdev;
1696	int ret;
1697
1698	mutex_lock(&rdev->mutex);
1699	regulator->uA_load = 0;
1700	ret = _regulator_force_disable(regulator->rdev);
1701	mutex_unlock(&rdev->mutex);
1702
1703	if (rdev->supply)
1704		while (rdev->open_count--)
1705			regulator_disable(rdev->supply);
1706
1707	return ret;
1708}
1709EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711static void regulator_disable_work(struct work_struct *work)
1712{
1713	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714						  disable_work.work);
1715	int count, i, ret;
1716
1717	mutex_lock(&rdev->mutex);
1718
1719	BUG_ON(!rdev->deferred_disables);
1720
1721	count = rdev->deferred_disables;
1722	rdev->deferred_disables = 0;
1723
1724	for (i = 0; i < count; i++) {
1725		ret = _regulator_disable(rdev);
1726		if (ret != 0)
1727			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728	}
1729
1730	mutex_unlock(&rdev->mutex);
1731
1732	if (rdev->supply) {
1733		for (i = 0; i < count; i++) {
1734			ret = regulator_disable(rdev->supply);
1735			if (ret != 0) {
1736				rdev_err(rdev,
1737					 "Supply disable failed: %d\n", ret);
1738			}
1739		}
1740	}
1741}
1742
1743/**
1744 * regulator_disable_deferred - disable regulator output with delay
1745 * @regulator: regulator source
1746 * @ms: miliseconds until the regulator is disabled
1747 *
1748 * Execute regulator_disable() on the regulator after a delay.  This
1749 * is intended for use with devices that require some time to quiesce.
1750 *
1751 * NOTE: this will only disable the regulator output if no other consumer
1752 * devices have it enabled, the regulator device supports disabling and
1753 * machine constraints permit this operation.
1754 */
1755int regulator_disable_deferred(struct regulator *regulator, int ms)
1756{
1757	struct regulator_dev *rdev = regulator->rdev;
1758	int ret;
1759
1760	if (regulator->always_on)
1761		return 0;
1762
1763	if (!ms)
1764		return regulator_disable(regulator);
1765
1766	mutex_lock(&rdev->mutex);
1767	rdev->deferred_disables++;
1768	mutex_unlock(&rdev->mutex);
1769
1770	ret = schedule_delayed_work(&rdev->disable_work,
1771				    msecs_to_jiffies(ms));
1772	if (ret < 0)
1773		return ret;
1774	else
1775		return 0;
1776}
1777EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779/**
1780 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781 *
1782 * @rdev: regulator to operate on
1783 *
1784 * Regulators that use regmap for their register I/O can set the
1785 * enable_reg and enable_mask fields in their descriptor and then use
1786 * this as their is_enabled operation, saving some code.
1787 */
1788int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789{
1790	unsigned int val;
1791	int ret;
1792
1793	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794	if (ret != 0)
1795		return ret;
1796
1797	return (val & rdev->desc->enable_mask) != 0;
1798}
1799EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801/**
1802 * regulator_enable_regmap - standard enable() for regmap users
1803 *
1804 * @rdev: regulator to operate on
1805 *
1806 * Regulators that use regmap for their register I/O can set the
1807 * enable_reg and enable_mask fields in their descriptor and then use
1808 * this as their enable() operation, saving some code.
1809 */
1810int regulator_enable_regmap(struct regulator_dev *rdev)
1811{
1812	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813				  rdev->desc->enable_mask,
1814				  rdev->desc->enable_mask);
1815}
1816EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818/**
1819 * regulator_disable_regmap - standard disable() for regmap users
1820 *
1821 * @rdev: regulator to operate on
1822 *
1823 * Regulators that use regmap for their register I/O can set the
1824 * enable_reg and enable_mask fields in their descriptor and then use
1825 * this as their disable() operation, saving some code.
1826 */
1827int regulator_disable_regmap(struct regulator_dev *rdev)
1828{
1829	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830				  rdev->desc->enable_mask, 0);
1831}
1832EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834static int _regulator_is_enabled(struct regulator_dev *rdev)
1835{
1836	/* A GPIO control always takes precedence */
1837	if (rdev->ena_gpio)
1838		return rdev->ena_gpio_state;
1839
1840	/* If we don't know then assume that the regulator is always on */
1841	if (!rdev->desc->ops->is_enabled)
1842		return 1;
1843
1844	return rdev->desc->ops->is_enabled(rdev);
1845}
1846
1847/**
1848 * regulator_is_enabled - is the regulator output enabled
1849 * @regulator: regulator source
1850 *
1851 * Returns positive if the regulator driver backing the source/client
1852 * has requested that the device be enabled, zero if it hasn't, else a
1853 * negative errno code.
1854 *
1855 * Note that the device backing this regulator handle can have multiple
1856 * users, so it might be enabled even if regulator_enable() was never
1857 * called for this particular source.
1858 */
1859int regulator_is_enabled(struct regulator *regulator)
1860{
1861	int ret;
1862
1863	if (regulator->always_on)
1864		return 1;
1865
1866	mutex_lock(&regulator->rdev->mutex);
1867	ret = _regulator_is_enabled(regulator->rdev);
1868	mutex_unlock(&regulator->rdev->mutex);
1869
1870	return ret;
1871}
1872EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874/**
1875 * regulator_can_change_voltage - check if regulator can change voltage
1876 * @regulator: regulator source
1877 *
1878 * Returns positive if the regulator driver backing the source/client
1879 * can change its voltage, false otherwise. Usefull for detecting fixed
1880 * or dummy regulators and disabling voltage change logic in the client
1881 * driver.
1882 */
1883int regulator_can_change_voltage(struct regulator *regulator)
1884{
1885	struct regulator_dev	*rdev = regulator->rdev;
1886
1887	if (rdev->constraints &&
1888	    rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE &&
1889	    (rdev->desc->n_voltages - rdev->desc->linear_min_sel) > 1)
1890		return 1;
1891
1892	return 0;
1893}
1894EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1895
1896/**
1897 * regulator_count_voltages - count regulator_list_voltage() selectors
1898 * @regulator: regulator source
1899 *
1900 * Returns number of selectors, or negative errno.  Selectors are
1901 * numbered starting at zero, and typically correspond to bitfields
1902 * in hardware registers.
1903 */
1904int regulator_count_voltages(struct regulator *regulator)
1905{
1906	struct regulator_dev	*rdev = regulator->rdev;
1907
1908	return rdev->desc->n_voltages ? : -EINVAL;
1909}
1910EXPORT_SYMBOL_GPL(regulator_count_voltages);
1911
1912/**
1913 * regulator_list_voltage_linear - List voltages with simple calculation
1914 *
1915 * @rdev: Regulator device
1916 * @selector: Selector to convert into a voltage
1917 *
1918 * Regulators with a simple linear mapping between voltages and
1919 * selectors can set min_uV and uV_step in the regulator descriptor
1920 * and then use this function as their list_voltage() operation,
1921 */
1922int regulator_list_voltage_linear(struct regulator_dev *rdev,
1923				  unsigned int selector)
1924{
1925	if (selector >= rdev->desc->n_voltages)
1926		return -EINVAL;
1927	if (selector < rdev->desc->linear_min_sel)
1928		return 0;
1929
1930	selector -= rdev->desc->linear_min_sel;
1931
1932	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1933}
1934EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1935
1936/**
1937 * regulator_list_voltage_table - List voltages with table based mapping
1938 *
1939 * @rdev: Regulator device
1940 * @selector: Selector to convert into a voltage
1941 *
1942 * Regulators with table based mapping between voltages and
1943 * selectors can set volt_table in the regulator descriptor
1944 * and then use this function as their list_voltage() operation.
1945 */
1946int regulator_list_voltage_table(struct regulator_dev *rdev,
1947				 unsigned int selector)
1948{
1949	if (!rdev->desc->volt_table) {
1950		BUG_ON(!rdev->desc->volt_table);
1951		return -EINVAL;
1952	}
1953
1954	if (selector >= rdev->desc->n_voltages)
1955		return -EINVAL;
1956
1957	return rdev->desc->volt_table[selector];
1958}
1959EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1960
1961/**
1962 * regulator_list_voltage - enumerate supported voltages
1963 * @regulator: regulator source
1964 * @selector: identify voltage to list
1965 * Context: can sleep
1966 *
1967 * Returns a voltage that can be passed to @regulator_set_voltage(),
1968 * zero if this selector code can't be used on this system, or a
1969 * negative errno.
1970 */
1971int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1972{
1973	struct regulator_dev	*rdev = regulator->rdev;
1974	struct regulator_ops	*ops = rdev->desc->ops;
1975	int			ret;
1976
1977	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1978		return -EINVAL;
1979
1980	mutex_lock(&rdev->mutex);
1981	ret = ops->list_voltage(rdev, selector);
1982	mutex_unlock(&rdev->mutex);
1983
1984	if (ret > 0) {
1985		if (ret < rdev->constraints->min_uV)
1986			ret = 0;
1987		else if (ret > rdev->constraints->max_uV)
1988			ret = 0;
1989	}
1990
1991	return ret;
1992}
1993EXPORT_SYMBOL_GPL(regulator_list_voltage);
1994
1995/**
1996 * regulator_is_supported_voltage - check if a voltage range can be supported
1997 *
1998 * @regulator: Regulator to check.
1999 * @min_uV: Minimum required voltage in uV.
2000 * @max_uV: Maximum required voltage in uV.
2001 *
2002 * Returns a boolean or a negative error code.
2003 */
2004int regulator_is_supported_voltage(struct regulator *regulator,
2005				   int min_uV, int max_uV)
2006{
2007	struct regulator_dev *rdev = regulator->rdev;
2008	int i, voltages, ret;
2009
2010	/* If we can't change voltage check the current voltage */
2011	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2012		ret = regulator_get_voltage(regulator);
2013		if (ret >= 0)
2014			return (min_uV <= ret && ret <= max_uV);
2015		else
2016			return ret;
2017	}
2018
2019	/* Any voltage within constrains range is fine? */
2020	if (rdev->desc->continuous_voltage_range)
2021		return min_uV >= rdev->constraints->min_uV &&
2022				max_uV <= rdev->constraints->max_uV;
2023
2024	ret = regulator_count_voltages(regulator);
2025	if (ret < 0)
2026		return ret;
2027	voltages = ret;
2028
2029	for (i = 0; i < voltages; i++) {
2030		ret = regulator_list_voltage(regulator, i);
2031
2032		if (ret >= min_uV && ret <= max_uV)
2033			return 1;
2034	}
2035
2036	return 0;
2037}
2038EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2039
2040/**
2041 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2042 *
2043 * @rdev: regulator to operate on
2044 *
2045 * Regulators that use regmap for their register I/O can set the
2046 * vsel_reg and vsel_mask fields in their descriptor and then use this
2047 * as their get_voltage_vsel operation, saving some code.
2048 */
2049int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2050{
2051	unsigned int val;
2052	int ret;
2053
2054	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2055	if (ret != 0)
2056		return ret;
2057
2058	val &= rdev->desc->vsel_mask;
2059	val >>= ffs(rdev->desc->vsel_mask) - 1;
2060
2061	return val;
2062}
2063EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2064
2065/**
2066 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2067 *
2068 * @rdev: regulator to operate on
2069 * @sel: Selector to set
2070 *
2071 * Regulators that use regmap for their register I/O can set the
2072 * vsel_reg and vsel_mask fields in their descriptor and then use this
2073 * as their set_voltage_vsel operation, saving some code.
2074 */
2075int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2076{
2077	int ret;
2078
2079	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2080
2081	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2082				  rdev->desc->vsel_mask, sel);
2083	if (ret)
2084		return ret;
2085
2086	if (rdev->desc->apply_bit)
2087		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2088					 rdev->desc->apply_bit,
2089					 rdev->desc->apply_bit);
2090	return ret;
2091}
2092EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2093
2094/**
2095 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2096 *
2097 * @rdev: Regulator to operate on
2098 * @min_uV: Lower bound for voltage
2099 * @max_uV: Upper bound for voltage
2100 *
2101 * Drivers implementing set_voltage_sel() and list_voltage() can use
2102 * this as their map_voltage() operation.  It will find a suitable
2103 * voltage by calling list_voltage() until it gets something in bounds
2104 * for the requested voltages.
2105 */
2106int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2107				  int min_uV, int max_uV)
2108{
2109	int best_val = INT_MAX;
2110	int selector = 0;
2111	int i, ret;
2112
2113	/* Find the smallest voltage that falls within the specified
2114	 * range.
2115	 */
2116	for (i = 0; i < rdev->desc->n_voltages; i++) {
2117		ret = rdev->desc->ops->list_voltage(rdev, i);
2118		if (ret < 0)
2119			continue;
2120
2121		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2122			best_val = ret;
2123			selector = i;
2124		}
2125	}
2126
2127	if (best_val != INT_MAX)
2128		return selector;
2129	else
2130		return -EINVAL;
2131}
2132EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2133
2134/**
2135 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2136 *
2137 * @rdev: Regulator to operate on
2138 * @min_uV: Lower bound for voltage
2139 * @max_uV: Upper bound for voltage
2140 *
2141 * Drivers providing min_uV and uV_step in their regulator_desc can
2142 * use this as their map_voltage() operation.
2143 */
2144int regulator_map_voltage_linear(struct regulator_dev *rdev,
2145				 int min_uV, int max_uV)
2146{
2147	int ret, voltage;
2148
2149	/* Allow uV_step to be 0 for fixed voltage */
2150	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2151		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2152			return 0;
2153		else
2154			return -EINVAL;
2155	}
2156
2157	if (!rdev->desc->uV_step) {
2158		BUG_ON(!rdev->desc->uV_step);
2159		return -EINVAL;
2160	}
2161
2162	if (min_uV < rdev->desc->min_uV)
2163		min_uV = rdev->desc->min_uV;
2164
2165	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2166	if (ret < 0)
2167		return ret;
2168
2169	ret += rdev->desc->linear_min_sel;
2170
2171	/* Map back into a voltage to verify we're still in bounds */
2172	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2173	if (voltage < min_uV || voltage > max_uV)
2174		return -EINVAL;
2175
2176	return ret;
2177}
2178EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2179
2180static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2181				     int min_uV, int max_uV)
2182{
2183	int ret;
2184	int delay = 0;
2185	int best_val = 0;
2186	unsigned int selector;
2187	int old_selector = -1;
2188
2189	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2190
2191	min_uV += rdev->constraints->uV_offset;
2192	max_uV += rdev->constraints->uV_offset;
2193
2194	/*
2195	 * If we can't obtain the old selector there is not enough
2196	 * info to call set_voltage_time_sel().
2197	 */
2198	if (_regulator_is_enabled(rdev) &&
2199	    rdev->desc->ops->set_voltage_time_sel &&
2200	    rdev->desc->ops->get_voltage_sel) {
2201		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2202		if (old_selector < 0)
2203			return old_selector;
2204	}
2205
2206	if (rdev->desc->ops->set_voltage) {
2207		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2208						   &selector);
2209
2210		if (ret >= 0) {
2211			if (rdev->desc->ops->list_voltage)
2212				best_val = rdev->desc->ops->list_voltage(rdev,
2213									 selector);
2214			else
2215				best_val = _regulator_get_voltage(rdev);
2216		}
2217
2218	} else if (rdev->desc->ops->set_voltage_sel) {
2219		if (rdev->desc->ops->map_voltage) {
2220			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2221							   max_uV);
2222		} else {
2223			if (rdev->desc->ops->list_voltage ==
2224			    regulator_list_voltage_linear)
2225				ret = regulator_map_voltage_linear(rdev,
2226								min_uV, max_uV);
2227			else
2228				ret = regulator_map_voltage_iterate(rdev,
2229								min_uV, max_uV);
2230		}
2231
2232		if (ret >= 0) {
2233			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2234			if (min_uV <= best_val && max_uV >= best_val) {
2235				selector = ret;
2236				ret = rdev->desc->ops->set_voltage_sel(rdev,
2237								       ret);
2238			} else {
2239				ret = -EINVAL;
2240			}
2241		}
2242	} else {
2243		ret = -EINVAL;
2244	}
2245
2246	/* Call set_voltage_time_sel if successfully obtained old_selector */
2247	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2248	    rdev->desc->ops->set_voltage_time_sel) {
2249
2250		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2251						old_selector, selector);
2252		if (delay < 0) {
2253			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2254				  delay);
2255			delay = 0;
2256		}
2257
2258		/* Insert any necessary delays */
2259		if (delay >= 1000) {
2260			mdelay(delay / 1000);
2261			udelay(delay % 1000);
2262		} else if (delay) {
2263			udelay(delay);
2264		}
2265	}
2266
2267	if (ret == 0 && best_val >= 0) {
2268		unsigned long data = best_val;
2269
2270		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2271				     (void *)data);
2272	}
2273
2274	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2275
2276	return ret;
2277}
2278
2279/**
2280 * regulator_set_voltage - set regulator output voltage
2281 * @regulator: regulator source
2282 * @min_uV: Minimum required voltage in uV
2283 * @max_uV: Maximum acceptable voltage in uV
2284 *
2285 * Sets a voltage regulator to the desired output voltage. This can be set
2286 * during any regulator state. IOW, regulator can be disabled or enabled.
2287 *
2288 * If the regulator is enabled then the voltage will change to the new value
2289 * immediately otherwise if the regulator is disabled the regulator will
2290 * output at the new voltage when enabled.
2291 *
2292 * NOTE: If the regulator is shared between several devices then the lowest
2293 * request voltage that meets the system constraints will be used.
2294 * Regulator system constraints must be set for this regulator before
2295 * calling this function otherwise this call will fail.
2296 */
2297int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2298{
2299	struct regulator_dev *rdev = regulator->rdev;
2300	int ret = 0;
2301
2302	mutex_lock(&rdev->mutex);
2303
2304	/* If we're setting the same range as last time the change
2305	 * should be a noop (some cpufreq implementations use the same
2306	 * voltage for multiple frequencies, for example).
2307	 */
2308	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2309		goto out;
2310
2311	/* sanity check */
2312	if (!rdev->desc->ops->set_voltage &&
2313	    !rdev->desc->ops->set_voltage_sel) {
2314		ret = -EINVAL;
2315		goto out;
2316	}
2317
2318	/* constraints check */
2319	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2320	if (ret < 0)
2321		goto out;
2322	regulator->min_uV = min_uV;
2323	regulator->max_uV = max_uV;
2324
2325	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2326	if (ret < 0)
2327		goto out;
2328
2329	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2330
2331out:
2332	mutex_unlock(&rdev->mutex);
2333	return ret;
2334}
2335EXPORT_SYMBOL_GPL(regulator_set_voltage);
2336
2337/**
2338 * regulator_set_voltage_time - get raise/fall time
2339 * @regulator: regulator source
2340 * @old_uV: starting voltage in microvolts
2341 * @new_uV: target voltage in microvolts
2342 *
2343 * Provided with the starting and ending voltage, this function attempts to
2344 * calculate the time in microseconds required to rise or fall to this new
2345 * voltage.
2346 */
2347int regulator_set_voltage_time(struct regulator *regulator,
2348			       int old_uV, int new_uV)
2349{
2350	struct regulator_dev	*rdev = regulator->rdev;
2351	struct regulator_ops	*ops = rdev->desc->ops;
2352	int old_sel = -1;
2353	int new_sel = -1;
2354	int voltage;
2355	int i;
2356
2357	/* Currently requires operations to do this */
2358	if (!ops->list_voltage || !ops->set_voltage_time_sel
2359	    || !rdev->desc->n_voltages)
2360		return -EINVAL;
2361
2362	for (i = 0; i < rdev->desc->n_voltages; i++) {
2363		/* We only look for exact voltage matches here */
2364		voltage = regulator_list_voltage(regulator, i);
2365		if (voltage < 0)
2366			return -EINVAL;
2367		if (voltage == 0)
2368			continue;
2369		if (voltage == old_uV)
2370			old_sel = i;
2371		if (voltage == new_uV)
2372			new_sel = i;
2373	}
2374
2375	if (old_sel < 0 || new_sel < 0)
2376		return -EINVAL;
2377
2378	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2379}
2380EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2381
2382/**
2383 * regulator_set_voltage_time_sel - get raise/fall time
2384 * @rdev: regulator source device
2385 * @old_selector: selector for starting voltage
2386 * @new_selector: selector for target voltage
2387 *
2388 * Provided with the starting and target voltage selectors, this function
2389 * returns time in microseconds required to rise or fall to this new voltage
2390 *
2391 * Drivers providing ramp_delay in regulation_constraints can use this as their
2392 * set_voltage_time_sel() operation.
2393 */
2394int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2395				   unsigned int old_selector,
2396				   unsigned int new_selector)
2397{
2398	unsigned int ramp_delay = 0;
2399	int old_volt, new_volt;
2400
2401	if (rdev->constraints->ramp_delay)
2402		ramp_delay = rdev->constraints->ramp_delay;
2403	else if (rdev->desc->ramp_delay)
2404		ramp_delay = rdev->desc->ramp_delay;
2405
2406	if (ramp_delay == 0) {
2407		rdev_warn(rdev, "ramp_delay not set\n");
2408		return 0;
2409	}
2410
2411	/* sanity check */
2412	if (!rdev->desc->ops->list_voltage)
2413		return -EINVAL;
2414
2415	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2416	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2417
2418	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2419}
2420EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2421
2422/**
2423 * regulator_sync_voltage - re-apply last regulator output voltage
2424 * @regulator: regulator source
2425 *
2426 * Re-apply the last configured voltage.  This is intended to be used
2427 * where some external control source the consumer is cooperating with
2428 * has caused the configured voltage to change.
2429 */
2430int regulator_sync_voltage(struct regulator *regulator)
2431{
2432	struct regulator_dev *rdev = regulator->rdev;
2433	int ret, min_uV, max_uV;
2434
2435	mutex_lock(&rdev->mutex);
2436
2437	if (!rdev->desc->ops->set_voltage &&
2438	    !rdev->desc->ops->set_voltage_sel) {
2439		ret = -EINVAL;
2440		goto out;
2441	}
2442
2443	/* This is only going to work if we've had a voltage configured. */
2444	if (!regulator->min_uV && !regulator->max_uV) {
2445		ret = -EINVAL;
2446		goto out;
2447	}
2448
2449	min_uV = regulator->min_uV;
2450	max_uV = regulator->max_uV;
2451
2452	/* This should be a paranoia check... */
2453	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2454	if (ret < 0)
2455		goto out;
2456
2457	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2458	if (ret < 0)
2459		goto out;
2460
2461	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2462
2463out:
2464	mutex_unlock(&rdev->mutex);
2465	return ret;
2466}
2467EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2468
2469static int _regulator_get_voltage(struct regulator_dev *rdev)
2470{
2471	int sel, ret;
2472
2473	if (rdev->desc->ops->get_voltage_sel) {
2474		sel = rdev->desc->ops->get_voltage_sel(rdev);
2475		if (sel < 0)
2476			return sel;
2477		ret = rdev->desc->ops->list_voltage(rdev, sel);
2478	} else if (rdev->desc->ops->get_voltage) {
2479		ret = rdev->desc->ops->get_voltage(rdev);
2480	} else if (rdev->desc->ops->list_voltage) {
2481		ret = rdev->desc->ops->list_voltage(rdev, 0);
2482	} else {
2483		return -EINVAL;
2484	}
2485
2486	if (ret < 0)
2487		return ret;
2488	return ret - rdev->constraints->uV_offset;
2489}
2490
2491/**
2492 * regulator_get_voltage - get regulator output voltage
2493 * @regulator: regulator source
2494 *
2495 * This returns the current regulator voltage in uV.
2496 *
2497 * NOTE: If the regulator is disabled it will return the voltage value. This
2498 * function should not be used to determine regulator state.
2499 */
2500int regulator_get_voltage(struct regulator *regulator)
2501{
2502	int ret;
2503
2504	mutex_lock(&regulator->rdev->mutex);
2505
2506	ret = _regulator_get_voltage(regulator->rdev);
2507
2508	mutex_unlock(&regulator->rdev->mutex);
2509
2510	return ret;
2511}
2512EXPORT_SYMBOL_GPL(regulator_get_voltage);
2513
2514/**
2515 * regulator_set_current_limit - set regulator output current limit
2516 * @regulator: regulator source
2517 * @min_uA: Minimuum supported current in uA
2518 * @max_uA: Maximum supported current in uA
2519 *
2520 * Sets current sink to the desired output current. This can be set during
2521 * any regulator state. IOW, regulator can be disabled or enabled.
2522 *
2523 * If the regulator is enabled then the current will change to the new value
2524 * immediately otherwise if the regulator is disabled the regulator will
2525 * output at the new current when enabled.
2526 *
2527 * NOTE: Regulator system constraints must be set for this regulator before
2528 * calling this function otherwise this call will fail.
2529 */
2530int regulator_set_current_limit(struct regulator *regulator,
2531			       int min_uA, int max_uA)
2532{
2533	struct regulator_dev *rdev = regulator->rdev;
2534	int ret;
2535
2536	mutex_lock(&rdev->mutex);
2537
2538	/* sanity check */
2539	if (!rdev->desc->ops->set_current_limit) {
2540		ret = -EINVAL;
2541		goto out;
2542	}
2543
2544	/* constraints check */
2545	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2546	if (ret < 0)
2547		goto out;
2548
2549	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2550out:
2551	mutex_unlock(&rdev->mutex);
2552	return ret;
2553}
2554EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2555
2556static int _regulator_get_current_limit(struct regulator_dev *rdev)
2557{
2558	int ret;
2559
2560	mutex_lock(&rdev->mutex);
2561
2562	/* sanity check */
2563	if (!rdev->desc->ops->get_current_limit) {
2564		ret = -EINVAL;
2565		goto out;
2566	}
2567
2568	ret = rdev->desc->ops->get_current_limit(rdev);
2569out:
2570	mutex_unlock(&rdev->mutex);
2571	return ret;
2572}
2573
2574/**
2575 * regulator_get_current_limit - get regulator output current
2576 * @regulator: regulator source
2577 *
2578 * This returns the current supplied by the specified current sink in uA.
2579 *
2580 * NOTE: If the regulator is disabled it will return the current value. This
2581 * function should not be used to determine regulator state.
2582 */
2583int regulator_get_current_limit(struct regulator *regulator)
2584{
2585	return _regulator_get_current_limit(regulator->rdev);
2586}
2587EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2588
2589/**
2590 * regulator_set_mode - set regulator operating mode
2591 * @regulator: regulator source
2592 * @mode: operating mode - one of the REGULATOR_MODE constants
2593 *
2594 * Set regulator operating mode to increase regulator efficiency or improve
2595 * regulation performance.
2596 *
2597 * NOTE: Regulator system constraints must be set for this regulator before
2598 * calling this function otherwise this call will fail.
2599 */
2600int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2601{
2602	struct regulator_dev *rdev = regulator->rdev;
2603	int ret;
2604	int regulator_curr_mode;
2605
2606	mutex_lock(&rdev->mutex);
2607
2608	/* sanity check */
2609	if (!rdev->desc->ops->set_mode) {
2610		ret = -EINVAL;
2611		goto out;
2612	}
2613
2614	/* return if the same mode is requested */
2615	if (rdev->desc->ops->get_mode) {
2616		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2617		if (regulator_curr_mode == mode) {
2618			ret = 0;
2619			goto out;
2620		}
2621	}
2622
2623	/* constraints check */
2624	ret = regulator_mode_constrain(rdev, &mode);
2625	if (ret < 0)
2626		goto out;
2627
2628	ret = rdev->desc->ops->set_mode(rdev, mode);
2629out:
2630	mutex_unlock(&rdev->mutex);
2631	return ret;
2632}
2633EXPORT_SYMBOL_GPL(regulator_set_mode);
2634
2635static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2636{
2637	int ret;
2638
2639	mutex_lock(&rdev->mutex);
2640
2641	/* sanity check */
2642	if (!rdev->desc->ops->get_mode) {
2643		ret = -EINVAL;
2644		goto out;
2645	}
2646
2647	ret = rdev->desc->ops->get_mode(rdev);
2648out:
2649	mutex_unlock(&rdev->mutex);
2650	return ret;
2651}
2652
2653/**
2654 * regulator_get_mode - get regulator operating mode
2655 * @regulator: regulator source
2656 *
2657 * Get the current regulator operating mode.
2658 */
2659unsigned int regulator_get_mode(struct regulator *regulator)
2660{
2661	return _regulator_get_mode(regulator->rdev);
2662}
2663EXPORT_SYMBOL_GPL(regulator_get_mode);
2664
2665/**
2666 * regulator_set_optimum_mode - set regulator optimum operating mode
2667 * @regulator: regulator source
2668 * @uA_load: load current
2669 *
2670 * Notifies the regulator core of a new device load. This is then used by
2671 * DRMS (if enabled by constraints) to set the most efficient regulator
2672 * operating mode for the new regulator loading.
2673 *
2674 * Consumer devices notify their supply regulator of the maximum power
2675 * they will require (can be taken from device datasheet in the power
2676 * consumption tables) when they change operational status and hence power
2677 * state. Examples of operational state changes that can affect power
2678 * consumption are :-
2679 *
2680 *    o Device is opened / closed.
2681 *    o Device I/O is about to begin or has just finished.
2682 *    o Device is idling in between work.
2683 *
2684 * This information is also exported via sysfs to userspace.
2685 *
2686 * DRMS will sum the total requested load on the regulator and change
2687 * to the most efficient operating mode if platform constraints allow.
2688 *
2689 * Returns the new regulator mode or error.
2690 */
2691int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2692{
2693	struct regulator_dev *rdev = regulator->rdev;
2694	struct regulator *consumer;
2695	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2696	unsigned int mode;
2697
2698	if (rdev->supply)
2699		input_uV = regulator_get_voltage(rdev->supply);
2700
2701	mutex_lock(&rdev->mutex);
2702
2703	/*
2704	 * first check to see if we can set modes at all, otherwise just
2705	 * tell the consumer everything is OK.
2706	 */
2707	regulator->uA_load = uA_load;
2708	ret = regulator_check_drms(rdev);
2709	if (ret < 0) {
2710		ret = 0;
2711		goto out;
2712	}
2713
2714	if (!rdev->desc->ops->get_optimum_mode)
2715		goto out;
2716
2717	/*
2718	 * we can actually do this so any errors are indicators of
2719	 * potential real failure.
2720	 */
2721	ret = -EINVAL;
2722
2723	if (!rdev->desc->ops->set_mode)
2724		goto out;
2725
2726	/* get output voltage */
2727	output_uV = _regulator_get_voltage(rdev);
2728	if (output_uV <= 0) {
2729		rdev_err(rdev, "invalid output voltage found\n");
2730		goto out;
2731	}
2732
2733	/* No supply? Use constraint voltage */
2734	if (input_uV <= 0)
2735		input_uV = rdev->constraints->input_uV;
2736	if (input_uV <= 0) {
2737		rdev_err(rdev, "invalid input voltage found\n");
2738		goto out;
2739	}
2740
2741	/* calc total requested load for this regulator */
2742	list_for_each_entry(consumer, &rdev->consumer_list, list)
2743		total_uA_load += consumer->uA_load;
2744
2745	mode = rdev->desc->ops->get_optimum_mode(rdev,
2746						 input_uV, output_uV,
2747						 total_uA_load);
2748	ret = regulator_mode_constrain(rdev, &mode);
2749	if (ret < 0) {
2750		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2751			 total_uA_load, input_uV, output_uV);
2752		goto out;
2753	}
2754
2755	ret = rdev->desc->ops->set_mode(rdev, mode);
2756	if (ret < 0) {
2757		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2758		goto out;
2759	}
2760	ret = mode;
2761out:
2762	mutex_unlock(&rdev->mutex);
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2766
2767/**
2768 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2769 *
2770 * @rdev: device to operate on.
2771 * @enable: state to set.
2772 */
2773int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2774{
2775	unsigned int val;
2776
2777	if (enable)
2778		val = rdev->desc->bypass_mask;
2779	else
2780		val = 0;
2781
2782	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2783				  rdev->desc->bypass_mask, val);
2784}
2785EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2786
2787/**
2788 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2789 *
2790 * @rdev: device to operate on.
2791 * @enable: current state.
2792 */
2793int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2794{
2795	unsigned int val;
2796	int ret;
2797
2798	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2799	if (ret != 0)
2800		return ret;
2801
2802	*enable = val & rdev->desc->bypass_mask;
2803
2804	return 0;
2805}
2806EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2807
2808/**
2809 * regulator_allow_bypass - allow the regulator to go into bypass mode
2810 *
2811 * @regulator: Regulator to configure
2812 * @allow: enable or disable bypass mode
2813 *
2814 * Allow the regulator to go into bypass mode if all other consumers
2815 * for the regulator also enable bypass mode and the machine
2816 * constraints allow this.  Bypass mode means that the regulator is
2817 * simply passing the input directly to the output with no regulation.
2818 */
2819int regulator_allow_bypass(struct regulator *regulator, bool enable)
2820{
2821	struct regulator_dev *rdev = regulator->rdev;
2822	int ret = 0;
2823
2824	if (!rdev->desc->ops->set_bypass)
2825		return 0;
2826
2827	if (rdev->constraints &&
2828	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2829		return 0;
2830
2831	mutex_lock(&rdev->mutex);
2832
2833	if (enable && !regulator->bypass) {
2834		rdev->bypass_count++;
2835
2836		if (rdev->bypass_count == rdev->open_count) {
2837			ret = rdev->desc->ops->set_bypass(rdev, enable);
2838			if (ret != 0)
2839				rdev->bypass_count--;
2840		}
2841
2842	} else if (!enable && regulator->bypass) {
2843		rdev->bypass_count--;
2844
2845		if (rdev->bypass_count != rdev->open_count) {
2846			ret = rdev->desc->ops->set_bypass(rdev, enable);
2847			if (ret != 0)
2848				rdev->bypass_count++;
2849		}
2850	}
2851
2852	if (ret == 0)
2853		regulator->bypass = enable;
2854
2855	mutex_unlock(&rdev->mutex);
2856
2857	return ret;
2858}
2859EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2860
2861/**
2862 * regulator_register_notifier - register regulator event notifier
2863 * @regulator: regulator source
2864 * @nb: notifier block
2865 *
2866 * Register notifier block to receive regulator events.
2867 */
2868int regulator_register_notifier(struct regulator *regulator,
2869			      struct notifier_block *nb)
2870{
2871	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2872						nb);
2873}
2874EXPORT_SYMBOL_GPL(regulator_register_notifier);
2875
2876/**
2877 * regulator_unregister_notifier - unregister regulator event notifier
2878 * @regulator: regulator source
2879 * @nb: notifier block
2880 *
2881 * Unregister regulator event notifier block.
2882 */
2883int regulator_unregister_notifier(struct regulator *regulator,
2884				struct notifier_block *nb)
2885{
2886	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2887						  nb);
2888}
2889EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2890
2891/* notify regulator consumers and downstream regulator consumers.
2892 * Note mutex must be held by caller.
2893 */
2894static void _notifier_call_chain(struct regulator_dev *rdev,
2895				  unsigned long event, void *data)
2896{
2897	/* call rdev chain first */
2898	blocking_notifier_call_chain(&rdev->notifier, event, data);
2899}
2900
2901/**
2902 * regulator_bulk_get - get multiple regulator consumers
2903 *
2904 * @dev:           Device to supply
2905 * @num_consumers: Number of consumers to register
2906 * @consumers:     Configuration of consumers; clients are stored here.
2907 *
2908 * @return 0 on success, an errno on failure.
2909 *
2910 * This helper function allows drivers to get several regulator
2911 * consumers in one operation.  If any of the regulators cannot be
2912 * acquired then any regulators that were allocated will be freed
2913 * before returning to the caller.
2914 */
2915int regulator_bulk_get(struct device *dev, int num_consumers,
2916		       struct regulator_bulk_data *consumers)
2917{
2918	int i;
2919	int ret;
2920
2921	for (i = 0; i < num_consumers; i++)
2922		consumers[i].consumer = NULL;
2923
2924	for (i = 0; i < num_consumers; i++) {
2925		consumers[i].consumer = regulator_get(dev,
2926						      consumers[i].supply);
2927		if (IS_ERR(consumers[i].consumer)) {
2928			ret = PTR_ERR(consumers[i].consumer);
2929			dev_err(dev, "Failed to get supply '%s': %d\n",
2930				consumers[i].supply, ret);
2931			consumers[i].consumer = NULL;
2932			goto err;
2933		}
2934	}
2935
2936	return 0;
2937
2938err:
2939	while (--i >= 0)
2940		regulator_put(consumers[i].consumer);
2941
2942	return ret;
2943}
2944EXPORT_SYMBOL_GPL(regulator_bulk_get);
2945
2946/**
2947 * devm_regulator_bulk_get - managed get multiple regulator consumers
2948 *
2949 * @dev:           Device to supply
2950 * @num_consumers: Number of consumers to register
2951 * @consumers:     Configuration of consumers; clients are stored here.
2952 *
2953 * @return 0 on success, an errno on failure.
2954 *
2955 * This helper function allows drivers to get several regulator
2956 * consumers in one operation with management, the regulators will
2957 * automatically be freed when the device is unbound.  If any of the
2958 * regulators cannot be acquired then any regulators that were
2959 * allocated will be freed before returning to the caller.
2960 */
2961int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2962			    struct regulator_bulk_data *consumers)
2963{
2964	int i;
2965	int ret;
2966
2967	for (i = 0; i < num_consumers; i++)
2968		consumers[i].consumer = NULL;
2969
2970	for (i = 0; i < num_consumers; i++) {
2971		consumers[i].consumer = devm_regulator_get(dev,
2972							   consumers[i].supply);
2973		if (IS_ERR(consumers[i].consumer)) {
2974			ret = PTR_ERR(consumers[i].consumer);
2975			dev_err(dev, "Failed to get supply '%s': %d\n",
2976				consumers[i].supply, ret);
2977			consumers[i].consumer = NULL;
2978			goto err;
2979		}
2980	}
2981
2982	return 0;
2983
2984err:
2985	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2986		devm_regulator_put(consumers[i].consumer);
2987
2988	return ret;
2989}
2990EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2991
2992static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2993{
2994	struct regulator_bulk_data *bulk = data;
2995
2996	bulk->ret = regulator_enable(bulk->consumer);
2997}
2998
2999/**
3000 * regulator_bulk_enable - enable multiple regulator consumers
3001 *
3002 * @num_consumers: Number of consumers
3003 * @consumers:     Consumer data; clients are stored here.
3004 * @return         0 on success, an errno on failure
3005 *
3006 * This convenience API allows consumers to enable multiple regulator
3007 * clients in a single API call.  If any consumers cannot be enabled
3008 * then any others that were enabled will be disabled again prior to
3009 * return.
3010 */
3011int regulator_bulk_enable(int num_consumers,
3012			  struct regulator_bulk_data *consumers)
3013{
3014	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3015	int i;
3016	int ret = 0;
3017
3018	for (i = 0; i < num_consumers; i++) {
3019		if (consumers[i].consumer->always_on)
3020			consumers[i].ret = 0;
3021		else
3022			async_schedule_domain(regulator_bulk_enable_async,
3023					      &consumers[i], &async_domain);
3024	}
3025
3026	async_synchronize_full_domain(&async_domain);
3027
3028	/* If any consumer failed we need to unwind any that succeeded */
3029	for (i = 0; i < num_consumers; i++) {
3030		if (consumers[i].ret != 0) {
3031			ret = consumers[i].ret;
3032			goto err;
3033		}
3034	}
3035
3036	return 0;
3037
3038err:
3039	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3040	while (--i >= 0)
3041		regulator_disable(consumers[i].consumer);
3042
3043	return ret;
3044}
3045EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3046
3047/**
3048 * regulator_bulk_disable - disable multiple regulator consumers
3049 *
3050 * @num_consumers: Number of consumers
3051 * @consumers:     Consumer data; clients are stored here.
3052 * @return         0 on success, an errno on failure
3053 *
3054 * This convenience API allows consumers to disable multiple regulator
3055 * clients in a single API call.  If any consumers cannot be disabled
3056 * then any others that were disabled will be enabled again prior to
3057 * return.
3058 */
3059int regulator_bulk_disable(int num_consumers,
3060			   struct regulator_bulk_data *consumers)
3061{
3062	int i;
3063	int ret, r;
3064
3065	for (i = num_consumers - 1; i >= 0; --i) {
3066		ret = regulator_disable(consumers[i].consumer);
3067		if (ret != 0)
3068			goto err;
3069	}
3070
3071	return 0;
3072
3073err:
3074	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3075	for (++i; i < num_consumers; ++i) {
3076		r = regulator_enable(consumers[i].consumer);
3077		if (r != 0)
3078			pr_err("Failed to reename %s: %d\n",
3079			       consumers[i].supply, r);
3080	}
3081
3082	return ret;
3083}
3084EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3085
3086/**
3087 * regulator_bulk_force_disable - force disable multiple regulator consumers
3088 *
3089 * @num_consumers: Number of consumers
3090 * @consumers:     Consumer data; clients are stored here.
3091 * @return         0 on success, an errno on failure
3092 *
3093 * This convenience API allows consumers to forcibly disable multiple regulator
3094 * clients in a single API call.
3095 * NOTE: This should be used for situations when device damage will
3096 * likely occur if the regulators are not disabled (e.g. over temp).
3097 * Although regulator_force_disable function call for some consumers can
3098 * return error numbers, the function is called for all consumers.
3099 */
3100int regulator_bulk_force_disable(int num_consumers,
3101			   struct regulator_bulk_data *consumers)
3102{
3103	int i;
3104	int ret;
3105
3106	for (i = 0; i < num_consumers; i++)
3107		consumers[i].ret =
3108			    regulator_force_disable(consumers[i].consumer);
3109
3110	for (i = 0; i < num_consumers; i++) {
3111		if (consumers[i].ret != 0) {
3112			ret = consumers[i].ret;
3113			goto out;
3114		}
3115	}
3116
3117	return 0;
3118out:
3119	return ret;
3120}
3121EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3122
3123/**
3124 * regulator_bulk_free - free multiple regulator consumers
3125 *
3126 * @num_consumers: Number of consumers
3127 * @consumers:     Consumer data; clients are stored here.
3128 *
3129 * This convenience API allows consumers to free multiple regulator
3130 * clients in a single API call.
3131 */
3132void regulator_bulk_free(int num_consumers,
3133			 struct regulator_bulk_data *consumers)
3134{
3135	int i;
3136
3137	for (i = 0; i < num_consumers; i++) {
3138		regulator_put(consumers[i].consumer);
3139		consumers[i].consumer = NULL;
3140	}
3141}
3142EXPORT_SYMBOL_GPL(regulator_bulk_free);
3143
3144/**
3145 * regulator_notifier_call_chain - call regulator event notifier
3146 * @rdev: regulator source
3147 * @event: notifier block
3148 * @data: callback-specific data.
3149 *
3150 * Called by regulator drivers to notify clients a regulator event has
3151 * occurred. We also notify regulator clients downstream.
3152 * Note lock must be held by caller.
3153 */
3154int regulator_notifier_call_chain(struct regulator_dev *rdev,
3155				  unsigned long event, void *data)
3156{
3157	_notifier_call_chain(rdev, event, data);
3158	return NOTIFY_DONE;
3159
3160}
3161EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3162
3163/**
3164 * regulator_mode_to_status - convert a regulator mode into a status
3165 *
3166 * @mode: Mode to convert
3167 *
3168 * Convert a regulator mode into a status.
3169 */
3170int regulator_mode_to_status(unsigned int mode)
3171{
3172	switch (mode) {
3173	case REGULATOR_MODE_FAST:
3174		return REGULATOR_STATUS_FAST;
3175	case REGULATOR_MODE_NORMAL:
3176		return REGULATOR_STATUS_NORMAL;
3177	case REGULATOR_MODE_IDLE:
3178		return REGULATOR_STATUS_IDLE;
3179	case REGULATOR_MODE_STANDBY:
3180		return REGULATOR_STATUS_STANDBY;
3181	default:
3182		return REGULATOR_STATUS_UNDEFINED;
3183	}
3184}
3185EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3186
3187/*
3188 * To avoid cluttering sysfs (and memory) with useless state, only
3189 * create attributes that can be meaningfully displayed.
3190 */
3191static int add_regulator_attributes(struct regulator_dev *rdev)
3192{
3193	struct device		*dev = &rdev->dev;
3194	struct regulator_ops	*ops = rdev->desc->ops;
3195	int			status = 0;
3196
3197	/* some attributes need specific methods to be displayed */
3198	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3199	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3200	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3201		status = device_create_file(dev, &dev_attr_microvolts);
3202		if (status < 0)
3203			return status;
3204	}
3205	if (ops->get_current_limit) {
3206		status = device_create_file(dev, &dev_attr_microamps);
3207		if (status < 0)
3208			return status;
3209	}
3210	if (ops->get_mode) {
3211		status = device_create_file(dev, &dev_attr_opmode);
3212		if (status < 0)
3213			return status;
3214	}
3215	if (ops->is_enabled) {
3216		status = device_create_file(dev, &dev_attr_state);
3217		if (status < 0)
3218			return status;
3219	}
3220	if (ops->get_status) {
3221		status = device_create_file(dev, &dev_attr_status);
3222		if (status < 0)
3223			return status;
3224	}
3225	if (ops->get_bypass) {
3226		status = device_create_file(dev, &dev_attr_bypass);
3227		if (status < 0)
3228			return status;
3229	}
3230
3231	/* some attributes are type-specific */
3232	if (rdev->desc->type == REGULATOR_CURRENT) {
3233		status = device_create_file(dev, &dev_attr_requested_microamps);
3234		if (status < 0)
3235			return status;
3236	}
3237
3238	/* all the other attributes exist to support constraints;
3239	 * don't show them if there are no constraints, or if the
3240	 * relevant supporting methods are missing.
3241	 */
3242	if (!rdev->constraints)
3243		return status;
3244
3245	/* constraints need specific supporting methods */
3246	if (ops->set_voltage || ops->set_voltage_sel) {
3247		status = device_create_file(dev, &dev_attr_min_microvolts);
3248		if (status < 0)
3249			return status;
3250		status = device_create_file(dev, &dev_attr_max_microvolts);
3251		if (status < 0)
3252			return status;
3253	}
3254	if (ops->set_current_limit) {
3255		status = device_create_file(dev, &dev_attr_min_microamps);
3256		if (status < 0)
3257			return status;
3258		status = device_create_file(dev, &dev_attr_max_microamps);
3259		if (status < 0)
3260			return status;
3261	}
3262
3263	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3264	if (status < 0)
3265		return status;
3266	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3267	if (status < 0)
3268		return status;
3269	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3270	if (status < 0)
3271		return status;
3272
3273	if (ops->set_suspend_voltage) {
3274		status = device_create_file(dev,
3275				&dev_attr_suspend_standby_microvolts);
3276		if (status < 0)
3277			return status;
3278		status = device_create_file(dev,
3279				&dev_attr_suspend_mem_microvolts);
3280		if (status < 0)
3281			return status;
3282		status = device_create_file(dev,
3283				&dev_attr_suspend_disk_microvolts);
3284		if (status < 0)
3285			return status;
3286	}
3287
3288	if (ops->set_suspend_mode) {
3289		status = device_create_file(dev,
3290				&dev_attr_suspend_standby_mode);
3291		if (status < 0)
3292			return status;
3293		status = device_create_file(dev,
3294				&dev_attr_suspend_mem_mode);
3295		if (status < 0)
3296			return status;
3297		status = device_create_file(dev,
3298				&dev_attr_suspend_disk_mode);
3299		if (status < 0)
3300			return status;
3301	}
3302
3303	return status;
3304}
3305
3306static void rdev_init_debugfs(struct regulator_dev *rdev)
3307{
3308	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3309	if (!rdev->debugfs) {
3310		rdev_warn(rdev, "Failed to create debugfs directory\n");
3311		return;
3312	}
3313
3314	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3315			   &rdev->use_count);
3316	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3317			   &rdev->open_count);
3318	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3319			   &rdev->bypass_count);
3320}
3321
3322/**
3323 * regulator_register - register regulator
3324 * @regulator_desc: regulator to register
3325 * @config: runtime configuration for regulator
3326 *
3327 * Called by regulator drivers to register a regulator.
3328 * Returns 0 on success.
3329 */
3330struct regulator_dev *
3331regulator_register(const struct regulator_desc *regulator_desc,
3332		   const struct regulator_config *config)
3333{
3334	const struct regulation_constraints *constraints = NULL;
3335	const struct regulator_init_data *init_data;
3336	static atomic_t regulator_no = ATOMIC_INIT(0);
3337	struct regulator_dev *rdev;
3338	struct device *dev;
3339	int ret, i;
3340	const char *supply = NULL;
3341
3342	if (regulator_desc == NULL || config == NULL)
3343		return ERR_PTR(-EINVAL);
3344
3345	dev = config->dev;
3346	WARN_ON(!dev);
3347
3348	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3349		return ERR_PTR(-EINVAL);
3350
3351	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3352	    regulator_desc->type != REGULATOR_CURRENT)
3353		return ERR_PTR(-EINVAL);
3354
3355	/* Only one of each should be implemented */
3356	WARN_ON(regulator_desc->ops->get_voltage &&
3357		regulator_desc->ops->get_voltage_sel);
3358	WARN_ON(regulator_desc->ops->set_voltage &&
3359		regulator_desc->ops->set_voltage_sel);
3360
3361	/* If we're using selectors we must implement list_voltage. */
3362	if (regulator_desc->ops->get_voltage_sel &&
3363	    !regulator_desc->ops->list_voltage) {
3364		return ERR_PTR(-EINVAL);
3365	}
3366	if (regulator_desc->ops->set_voltage_sel &&
3367	    !regulator_desc->ops->list_voltage) {
3368		return ERR_PTR(-EINVAL);
3369	}
3370
3371	init_data = config->init_data;
3372
3373	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3374	if (rdev == NULL)
3375		return ERR_PTR(-ENOMEM);
3376
3377	mutex_lock(&regulator_list_mutex);
3378
3379	mutex_init(&rdev->mutex);
3380	rdev->reg_data = config->driver_data;
3381	rdev->owner = regulator_desc->owner;
3382	rdev->desc = regulator_desc;
3383	if (config->regmap)
3384		rdev->regmap = config->regmap;
3385	else if (dev_get_regmap(dev, NULL))
3386		rdev->regmap = dev_get_regmap(dev, NULL);
3387	else if (dev->parent)
3388		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3389	INIT_LIST_HEAD(&rdev->consumer_list);
3390	INIT_LIST_HEAD(&rdev->list);
3391	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3392	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3393
3394	/* preform any regulator specific init */
3395	if (init_data && init_data->regulator_init) {
3396		ret = init_data->regulator_init(rdev->reg_data);
3397		if (ret < 0)
3398			goto clean;
3399	}
3400
3401	/* register with sysfs */
3402	rdev->dev.class = &regulator_class;
3403	rdev->dev.of_node = config->of_node;
3404	rdev->dev.parent = dev;
3405	dev_set_name(&rdev->dev, "regulator.%d",
3406		     atomic_inc_return(&regulator_no) - 1);
3407	ret = device_register(&rdev->dev);
3408	if (ret != 0) {
3409		put_device(&rdev->dev);
3410		goto clean;
3411	}
3412
3413	dev_set_drvdata(&rdev->dev, rdev);
3414
3415	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3416		ret = gpio_request_one(config->ena_gpio,
3417				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3418				       rdev_get_name(rdev));
3419		if (ret != 0) {
3420			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3421				 config->ena_gpio, ret);
3422			goto wash;
3423		}
3424
3425		rdev->ena_gpio = config->ena_gpio;
3426		rdev->ena_gpio_invert = config->ena_gpio_invert;
3427
3428		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3429			rdev->ena_gpio_state = 1;
3430
3431		if (rdev->ena_gpio_invert)
3432			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3433	}
3434
3435	/* set regulator constraints */
3436	if (init_data)
3437		constraints = &init_data->constraints;
3438
3439	ret = set_machine_constraints(rdev, constraints);
3440	if (ret < 0)
3441		goto scrub;
3442
3443	/* add attributes supported by this regulator */
3444	ret = add_regulator_attributes(rdev);
3445	if (ret < 0)
3446		goto scrub;
3447
3448	if (init_data && init_data->supply_regulator)
3449		supply = init_data->supply_regulator;
3450	else if (regulator_desc->supply_name)
3451		supply = regulator_desc->supply_name;
3452
3453	if (supply) {
3454		struct regulator_dev *r;
3455
3456		r = regulator_dev_lookup(dev, supply, &ret);
3457
3458		if (!r) {
3459			dev_err(dev, "Failed to find supply %s\n", supply);
3460			ret = -EPROBE_DEFER;
3461			goto scrub;
3462		}
3463
3464		ret = set_supply(rdev, r);
3465		if (ret < 0)
3466			goto scrub;
3467
3468		/* Enable supply if rail is enabled */
3469		if (_regulator_is_enabled(rdev)) {
3470			ret = regulator_enable(rdev->supply);
3471			if (ret < 0)
3472				goto scrub;
3473		}
3474	}
3475
3476	/* add consumers devices */
3477	if (init_data) {
3478		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3479			ret = set_consumer_device_supply(rdev,
3480				init_data->consumer_supplies[i].dev_name,
3481				init_data->consumer_supplies[i].supply);
3482			if (ret < 0) {
3483				dev_err(dev, "Failed to set supply %s\n",
3484					init_data->consumer_supplies[i].supply);
3485				goto unset_supplies;
3486			}
3487		}
3488	}
3489
3490	list_add(&rdev->list, &regulator_list);
3491
3492	rdev_init_debugfs(rdev);
3493out:
3494	mutex_unlock(&regulator_list_mutex);
3495	return rdev;
3496
3497unset_supplies:
3498	unset_regulator_supplies(rdev);
3499
3500scrub:
3501	if (rdev->supply)
3502		_regulator_put(rdev->supply);
3503	if (rdev->ena_gpio)
3504		gpio_free(rdev->ena_gpio);
3505	kfree(rdev->constraints);
3506wash:
3507	device_unregister(&rdev->dev);
3508	/* device core frees rdev */
3509	rdev = ERR_PTR(ret);
3510	goto out;
3511
3512clean:
3513	kfree(rdev);
3514	rdev = ERR_PTR(ret);
3515	goto out;
3516}
3517EXPORT_SYMBOL_GPL(regulator_register);
3518
3519/**
3520 * regulator_unregister - unregister regulator
3521 * @rdev: regulator to unregister
3522 *
3523 * Called by regulator drivers to unregister a regulator.
3524 */
3525void regulator_unregister(struct regulator_dev *rdev)
3526{
3527	if (rdev == NULL)
3528		return;
3529
3530	if (rdev->supply)
3531		regulator_put(rdev->supply);
3532	mutex_lock(&regulator_list_mutex);
3533	debugfs_remove_recursive(rdev->debugfs);
3534	flush_work(&rdev->disable_work.work);
3535	WARN_ON(rdev->open_count);
3536	unset_regulator_supplies(rdev);
3537	list_del(&rdev->list);
3538	kfree(rdev->constraints);
3539	if (rdev->ena_gpio)
3540		gpio_free(rdev->ena_gpio);
3541	device_unregister(&rdev->dev);
3542	mutex_unlock(&regulator_list_mutex);
3543}
3544EXPORT_SYMBOL_GPL(regulator_unregister);
3545
3546/**
3547 * regulator_suspend_prepare - prepare regulators for system wide suspend
3548 * @state: system suspend state
3549 *
3550 * Configure each regulator with it's suspend operating parameters for state.
3551 * This will usually be called by machine suspend code prior to supending.
3552 */
3553int regulator_suspend_prepare(suspend_state_t state)
3554{
3555	struct regulator_dev *rdev;
3556	int ret = 0;
3557
3558	/* ON is handled by regulator active state */
3559	if (state == PM_SUSPEND_ON)
3560		return -EINVAL;
3561
3562	mutex_lock(&regulator_list_mutex);
3563	list_for_each_entry(rdev, &regulator_list, list) {
3564
3565		mutex_lock(&rdev->mutex);
3566		ret = suspend_prepare(rdev, state);
3567		mutex_unlock(&rdev->mutex);
3568
3569		if (ret < 0) {
3570			rdev_err(rdev, "failed to prepare\n");
3571			goto out;
3572		}
3573	}
3574out:
3575	mutex_unlock(&regulator_list_mutex);
3576	return ret;
3577}
3578EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3579
3580/**
3581 * regulator_suspend_finish - resume regulators from system wide suspend
3582 *
3583 * Turn on regulators that might be turned off by regulator_suspend_prepare
3584 * and that should be turned on according to the regulators properties.
3585 */
3586int regulator_suspend_finish(void)
3587{
3588	struct regulator_dev *rdev;
3589	int ret = 0, error;
3590
3591	mutex_lock(&regulator_list_mutex);
3592	list_for_each_entry(rdev, &regulator_list, list) {
3593		struct regulator_ops *ops = rdev->desc->ops;
3594
3595		mutex_lock(&rdev->mutex);
3596		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3597				ops->enable) {
3598			error = ops->enable(rdev);
3599			if (error)
3600				ret = error;
3601		} else {
3602			if (!has_full_constraints)
3603				goto unlock;
3604			if (!ops->disable)
3605				goto unlock;
3606			if (!_regulator_is_enabled(rdev))
3607				goto unlock;
3608
3609			error = ops->disable(rdev);
3610			if (error)
3611				ret = error;
3612		}
3613unlock:
3614		mutex_unlock(&rdev->mutex);
3615	}
3616	mutex_unlock(&regulator_list_mutex);
3617	return ret;
3618}
3619EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3620
3621/**
3622 * regulator_has_full_constraints - the system has fully specified constraints
3623 *
3624 * Calling this function will cause the regulator API to disable all
3625 * regulators which have a zero use count and don't have an always_on
3626 * constraint in a late_initcall.
3627 *
3628 * The intention is that this will become the default behaviour in a
3629 * future kernel release so users are encouraged to use this facility
3630 * now.
3631 */
3632void regulator_has_full_constraints(void)
3633{
3634	has_full_constraints = 1;
3635}
3636EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3637
3638/**
3639 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3640 *
3641 * Calling this function will cause the regulator API to provide a
3642 * dummy regulator to consumers if no physical regulator is found,
3643 * allowing most consumers to proceed as though a regulator were
3644 * configured.  This allows systems such as those with software
3645 * controllable regulators for the CPU core only to be brought up more
3646 * readily.
3647 */
3648void regulator_use_dummy_regulator(void)
3649{
3650	board_wants_dummy_regulator = true;
3651}
3652EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3653
3654/**
3655 * rdev_get_drvdata - get rdev regulator driver data
3656 * @rdev: regulator
3657 *
3658 * Get rdev regulator driver private data. This call can be used in the
3659 * regulator driver context.
3660 */
3661void *rdev_get_drvdata(struct regulator_dev *rdev)
3662{
3663	return rdev->reg_data;
3664}
3665EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3666
3667/**
3668 * regulator_get_drvdata - get regulator driver data
3669 * @regulator: regulator
3670 *
3671 * Get regulator driver private data. This call can be used in the consumer
3672 * driver context when non API regulator specific functions need to be called.
3673 */
3674void *regulator_get_drvdata(struct regulator *regulator)
3675{
3676	return regulator->rdev->reg_data;
3677}
3678EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3679
3680/**
3681 * regulator_set_drvdata - set regulator driver data
3682 * @regulator: regulator
3683 * @data: data
3684 */
3685void regulator_set_drvdata(struct regulator *regulator, void *data)
3686{
3687	regulator->rdev->reg_data = data;
3688}
3689EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3690
3691/**
3692 * regulator_get_id - get regulator ID
3693 * @rdev: regulator
3694 */
3695int rdev_get_id(struct regulator_dev *rdev)
3696{
3697	return rdev->desc->id;
3698}
3699EXPORT_SYMBOL_GPL(rdev_get_id);
3700
3701struct device *rdev_get_dev(struct regulator_dev *rdev)
3702{
3703	return &rdev->dev;
3704}
3705EXPORT_SYMBOL_GPL(rdev_get_dev);
3706
3707void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3708{
3709	return reg_init_data->driver_data;
3710}
3711EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3712
3713#ifdef CONFIG_DEBUG_FS
3714static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3715				    size_t count, loff_t *ppos)
3716{
3717	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3718	ssize_t len, ret = 0;
3719	struct regulator_map *map;
3720
3721	if (!buf)
3722		return -ENOMEM;
3723
3724	list_for_each_entry(map, &regulator_map_list, list) {
3725		len = snprintf(buf + ret, PAGE_SIZE - ret,
3726			       "%s -> %s.%s\n",
3727			       rdev_get_name(map->regulator), map->dev_name,
3728			       map->supply);
3729		if (len >= 0)
3730			ret += len;
3731		if (ret > PAGE_SIZE) {
3732			ret = PAGE_SIZE;
3733			break;
3734		}
3735	}
3736
3737	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3738
3739	kfree(buf);
3740
3741	return ret;
3742}
3743#endif
3744
3745static const struct file_operations supply_map_fops = {
3746#ifdef CONFIG_DEBUG_FS
3747	.read = supply_map_read_file,
3748	.llseek = default_llseek,
3749#endif
3750};
3751
3752static int __init regulator_init(void)
3753{
3754	int ret;
3755
3756	ret = class_register(&regulator_class);
3757
3758	debugfs_root = debugfs_create_dir("regulator", NULL);
3759	if (!debugfs_root)
3760		pr_warn("regulator: Failed to create debugfs directory\n");
3761
3762	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3763			    &supply_map_fops);
3764
3765	regulator_dummy_init();
3766
3767	return ret;
3768}
3769
3770/* init early to allow our consumers to complete system booting */
3771core_initcall(regulator_init);
3772
3773static int __init regulator_init_complete(void)
3774{
3775	struct regulator_dev *rdev;
3776	struct regulator_ops *ops;
3777	struct regulation_constraints *c;
3778	int enabled, ret;
3779
3780	/*
3781	 * Since DT doesn't provide an idiomatic mechanism for
3782	 * enabling full constraints and since it's much more natural
3783	 * with DT to provide them just assume that a DT enabled
3784	 * system has full constraints.
3785	 */
3786	if (of_have_populated_dt())
3787		has_full_constraints = true;
3788
3789	mutex_lock(&regulator_list_mutex);
3790
3791	/* If we have a full configuration then disable any regulators
3792	 * which are not in use or always_on.  This will become the
3793	 * default behaviour in the future.
3794	 */
3795	list_for_each_entry(rdev, &regulator_list, list) {
3796		ops = rdev->desc->ops;
3797		c = rdev->constraints;
3798
3799		if (!ops->disable || (c && c->always_on))
3800			continue;
3801
3802		mutex_lock(&rdev->mutex);
3803
3804		if (rdev->use_count)
3805			goto unlock;
3806
3807		/* If we can't read the status assume it's on. */
3808		if (ops->is_enabled)
3809			enabled = ops->is_enabled(rdev);
3810		else
3811			enabled = 1;
3812
3813		if (!enabled)
3814			goto unlock;
3815
3816		if (has_full_constraints) {
3817			/* We log since this may kill the system if it
3818			 * goes wrong. */
3819			rdev_info(rdev, "disabling\n");
3820			ret = ops->disable(rdev);
3821			if (ret != 0) {
3822				rdev_err(rdev, "couldn't disable: %d\n", ret);
3823			}
3824		} else {
3825			/* The intention is that in future we will
3826			 * assume that full constraints are provided
3827			 * so warn even if we aren't going to do
3828			 * anything here.
3829			 */
3830			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3831		}
3832
3833unlock:
3834		mutex_unlock(&rdev->mutex);
3835	}
3836
3837	mutex_unlock(&regulator_list_mutex);
3838
3839	return 0;
3840}
3841late_initcall(regulator_init_complete);
3842