core.c revision ccfcb1c3cf5616ebd9c61e6c834af3b87fe6b7f7
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114	struct regulator *regulator = NULL;
115	struct regulator_dev *rdev;
116
117	mutex_lock(&regulator_list_mutex);
118	list_for_each_entry(rdev, &regulator_list, list) {
119		mutex_lock(&rdev->mutex);
120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
121			if (regulator->dev == dev) {
122				mutex_unlock(&rdev->mutex);
123				mutex_unlock(&regulator_list_mutex);
124				return regulator;
125			}
126		}
127		mutex_unlock(&rdev->mutex);
128	}
129	mutex_unlock(&regulator_list_mutex);
130	return NULL;
131}
132
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144	struct device_node *regnode = NULL;
145	char prop_name[32]; /* 32 is max size of property name */
146
147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149	snprintf(prop_name, 32, "%s-supply", supply);
150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152	if (!regnode) {
153		dev_dbg(dev, "Looking up %s property in node %s failed",
154				prop_name, dev->of_node->full_name);
155		return NULL;
156	}
157	return regnode;
158}
159
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162	if (!rdev->constraints)
163		return 0;
164
165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166		return 1;
167	else
168		return 0;
169}
170
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173				   int *min_uV, int *max_uV)
174{
175	BUG_ON(*min_uV > *max_uV);
176
177	if (!rdev->constraints) {
178		rdev_err(rdev, "no constraints\n");
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182		rdev_err(rdev, "operation not allowed\n");
183		return -EPERM;
184	}
185
186	if (*max_uV > rdev->constraints->max_uV)
187		*max_uV = rdev->constraints->max_uV;
188	if (*min_uV < rdev->constraints->min_uV)
189		*min_uV = rdev->constraints->min_uV;
190
191	if (*min_uV > *max_uV) {
192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193			 *min_uV, *max_uV);
194		return -EINVAL;
195	}
196
197	return 0;
198}
199
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204				     int *min_uV, int *max_uV)
205{
206	struct regulator *regulator;
207
208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209		/*
210		 * Assume consumers that didn't say anything are OK
211		 * with anything in the constraint range.
212		 */
213		if (!regulator->min_uV && !regulator->max_uV)
214			continue;
215
216		if (*max_uV > regulator->max_uV)
217			*max_uV = regulator->max_uV;
218		if (*min_uV < regulator->min_uV)
219			*min_uV = regulator->min_uV;
220	}
221
222	if (*min_uV > *max_uV)
223		return -EINVAL;
224
225	return 0;
226}
227
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230					int *min_uA, int *max_uA)
231{
232	BUG_ON(*min_uA > *max_uA);
233
234	if (!rdev->constraints) {
235		rdev_err(rdev, "no constraints\n");
236		return -ENODEV;
237	}
238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239		rdev_err(rdev, "operation not allowed\n");
240		return -EPERM;
241	}
242
243	if (*max_uA > rdev->constraints->max_uA)
244		*max_uA = rdev->constraints->max_uA;
245	if (*min_uA < rdev->constraints->min_uA)
246		*min_uA = rdev->constraints->min_uA;
247
248	if (*min_uA > *max_uA) {
249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250			 *min_uA, *max_uA);
251		return -EINVAL;
252	}
253
254	return 0;
255}
256
257/* operating mode constraint check */
258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259{
260	switch (*mode) {
261	case REGULATOR_MODE_FAST:
262	case REGULATOR_MODE_NORMAL:
263	case REGULATOR_MODE_IDLE:
264	case REGULATOR_MODE_STANDBY:
265		break;
266	default:
267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268		return -EINVAL;
269	}
270
271	if (!rdev->constraints) {
272		rdev_err(rdev, "no constraints\n");
273		return -ENODEV;
274	}
275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276		rdev_err(rdev, "operation not allowed\n");
277		return -EPERM;
278	}
279
280	/* The modes are bitmasks, the most power hungry modes having
281	 * the lowest values. If the requested mode isn't supported
282	 * try higher modes. */
283	while (*mode) {
284		if (rdev->constraints->valid_modes_mask & *mode)
285			return 0;
286		*mode /= 2;
287	}
288
289	return -EINVAL;
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295	if (!rdev->constraints) {
296		rdev_err(rdev, "no constraints\n");
297		return -ENODEV;
298	}
299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300		rdev_err(rdev, "operation not allowed\n");
301		return -EPERM;
302	}
303	return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307			     struct device_attribute *attr, char *buf)
308{
309	struct regulator *regulator;
310
311	regulator = get_device_regulator(dev);
312	if (regulator == NULL)
313		return 0;
314
315	return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332static ssize_t regulator_uA_show(struct device *dev,
333				struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341static ssize_t regulator_name_show(struct device *dev,
342			     struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347}
348
349static ssize_t regulator_print_opmode(char *buf, int mode)
350{
351	switch (mode) {
352	case REGULATOR_MODE_FAST:
353		return sprintf(buf, "fast\n");
354	case REGULATOR_MODE_NORMAL:
355		return sprintf(buf, "normal\n");
356	case REGULATOR_MODE_IDLE:
357		return sprintf(buf, "idle\n");
358	case REGULATOR_MODE_STANDBY:
359		return sprintf(buf, "standby\n");
360	}
361	return sprintf(buf, "unknown\n");
362}
363
364static ssize_t regulator_opmode_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
375	if (state > 0)
376		return sprintf(buf, "enabled\n");
377	else if (state == 0)
378		return sprintf(buf, "disabled\n");
379	else
380		return sprintf(buf, "unknown\n");
381}
382
383static ssize_t regulator_state_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	ssize_t ret;
388
389	mutex_lock(&rdev->mutex);
390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391	mutex_unlock(&rdev->mutex);
392
393	return ret;
394}
395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397static ssize_t regulator_status_show(struct device *dev,
398				   struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	int status;
402	char *label;
403
404	status = rdev->desc->ops->get_status(rdev);
405	if (status < 0)
406		return status;
407
408	switch (status) {
409	case REGULATOR_STATUS_OFF:
410		label = "off";
411		break;
412	case REGULATOR_STATUS_ON:
413		label = "on";
414		break;
415	case REGULATOR_STATUS_ERROR:
416		label = "error";
417		break;
418	case REGULATOR_STATUS_FAST:
419		label = "fast";
420		break;
421	case REGULATOR_STATUS_NORMAL:
422		label = "normal";
423		break;
424	case REGULATOR_STATUS_IDLE:
425		label = "idle";
426		break;
427	case REGULATOR_STATUS_STANDBY:
428		label = "standby";
429		break;
430	default:
431		return -ERANGE;
432	}
433
434	return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438static ssize_t regulator_min_uA_show(struct device *dev,
439				    struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	if (!rdev->constraints)
444		return sprintf(buf, "constraint not defined\n");
445
446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451				    struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	if (!rdev->constraints)
456		return sprintf(buf, "constraint not defined\n");
457
458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463				    struct device_attribute *attr, char *buf)
464{
465	struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467	if (!rdev->constraints)
468		return sprintf(buf, "constraint not defined\n");
469
470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475				    struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	if (!rdev->constraints)
480		return sprintf(buf, "constraint not defined\n");
481
482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487				      struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490	struct regulator *regulator;
491	int uA = 0;
492
493	mutex_lock(&rdev->mutex);
494	list_for_each_entry(regulator, &rdev->consumer_list, list)
495		uA += regulator->uA_load;
496	mutex_unlock(&rdev->mutex);
497	return sprintf(buf, "%d\n", uA);
498}
499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501static ssize_t regulator_num_users_show(struct device *dev,
502				      struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505	return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509				  struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	switch (rdev->desc->type) {
514	case REGULATOR_VOLTAGE:
515		return sprintf(buf, "voltage\n");
516	case REGULATOR_CURRENT:
517		return sprintf(buf, "current\n");
518	}
519	return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530		regulator_suspend_mem_uV_show, NULL);
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533				struct device_attribute *attr, char *buf)
534{
535	struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540		regulator_suspend_disk_uV_show, NULL);
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543				struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550		regulator_suspend_standby_uV_show, NULL);
551
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_mem.mode);
559}
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561		regulator_suspend_mem_mode_show, NULL);
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_disk.mode);
570}
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572		regulator_suspend_disk_mode_show, NULL);
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575				struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_opmode(buf,
580		rdev->constraints->state_standby.mode);
581}
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583		regulator_suspend_standby_mode_show, NULL);
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_mem.enabled);
592}
593static DEVICE_ATTR(suspend_mem_state, 0444,
594		regulator_suspend_mem_state_show, NULL);
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_disk.enabled);
603}
604static DEVICE_ATTR(suspend_disk_state, 0444,
605		regulator_suspend_disk_state_show, NULL);
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608				   struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612	return regulator_print_state(buf,
613			rdev->constraints->state_standby.enabled);
614}
615static DEVICE_ATTR(suspend_standby_state, 0444,
616		regulator_suspend_standby_state_show, NULL);
617
618
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623static struct device_attribute regulator_dev_attrs[] = {
624	__ATTR(name, 0444, regulator_name_show, NULL),
625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
626	__ATTR(type, 0444, regulator_type_show, NULL),
627	__ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
632	struct regulator_dev *rdev = dev_get_drvdata(dev);
633	kfree(rdev);
634}
635
636static struct class regulator_class = {
637	.name = "regulator",
638	.dev_release = regulator_dev_release,
639	.dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646	struct regulator *sibling;
647	int current_uA = 0, output_uV, input_uV, err;
648	unsigned int mode;
649
650	err = regulator_check_drms(rdev);
651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652	    (!rdev->desc->ops->get_voltage &&
653	     !rdev->desc->ops->get_voltage_sel) ||
654	    !rdev->desc->ops->set_mode)
655		return;
656
657	/* get output voltage */
658	output_uV = _regulator_get_voltage(rdev);
659	if (output_uV <= 0)
660		return;
661
662	/* get input voltage */
663	input_uV = 0;
664	if (rdev->supply)
665		input_uV = regulator_get_voltage(rdev->supply);
666	if (input_uV <= 0)
667		input_uV = rdev->constraints->input_uV;
668	if (input_uV <= 0)
669		return;
670
671	/* calc total requested load */
672	list_for_each_entry(sibling, &rdev->consumer_list, list)
673		current_uA += sibling->uA_load;
674
675	/* now get the optimum mode for our new total regulator load */
676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677						  output_uV, current_uA);
678
679	/* check the new mode is allowed */
680	err = regulator_mode_constrain(rdev, &mode);
681	if (err == 0)
682		rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686	struct regulator_state *rstate)
687{
688	int ret = 0;
689
690	/* If we have no suspend mode configration don't set anything;
691	 * only warn if the driver implements set_suspend_voltage or
692	 * set_suspend_mode callback.
693	 */
694	if (!rstate->enabled && !rstate->disabled) {
695		if (rdev->desc->ops->set_suspend_voltage ||
696		    rdev->desc->ops->set_suspend_mode)
697			rdev_warn(rdev, "No configuration\n");
698		return 0;
699	}
700
701	if (rstate->enabled && rstate->disabled) {
702		rdev_err(rdev, "invalid configuration\n");
703		return -EINVAL;
704	}
705
706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707		ret = rdev->desc->ops->set_suspend_enable(rdev);
708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709		ret = rdev->desc->ops->set_suspend_disable(rdev);
710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711		ret = 0;
712
713	if (ret < 0) {
714		rdev_err(rdev, "failed to enabled/disable\n");
715		return ret;
716	}
717
718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set voltage\n");
722			return ret;
723		}
724	}
725
726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728		if (ret < 0) {
729			rdev_err(rdev, "failed to set mode\n");
730			return ret;
731		}
732	}
733	return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739	if (!rdev->constraints)
740		return -EINVAL;
741
742	switch (state) {
743	case PM_SUSPEND_STANDBY:
744		return suspend_set_state(rdev,
745			&rdev->constraints->state_standby);
746	case PM_SUSPEND_MEM:
747		return suspend_set_state(rdev,
748			&rdev->constraints->state_mem);
749	case PM_SUSPEND_MAX:
750		return suspend_set_state(rdev,
751			&rdev->constraints->state_disk);
752	default:
753		return -EINVAL;
754	}
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759	struct regulation_constraints *constraints = rdev->constraints;
760	char buf[80] = "";
761	int count = 0;
762	int ret;
763
764	if (constraints->min_uV && constraints->max_uV) {
765		if (constraints->min_uV == constraints->max_uV)
766			count += sprintf(buf + count, "%d mV ",
767					 constraints->min_uV / 1000);
768		else
769			count += sprintf(buf + count, "%d <--> %d mV ",
770					 constraints->min_uV / 1000,
771					 constraints->max_uV / 1000);
772	}
773
774	if (!constraints->min_uV ||
775	    constraints->min_uV != constraints->max_uV) {
776		ret = _regulator_get_voltage(rdev);
777		if (ret > 0)
778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
779	}
780
781	if (constraints->uV_offset)
782		count += sprintf(buf, "%dmV offset ",
783				 constraints->uV_offset / 1000);
784
785	if (constraints->min_uA && constraints->max_uA) {
786		if (constraints->min_uA == constraints->max_uA)
787			count += sprintf(buf + count, "%d mA ",
788					 constraints->min_uA / 1000);
789		else
790			count += sprintf(buf + count, "%d <--> %d mA ",
791					 constraints->min_uA / 1000,
792					 constraints->max_uA / 1000);
793	}
794
795	if (!constraints->min_uA ||
796	    constraints->min_uA != constraints->max_uA) {
797		ret = _regulator_get_current_limit(rdev);
798		if (ret > 0)
799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800	}
801
802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803		count += sprintf(buf + count, "fast ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805		count += sprintf(buf + count, "normal ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807		count += sprintf(buf + count, "idle ");
808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809		count += sprintf(buf + count, "standby");
810
811	rdev_info(rdev, "%s\n", buf);
812
813	if ((constraints->min_uV != constraints->max_uV) &&
814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815		rdev_warn(rdev,
816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817}
818
819static int machine_constraints_voltage(struct regulator_dev *rdev,
820	struct regulation_constraints *constraints)
821{
822	struct regulator_ops *ops = rdev->desc->ops;
823	int ret;
824
825	/* do we need to apply the constraint voltage */
826	if (rdev->constraints->apply_uV &&
827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
828		ret = _regulator_do_set_voltage(rdev,
829						rdev->constraints->min_uV,
830						rdev->constraints->max_uV);
831		if (ret < 0) {
832			rdev_err(rdev, "failed to apply %duV constraint\n",
833				 rdev->constraints->min_uV);
834			return ret;
835		}
836	}
837
838	/* constrain machine-level voltage specs to fit
839	 * the actual range supported by this regulator.
840	 */
841	if (ops->list_voltage && rdev->desc->n_voltages) {
842		int	count = rdev->desc->n_voltages;
843		int	i;
844		int	min_uV = INT_MAX;
845		int	max_uV = INT_MIN;
846		int	cmin = constraints->min_uV;
847		int	cmax = constraints->max_uV;
848
849		/* it's safe to autoconfigure fixed-voltage supplies
850		   and the constraints are used by list_voltage. */
851		if (count == 1 && !cmin) {
852			cmin = 1;
853			cmax = INT_MAX;
854			constraints->min_uV = cmin;
855			constraints->max_uV = cmax;
856		}
857
858		/* voltage constraints are optional */
859		if ((cmin == 0) && (cmax == 0))
860			return 0;
861
862		/* else require explicit machine-level constraints */
863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864			rdev_err(rdev, "invalid voltage constraints\n");
865			return -EINVAL;
866		}
867
868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869		for (i = 0; i < count; i++) {
870			int	value;
871
872			value = ops->list_voltage(rdev, i);
873			if (value <= 0)
874				continue;
875
876			/* maybe adjust [min_uV..max_uV] */
877			if (value >= cmin && value < min_uV)
878				min_uV = value;
879			if (value <= cmax && value > max_uV)
880				max_uV = value;
881		}
882
883		/* final: [min_uV..max_uV] valid iff constraints valid */
884		if (max_uV < min_uV) {
885			rdev_err(rdev, "unsupportable voltage constraints\n");
886			return -EINVAL;
887		}
888
889		/* use regulator's subset of machine constraints */
890		if (constraints->min_uV < min_uV) {
891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892				 constraints->min_uV, min_uV);
893			constraints->min_uV = min_uV;
894		}
895		if (constraints->max_uV > max_uV) {
896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897				 constraints->max_uV, max_uV);
898			constraints->max_uV = max_uV;
899		}
900	}
901
902	return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
917	const struct regulation_constraints *constraints)
918{
919	int ret = 0;
920	struct regulator_ops *ops = rdev->desc->ops;
921
922	if (constraints)
923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924					    GFP_KERNEL);
925	else
926		rdev->constraints = kzalloc(sizeof(*constraints),
927					    GFP_KERNEL);
928	if (!rdev->constraints)
929		return -ENOMEM;
930
931	ret = machine_constraints_voltage(rdev, rdev->constraints);
932	if (ret != 0)
933		goto out;
934
935	/* do we need to setup our suspend state */
936	if (rdev->constraints->initial_state) {
937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938		if (ret < 0) {
939			rdev_err(rdev, "failed to set suspend state\n");
940			goto out;
941		}
942	}
943
944	if (rdev->constraints->initial_mode) {
945		if (!ops->set_mode) {
946			rdev_err(rdev, "no set_mode operation\n");
947			ret = -EINVAL;
948			goto out;
949		}
950
951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952		if (ret < 0) {
953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954			goto out;
955		}
956	}
957
958	/* If the constraints say the regulator should be on at this point
959	 * and we have control then make sure it is enabled.
960	 */
961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962	    ops->enable) {
963		ret = ops->enable(rdev);
964		if (ret < 0) {
965			rdev_err(rdev, "failed to enable\n");
966			goto out;
967		}
968	}
969
970	print_constraints(rdev);
971	return 0;
972out:
973	kfree(rdev->constraints);
974	rdev->constraints = NULL;
975	return ret;
976}
977
978/**
979 * set_supply - set regulator supply regulator
980 * @rdev: regulator name
981 * @supply_rdev: supply regulator name
982 *
983 * Called by platform initialisation code to set the supply regulator for this
984 * regulator. This ensures that a regulators supply will also be enabled by the
985 * core if it's child is enabled.
986 */
987static int set_supply(struct regulator_dev *rdev,
988		      struct regulator_dev *supply_rdev)
989{
990	int err;
991
992	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995	if (rdev->supply == NULL) {
996		err = -ENOMEM;
997		return err;
998	}
999
1000	return 0;
1001}
1002
1003/**
1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005 * @rdev:         regulator source
1006 * @consumer_dev_name: dev_name() string for device supply applies to
1007 * @supply:       symbolic name for supply
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices.  Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
1015				      const char *consumer_dev_name,
1016				      const char *supply)
1017{
1018	struct regulator_map *node;
1019	int has_dev;
1020
1021	if (supply == NULL)
1022		return -EINVAL;
1023
1024	if (consumer_dev_name != NULL)
1025		has_dev = 1;
1026	else
1027		has_dev = 0;
1028
1029	list_for_each_entry(node, &regulator_map_list, list) {
1030		if (node->dev_name && consumer_dev_name) {
1031			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032				continue;
1033		} else if (node->dev_name || consumer_dev_name) {
1034			continue;
1035		}
1036
1037		if (strcmp(node->supply, supply) != 0)
1038			continue;
1039
1040		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041			 consumer_dev_name,
1042			 dev_name(&node->regulator->dev),
1043			 node->regulator->desc->name,
1044			 supply,
1045			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046		return -EBUSY;
1047	}
1048
1049	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050	if (node == NULL)
1051		return -ENOMEM;
1052
1053	node->regulator = rdev;
1054	node->supply = supply;
1055
1056	if (has_dev) {
1057		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058		if (node->dev_name == NULL) {
1059			kfree(node);
1060			return -ENOMEM;
1061		}
1062	}
1063
1064	list_add(&node->list, &regulator_map_list);
1065	return 0;
1066}
1067
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070	struct regulator_map *node, *n;
1071
1072	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073		if (rdev == node->regulator) {
1074			list_del(&node->list);
1075			kfree(node->dev_name);
1076			kfree(node);
1077		}
1078	}
1079}
1080
1081#define REG_STR_SIZE	64
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084					  struct device *dev,
1085					  const char *supply_name)
1086{
1087	struct regulator *regulator;
1088	char buf[REG_STR_SIZE];
1089	int err, size;
1090
1091	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092	if (regulator == NULL)
1093		return NULL;
1094
1095	mutex_lock(&rdev->mutex);
1096	regulator->rdev = rdev;
1097	list_add(&regulator->list, &rdev->consumer_list);
1098
1099	if (dev) {
1100		/* create a 'requested_microamps_name' sysfs entry */
1101		size = scnprintf(buf, REG_STR_SIZE,
1102				 "microamps_requested_%s-%s",
1103				 dev_name(dev), supply_name);
1104		if (size >= REG_STR_SIZE)
1105			goto overflow_err;
1106
1107		regulator->dev = dev;
1108		sysfs_attr_init(&regulator->dev_attr.attr);
1109		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110		if (regulator->dev_attr.attr.name == NULL)
1111			goto attr_name_err;
1112
1113		regulator->dev_attr.attr.mode = 0444;
1114		regulator->dev_attr.show = device_requested_uA_show;
1115		err = device_create_file(dev, &regulator->dev_attr);
1116		if (err < 0) {
1117			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118			goto attr_name_err;
1119		}
1120
1121		/* also add a link to the device sysfs entry */
1122		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123				 dev->kobj.name, supply_name);
1124		if (size >= REG_STR_SIZE)
1125			goto attr_err;
1126
1127		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto attr_err;
1130
1131		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132					buf);
1133		if (err) {
1134			rdev_warn(rdev, "could not add device link %s err %d\n",
1135				  dev->kobj.name, err);
1136			goto link_name_err;
1137		}
1138	} else {
1139		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto attr_err;
1142	}
1143
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (!regulator->debugfs) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156
1157	/*
1158	 * Check now if the regulator is an always on regulator - if
1159	 * it is then we don't need to do nearly so much work for
1160	 * enable/disable calls.
1161	 */
1162	if (!_regulator_can_change_status(rdev) &&
1163	    _regulator_is_enabled(rdev))
1164		regulator->always_on = true;
1165
1166	mutex_unlock(&rdev->mutex);
1167	return regulator;
1168link_name_err:
1169	kfree(regulator->supply_name);
1170attr_err:
1171	device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173	kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175	list_del(&regulator->list);
1176	kfree(regulator);
1177	mutex_unlock(&rdev->mutex);
1178	return NULL;
1179}
1180
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
1183	if (!rdev->desc->ops->enable_time)
1184		return 0;
1185	return rdev->desc->ops->enable_time(rdev);
1186}
1187
1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189						  const char *supply,
1190						  int *ret)
1191{
1192	struct regulator_dev *r;
1193	struct device_node *node;
1194	struct regulator_map *map;
1195	const char *devname = NULL;
1196
1197	/* first do a dt based lookup */
1198	if (dev && dev->of_node) {
1199		node = of_get_regulator(dev, supply);
1200		if (node) {
1201			list_for_each_entry(r, &regulator_list, list)
1202				if (r->dev.parent &&
1203					node == r->dev.of_node)
1204					return r;
1205		} else {
1206			/*
1207			 * If we couldn't even get the node then it's
1208			 * not just that the device didn't register
1209			 * yet, there's no node and we'll never
1210			 * succeed.
1211			 */
1212			*ret = -ENODEV;
1213		}
1214	}
1215
1216	/* if not found, try doing it non-dt way */
1217	if (dev)
1218		devname = dev_name(dev);
1219
1220	list_for_each_entry(r, &regulator_list, list)
1221		if (strcmp(rdev_get_name(r), supply) == 0)
1222			return r;
1223
1224	list_for_each_entry(map, &regulator_map_list, list) {
1225		/* If the mapping has a device set up it must match */
1226		if (map->dev_name &&
1227		    (!devname || strcmp(map->dev_name, devname)))
1228			continue;
1229
1230		if (strcmp(map->supply, supply) == 0)
1231			return map->regulator;
1232	}
1233
1234
1235	return NULL;
1236}
1237
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240					int exclusive)
1241{
1242	struct regulator_dev *rdev;
1243	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244	const char *devname = NULL;
1245	int ret;
1246
1247	if (id == NULL) {
1248		pr_err("get() with no identifier\n");
1249		return regulator;
1250	}
1251
1252	if (dev)
1253		devname = dev_name(dev);
1254
1255	mutex_lock(&regulator_list_mutex);
1256
1257	rdev = regulator_dev_lookup(dev, id, &ret);
1258	if (rdev)
1259		goto found;
1260
1261	if (board_wants_dummy_regulator) {
1262		rdev = dummy_regulator_rdev;
1263		goto found;
1264	}
1265
1266#ifdef CONFIG_REGULATOR_DUMMY
1267	if (!devname)
1268		devname = "deviceless";
1269
1270	/* If the board didn't flag that it was fully constrained then
1271	 * substitute in a dummy regulator so consumers can continue.
1272	 */
1273	if (!has_full_constraints) {
1274		pr_warn("%s supply %s not found, using dummy regulator\n",
1275			devname, id);
1276		rdev = dummy_regulator_rdev;
1277		goto found;
1278	}
1279#endif
1280
1281	mutex_unlock(&regulator_list_mutex);
1282	return regulator;
1283
1284found:
1285	if (rdev->exclusive) {
1286		regulator = ERR_PTR(-EPERM);
1287		goto out;
1288	}
1289
1290	if (exclusive && rdev->open_count) {
1291		regulator = ERR_PTR(-EBUSY);
1292		goto out;
1293	}
1294
1295	if (!try_module_get(rdev->owner))
1296		goto out;
1297
1298	regulator = create_regulator(rdev, dev, id);
1299	if (regulator == NULL) {
1300		regulator = ERR_PTR(-ENOMEM);
1301		module_put(rdev->owner);
1302		goto out;
1303	}
1304
1305	rdev->open_count++;
1306	if (exclusive) {
1307		rdev->exclusive = 1;
1308
1309		ret = _regulator_is_enabled(rdev);
1310		if (ret > 0)
1311			rdev->use_count = 1;
1312		else
1313			rdev->use_count = 0;
1314	}
1315
1316out:
1317	mutex_unlock(&regulator_list_mutex);
1318
1319	return regulator;
1320}
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged.  It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337	return _regulator_get(dev, id, 0);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343	regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357	struct regulator **ptr, *regulator;
1358
1359	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360	if (!ptr)
1361		return ERR_PTR(-ENOMEM);
1362
1363	regulator = regulator_get(dev, id);
1364	if (!IS_ERR(regulator)) {
1365		*ptr = regulator;
1366		devres_add(dev, ptr);
1367	} else {
1368		devres_free(ptr);
1369	}
1370
1371	return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno.  Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged.  It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398	return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410void regulator_put(struct regulator *regulator)
1411{
1412	struct regulator_dev *rdev;
1413
1414	if (regulator == NULL || IS_ERR(regulator))
1415		return;
1416
1417	mutex_lock(&regulator_list_mutex);
1418	rdev = regulator->rdev;
1419
1420	debugfs_remove_recursive(regulator->debugfs);
1421
1422	/* remove any sysfs entries */
1423	if (regulator->dev) {
1424		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425		device_remove_file(regulator->dev, &regulator->dev_attr);
1426		kfree(regulator->dev_attr.attr.name);
1427	}
1428	kfree(regulator->supply_name);
1429	list_del(&regulator->list);
1430	kfree(regulator);
1431
1432	rdev->open_count--;
1433	rdev->exclusive = 0;
1434
1435	module_put(rdev->owner);
1436	mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
1441{
1442	struct regulator **r = res;
1443	if (!r || !*r) {
1444		WARN_ON(!r || !*r);
1445		return 0;
1446	}
1447	return *r == data;
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460	int rc;
1461
1462	rc = devres_destroy(regulator->dev, devm_regulator_release,
1463			    devm_regulator_match, regulator);
1464	WARN_ON(rc);
1465}
1466EXPORT_SYMBOL_GPL(devm_regulator_put);
1467
1468/* locks held by regulator_enable() */
1469static int _regulator_enable(struct regulator_dev *rdev)
1470{
1471	int ret, delay;
1472
1473	/* check voltage and requested load before enabling */
1474	if (rdev->constraints &&
1475	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1476		drms_uA_update(rdev);
1477
1478	if (rdev->use_count == 0) {
1479		/* The regulator may on if it's not switchable or left on */
1480		ret = _regulator_is_enabled(rdev);
1481		if (ret == -EINVAL || ret == 0) {
1482			if (!_regulator_can_change_status(rdev))
1483				return -EPERM;
1484
1485			if (!rdev->desc->ops->enable)
1486				return -EINVAL;
1487
1488			/* Query before enabling in case configuration
1489			 * dependent.  */
1490			ret = _regulator_get_enable_time(rdev);
1491			if (ret >= 0) {
1492				delay = ret;
1493			} else {
1494				rdev_warn(rdev, "enable_time() failed: %d\n",
1495					   ret);
1496				delay = 0;
1497			}
1498
1499			trace_regulator_enable(rdev_get_name(rdev));
1500
1501			/* Allow the regulator to ramp; it would be useful
1502			 * to extend this for bulk operations so that the
1503			 * regulators can ramp together.  */
1504			ret = rdev->desc->ops->enable(rdev);
1505			if (ret < 0)
1506				return ret;
1507
1508			trace_regulator_enable_delay(rdev_get_name(rdev));
1509
1510			if (delay >= 1000) {
1511				mdelay(delay / 1000);
1512				udelay(delay % 1000);
1513			} else if (delay) {
1514				udelay(delay);
1515			}
1516
1517			trace_regulator_enable_complete(rdev_get_name(rdev));
1518
1519		} else if (ret < 0) {
1520			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521			return ret;
1522		}
1523		/* Fallthrough on positive return values - already enabled */
1524	}
1525
1526	rdev->use_count++;
1527
1528	return 0;
1529}
1530
1531/**
1532 * regulator_enable - enable regulator output
1533 * @regulator: regulator source
1534 *
1535 * Request that the regulator be enabled with the regulator output at
1536 * the predefined voltage or current value.  Calls to regulator_enable()
1537 * must be balanced with calls to regulator_disable().
1538 *
1539 * NOTE: the output value can be set by other drivers, boot loader or may be
1540 * hardwired in the regulator.
1541 */
1542int regulator_enable(struct regulator *regulator)
1543{
1544	struct regulator_dev *rdev = regulator->rdev;
1545	int ret = 0;
1546
1547	if (regulator->always_on)
1548		return 0;
1549
1550	if (rdev->supply) {
1551		ret = regulator_enable(rdev->supply);
1552		if (ret != 0)
1553			return ret;
1554	}
1555
1556	mutex_lock(&rdev->mutex);
1557	ret = _regulator_enable(rdev);
1558	mutex_unlock(&rdev->mutex);
1559
1560	if (ret != 0 && rdev->supply)
1561		regulator_disable(rdev->supply);
1562
1563	return ret;
1564}
1565EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567/* locks held by regulator_disable() */
1568static int _regulator_disable(struct regulator_dev *rdev)
1569{
1570	int ret = 0;
1571
1572	if (WARN(rdev->use_count <= 0,
1573		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1574		return -EIO;
1575
1576	/* are we the last user and permitted to disable ? */
1577	if (rdev->use_count == 1 &&
1578	    (rdev->constraints && !rdev->constraints->always_on)) {
1579
1580		/* we are last user */
1581		if (_regulator_can_change_status(rdev) &&
1582		    rdev->desc->ops->disable) {
1583			trace_regulator_disable(rdev_get_name(rdev));
1584
1585			ret = rdev->desc->ops->disable(rdev);
1586			if (ret < 0) {
1587				rdev_err(rdev, "failed to disable\n");
1588				return ret;
1589			}
1590
1591			trace_regulator_disable_complete(rdev_get_name(rdev));
1592
1593			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1594					     NULL);
1595		}
1596
1597		rdev->use_count = 0;
1598	} else if (rdev->use_count > 1) {
1599
1600		if (rdev->constraints &&
1601			(rdev->constraints->valid_ops_mask &
1602			REGULATOR_CHANGE_DRMS))
1603			drms_uA_update(rdev);
1604
1605		rdev->use_count--;
1606	}
1607
1608	return ret;
1609}
1610
1611/**
1612 * regulator_disable - disable regulator output
1613 * @regulator: regulator source
1614 *
1615 * Disable the regulator output voltage or current.  Calls to
1616 * regulator_enable() must be balanced with calls to
1617 * regulator_disable().
1618 *
1619 * NOTE: this will only disable the regulator output if no other consumer
1620 * devices have it enabled, the regulator device supports disabling and
1621 * machine constraints permit this operation.
1622 */
1623int regulator_disable(struct regulator *regulator)
1624{
1625	struct regulator_dev *rdev = regulator->rdev;
1626	int ret = 0;
1627
1628	if (regulator->always_on)
1629		return 0;
1630
1631	mutex_lock(&rdev->mutex);
1632	ret = _regulator_disable(rdev);
1633	mutex_unlock(&rdev->mutex);
1634
1635	if (ret == 0 && rdev->supply)
1636		regulator_disable(rdev->supply);
1637
1638	return ret;
1639}
1640EXPORT_SYMBOL_GPL(regulator_disable);
1641
1642/* locks held by regulator_force_disable() */
1643static int _regulator_force_disable(struct regulator_dev *rdev)
1644{
1645	int ret = 0;
1646
1647	/* force disable */
1648	if (rdev->desc->ops->disable) {
1649		/* ah well, who wants to live forever... */
1650		ret = rdev->desc->ops->disable(rdev);
1651		if (ret < 0) {
1652			rdev_err(rdev, "failed to force disable\n");
1653			return ret;
1654		}
1655		/* notify other consumers that power has been forced off */
1656		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1657			REGULATOR_EVENT_DISABLE, NULL);
1658	}
1659
1660	return ret;
1661}
1662
1663/**
1664 * regulator_force_disable - force disable regulator output
1665 * @regulator: regulator source
1666 *
1667 * Forcibly disable the regulator output voltage or current.
1668 * NOTE: this *will* disable the regulator output even if other consumer
1669 * devices have it enabled. This should be used for situations when device
1670 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1671 */
1672int regulator_force_disable(struct regulator *regulator)
1673{
1674	struct regulator_dev *rdev = regulator->rdev;
1675	int ret;
1676
1677	mutex_lock(&rdev->mutex);
1678	regulator->uA_load = 0;
1679	ret = _regulator_force_disable(regulator->rdev);
1680	mutex_unlock(&rdev->mutex);
1681
1682	if (rdev->supply)
1683		while (rdev->open_count--)
1684			regulator_disable(rdev->supply);
1685
1686	return ret;
1687}
1688EXPORT_SYMBOL_GPL(regulator_force_disable);
1689
1690static void regulator_disable_work(struct work_struct *work)
1691{
1692	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1693						  disable_work.work);
1694	int count, i, ret;
1695
1696	mutex_lock(&rdev->mutex);
1697
1698	BUG_ON(!rdev->deferred_disables);
1699
1700	count = rdev->deferred_disables;
1701	rdev->deferred_disables = 0;
1702
1703	for (i = 0; i < count; i++) {
1704		ret = _regulator_disable(rdev);
1705		if (ret != 0)
1706			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1707	}
1708
1709	mutex_unlock(&rdev->mutex);
1710
1711	if (rdev->supply) {
1712		for (i = 0; i < count; i++) {
1713			ret = regulator_disable(rdev->supply);
1714			if (ret != 0) {
1715				rdev_err(rdev,
1716					 "Supply disable failed: %d\n", ret);
1717			}
1718		}
1719	}
1720}
1721
1722/**
1723 * regulator_disable_deferred - disable regulator output with delay
1724 * @regulator: regulator source
1725 * @ms: miliseconds until the regulator is disabled
1726 *
1727 * Execute regulator_disable() on the regulator after a delay.  This
1728 * is intended for use with devices that require some time to quiesce.
1729 *
1730 * NOTE: this will only disable the regulator output if no other consumer
1731 * devices have it enabled, the regulator device supports disabling and
1732 * machine constraints permit this operation.
1733 */
1734int regulator_disable_deferred(struct regulator *regulator, int ms)
1735{
1736	struct regulator_dev *rdev = regulator->rdev;
1737	int ret;
1738
1739	if (regulator->always_on)
1740		return 0;
1741
1742	mutex_lock(&rdev->mutex);
1743	rdev->deferred_disables++;
1744	mutex_unlock(&rdev->mutex);
1745
1746	ret = schedule_delayed_work(&rdev->disable_work,
1747				    msecs_to_jiffies(ms));
1748	if (ret < 0)
1749		return ret;
1750	else
1751		return 0;
1752}
1753EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1754
1755/**
1756 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1757 *
1758 * @rdev: regulator to operate on
1759 *
1760 * Regulators that use regmap for their register I/O can set the
1761 * enable_reg and enable_mask fields in their descriptor and then use
1762 * this as their is_enabled operation, saving some code.
1763 */
1764int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1765{
1766	unsigned int val;
1767	int ret;
1768
1769	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1770	if (ret != 0)
1771		return ret;
1772
1773	return (val & rdev->desc->enable_mask) != 0;
1774}
1775EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1776
1777/**
1778 * regulator_enable_regmap - standard enable() for regmap users
1779 *
1780 * @rdev: regulator to operate on
1781 *
1782 * Regulators that use regmap for their register I/O can set the
1783 * enable_reg and enable_mask fields in their descriptor and then use
1784 * this as their enable() operation, saving some code.
1785 */
1786int regulator_enable_regmap(struct regulator_dev *rdev)
1787{
1788	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1789				  rdev->desc->enable_mask,
1790				  rdev->desc->enable_mask);
1791}
1792EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1793
1794/**
1795 * regulator_disable_regmap - standard disable() for regmap users
1796 *
1797 * @rdev: regulator to operate on
1798 *
1799 * Regulators that use regmap for their register I/O can set the
1800 * enable_reg and enable_mask fields in their descriptor and then use
1801 * this as their disable() operation, saving some code.
1802 */
1803int regulator_disable_regmap(struct regulator_dev *rdev)
1804{
1805	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1806				  rdev->desc->enable_mask, 0);
1807}
1808EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1809
1810static int _regulator_is_enabled(struct regulator_dev *rdev)
1811{
1812	/* If we don't know then assume that the regulator is always on */
1813	if (!rdev->desc->ops->is_enabled)
1814		return 1;
1815
1816	return rdev->desc->ops->is_enabled(rdev);
1817}
1818
1819/**
1820 * regulator_is_enabled - is the regulator output enabled
1821 * @regulator: regulator source
1822 *
1823 * Returns positive if the regulator driver backing the source/client
1824 * has requested that the device be enabled, zero if it hasn't, else a
1825 * negative errno code.
1826 *
1827 * Note that the device backing this regulator handle can have multiple
1828 * users, so it might be enabled even if regulator_enable() was never
1829 * called for this particular source.
1830 */
1831int regulator_is_enabled(struct regulator *regulator)
1832{
1833	int ret;
1834
1835	if (regulator->always_on)
1836		return 1;
1837
1838	mutex_lock(&regulator->rdev->mutex);
1839	ret = _regulator_is_enabled(regulator->rdev);
1840	mutex_unlock(&regulator->rdev->mutex);
1841
1842	return ret;
1843}
1844EXPORT_SYMBOL_GPL(regulator_is_enabled);
1845
1846/**
1847 * regulator_count_voltages - count regulator_list_voltage() selectors
1848 * @regulator: regulator source
1849 *
1850 * Returns number of selectors, or negative errno.  Selectors are
1851 * numbered starting at zero, and typically correspond to bitfields
1852 * in hardware registers.
1853 */
1854int regulator_count_voltages(struct regulator *regulator)
1855{
1856	struct regulator_dev	*rdev = regulator->rdev;
1857
1858	return rdev->desc->n_voltages ? : -EINVAL;
1859}
1860EXPORT_SYMBOL_GPL(regulator_count_voltages);
1861
1862/**
1863 * regulator_list_voltage_linear - List voltages with simple calculation
1864 *
1865 * @rdev: Regulator device
1866 * @selector: Selector to convert into a voltage
1867 *
1868 * Regulators with a simple linear mapping between voltages and
1869 * selectors can set min_uV and uV_step in the regulator descriptor
1870 * and then use this function as their list_voltage() operation,
1871 */
1872int regulator_list_voltage_linear(struct regulator_dev *rdev,
1873				  unsigned int selector)
1874{
1875	if (selector >= rdev->desc->n_voltages)
1876		return -EINVAL;
1877
1878	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1879}
1880EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1881
1882/**
1883 * regulator_list_voltage - enumerate supported voltages
1884 * @regulator: regulator source
1885 * @selector: identify voltage to list
1886 * Context: can sleep
1887 *
1888 * Returns a voltage that can be passed to @regulator_set_voltage(),
1889 * zero if this selector code can't be used on this system, or a
1890 * negative errno.
1891 */
1892int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1893{
1894	struct regulator_dev	*rdev = regulator->rdev;
1895	struct regulator_ops	*ops = rdev->desc->ops;
1896	int			ret;
1897
1898	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1899		return -EINVAL;
1900
1901	mutex_lock(&rdev->mutex);
1902	ret = ops->list_voltage(rdev, selector);
1903	mutex_unlock(&rdev->mutex);
1904
1905	if (ret > 0) {
1906		if (ret < rdev->constraints->min_uV)
1907			ret = 0;
1908		else if (ret > rdev->constraints->max_uV)
1909			ret = 0;
1910	}
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL_GPL(regulator_list_voltage);
1915
1916/**
1917 * regulator_is_supported_voltage - check if a voltage range can be supported
1918 *
1919 * @regulator: Regulator to check.
1920 * @min_uV: Minimum required voltage in uV.
1921 * @max_uV: Maximum required voltage in uV.
1922 *
1923 * Returns a boolean or a negative error code.
1924 */
1925int regulator_is_supported_voltage(struct regulator *regulator,
1926				   int min_uV, int max_uV)
1927{
1928	int i, voltages, ret;
1929
1930	ret = regulator_count_voltages(regulator);
1931	if (ret < 0)
1932		return ret;
1933	voltages = ret;
1934
1935	for (i = 0; i < voltages; i++) {
1936		ret = regulator_list_voltage(regulator, i);
1937
1938		if (ret >= min_uV && ret <= max_uV)
1939			return 1;
1940	}
1941
1942	return 0;
1943}
1944EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1945
1946/**
1947 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1948 *
1949 * @rdev: regulator to operate on
1950 *
1951 * Regulators that use regmap for their register I/O can set the
1952 * vsel_reg and vsel_mask fields in their descriptor and then use this
1953 * as their get_voltage_vsel operation, saving some code.
1954 */
1955int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1956{
1957	unsigned int val;
1958	int ret;
1959
1960	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1961	if (ret != 0)
1962		return ret;
1963
1964	val &= rdev->desc->vsel_mask;
1965	val >>= ffs(rdev->desc->vsel_mask) - 1;
1966
1967	return val;
1968}
1969EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1970
1971/**
1972 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1973 *
1974 * @rdev: regulator to operate on
1975 * @sel: Selector to set
1976 *
1977 * Regulators that use regmap for their register I/O can set the
1978 * vsel_reg and vsel_mask fields in their descriptor and then use this
1979 * as their set_voltage_vsel operation, saving some code.
1980 */
1981int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1982{
1983	sel <<= ffs(rdev->desc->vsel_mask) - 1;
1984
1985	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1986				  rdev->desc->vsel_mask, sel);
1987}
1988EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1989
1990/**
1991 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1992 *
1993 * @rdev: Regulator to operate on
1994 * @min_uV: Lower bound for voltage
1995 * @max_uV: Upper bound for voltage
1996 *
1997 * Drivers implementing set_voltage_sel() and list_voltage() can use
1998 * this as their map_voltage() operation.  It will find a suitable
1999 * voltage by calling list_voltage() until it gets something in bounds
2000 * for the requested voltages.
2001 */
2002int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2003				  int min_uV, int max_uV)
2004{
2005	int best_val = INT_MAX;
2006	int selector = 0;
2007	int i, ret;
2008
2009	/* Find the smallest voltage that falls within the specified
2010	 * range.
2011	 */
2012	for (i = 0; i < rdev->desc->n_voltages; i++) {
2013		ret = rdev->desc->ops->list_voltage(rdev, i);
2014		if (ret < 0)
2015			continue;
2016
2017		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2018			best_val = ret;
2019			selector = i;
2020		}
2021	}
2022
2023	if (best_val != INT_MAX)
2024		return selector;
2025	else
2026		return -EINVAL;
2027}
2028EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2029
2030/**
2031 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2032 *
2033 * @rdev: Regulator to operate on
2034 * @min_uV: Lower bound for voltage
2035 * @max_uV: Upper bound for voltage
2036 *
2037 * Drivers providing min_uV and uV_step in their regulator_desc can
2038 * use this as their map_voltage() operation.
2039 */
2040int regulator_map_voltage_linear(struct regulator_dev *rdev,
2041				 int min_uV, int max_uV)
2042{
2043	int ret, voltage;
2044
2045	if (!rdev->desc->uV_step) {
2046		BUG_ON(!rdev->desc->uV_step);
2047		return -EINVAL;
2048	}
2049
2050	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2051	if (ret < 0)
2052		return ret;
2053
2054	/* Map back into a voltage to verify we're still in bounds */
2055	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2056	if (voltage < min_uV || voltage > max_uV)
2057		return -EINVAL;
2058
2059	return ret;
2060}
2061EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2062
2063static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2064				     int min_uV, int max_uV)
2065{
2066	int ret;
2067	int delay = 0;
2068	int best_val;
2069	unsigned int selector;
2070	int old_selector = -1;
2071
2072	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2073
2074	min_uV += rdev->constraints->uV_offset;
2075	max_uV += rdev->constraints->uV_offset;
2076
2077	/*
2078	 * If we can't obtain the old selector there is not enough
2079	 * info to call set_voltage_time_sel().
2080	 */
2081	if (rdev->desc->ops->set_voltage_time_sel &&
2082	    rdev->desc->ops->get_voltage_sel) {
2083		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2084		if (old_selector < 0)
2085			return old_selector;
2086	}
2087
2088	if (rdev->desc->ops->set_voltage) {
2089		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2090						   &selector);
2091	} else if (rdev->desc->ops->set_voltage_sel) {
2092		if (rdev->desc->ops->map_voltage)
2093			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2094							   max_uV);
2095		else
2096			ret = regulator_map_voltage_iterate(rdev, min_uV,
2097							    max_uV);
2098
2099		if (ret >= 0) {
2100			selector = ret;
2101			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2102		}
2103	} else {
2104		ret = -EINVAL;
2105	}
2106
2107	if (rdev->desc->ops->list_voltage)
2108		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2109	else
2110		best_val = -1;
2111
2112	/* Call set_voltage_time_sel if successfully obtained old_selector */
2113	if (ret == 0 && old_selector >= 0 &&
2114	    rdev->desc->ops->set_voltage_time_sel) {
2115
2116		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2117						old_selector, selector);
2118		if (delay < 0) {
2119			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2120				  delay);
2121			delay = 0;
2122		}
2123	}
2124
2125	/* Insert any necessary delays */
2126	if (delay >= 1000) {
2127		mdelay(delay / 1000);
2128		udelay(delay % 1000);
2129	} else if (delay) {
2130		udelay(delay);
2131	}
2132
2133	if (ret == 0)
2134		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2135				     NULL);
2136
2137	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2138
2139	return ret;
2140}
2141
2142/**
2143 * regulator_set_voltage - set regulator output voltage
2144 * @regulator: regulator source
2145 * @min_uV: Minimum required voltage in uV
2146 * @max_uV: Maximum acceptable voltage in uV
2147 *
2148 * Sets a voltage regulator to the desired output voltage. This can be set
2149 * during any regulator state. IOW, regulator can be disabled or enabled.
2150 *
2151 * If the regulator is enabled then the voltage will change to the new value
2152 * immediately otherwise if the regulator is disabled the regulator will
2153 * output at the new voltage when enabled.
2154 *
2155 * NOTE: If the regulator is shared between several devices then the lowest
2156 * request voltage that meets the system constraints will be used.
2157 * Regulator system constraints must be set for this regulator before
2158 * calling this function otherwise this call will fail.
2159 */
2160int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2161{
2162	struct regulator_dev *rdev = regulator->rdev;
2163	int ret = 0;
2164
2165	mutex_lock(&rdev->mutex);
2166
2167	/* If we're setting the same range as last time the change
2168	 * should be a noop (some cpufreq implementations use the same
2169	 * voltage for multiple frequencies, for example).
2170	 */
2171	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2172		goto out;
2173
2174	/* sanity check */
2175	if (!rdev->desc->ops->set_voltage &&
2176	    !rdev->desc->ops->set_voltage_sel) {
2177		ret = -EINVAL;
2178		goto out;
2179	}
2180
2181	/* constraints check */
2182	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2183	if (ret < 0)
2184		goto out;
2185	regulator->min_uV = min_uV;
2186	regulator->max_uV = max_uV;
2187
2188	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2189	if (ret < 0)
2190		goto out;
2191
2192	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2193
2194out:
2195	mutex_unlock(&rdev->mutex);
2196	return ret;
2197}
2198EXPORT_SYMBOL_GPL(regulator_set_voltage);
2199
2200/**
2201 * regulator_set_voltage_time - get raise/fall time
2202 * @regulator: regulator source
2203 * @old_uV: starting voltage in microvolts
2204 * @new_uV: target voltage in microvolts
2205 *
2206 * Provided with the starting and ending voltage, this function attempts to
2207 * calculate the time in microseconds required to rise or fall to this new
2208 * voltage.
2209 */
2210int regulator_set_voltage_time(struct regulator *regulator,
2211			       int old_uV, int new_uV)
2212{
2213	struct regulator_dev	*rdev = regulator->rdev;
2214	struct regulator_ops	*ops = rdev->desc->ops;
2215	int old_sel = -1;
2216	int new_sel = -1;
2217	int voltage;
2218	int i;
2219
2220	/* Currently requires operations to do this */
2221	if (!ops->list_voltage || !ops->set_voltage_time_sel
2222	    || !rdev->desc->n_voltages)
2223		return -EINVAL;
2224
2225	for (i = 0; i < rdev->desc->n_voltages; i++) {
2226		/* We only look for exact voltage matches here */
2227		voltage = regulator_list_voltage(regulator, i);
2228		if (voltage < 0)
2229			return -EINVAL;
2230		if (voltage == 0)
2231			continue;
2232		if (voltage == old_uV)
2233			old_sel = i;
2234		if (voltage == new_uV)
2235			new_sel = i;
2236	}
2237
2238	if (old_sel < 0 || new_sel < 0)
2239		return -EINVAL;
2240
2241	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2242}
2243EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2244
2245/**
2246 * regulator_sync_voltage - re-apply last regulator output voltage
2247 * @regulator: regulator source
2248 *
2249 * Re-apply the last configured voltage.  This is intended to be used
2250 * where some external control source the consumer is cooperating with
2251 * has caused the configured voltage to change.
2252 */
2253int regulator_sync_voltage(struct regulator *regulator)
2254{
2255	struct regulator_dev *rdev = regulator->rdev;
2256	int ret, min_uV, max_uV;
2257
2258	mutex_lock(&rdev->mutex);
2259
2260	if (!rdev->desc->ops->set_voltage &&
2261	    !rdev->desc->ops->set_voltage_sel) {
2262		ret = -EINVAL;
2263		goto out;
2264	}
2265
2266	/* This is only going to work if we've had a voltage configured. */
2267	if (!regulator->min_uV && !regulator->max_uV) {
2268		ret = -EINVAL;
2269		goto out;
2270	}
2271
2272	min_uV = regulator->min_uV;
2273	max_uV = regulator->max_uV;
2274
2275	/* This should be a paranoia check... */
2276	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2277	if (ret < 0)
2278		goto out;
2279
2280	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2281	if (ret < 0)
2282		goto out;
2283
2284	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2285
2286out:
2287	mutex_unlock(&rdev->mutex);
2288	return ret;
2289}
2290EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2291
2292static int _regulator_get_voltage(struct regulator_dev *rdev)
2293{
2294	int sel, ret;
2295
2296	if (rdev->desc->ops->get_voltage_sel) {
2297		sel = rdev->desc->ops->get_voltage_sel(rdev);
2298		if (sel < 0)
2299			return sel;
2300		ret = rdev->desc->ops->list_voltage(rdev, sel);
2301	} else if (rdev->desc->ops->get_voltage) {
2302		ret = rdev->desc->ops->get_voltage(rdev);
2303	} else {
2304		return -EINVAL;
2305	}
2306
2307	if (ret < 0)
2308		return ret;
2309	return ret - rdev->constraints->uV_offset;
2310}
2311
2312/**
2313 * regulator_get_voltage - get regulator output voltage
2314 * @regulator: regulator source
2315 *
2316 * This returns the current regulator voltage in uV.
2317 *
2318 * NOTE: If the regulator is disabled it will return the voltage value. This
2319 * function should not be used to determine regulator state.
2320 */
2321int regulator_get_voltage(struct regulator *regulator)
2322{
2323	int ret;
2324
2325	mutex_lock(&regulator->rdev->mutex);
2326
2327	ret = _regulator_get_voltage(regulator->rdev);
2328
2329	mutex_unlock(&regulator->rdev->mutex);
2330
2331	return ret;
2332}
2333EXPORT_SYMBOL_GPL(regulator_get_voltage);
2334
2335/**
2336 * regulator_set_current_limit - set regulator output current limit
2337 * @regulator: regulator source
2338 * @min_uA: Minimuum supported current in uA
2339 * @max_uA: Maximum supported current in uA
2340 *
2341 * Sets current sink to the desired output current. This can be set during
2342 * any regulator state. IOW, regulator can be disabled or enabled.
2343 *
2344 * If the regulator is enabled then the current will change to the new value
2345 * immediately otherwise if the regulator is disabled the regulator will
2346 * output at the new current when enabled.
2347 *
2348 * NOTE: Regulator system constraints must be set for this regulator before
2349 * calling this function otherwise this call will fail.
2350 */
2351int regulator_set_current_limit(struct regulator *regulator,
2352			       int min_uA, int max_uA)
2353{
2354	struct regulator_dev *rdev = regulator->rdev;
2355	int ret;
2356
2357	mutex_lock(&rdev->mutex);
2358
2359	/* sanity check */
2360	if (!rdev->desc->ops->set_current_limit) {
2361		ret = -EINVAL;
2362		goto out;
2363	}
2364
2365	/* constraints check */
2366	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2367	if (ret < 0)
2368		goto out;
2369
2370	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2371out:
2372	mutex_unlock(&rdev->mutex);
2373	return ret;
2374}
2375EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2376
2377static int _regulator_get_current_limit(struct regulator_dev *rdev)
2378{
2379	int ret;
2380
2381	mutex_lock(&rdev->mutex);
2382
2383	/* sanity check */
2384	if (!rdev->desc->ops->get_current_limit) {
2385		ret = -EINVAL;
2386		goto out;
2387	}
2388
2389	ret = rdev->desc->ops->get_current_limit(rdev);
2390out:
2391	mutex_unlock(&rdev->mutex);
2392	return ret;
2393}
2394
2395/**
2396 * regulator_get_current_limit - get regulator output current
2397 * @regulator: regulator source
2398 *
2399 * This returns the current supplied by the specified current sink in uA.
2400 *
2401 * NOTE: If the regulator is disabled it will return the current value. This
2402 * function should not be used to determine regulator state.
2403 */
2404int regulator_get_current_limit(struct regulator *regulator)
2405{
2406	return _regulator_get_current_limit(regulator->rdev);
2407}
2408EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2409
2410/**
2411 * regulator_set_mode - set regulator operating mode
2412 * @regulator: regulator source
2413 * @mode: operating mode - one of the REGULATOR_MODE constants
2414 *
2415 * Set regulator operating mode to increase regulator efficiency or improve
2416 * regulation performance.
2417 *
2418 * NOTE: Regulator system constraints must be set for this regulator before
2419 * calling this function otherwise this call will fail.
2420 */
2421int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2422{
2423	struct regulator_dev *rdev = regulator->rdev;
2424	int ret;
2425	int regulator_curr_mode;
2426
2427	mutex_lock(&rdev->mutex);
2428
2429	/* sanity check */
2430	if (!rdev->desc->ops->set_mode) {
2431		ret = -EINVAL;
2432		goto out;
2433	}
2434
2435	/* return if the same mode is requested */
2436	if (rdev->desc->ops->get_mode) {
2437		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2438		if (regulator_curr_mode == mode) {
2439			ret = 0;
2440			goto out;
2441		}
2442	}
2443
2444	/* constraints check */
2445	ret = regulator_mode_constrain(rdev, &mode);
2446	if (ret < 0)
2447		goto out;
2448
2449	ret = rdev->desc->ops->set_mode(rdev, mode);
2450out:
2451	mutex_unlock(&rdev->mutex);
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regulator_set_mode);
2455
2456static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2457{
2458	int ret;
2459
2460	mutex_lock(&rdev->mutex);
2461
2462	/* sanity check */
2463	if (!rdev->desc->ops->get_mode) {
2464		ret = -EINVAL;
2465		goto out;
2466	}
2467
2468	ret = rdev->desc->ops->get_mode(rdev);
2469out:
2470	mutex_unlock(&rdev->mutex);
2471	return ret;
2472}
2473
2474/**
2475 * regulator_get_mode - get regulator operating mode
2476 * @regulator: regulator source
2477 *
2478 * Get the current regulator operating mode.
2479 */
2480unsigned int regulator_get_mode(struct regulator *regulator)
2481{
2482	return _regulator_get_mode(regulator->rdev);
2483}
2484EXPORT_SYMBOL_GPL(regulator_get_mode);
2485
2486/**
2487 * regulator_set_optimum_mode - set regulator optimum operating mode
2488 * @regulator: regulator source
2489 * @uA_load: load current
2490 *
2491 * Notifies the regulator core of a new device load. This is then used by
2492 * DRMS (if enabled by constraints) to set the most efficient regulator
2493 * operating mode for the new regulator loading.
2494 *
2495 * Consumer devices notify their supply regulator of the maximum power
2496 * they will require (can be taken from device datasheet in the power
2497 * consumption tables) when they change operational status and hence power
2498 * state. Examples of operational state changes that can affect power
2499 * consumption are :-
2500 *
2501 *    o Device is opened / closed.
2502 *    o Device I/O is about to begin or has just finished.
2503 *    o Device is idling in between work.
2504 *
2505 * This information is also exported via sysfs to userspace.
2506 *
2507 * DRMS will sum the total requested load on the regulator and change
2508 * to the most efficient operating mode if platform constraints allow.
2509 *
2510 * Returns the new regulator mode or error.
2511 */
2512int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2513{
2514	struct regulator_dev *rdev = regulator->rdev;
2515	struct regulator *consumer;
2516	int ret, output_uV, input_uV, total_uA_load = 0;
2517	unsigned int mode;
2518
2519	mutex_lock(&rdev->mutex);
2520
2521	/*
2522	 * first check to see if we can set modes at all, otherwise just
2523	 * tell the consumer everything is OK.
2524	 */
2525	regulator->uA_load = uA_load;
2526	ret = regulator_check_drms(rdev);
2527	if (ret < 0) {
2528		ret = 0;
2529		goto out;
2530	}
2531
2532	if (!rdev->desc->ops->get_optimum_mode)
2533		goto out;
2534
2535	/*
2536	 * we can actually do this so any errors are indicators of
2537	 * potential real failure.
2538	 */
2539	ret = -EINVAL;
2540
2541	if (!rdev->desc->ops->set_mode)
2542		goto out;
2543
2544	/* get output voltage */
2545	output_uV = _regulator_get_voltage(rdev);
2546	if (output_uV <= 0) {
2547		rdev_err(rdev, "invalid output voltage found\n");
2548		goto out;
2549	}
2550
2551	/* get input voltage */
2552	input_uV = 0;
2553	if (rdev->supply)
2554		input_uV = regulator_get_voltage(rdev->supply);
2555	if (input_uV <= 0)
2556		input_uV = rdev->constraints->input_uV;
2557	if (input_uV <= 0) {
2558		rdev_err(rdev, "invalid input voltage found\n");
2559		goto out;
2560	}
2561
2562	/* calc total requested load for this regulator */
2563	list_for_each_entry(consumer, &rdev->consumer_list, list)
2564		total_uA_load += consumer->uA_load;
2565
2566	mode = rdev->desc->ops->get_optimum_mode(rdev,
2567						 input_uV, output_uV,
2568						 total_uA_load);
2569	ret = regulator_mode_constrain(rdev, &mode);
2570	if (ret < 0) {
2571		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2572			 total_uA_load, input_uV, output_uV);
2573		goto out;
2574	}
2575
2576	ret = rdev->desc->ops->set_mode(rdev, mode);
2577	if (ret < 0) {
2578		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2579		goto out;
2580	}
2581	ret = mode;
2582out:
2583	mutex_unlock(&rdev->mutex);
2584	return ret;
2585}
2586EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2587
2588/**
2589 * regulator_register_notifier - register regulator event notifier
2590 * @regulator: regulator source
2591 * @nb: notifier block
2592 *
2593 * Register notifier block to receive regulator events.
2594 */
2595int regulator_register_notifier(struct regulator *regulator,
2596			      struct notifier_block *nb)
2597{
2598	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2599						nb);
2600}
2601EXPORT_SYMBOL_GPL(regulator_register_notifier);
2602
2603/**
2604 * regulator_unregister_notifier - unregister regulator event notifier
2605 * @regulator: regulator source
2606 * @nb: notifier block
2607 *
2608 * Unregister regulator event notifier block.
2609 */
2610int regulator_unregister_notifier(struct regulator *regulator,
2611				struct notifier_block *nb)
2612{
2613	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2614						  nb);
2615}
2616EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2617
2618/* notify regulator consumers and downstream regulator consumers.
2619 * Note mutex must be held by caller.
2620 */
2621static void _notifier_call_chain(struct regulator_dev *rdev,
2622				  unsigned long event, void *data)
2623{
2624	/* call rdev chain first */
2625	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2626}
2627
2628/**
2629 * regulator_bulk_get - get multiple regulator consumers
2630 *
2631 * @dev:           Device to supply
2632 * @num_consumers: Number of consumers to register
2633 * @consumers:     Configuration of consumers; clients are stored here.
2634 *
2635 * @return 0 on success, an errno on failure.
2636 *
2637 * This helper function allows drivers to get several regulator
2638 * consumers in one operation.  If any of the regulators cannot be
2639 * acquired then any regulators that were allocated will be freed
2640 * before returning to the caller.
2641 */
2642int regulator_bulk_get(struct device *dev, int num_consumers,
2643		       struct regulator_bulk_data *consumers)
2644{
2645	int i;
2646	int ret;
2647
2648	for (i = 0; i < num_consumers; i++)
2649		consumers[i].consumer = NULL;
2650
2651	for (i = 0; i < num_consumers; i++) {
2652		consumers[i].consumer = regulator_get(dev,
2653						      consumers[i].supply);
2654		if (IS_ERR(consumers[i].consumer)) {
2655			ret = PTR_ERR(consumers[i].consumer);
2656			dev_err(dev, "Failed to get supply '%s': %d\n",
2657				consumers[i].supply, ret);
2658			consumers[i].consumer = NULL;
2659			goto err;
2660		}
2661	}
2662
2663	return 0;
2664
2665err:
2666	while (--i >= 0)
2667		regulator_put(consumers[i].consumer);
2668
2669	return ret;
2670}
2671EXPORT_SYMBOL_GPL(regulator_bulk_get);
2672
2673/**
2674 * devm_regulator_bulk_get - managed get multiple regulator consumers
2675 *
2676 * @dev:           Device to supply
2677 * @num_consumers: Number of consumers to register
2678 * @consumers:     Configuration of consumers; clients are stored here.
2679 *
2680 * @return 0 on success, an errno on failure.
2681 *
2682 * This helper function allows drivers to get several regulator
2683 * consumers in one operation with management, the regulators will
2684 * automatically be freed when the device is unbound.  If any of the
2685 * regulators cannot be acquired then any regulators that were
2686 * allocated will be freed before returning to the caller.
2687 */
2688int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2689			    struct regulator_bulk_data *consumers)
2690{
2691	int i;
2692	int ret;
2693
2694	for (i = 0; i < num_consumers; i++)
2695		consumers[i].consumer = NULL;
2696
2697	for (i = 0; i < num_consumers; i++) {
2698		consumers[i].consumer = devm_regulator_get(dev,
2699							   consumers[i].supply);
2700		if (IS_ERR(consumers[i].consumer)) {
2701			ret = PTR_ERR(consumers[i].consumer);
2702			dev_err(dev, "Failed to get supply '%s': %d\n",
2703				consumers[i].supply, ret);
2704			consumers[i].consumer = NULL;
2705			goto err;
2706		}
2707	}
2708
2709	return 0;
2710
2711err:
2712	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2713		devm_regulator_put(consumers[i].consumer);
2714
2715	return ret;
2716}
2717EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2718
2719static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2720{
2721	struct regulator_bulk_data *bulk = data;
2722
2723	bulk->ret = regulator_enable(bulk->consumer);
2724}
2725
2726/**
2727 * regulator_bulk_enable - enable multiple regulator consumers
2728 *
2729 * @num_consumers: Number of consumers
2730 * @consumers:     Consumer data; clients are stored here.
2731 * @return         0 on success, an errno on failure
2732 *
2733 * This convenience API allows consumers to enable multiple regulator
2734 * clients in a single API call.  If any consumers cannot be enabled
2735 * then any others that were enabled will be disabled again prior to
2736 * return.
2737 */
2738int regulator_bulk_enable(int num_consumers,
2739			  struct regulator_bulk_data *consumers)
2740{
2741	LIST_HEAD(async_domain);
2742	int i;
2743	int ret = 0;
2744
2745	for (i = 0; i < num_consumers; i++) {
2746		if (consumers[i].consumer->always_on)
2747			consumers[i].ret = 0;
2748		else
2749			async_schedule_domain(regulator_bulk_enable_async,
2750					      &consumers[i], &async_domain);
2751	}
2752
2753	async_synchronize_full_domain(&async_domain);
2754
2755	/* If any consumer failed we need to unwind any that succeeded */
2756	for (i = 0; i < num_consumers; i++) {
2757		if (consumers[i].ret != 0) {
2758			ret = consumers[i].ret;
2759			goto err;
2760		}
2761	}
2762
2763	return 0;
2764
2765err:
2766	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2767	while (--i >= 0)
2768		regulator_disable(consumers[i].consumer);
2769
2770	return ret;
2771}
2772EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2773
2774/**
2775 * regulator_bulk_disable - disable multiple regulator consumers
2776 *
2777 * @num_consumers: Number of consumers
2778 * @consumers:     Consumer data; clients are stored here.
2779 * @return         0 on success, an errno on failure
2780 *
2781 * This convenience API allows consumers to disable multiple regulator
2782 * clients in a single API call.  If any consumers cannot be disabled
2783 * then any others that were disabled will be enabled again prior to
2784 * return.
2785 */
2786int regulator_bulk_disable(int num_consumers,
2787			   struct regulator_bulk_data *consumers)
2788{
2789	int i;
2790	int ret, r;
2791
2792	for (i = num_consumers - 1; i >= 0; --i) {
2793		ret = regulator_disable(consumers[i].consumer);
2794		if (ret != 0)
2795			goto err;
2796	}
2797
2798	return 0;
2799
2800err:
2801	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2802	for (++i; i < num_consumers; ++i) {
2803		r = regulator_enable(consumers[i].consumer);
2804		if (r != 0)
2805			pr_err("Failed to reename %s: %d\n",
2806			       consumers[i].supply, r);
2807	}
2808
2809	return ret;
2810}
2811EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2812
2813/**
2814 * regulator_bulk_force_disable - force disable multiple regulator consumers
2815 *
2816 * @num_consumers: Number of consumers
2817 * @consumers:     Consumer data; clients are stored here.
2818 * @return         0 on success, an errno on failure
2819 *
2820 * This convenience API allows consumers to forcibly disable multiple regulator
2821 * clients in a single API call.
2822 * NOTE: This should be used for situations when device damage will
2823 * likely occur if the regulators are not disabled (e.g. over temp).
2824 * Although regulator_force_disable function call for some consumers can
2825 * return error numbers, the function is called for all consumers.
2826 */
2827int regulator_bulk_force_disable(int num_consumers,
2828			   struct regulator_bulk_data *consumers)
2829{
2830	int i;
2831	int ret;
2832
2833	for (i = 0; i < num_consumers; i++)
2834		consumers[i].ret =
2835			    regulator_force_disable(consumers[i].consumer);
2836
2837	for (i = 0; i < num_consumers; i++) {
2838		if (consumers[i].ret != 0) {
2839			ret = consumers[i].ret;
2840			goto out;
2841		}
2842	}
2843
2844	return 0;
2845out:
2846	return ret;
2847}
2848EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2849
2850/**
2851 * regulator_bulk_free - free multiple regulator consumers
2852 *
2853 * @num_consumers: Number of consumers
2854 * @consumers:     Consumer data; clients are stored here.
2855 *
2856 * This convenience API allows consumers to free multiple regulator
2857 * clients in a single API call.
2858 */
2859void regulator_bulk_free(int num_consumers,
2860			 struct regulator_bulk_data *consumers)
2861{
2862	int i;
2863
2864	for (i = 0; i < num_consumers; i++) {
2865		regulator_put(consumers[i].consumer);
2866		consumers[i].consumer = NULL;
2867	}
2868}
2869EXPORT_SYMBOL_GPL(regulator_bulk_free);
2870
2871/**
2872 * regulator_notifier_call_chain - call regulator event notifier
2873 * @rdev: regulator source
2874 * @event: notifier block
2875 * @data: callback-specific data.
2876 *
2877 * Called by regulator drivers to notify clients a regulator event has
2878 * occurred. We also notify regulator clients downstream.
2879 * Note lock must be held by caller.
2880 */
2881int regulator_notifier_call_chain(struct regulator_dev *rdev,
2882				  unsigned long event, void *data)
2883{
2884	_notifier_call_chain(rdev, event, data);
2885	return NOTIFY_DONE;
2886
2887}
2888EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2889
2890/**
2891 * regulator_mode_to_status - convert a regulator mode into a status
2892 *
2893 * @mode: Mode to convert
2894 *
2895 * Convert a regulator mode into a status.
2896 */
2897int regulator_mode_to_status(unsigned int mode)
2898{
2899	switch (mode) {
2900	case REGULATOR_MODE_FAST:
2901		return REGULATOR_STATUS_FAST;
2902	case REGULATOR_MODE_NORMAL:
2903		return REGULATOR_STATUS_NORMAL;
2904	case REGULATOR_MODE_IDLE:
2905		return REGULATOR_STATUS_IDLE;
2906	case REGULATOR_STATUS_STANDBY:
2907		return REGULATOR_STATUS_STANDBY;
2908	default:
2909		return 0;
2910	}
2911}
2912EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2913
2914/*
2915 * To avoid cluttering sysfs (and memory) with useless state, only
2916 * create attributes that can be meaningfully displayed.
2917 */
2918static int add_regulator_attributes(struct regulator_dev *rdev)
2919{
2920	struct device		*dev = &rdev->dev;
2921	struct regulator_ops	*ops = rdev->desc->ops;
2922	int			status = 0;
2923
2924	/* some attributes need specific methods to be displayed */
2925	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2926	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2927		status = device_create_file(dev, &dev_attr_microvolts);
2928		if (status < 0)
2929			return status;
2930	}
2931	if (ops->get_current_limit) {
2932		status = device_create_file(dev, &dev_attr_microamps);
2933		if (status < 0)
2934			return status;
2935	}
2936	if (ops->get_mode) {
2937		status = device_create_file(dev, &dev_attr_opmode);
2938		if (status < 0)
2939			return status;
2940	}
2941	if (ops->is_enabled) {
2942		status = device_create_file(dev, &dev_attr_state);
2943		if (status < 0)
2944			return status;
2945	}
2946	if (ops->get_status) {
2947		status = device_create_file(dev, &dev_attr_status);
2948		if (status < 0)
2949			return status;
2950	}
2951
2952	/* some attributes are type-specific */
2953	if (rdev->desc->type == REGULATOR_CURRENT) {
2954		status = device_create_file(dev, &dev_attr_requested_microamps);
2955		if (status < 0)
2956			return status;
2957	}
2958
2959	/* all the other attributes exist to support constraints;
2960	 * don't show them if there are no constraints, or if the
2961	 * relevant supporting methods are missing.
2962	 */
2963	if (!rdev->constraints)
2964		return status;
2965
2966	/* constraints need specific supporting methods */
2967	if (ops->set_voltage || ops->set_voltage_sel) {
2968		status = device_create_file(dev, &dev_attr_min_microvolts);
2969		if (status < 0)
2970			return status;
2971		status = device_create_file(dev, &dev_attr_max_microvolts);
2972		if (status < 0)
2973			return status;
2974	}
2975	if (ops->set_current_limit) {
2976		status = device_create_file(dev, &dev_attr_min_microamps);
2977		if (status < 0)
2978			return status;
2979		status = device_create_file(dev, &dev_attr_max_microamps);
2980		if (status < 0)
2981			return status;
2982	}
2983
2984	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2985	if (status < 0)
2986		return status;
2987	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2988	if (status < 0)
2989		return status;
2990	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2991	if (status < 0)
2992		return status;
2993
2994	if (ops->set_suspend_voltage) {
2995		status = device_create_file(dev,
2996				&dev_attr_suspend_standby_microvolts);
2997		if (status < 0)
2998			return status;
2999		status = device_create_file(dev,
3000				&dev_attr_suspend_mem_microvolts);
3001		if (status < 0)
3002			return status;
3003		status = device_create_file(dev,
3004				&dev_attr_suspend_disk_microvolts);
3005		if (status < 0)
3006			return status;
3007	}
3008
3009	if (ops->set_suspend_mode) {
3010		status = device_create_file(dev,
3011				&dev_attr_suspend_standby_mode);
3012		if (status < 0)
3013			return status;
3014		status = device_create_file(dev,
3015				&dev_attr_suspend_mem_mode);
3016		if (status < 0)
3017			return status;
3018		status = device_create_file(dev,
3019				&dev_attr_suspend_disk_mode);
3020		if (status < 0)
3021			return status;
3022	}
3023
3024	return status;
3025}
3026
3027static void rdev_init_debugfs(struct regulator_dev *rdev)
3028{
3029	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3030	if (!rdev->debugfs) {
3031		rdev_warn(rdev, "Failed to create debugfs directory\n");
3032		return;
3033	}
3034
3035	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3036			   &rdev->use_count);
3037	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3038			   &rdev->open_count);
3039}
3040
3041/**
3042 * regulator_register - register regulator
3043 * @regulator_desc: regulator to register
3044 * @config: runtime configuration for regulator
3045 *
3046 * Called by regulator drivers to register a regulator.
3047 * Returns 0 on success.
3048 */
3049struct regulator_dev *
3050regulator_register(const struct regulator_desc *regulator_desc,
3051		   const struct regulator_config *config)
3052{
3053	const struct regulation_constraints *constraints = NULL;
3054	const struct regulator_init_data *init_data;
3055	static atomic_t regulator_no = ATOMIC_INIT(0);
3056	struct regulator_dev *rdev;
3057	struct device *dev;
3058	int ret, i;
3059	const char *supply = NULL;
3060
3061	if (regulator_desc == NULL || config == NULL)
3062		return ERR_PTR(-EINVAL);
3063
3064	dev = config->dev;
3065	WARN_ON(!dev);
3066
3067	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3068		return ERR_PTR(-EINVAL);
3069
3070	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3071	    regulator_desc->type != REGULATOR_CURRENT)
3072		return ERR_PTR(-EINVAL);
3073
3074	/* Only one of each should be implemented */
3075	WARN_ON(regulator_desc->ops->get_voltage &&
3076		regulator_desc->ops->get_voltage_sel);
3077	WARN_ON(regulator_desc->ops->set_voltage &&
3078		regulator_desc->ops->set_voltage_sel);
3079
3080	/* If we're using selectors we must implement list_voltage. */
3081	if (regulator_desc->ops->get_voltage_sel &&
3082	    !regulator_desc->ops->list_voltage) {
3083		return ERR_PTR(-EINVAL);
3084	}
3085	if (regulator_desc->ops->set_voltage_sel &&
3086	    !regulator_desc->ops->list_voltage) {
3087		return ERR_PTR(-EINVAL);
3088	}
3089
3090	init_data = config->init_data;
3091
3092	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3093	if (rdev == NULL)
3094		return ERR_PTR(-ENOMEM);
3095
3096	mutex_lock(&regulator_list_mutex);
3097
3098	mutex_init(&rdev->mutex);
3099	rdev->reg_data = config->driver_data;
3100	rdev->owner = regulator_desc->owner;
3101	rdev->desc = regulator_desc;
3102	rdev->regmap = config->regmap;
3103	INIT_LIST_HEAD(&rdev->consumer_list);
3104	INIT_LIST_HEAD(&rdev->list);
3105	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3106	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3107
3108	/* preform any regulator specific init */
3109	if (init_data && init_data->regulator_init) {
3110		ret = init_data->regulator_init(rdev->reg_data);
3111		if (ret < 0)
3112			goto clean;
3113	}
3114
3115	/* register with sysfs */
3116	rdev->dev.class = &regulator_class;
3117	rdev->dev.of_node = config->of_node;
3118	rdev->dev.parent = dev;
3119	dev_set_name(&rdev->dev, "regulator.%d",
3120		     atomic_inc_return(&regulator_no) - 1);
3121	ret = device_register(&rdev->dev);
3122	if (ret != 0) {
3123		put_device(&rdev->dev);
3124		goto clean;
3125	}
3126
3127	dev_set_drvdata(&rdev->dev, rdev);
3128
3129	/* set regulator constraints */
3130	if (init_data)
3131		constraints = &init_data->constraints;
3132
3133	ret = set_machine_constraints(rdev, constraints);
3134	if (ret < 0)
3135		goto scrub;
3136
3137	/* add attributes supported by this regulator */
3138	ret = add_regulator_attributes(rdev);
3139	if (ret < 0)
3140		goto scrub;
3141
3142	if (init_data && init_data->supply_regulator)
3143		supply = init_data->supply_regulator;
3144	else if (regulator_desc->supply_name)
3145		supply = regulator_desc->supply_name;
3146
3147	if (supply) {
3148		struct regulator_dev *r;
3149
3150		r = regulator_dev_lookup(dev, supply, &ret);
3151
3152		if (!r) {
3153			dev_err(dev, "Failed to find supply %s\n", supply);
3154			ret = -EPROBE_DEFER;
3155			goto scrub;
3156		}
3157
3158		ret = set_supply(rdev, r);
3159		if (ret < 0)
3160			goto scrub;
3161
3162		/* Enable supply if rail is enabled */
3163		if (rdev->desc->ops->is_enabled &&
3164				rdev->desc->ops->is_enabled(rdev)) {
3165			ret = regulator_enable(rdev->supply);
3166			if (ret < 0)
3167				goto scrub;
3168		}
3169	}
3170
3171	/* add consumers devices */
3172	if (init_data) {
3173		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3174			ret = set_consumer_device_supply(rdev,
3175				init_data->consumer_supplies[i].dev_name,
3176				init_data->consumer_supplies[i].supply);
3177			if (ret < 0) {
3178				dev_err(dev, "Failed to set supply %s\n",
3179					init_data->consumer_supplies[i].supply);
3180				goto unset_supplies;
3181			}
3182		}
3183	}
3184
3185	list_add(&rdev->list, &regulator_list);
3186
3187	rdev_init_debugfs(rdev);
3188out:
3189	mutex_unlock(&regulator_list_mutex);
3190	return rdev;
3191
3192unset_supplies:
3193	unset_regulator_supplies(rdev);
3194
3195scrub:
3196	kfree(rdev->constraints);
3197	device_unregister(&rdev->dev);
3198	/* device core frees rdev */
3199	rdev = ERR_PTR(ret);
3200	goto out;
3201
3202clean:
3203	kfree(rdev);
3204	rdev = ERR_PTR(ret);
3205	goto out;
3206}
3207EXPORT_SYMBOL_GPL(regulator_register);
3208
3209/**
3210 * regulator_unregister - unregister regulator
3211 * @rdev: regulator to unregister
3212 *
3213 * Called by regulator drivers to unregister a regulator.
3214 */
3215void regulator_unregister(struct regulator_dev *rdev)
3216{
3217	if (rdev == NULL)
3218		return;
3219
3220	if (rdev->supply)
3221		regulator_put(rdev->supply);
3222	mutex_lock(&regulator_list_mutex);
3223	debugfs_remove_recursive(rdev->debugfs);
3224	flush_work_sync(&rdev->disable_work.work);
3225	WARN_ON(rdev->open_count);
3226	unset_regulator_supplies(rdev);
3227	list_del(&rdev->list);
3228	kfree(rdev->constraints);
3229	device_unregister(&rdev->dev);
3230	mutex_unlock(&regulator_list_mutex);
3231}
3232EXPORT_SYMBOL_GPL(regulator_unregister);
3233
3234/**
3235 * regulator_suspend_prepare - prepare regulators for system wide suspend
3236 * @state: system suspend state
3237 *
3238 * Configure each regulator with it's suspend operating parameters for state.
3239 * This will usually be called by machine suspend code prior to supending.
3240 */
3241int regulator_suspend_prepare(suspend_state_t state)
3242{
3243	struct regulator_dev *rdev;
3244	int ret = 0;
3245
3246	/* ON is handled by regulator active state */
3247	if (state == PM_SUSPEND_ON)
3248		return -EINVAL;
3249
3250	mutex_lock(&regulator_list_mutex);
3251	list_for_each_entry(rdev, &regulator_list, list) {
3252
3253		mutex_lock(&rdev->mutex);
3254		ret = suspend_prepare(rdev, state);
3255		mutex_unlock(&rdev->mutex);
3256
3257		if (ret < 0) {
3258			rdev_err(rdev, "failed to prepare\n");
3259			goto out;
3260		}
3261	}
3262out:
3263	mutex_unlock(&regulator_list_mutex);
3264	return ret;
3265}
3266EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3267
3268/**
3269 * regulator_suspend_finish - resume regulators from system wide suspend
3270 *
3271 * Turn on regulators that might be turned off by regulator_suspend_prepare
3272 * and that should be turned on according to the regulators properties.
3273 */
3274int regulator_suspend_finish(void)
3275{
3276	struct regulator_dev *rdev;
3277	int ret = 0, error;
3278
3279	mutex_lock(&regulator_list_mutex);
3280	list_for_each_entry(rdev, &regulator_list, list) {
3281		struct regulator_ops *ops = rdev->desc->ops;
3282
3283		mutex_lock(&rdev->mutex);
3284		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3285				ops->enable) {
3286			error = ops->enable(rdev);
3287			if (error)
3288				ret = error;
3289		} else {
3290			if (!has_full_constraints)
3291				goto unlock;
3292			if (!ops->disable)
3293				goto unlock;
3294			if (ops->is_enabled && !ops->is_enabled(rdev))
3295				goto unlock;
3296
3297			error = ops->disable(rdev);
3298			if (error)
3299				ret = error;
3300		}
3301unlock:
3302		mutex_unlock(&rdev->mutex);
3303	}
3304	mutex_unlock(&regulator_list_mutex);
3305	return ret;
3306}
3307EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3308
3309/**
3310 * regulator_has_full_constraints - the system has fully specified constraints
3311 *
3312 * Calling this function will cause the regulator API to disable all
3313 * regulators which have a zero use count and don't have an always_on
3314 * constraint in a late_initcall.
3315 *
3316 * The intention is that this will become the default behaviour in a
3317 * future kernel release so users are encouraged to use this facility
3318 * now.
3319 */
3320void regulator_has_full_constraints(void)
3321{
3322	has_full_constraints = 1;
3323}
3324EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3325
3326/**
3327 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3328 *
3329 * Calling this function will cause the regulator API to provide a
3330 * dummy regulator to consumers if no physical regulator is found,
3331 * allowing most consumers to proceed as though a regulator were
3332 * configured.  This allows systems such as those with software
3333 * controllable regulators for the CPU core only to be brought up more
3334 * readily.
3335 */
3336void regulator_use_dummy_regulator(void)
3337{
3338	board_wants_dummy_regulator = true;
3339}
3340EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3341
3342/**
3343 * rdev_get_drvdata - get rdev regulator driver data
3344 * @rdev: regulator
3345 *
3346 * Get rdev regulator driver private data. This call can be used in the
3347 * regulator driver context.
3348 */
3349void *rdev_get_drvdata(struct regulator_dev *rdev)
3350{
3351	return rdev->reg_data;
3352}
3353EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3354
3355/**
3356 * regulator_get_drvdata - get regulator driver data
3357 * @regulator: regulator
3358 *
3359 * Get regulator driver private data. This call can be used in the consumer
3360 * driver context when non API regulator specific functions need to be called.
3361 */
3362void *regulator_get_drvdata(struct regulator *regulator)
3363{
3364	return regulator->rdev->reg_data;
3365}
3366EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3367
3368/**
3369 * regulator_set_drvdata - set regulator driver data
3370 * @regulator: regulator
3371 * @data: data
3372 */
3373void regulator_set_drvdata(struct regulator *regulator, void *data)
3374{
3375	regulator->rdev->reg_data = data;
3376}
3377EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3378
3379/**
3380 * regulator_get_id - get regulator ID
3381 * @rdev: regulator
3382 */
3383int rdev_get_id(struct regulator_dev *rdev)
3384{
3385	return rdev->desc->id;
3386}
3387EXPORT_SYMBOL_GPL(rdev_get_id);
3388
3389struct device *rdev_get_dev(struct regulator_dev *rdev)
3390{
3391	return &rdev->dev;
3392}
3393EXPORT_SYMBOL_GPL(rdev_get_dev);
3394
3395void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3396{
3397	return reg_init_data->driver_data;
3398}
3399EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3400
3401#ifdef CONFIG_DEBUG_FS
3402static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3403				    size_t count, loff_t *ppos)
3404{
3405	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3406	ssize_t len, ret = 0;
3407	struct regulator_map *map;
3408
3409	if (!buf)
3410		return -ENOMEM;
3411
3412	list_for_each_entry(map, &regulator_map_list, list) {
3413		len = snprintf(buf + ret, PAGE_SIZE - ret,
3414			       "%s -> %s.%s\n",
3415			       rdev_get_name(map->regulator), map->dev_name,
3416			       map->supply);
3417		if (len >= 0)
3418			ret += len;
3419		if (ret > PAGE_SIZE) {
3420			ret = PAGE_SIZE;
3421			break;
3422		}
3423	}
3424
3425	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3426
3427	kfree(buf);
3428
3429	return ret;
3430}
3431#endif
3432
3433static const struct file_operations supply_map_fops = {
3434#ifdef CONFIG_DEBUG_FS
3435	.read = supply_map_read_file,
3436	.llseek = default_llseek,
3437#endif
3438};
3439
3440static int __init regulator_init(void)
3441{
3442	int ret;
3443
3444	ret = class_register(&regulator_class);
3445
3446	debugfs_root = debugfs_create_dir("regulator", NULL);
3447	if (!debugfs_root)
3448		pr_warn("regulator: Failed to create debugfs directory\n");
3449
3450	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3451			    &supply_map_fops);
3452
3453	regulator_dummy_init();
3454
3455	return ret;
3456}
3457
3458/* init early to allow our consumers to complete system booting */
3459core_initcall(regulator_init);
3460
3461static int __init regulator_init_complete(void)
3462{
3463	struct regulator_dev *rdev;
3464	struct regulator_ops *ops;
3465	struct regulation_constraints *c;
3466	int enabled, ret;
3467
3468	mutex_lock(&regulator_list_mutex);
3469
3470	/* If we have a full configuration then disable any regulators
3471	 * which are not in use or always_on.  This will become the
3472	 * default behaviour in the future.
3473	 */
3474	list_for_each_entry(rdev, &regulator_list, list) {
3475		ops = rdev->desc->ops;
3476		c = rdev->constraints;
3477
3478		if (!ops->disable || (c && c->always_on))
3479			continue;
3480
3481		mutex_lock(&rdev->mutex);
3482
3483		if (rdev->use_count)
3484			goto unlock;
3485
3486		/* If we can't read the status assume it's on. */
3487		if (ops->is_enabled)
3488			enabled = ops->is_enabled(rdev);
3489		else
3490			enabled = 1;
3491
3492		if (!enabled)
3493			goto unlock;
3494
3495		if (has_full_constraints) {
3496			/* We log since this may kill the system if it
3497			 * goes wrong. */
3498			rdev_info(rdev, "disabling\n");
3499			ret = ops->disable(rdev);
3500			if (ret != 0) {
3501				rdev_err(rdev, "couldn't disable: %d\n", ret);
3502			}
3503		} else {
3504			/* The intention is that in future we will
3505			 * assume that full constraints are provided
3506			 * so warn even if we aren't going to do
3507			 * anything here.
3508			 */
3509			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3510		}
3511
3512unlock:
3513		mutex_unlock(&rdev->mutex);
3514	}
3515
3516	mutex_unlock(&regulator_list_mutex);
3517
3518	return 0;
3519}
3520late_initcall(regulator_init_complete);
3521