core.c revision cd94b5053081963614f6ad77b9b66a7968056c84
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/*
33 * struct regulator_map
34 *
35 * Used to provide symbolic supply names to devices.
36 */
37struct regulator_map {
38	struct list_head list;
39	struct device *dev;
40	const char *supply;
41	struct regulator_dev *regulator;
42};
43
44/*
45 * struct regulator
46 *
47 * One for each consumer device.
48 */
49struct regulator {
50	struct device *dev;
51	struct list_head list;
52	int uA_load;
53	int min_uV;
54	int max_uV;
55	char *supply_name;
56	struct device_attribute dev_attr;
57	struct regulator_dev *rdev;
58};
59
60static int _regulator_is_enabled(struct regulator_dev *rdev);
61static int _regulator_disable(struct regulator_dev *rdev);
62static int _regulator_get_voltage(struct regulator_dev *rdev);
63static int _regulator_get_current_limit(struct regulator_dev *rdev);
64static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
65static void _notifier_call_chain(struct regulator_dev *rdev,
66				  unsigned long event, void *data);
67
68/* gets the regulator for a given consumer device */
69static struct regulator *get_device_regulator(struct device *dev)
70{
71	struct regulator *regulator = NULL;
72	struct regulator_dev *rdev;
73
74	mutex_lock(&regulator_list_mutex);
75	list_for_each_entry(rdev, &regulator_list, list) {
76		mutex_lock(&rdev->mutex);
77		list_for_each_entry(regulator, &rdev->consumer_list, list) {
78			if (regulator->dev == dev) {
79				mutex_unlock(&rdev->mutex);
80				mutex_unlock(&regulator_list_mutex);
81				return regulator;
82			}
83		}
84		mutex_unlock(&rdev->mutex);
85	}
86	mutex_unlock(&regulator_list_mutex);
87	return NULL;
88}
89
90/* Platform voltage constraint check */
91static int regulator_check_voltage(struct regulator_dev *rdev,
92				   int *min_uV, int *max_uV)
93{
94	BUG_ON(*min_uV > *max_uV);
95
96	if (!rdev->constraints) {
97		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
98		       rdev->desc->name);
99		return -ENODEV;
100	}
101	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
102		printk(KERN_ERR "%s: operation not allowed for %s\n",
103		       __func__, rdev->desc->name);
104		return -EPERM;
105	}
106
107	if (*max_uV > rdev->constraints->max_uV)
108		*max_uV = rdev->constraints->max_uV;
109	if (*min_uV < rdev->constraints->min_uV)
110		*min_uV = rdev->constraints->min_uV;
111
112	if (*min_uV > *max_uV)
113		return -EINVAL;
114
115	return 0;
116}
117
118/* current constraint check */
119static int regulator_check_current_limit(struct regulator_dev *rdev,
120					int *min_uA, int *max_uA)
121{
122	BUG_ON(*min_uA > *max_uA);
123
124	if (!rdev->constraints) {
125		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126		       rdev->desc->name);
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
130		printk(KERN_ERR "%s: operation not allowed for %s\n",
131		       __func__, rdev->desc->name);
132		return -EPERM;
133	}
134
135	if (*max_uA > rdev->constraints->max_uA)
136		*max_uA = rdev->constraints->max_uA;
137	if (*min_uA < rdev->constraints->min_uA)
138		*min_uA = rdev->constraints->min_uA;
139
140	if (*min_uA > *max_uA)
141		return -EINVAL;
142
143	return 0;
144}
145
146/* operating mode constraint check */
147static int regulator_check_mode(struct regulator_dev *rdev, int mode)
148{
149	switch (mode) {
150	case REGULATOR_MODE_FAST:
151	case REGULATOR_MODE_NORMAL:
152	case REGULATOR_MODE_IDLE:
153	case REGULATOR_MODE_STANDBY:
154		break;
155	default:
156		return -EINVAL;
157	}
158
159	if (!rdev->constraints) {
160		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
161		       rdev->desc->name);
162		return -ENODEV;
163	}
164	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
165		printk(KERN_ERR "%s: operation not allowed for %s\n",
166		       __func__, rdev->desc->name);
167		return -EPERM;
168	}
169	if (!(rdev->constraints->valid_modes_mask & mode)) {
170		printk(KERN_ERR "%s: invalid mode %x for %s\n",
171		       __func__, mode, rdev->desc->name);
172		return -EINVAL;
173	}
174	return 0;
175}
176
177/* dynamic regulator mode switching constraint check */
178static int regulator_check_drms(struct regulator_dev *rdev)
179{
180	if (!rdev->constraints) {
181		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
182		       rdev->desc->name);
183		return -ENODEV;
184	}
185	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
186		printk(KERN_ERR "%s: operation not allowed for %s\n",
187		       __func__, rdev->desc->name);
188		return -EPERM;
189	}
190	return 0;
191}
192
193static ssize_t device_requested_uA_show(struct device *dev,
194			     struct device_attribute *attr, char *buf)
195{
196	struct regulator *regulator;
197
198	regulator = get_device_regulator(dev);
199	if (regulator == NULL)
200		return 0;
201
202	return sprintf(buf, "%d\n", regulator->uA_load);
203}
204
205static ssize_t regulator_uV_show(struct device *dev,
206				struct device_attribute *attr, char *buf)
207{
208	struct regulator_dev *rdev = dev_get_drvdata(dev);
209	ssize_t ret;
210
211	mutex_lock(&rdev->mutex);
212	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
213	mutex_unlock(&rdev->mutex);
214
215	return ret;
216}
217static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
218
219static ssize_t regulator_uA_show(struct device *dev,
220				struct device_attribute *attr, char *buf)
221{
222	struct regulator_dev *rdev = dev_get_drvdata(dev);
223
224	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
225}
226static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
227
228static ssize_t regulator_name_show(struct device *dev,
229			     struct device_attribute *attr, char *buf)
230{
231	struct regulator_dev *rdev = dev_get_drvdata(dev);
232	const char *name;
233
234	if (rdev->constraints->name)
235		name = rdev->constraints->name;
236	else if (rdev->desc->name)
237		name = rdev->desc->name;
238	else
239		name = "";
240
241	return sprintf(buf, "%s\n", name);
242}
243
244static ssize_t regulator_print_opmode(char *buf, int mode)
245{
246	switch (mode) {
247	case REGULATOR_MODE_FAST:
248		return sprintf(buf, "fast\n");
249	case REGULATOR_MODE_NORMAL:
250		return sprintf(buf, "normal\n");
251	case REGULATOR_MODE_IDLE:
252		return sprintf(buf, "idle\n");
253	case REGULATOR_MODE_STANDBY:
254		return sprintf(buf, "standby\n");
255	}
256	return sprintf(buf, "unknown\n");
257}
258
259static ssize_t regulator_opmode_show(struct device *dev,
260				    struct device_attribute *attr, char *buf)
261{
262	struct regulator_dev *rdev = dev_get_drvdata(dev);
263
264	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
265}
266static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
267
268static ssize_t regulator_print_state(char *buf, int state)
269{
270	if (state > 0)
271		return sprintf(buf, "enabled\n");
272	else if (state == 0)
273		return sprintf(buf, "disabled\n");
274	else
275		return sprintf(buf, "unknown\n");
276}
277
278static ssize_t regulator_state_show(struct device *dev,
279				   struct device_attribute *attr, char *buf)
280{
281	struct regulator_dev *rdev = dev_get_drvdata(dev);
282
283	return regulator_print_state(buf, _regulator_is_enabled(rdev));
284}
285static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
286
287static ssize_t regulator_status_show(struct device *dev,
288				   struct device_attribute *attr, char *buf)
289{
290	struct regulator_dev *rdev = dev_get_drvdata(dev);
291	int status;
292	char *label;
293
294	status = rdev->desc->ops->get_status(rdev);
295	if (status < 0)
296		return status;
297
298	switch (status) {
299	case REGULATOR_STATUS_OFF:
300		label = "off";
301		break;
302	case REGULATOR_STATUS_ON:
303		label = "on";
304		break;
305	case REGULATOR_STATUS_ERROR:
306		label = "error";
307		break;
308	case REGULATOR_STATUS_FAST:
309		label = "fast";
310		break;
311	case REGULATOR_STATUS_NORMAL:
312		label = "normal";
313		break;
314	case REGULATOR_STATUS_IDLE:
315		label = "idle";
316		break;
317	case REGULATOR_STATUS_STANDBY:
318		label = "standby";
319		break;
320	default:
321		return -ERANGE;
322	}
323
324	return sprintf(buf, "%s\n", label);
325}
326static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
327
328static ssize_t regulator_min_uA_show(struct device *dev,
329				    struct device_attribute *attr, char *buf)
330{
331	struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333	if (!rdev->constraints)
334		return sprintf(buf, "constraint not defined\n");
335
336	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
337}
338static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
339
340static ssize_t regulator_max_uA_show(struct device *dev,
341				    struct device_attribute *attr, char *buf)
342{
343	struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345	if (!rdev->constraints)
346		return sprintf(buf, "constraint not defined\n");
347
348	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
349}
350static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
351
352static ssize_t regulator_min_uV_show(struct device *dev,
353				    struct device_attribute *attr, char *buf)
354{
355	struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357	if (!rdev->constraints)
358		return sprintf(buf, "constraint not defined\n");
359
360	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
361}
362static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
363
364static ssize_t regulator_max_uV_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	if (!rdev->constraints)
370		return sprintf(buf, "constraint not defined\n");
371
372	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
373}
374static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
375
376static ssize_t regulator_total_uA_show(struct device *dev,
377				      struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	struct regulator *regulator;
381	int uA = 0;
382
383	mutex_lock(&rdev->mutex);
384	list_for_each_entry(regulator, &rdev->consumer_list, list)
385	    uA += regulator->uA_load;
386	mutex_unlock(&rdev->mutex);
387	return sprintf(buf, "%d\n", uA);
388}
389static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
390
391static ssize_t regulator_num_users_show(struct device *dev,
392				      struct device_attribute *attr, char *buf)
393{
394	struct regulator_dev *rdev = dev_get_drvdata(dev);
395	return sprintf(buf, "%d\n", rdev->use_count);
396}
397
398static ssize_t regulator_type_show(struct device *dev,
399				  struct device_attribute *attr, char *buf)
400{
401	struct regulator_dev *rdev = dev_get_drvdata(dev);
402
403	switch (rdev->desc->type) {
404	case REGULATOR_VOLTAGE:
405		return sprintf(buf, "voltage\n");
406	case REGULATOR_CURRENT:
407		return sprintf(buf, "current\n");
408	}
409	return sprintf(buf, "unknown\n");
410}
411
412static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
413				struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
418}
419static DEVICE_ATTR(suspend_mem_microvolts, 0444,
420		regulator_suspend_mem_uV_show, NULL);
421
422static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
423				struct device_attribute *attr, char *buf)
424{
425	struct regulator_dev *rdev = dev_get_drvdata(dev);
426
427	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
428}
429static DEVICE_ATTR(suspend_disk_microvolts, 0444,
430		regulator_suspend_disk_uV_show, NULL);
431
432static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
433				struct device_attribute *attr, char *buf)
434{
435	struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
438}
439static DEVICE_ATTR(suspend_standby_microvolts, 0444,
440		regulator_suspend_standby_uV_show, NULL);
441
442static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
443				struct device_attribute *attr, char *buf)
444{
445	struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447	return regulator_print_opmode(buf,
448		rdev->constraints->state_mem.mode);
449}
450static DEVICE_ATTR(suspend_mem_mode, 0444,
451		regulator_suspend_mem_mode_show, NULL);
452
453static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
454				struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	return regulator_print_opmode(buf,
459		rdev->constraints->state_disk.mode);
460}
461static DEVICE_ATTR(suspend_disk_mode, 0444,
462		regulator_suspend_disk_mode_show, NULL);
463
464static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
465				struct device_attribute *attr, char *buf)
466{
467	struct regulator_dev *rdev = dev_get_drvdata(dev);
468
469	return regulator_print_opmode(buf,
470		rdev->constraints->state_standby.mode);
471}
472static DEVICE_ATTR(suspend_standby_mode, 0444,
473		regulator_suspend_standby_mode_show, NULL);
474
475static ssize_t regulator_suspend_mem_state_show(struct device *dev,
476				   struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479
480	return regulator_print_state(buf,
481			rdev->constraints->state_mem.enabled);
482}
483static DEVICE_ATTR(suspend_mem_state, 0444,
484		regulator_suspend_mem_state_show, NULL);
485
486static ssize_t regulator_suspend_disk_state_show(struct device *dev,
487				   struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490
491	return regulator_print_state(buf,
492			rdev->constraints->state_disk.enabled);
493}
494static DEVICE_ATTR(suspend_disk_state, 0444,
495		regulator_suspend_disk_state_show, NULL);
496
497static ssize_t regulator_suspend_standby_state_show(struct device *dev,
498				   struct device_attribute *attr, char *buf)
499{
500	struct regulator_dev *rdev = dev_get_drvdata(dev);
501
502	return regulator_print_state(buf,
503			rdev->constraints->state_standby.enabled);
504}
505static DEVICE_ATTR(suspend_standby_state, 0444,
506		regulator_suspend_standby_state_show, NULL);
507
508
509/*
510 * These are the only attributes are present for all regulators.
511 * Other attributes are a function of regulator functionality.
512 */
513static struct device_attribute regulator_dev_attrs[] = {
514	__ATTR(name, 0444, regulator_name_show, NULL),
515	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
516	__ATTR(type, 0444, regulator_type_show, NULL),
517	__ATTR_NULL,
518};
519
520static void regulator_dev_release(struct device *dev)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523	kfree(rdev);
524}
525
526static struct class regulator_class = {
527	.name = "regulator",
528	.dev_release = regulator_dev_release,
529	.dev_attrs = regulator_dev_attrs,
530};
531
532/* Calculate the new optimum regulator operating mode based on the new total
533 * consumer load. All locks held by caller */
534static void drms_uA_update(struct regulator_dev *rdev)
535{
536	struct regulator *sibling;
537	int current_uA = 0, output_uV, input_uV, err;
538	unsigned int mode;
539
540	err = regulator_check_drms(rdev);
541	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
542	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
543	return;
544
545	/* get output voltage */
546	output_uV = rdev->desc->ops->get_voltage(rdev);
547	if (output_uV <= 0)
548		return;
549
550	/* get input voltage */
551	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
552		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
553	else
554		input_uV = rdev->constraints->input_uV;
555	if (input_uV <= 0)
556		return;
557
558	/* calc total requested load */
559	list_for_each_entry(sibling, &rdev->consumer_list, list)
560	    current_uA += sibling->uA_load;
561
562	/* now get the optimum mode for our new total regulator load */
563	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
564						  output_uV, current_uA);
565
566	/* check the new mode is allowed */
567	err = regulator_check_mode(rdev, mode);
568	if (err == 0)
569		rdev->desc->ops->set_mode(rdev, mode);
570}
571
572static int suspend_set_state(struct regulator_dev *rdev,
573	struct regulator_state *rstate)
574{
575	int ret = 0;
576
577	/* enable & disable are mandatory for suspend control */
578	if (!rdev->desc->ops->set_suspend_enable ||
579		!rdev->desc->ops->set_suspend_disable) {
580		printk(KERN_ERR "%s: no way to set suspend state\n",
581			__func__);
582		return -EINVAL;
583	}
584
585	if (rstate->enabled)
586		ret = rdev->desc->ops->set_suspend_enable(rdev);
587	else
588		ret = rdev->desc->ops->set_suspend_disable(rdev);
589	if (ret < 0) {
590		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
591		return ret;
592	}
593
594	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
595		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
596		if (ret < 0) {
597			printk(KERN_ERR "%s: failed to set voltage\n",
598				__func__);
599			return ret;
600		}
601	}
602
603	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
604		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
605		if (ret < 0) {
606			printk(KERN_ERR "%s: failed to set mode\n", __func__);
607			return ret;
608		}
609	}
610	return ret;
611}
612
613/* locks held by caller */
614static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
615{
616	if (!rdev->constraints)
617		return -EINVAL;
618
619	switch (state) {
620	case PM_SUSPEND_STANDBY:
621		return suspend_set_state(rdev,
622			&rdev->constraints->state_standby);
623	case PM_SUSPEND_MEM:
624		return suspend_set_state(rdev,
625			&rdev->constraints->state_mem);
626	case PM_SUSPEND_MAX:
627		return suspend_set_state(rdev,
628			&rdev->constraints->state_disk);
629	default:
630		return -EINVAL;
631	}
632}
633
634static void print_constraints(struct regulator_dev *rdev)
635{
636	struct regulation_constraints *constraints = rdev->constraints;
637	char buf[80];
638	int count;
639
640	if (rdev->desc->type == REGULATOR_VOLTAGE) {
641		if (constraints->min_uV == constraints->max_uV)
642			count = sprintf(buf, "%d mV ",
643					constraints->min_uV / 1000);
644		else
645			count = sprintf(buf, "%d <--> %d mV ",
646					constraints->min_uV / 1000,
647					constraints->max_uV / 1000);
648	} else {
649		if (constraints->min_uA == constraints->max_uA)
650			count = sprintf(buf, "%d mA ",
651					constraints->min_uA / 1000);
652		else
653			count = sprintf(buf, "%d <--> %d mA ",
654					constraints->min_uA / 1000,
655					constraints->max_uA / 1000);
656	}
657	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
658		count += sprintf(buf + count, "fast ");
659	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
660		count += sprintf(buf + count, "normal ");
661	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
662		count += sprintf(buf + count, "idle ");
663	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
664		count += sprintf(buf + count, "standby");
665
666	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
667}
668
669/**
670 * set_machine_constraints - sets regulator constraints
671 * @rdev: regulator source
672 * @constraints: constraints to apply
673 *
674 * Allows platform initialisation code to define and constrain
675 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
676 * Constraints *must* be set by platform code in order for some
677 * regulator operations to proceed i.e. set_voltage, set_current_limit,
678 * set_mode.
679 */
680static int set_machine_constraints(struct regulator_dev *rdev,
681	struct regulation_constraints *constraints)
682{
683	int ret = 0;
684	const char *name;
685	struct regulator_ops *ops = rdev->desc->ops;
686
687	if (constraints->name)
688		name = constraints->name;
689	else if (rdev->desc->name)
690		name = rdev->desc->name;
691	else
692		name = "regulator";
693
694	/* constrain machine-level voltage specs to fit
695	 * the actual range supported by this regulator.
696	 */
697	if (ops->list_voltage && rdev->desc->n_voltages) {
698		int	count = rdev->desc->n_voltages;
699		int	i;
700		int	min_uV = INT_MAX;
701		int	max_uV = INT_MIN;
702		int	cmin = constraints->min_uV;
703		int	cmax = constraints->max_uV;
704
705		/* it's safe to autoconfigure fixed-voltage supplies */
706		if (count == 1 && !cmin) {
707			cmin = INT_MIN;
708			cmax = INT_MAX;
709		}
710
711		/* voltage constraints are optional */
712		if ((cmin == 0) && (cmax == 0))
713			goto out;
714
715		/* else require explicit machine-level constraints */
716		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
717			pr_err("%s: %s '%s' voltage constraints\n",
718				       __func__, "invalid", name);
719			ret = -EINVAL;
720			goto out;
721		}
722
723		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
724		for (i = 0; i < count; i++) {
725			int	value;
726
727			value = ops->list_voltage(rdev, i);
728			if (value <= 0)
729				continue;
730
731			/* maybe adjust [min_uV..max_uV] */
732			if (value >= cmin && value < min_uV)
733				min_uV = value;
734			if (value <= cmax && value > max_uV)
735				max_uV = value;
736		}
737
738		/* final: [min_uV..max_uV] valid iff constraints valid */
739		if (max_uV < min_uV) {
740			pr_err("%s: %s '%s' voltage constraints\n",
741				       __func__, "unsupportable", name);
742			ret = -EINVAL;
743			goto out;
744		}
745
746		/* use regulator's subset of machine constraints */
747		if (constraints->min_uV < min_uV) {
748			pr_debug("%s: override '%s' %s, %d -> %d\n",
749				       __func__, name, "min_uV",
750					constraints->min_uV, min_uV);
751			constraints->min_uV = min_uV;
752		}
753		if (constraints->max_uV > max_uV) {
754			pr_debug("%s: override '%s' %s, %d -> %d\n",
755				       __func__, name, "max_uV",
756					constraints->max_uV, max_uV);
757			constraints->max_uV = max_uV;
758		}
759	}
760
761	rdev->constraints = constraints;
762
763	/* do we need to apply the constraint voltage */
764	if (rdev->constraints->apply_uV &&
765		rdev->constraints->min_uV == rdev->constraints->max_uV &&
766		ops->set_voltage) {
767		ret = ops->set_voltage(rdev,
768			rdev->constraints->min_uV, rdev->constraints->max_uV);
769			if (ret < 0) {
770				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
771				       __func__,
772				       rdev->constraints->min_uV, name);
773				rdev->constraints = NULL;
774				goto out;
775			}
776	}
777
778	/* do we need to setup our suspend state */
779	if (constraints->initial_state) {
780		ret = suspend_prepare(rdev, constraints->initial_state);
781		if (ret < 0) {
782			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
783			       __func__, name);
784			rdev->constraints = NULL;
785			goto out;
786		}
787	}
788
789	if (constraints->initial_mode) {
790		if (!ops->set_mode) {
791			printk(KERN_ERR "%s: no set_mode operation for %s\n",
792			       __func__, name);
793			ret = -EINVAL;
794			goto out;
795		}
796
797		ret = ops->set_mode(rdev, constraints->initial_mode);
798		if (ret < 0) {
799			printk(KERN_ERR
800			       "%s: failed to set initial mode for %s: %d\n",
801			       __func__, name, ret);
802			goto out;
803		}
804	}
805
806	/* If the constraints say the regulator should be on at this point
807	 * and we have control then make sure it is enabled.
808	 */
809	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
810		ret = ops->enable(rdev);
811		if (ret < 0) {
812			printk(KERN_ERR "%s: failed to enable %s\n",
813			       __func__, name);
814			rdev->constraints = NULL;
815			goto out;
816		}
817		rdev->use_count = 1;
818	}
819
820	print_constraints(rdev);
821out:
822	return ret;
823}
824
825/**
826 * set_supply - set regulator supply regulator
827 * @rdev: regulator name
828 * @supply_rdev: supply regulator name
829 *
830 * Called by platform initialisation code to set the supply regulator for this
831 * regulator. This ensures that a regulators supply will also be enabled by the
832 * core if it's child is enabled.
833 */
834static int set_supply(struct regulator_dev *rdev,
835	struct regulator_dev *supply_rdev)
836{
837	int err;
838
839	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
840				"supply");
841	if (err) {
842		printk(KERN_ERR
843		       "%s: could not add device link %s err %d\n",
844		       __func__, supply_rdev->dev.kobj.name, err);
845		       goto out;
846	}
847	rdev->supply = supply_rdev;
848	list_add(&rdev->slist, &supply_rdev->supply_list);
849out:
850	return err;
851}
852
853/**
854 * set_consumer_device_supply: Bind a regulator to a symbolic supply
855 * @rdev:         regulator source
856 * @consumer_dev: device the supply applies to
857 * @supply:       symbolic name for supply
858 *
859 * Allows platform initialisation code to map physical regulator
860 * sources to symbolic names for supplies for use by devices.  Devices
861 * should use these symbolic names to request regulators, avoiding the
862 * need to provide board-specific regulator names as platform data.
863 */
864static int set_consumer_device_supply(struct regulator_dev *rdev,
865	struct device *consumer_dev, const char *supply)
866{
867	struct regulator_map *node;
868
869	if (supply == NULL)
870		return -EINVAL;
871
872	list_for_each_entry(node, &regulator_map_list, list) {
873		if (consumer_dev != node->dev)
874			continue;
875		if (strcmp(node->supply, supply) != 0)
876			continue;
877
878		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
879				dev_name(&node->regulator->dev),
880				node->regulator->desc->name,
881				supply,
882				dev_name(&rdev->dev), rdev->desc->name);
883		return -EBUSY;
884	}
885
886	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
887	if (node == NULL)
888		return -ENOMEM;
889
890	node->regulator = rdev;
891	node->dev = consumer_dev;
892	node->supply = supply;
893
894	list_add(&node->list, &regulator_map_list);
895	return 0;
896}
897
898static void unset_consumer_device_supply(struct regulator_dev *rdev,
899	struct device *consumer_dev)
900{
901	struct regulator_map *node, *n;
902
903	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
904		if (rdev == node->regulator &&
905			consumer_dev == node->dev) {
906			list_del(&node->list);
907			kfree(node);
908			return;
909		}
910	}
911}
912
913static void unset_regulator_supplies(struct regulator_dev *rdev)
914{
915	struct regulator_map *node, *n;
916
917	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
918		if (rdev == node->regulator) {
919			list_del(&node->list);
920			kfree(node);
921			return;
922		}
923	}
924}
925
926#define REG_STR_SIZE	32
927
928static struct regulator *create_regulator(struct regulator_dev *rdev,
929					  struct device *dev,
930					  const char *supply_name)
931{
932	struct regulator *regulator;
933	char buf[REG_STR_SIZE];
934	int err, size;
935
936	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
937	if (regulator == NULL)
938		return NULL;
939
940	mutex_lock(&rdev->mutex);
941	regulator->rdev = rdev;
942	list_add(&regulator->list, &rdev->consumer_list);
943
944	if (dev) {
945		/* create a 'requested_microamps_name' sysfs entry */
946		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
947			supply_name);
948		if (size >= REG_STR_SIZE)
949			goto overflow_err;
950
951		regulator->dev = dev;
952		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
953		if (regulator->dev_attr.attr.name == NULL)
954			goto attr_name_err;
955
956		regulator->dev_attr.attr.owner = THIS_MODULE;
957		regulator->dev_attr.attr.mode = 0444;
958		regulator->dev_attr.show = device_requested_uA_show;
959		err = device_create_file(dev, &regulator->dev_attr);
960		if (err < 0) {
961			printk(KERN_WARNING "%s: could not add regulator_dev"
962				" load sysfs\n", __func__);
963			goto attr_name_err;
964		}
965
966		/* also add a link to the device sysfs entry */
967		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
968				 dev->kobj.name, supply_name);
969		if (size >= REG_STR_SIZE)
970			goto attr_err;
971
972		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
973		if (regulator->supply_name == NULL)
974			goto attr_err;
975
976		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
977					buf);
978		if (err) {
979			printk(KERN_WARNING
980			       "%s: could not add device link %s err %d\n",
981			       __func__, dev->kobj.name, err);
982			device_remove_file(dev, &regulator->dev_attr);
983			goto link_name_err;
984		}
985	}
986	mutex_unlock(&rdev->mutex);
987	return regulator;
988link_name_err:
989	kfree(regulator->supply_name);
990attr_err:
991	device_remove_file(regulator->dev, &regulator->dev_attr);
992attr_name_err:
993	kfree(regulator->dev_attr.attr.name);
994overflow_err:
995	list_del(&regulator->list);
996	kfree(regulator);
997	mutex_unlock(&rdev->mutex);
998	return NULL;
999}
1000
1001/**
1002 * regulator_get - lookup and obtain a reference to a regulator.
1003 * @dev: device for regulator "consumer"
1004 * @id: Supply name or regulator ID.
1005 *
1006 * Returns a struct regulator corresponding to the regulator producer,
1007 * or IS_ERR() condition containing errno.
1008 *
1009 * Use of supply names configured via regulator_set_device_supply() is
1010 * strongly encouraged.  It is recommended that the supply name used
1011 * should match the name used for the supply and/or the relevant
1012 * device pins in the datasheet.
1013 */
1014struct regulator *regulator_get(struct device *dev, const char *id)
1015{
1016	struct regulator_dev *rdev;
1017	struct regulator_map *map;
1018	struct regulator *regulator = ERR_PTR(-ENODEV);
1019
1020	if (id == NULL) {
1021		printk(KERN_ERR "regulator: get() with no identifier\n");
1022		return regulator;
1023	}
1024
1025	mutex_lock(&regulator_list_mutex);
1026
1027	list_for_each_entry(map, &regulator_map_list, list) {
1028		if (dev == map->dev &&
1029		    strcmp(map->supply, id) == 0) {
1030			rdev = map->regulator;
1031			goto found;
1032		}
1033	}
1034	mutex_unlock(&regulator_list_mutex);
1035	return regulator;
1036
1037found:
1038	if (!try_module_get(rdev->owner))
1039		goto out;
1040
1041	regulator = create_regulator(rdev, dev, id);
1042	if (regulator == NULL) {
1043		regulator = ERR_PTR(-ENOMEM);
1044		module_put(rdev->owner);
1045	}
1046
1047out:
1048	mutex_unlock(&regulator_list_mutex);
1049	return regulator;
1050}
1051EXPORT_SYMBOL_GPL(regulator_get);
1052
1053/**
1054 * regulator_put - "free" the regulator source
1055 * @regulator: regulator source
1056 *
1057 * Note: drivers must ensure that all regulator_enable calls made on this
1058 * regulator source are balanced by regulator_disable calls prior to calling
1059 * this function.
1060 */
1061void regulator_put(struct regulator *regulator)
1062{
1063	struct regulator_dev *rdev;
1064
1065	if (regulator == NULL || IS_ERR(regulator))
1066		return;
1067
1068	mutex_lock(&regulator_list_mutex);
1069	rdev = regulator->rdev;
1070
1071	/* remove any sysfs entries */
1072	if (regulator->dev) {
1073		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1074		kfree(regulator->supply_name);
1075		device_remove_file(regulator->dev, &regulator->dev_attr);
1076		kfree(regulator->dev_attr.attr.name);
1077	}
1078	list_del(&regulator->list);
1079	kfree(regulator);
1080
1081	module_put(rdev->owner);
1082	mutex_unlock(&regulator_list_mutex);
1083}
1084EXPORT_SYMBOL_GPL(regulator_put);
1085
1086/* locks held by regulator_enable() */
1087static int _regulator_enable(struct regulator_dev *rdev)
1088{
1089	int ret = -EINVAL;
1090
1091	if (!rdev->constraints) {
1092		printk(KERN_ERR "%s: %s has no constraints\n",
1093		       __func__, rdev->desc->name);
1094		return ret;
1095	}
1096
1097	/* do we need to enable the supply regulator first */
1098	if (rdev->supply) {
1099		ret = _regulator_enable(rdev->supply);
1100		if (ret < 0) {
1101			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1102			       __func__, rdev->desc->name, ret);
1103			return ret;
1104		}
1105	}
1106
1107	/* check voltage and requested load before enabling */
1108	if (rdev->desc->ops->enable) {
1109
1110		if (rdev->constraints &&
1111			(rdev->constraints->valid_ops_mask &
1112			REGULATOR_CHANGE_DRMS))
1113			drms_uA_update(rdev);
1114
1115		ret = rdev->desc->ops->enable(rdev);
1116		if (ret < 0) {
1117			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1118			       __func__, rdev->desc->name, ret);
1119			return ret;
1120		}
1121		rdev->use_count++;
1122		return ret;
1123	}
1124
1125	return ret;
1126}
1127
1128/**
1129 * regulator_enable - enable regulator output
1130 * @regulator: regulator source
1131 *
1132 * Request that the regulator be enabled with the regulator output at
1133 * the predefined voltage or current value.  Calls to regulator_enable()
1134 * must be balanced with calls to regulator_disable().
1135 *
1136 * NOTE: the output value can be set by other drivers, boot loader or may be
1137 * hardwired in the regulator.
1138 */
1139int regulator_enable(struct regulator *regulator)
1140{
1141	struct regulator_dev *rdev = regulator->rdev;
1142	int ret = 0;
1143
1144	mutex_lock(&rdev->mutex);
1145	ret = _regulator_enable(rdev);
1146	mutex_unlock(&rdev->mutex);
1147	return ret;
1148}
1149EXPORT_SYMBOL_GPL(regulator_enable);
1150
1151/* locks held by regulator_disable() */
1152static int _regulator_disable(struct regulator_dev *rdev)
1153{
1154	int ret = 0;
1155
1156	if (WARN(rdev->use_count <= 0,
1157			"unbalanced disables for %s\n",
1158			rdev->desc->name))
1159		return -EIO;
1160
1161	/* are we the last user and permitted to disable ? */
1162	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1163
1164		/* we are last user */
1165		if (rdev->desc->ops->disable) {
1166			ret = rdev->desc->ops->disable(rdev);
1167			if (ret < 0) {
1168				printk(KERN_ERR "%s: failed to disable %s\n",
1169				       __func__, rdev->desc->name);
1170				return ret;
1171			}
1172		}
1173
1174		/* decrease our supplies ref count and disable if required */
1175		if (rdev->supply)
1176			_regulator_disable(rdev->supply);
1177
1178		rdev->use_count = 0;
1179	} else if (rdev->use_count > 1) {
1180
1181		if (rdev->constraints &&
1182			(rdev->constraints->valid_ops_mask &
1183			REGULATOR_CHANGE_DRMS))
1184			drms_uA_update(rdev);
1185
1186		rdev->use_count--;
1187	}
1188	return ret;
1189}
1190
1191/**
1192 * regulator_disable - disable regulator output
1193 * @regulator: regulator source
1194 *
1195 * Disable the regulator output voltage or current.  Calls to
1196 * regulator_enable() must be balanced with calls to
1197 * regulator_disable().
1198 *
1199 * NOTE: this will only disable the regulator output if no other consumer
1200 * devices have it enabled, the regulator device supports disabling and
1201 * machine constraints permit this operation.
1202 */
1203int regulator_disable(struct regulator *regulator)
1204{
1205	struct regulator_dev *rdev = regulator->rdev;
1206	int ret = 0;
1207
1208	mutex_lock(&rdev->mutex);
1209	ret = _regulator_disable(rdev);
1210	mutex_unlock(&rdev->mutex);
1211	return ret;
1212}
1213EXPORT_SYMBOL_GPL(regulator_disable);
1214
1215/* locks held by regulator_force_disable() */
1216static int _regulator_force_disable(struct regulator_dev *rdev)
1217{
1218	int ret = 0;
1219
1220	/* force disable */
1221	if (rdev->desc->ops->disable) {
1222		/* ah well, who wants to live forever... */
1223		ret = rdev->desc->ops->disable(rdev);
1224		if (ret < 0) {
1225			printk(KERN_ERR "%s: failed to force disable %s\n",
1226			       __func__, rdev->desc->name);
1227			return ret;
1228		}
1229		/* notify other consumers that power has been forced off */
1230		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1231			NULL);
1232	}
1233
1234	/* decrease our supplies ref count and disable if required */
1235	if (rdev->supply)
1236		_regulator_disable(rdev->supply);
1237
1238	rdev->use_count = 0;
1239	return ret;
1240}
1241
1242/**
1243 * regulator_force_disable - force disable regulator output
1244 * @regulator: regulator source
1245 *
1246 * Forcibly disable the regulator output voltage or current.
1247 * NOTE: this *will* disable the regulator output even if other consumer
1248 * devices have it enabled. This should be used for situations when device
1249 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1250 */
1251int regulator_force_disable(struct regulator *regulator)
1252{
1253	int ret;
1254
1255	mutex_lock(&regulator->rdev->mutex);
1256	regulator->uA_load = 0;
1257	ret = _regulator_force_disable(regulator->rdev);
1258	mutex_unlock(&regulator->rdev->mutex);
1259	return ret;
1260}
1261EXPORT_SYMBOL_GPL(regulator_force_disable);
1262
1263static int _regulator_is_enabled(struct regulator_dev *rdev)
1264{
1265	int ret;
1266
1267	mutex_lock(&rdev->mutex);
1268
1269	/* sanity check */
1270	if (!rdev->desc->ops->is_enabled) {
1271		ret = -EINVAL;
1272		goto out;
1273	}
1274
1275	ret = rdev->desc->ops->is_enabled(rdev);
1276out:
1277	mutex_unlock(&rdev->mutex);
1278	return ret;
1279}
1280
1281/**
1282 * regulator_is_enabled - is the regulator output enabled
1283 * @regulator: regulator source
1284 *
1285 * Returns positive if the regulator driver backing the source/client
1286 * has requested that the device be enabled, zero if it hasn't, else a
1287 * negative errno code.
1288 *
1289 * Note that the device backing this regulator handle can have multiple
1290 * users, so it might be enabled even if regulator_enable() was never
1291 * called for this particular source.
1292 */
1293int regulator_is_enabled(struct regulator *regulator)
1294{
1295	return _regulator_is_enabled(regulator->rdev);
1296}
1297EXPORT_SYMBOL_GPL(regulator_is_enabled);
1298
1299/**
1300 * regulator_count_voltages - count regulator_list_voltage() selectors
1301 * @regulator: regulator source
1302 *
1303 * Returns number of selectors, or negative errno.  Selectors are
1304 * numbered starting at zero, and typically correspond to bitfields
1305 * in hardware registers.
1306 */
1307int regulator_count_voltages(struct regulator *regulator)
1308{
1309	struct regulator_dev	*rdev = regulator->rdev;
1310
1311	return rdev->desc->n_voltages ? : -EINVAL;
1312}
1313EXPORT_SYMBOL_GPL(regulator_count_voltages);
1314
1315/**
1316 * regulator_list_voltage - enumerate supported voltages
1317 * @regulator: regulator source
1318 * @selector: identify voltage to list
1319 * Context: can sleep
1320 *
1321 * Returns a voltage that can be passed to @regulator_set_voltage(),
1322 * zero if this selector code can't be used on this sytem, or a
1323 * negative errno.
1324 */
1325int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1326{
1327	struct regulator_dev	*rdev = regulator->rdev;
1328	struct regulator_ops	*ops = rdev->desc->ops;
1329	int			ret;
1330
1331	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1332		return -EINVAL;
1333
1334	mutex_lock(&rdev->mutex);
1335	ret = ops->list_voltage(rdev, selector);
1336	mutex_unlock(&rdev->mutex);
1337
1338	if (ret > 0) {
1339		if (ret < rdev->constraints->min_uV)
1340			ret = 0;
1341		else if (ret > rdev->constraints->max_uV)
1342			ret = 0;
1343	}
1344
1345	return ret;
1346}
1347EXPORT_SYMBOL_GPL(regulator_list_voltage);
1348
1349/**
1350 * regulator_set_voltage - set regulator output voltage
1351 * @regulator: regulator source
1352 * @min_uV: Minimum required voltage in uV
1353 * @max_uV: Maximum acceptable voltage in uV
1354 *
1355 * Sets a voltage regulator to the desired output voltage. This can be set
1356 * during any regulator state. IOW, regulator can be disabled or enabled.
1357 *
1358 * If the regulator is enabled then the voltage will change to the new value
1359 * immediately otherwise if the regulator is disabled the regulator will
1360 * output at the new voltage when enabled.
1361 *
1362 * NOTE: If the regulator is shared between several devices then the lowest
1363 * request voltage that meets the system constraints will be used.
1364 * Regulator system constraints must be set for this regulator before
1365 * calling this function otherwise this call will fail.
1366 */
1367int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1368{
1369	struct regulator_dev *rdev = regulator->rdev;
1370	int ret;
1371
1372	mutex_lock(&rdev->mutex);
1373
1374	/* sanity check */
1375	if (!rdev->desc->ops->set_voltage) {
1376		ret = -EINVAL;
1377		goto out;
1378	}
1379
1380	/* constraints check */
1381	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1382	if (ret < 0)
1383		goto out;
1384	regulator->min_uV = min_uV;
1385	regulator->max_uV = max_uV;
1386	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1387
1388out:
1389	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1390	mutex_unlock(&rdev->mutex);
1391	return ret;
1392}
1393EXPORT_SYMBOL_GPL(regulator_set_voltage);
1394
1395static int _regulator_get_voltage(struct regulator_dev *rdev)
1396{
1397	/* sanity check */
1398	if (rdev->desc->ops->get_voltage)
1399		return rdev->desc->ops->get_voltage(rdev);
1400	else
1401		return -EINVAL;
1402}
1403
1404/**
1405 * regulator_get_voltage - get regulator output voltage
1406 * @regulator: regulator source
1407 *
1408 * This returns the current regulator voltage in uV.
1409 *
1410 * NOTE: If the regulator is disabled it will return the voltage value. This
1411 * function should not be used to determine regulator state.
1412 */
1413int regulator_get_voltage(struct regulator *regulator)
1414{
1415	int ret;
1416
1417	mutex_lock(&regulator->rdev->mutex);
1418
1419	ret = _regulator_get_voltage(regulator->rdev);
1420
1421	mutex_unlock(&regulator->rdev->mutex);
1422
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(regulator_get_voltage);
1426
1427/**
1428 * regulator_set_current_limit - set regulator output current limit
1429 * @regulator: regulator source
1430 * @min_uA: Minimuum supported current in uA
1431 * @max_uA: Maximum supported current in uA
1432 *
1433 * Sets current sink to the desired output current. This can be set during
1434 * any regulator state. IOW, regulator can be disabled or enabled.
1435 *
1436 * If the regulator is enabled then the current will change to the new value
1437 * immediately otherwise if the regulator is disabled the regulator will
1438 * output at the new current when enabled.
1439 *
1440 * NOTE: Regulator system constraints must be set for this regulator before
1441 * calling this function otherwise this call will fail.
1442 */
1443int regulator_set_current_limit(struct regulator *regulator,
1444			       int min_uA, int max_uA)
1445{
1446	struct regulator_dev *rdev = regulator->rdev;
1447	int ret;
1448
1449	mutex_lock(&rdev->mutex);
1450
1451	/* sanity check */
1452	if (!rdev->desc->ops->set_current_limit) {
1453		ret = -EINVAL;
1454		goto out;
1455	}
1456
1457	/* constraints check */
1458	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1459	if (ret < 0)
1460		goto out;
1461
1462	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1463out:
1464	mutex_unlock(&rdev->mutex);
1465	return ret;
1466}
1467EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1468
1469static int _regulator_get_current_limit(struct regulator_dev *rdev)
1470{
1471	int ret;
1472
1473	mutex_lock(&rdev->mutex);
1474
1475	/* sanity check */
1476	if (!rdev->desc->ops->get_current_limit) {
1477		ret = -EINVAL;
1478		goto out;
1479	}
1480
1481	ret = rdev->desc->ops->get_current_limit(rdev);
1482out:
1483	mutex_unlock(&rdev->mutex);
1484	return ret;
1485}
1486
1487/**
1488 * regulator_get_current_limit - get regulator output current
1489 * @regulator: regulator source
1490 *
1491 * This returns the current supplied by the specified current sink in uA.
1492 *
1493 * NOTE: If the regulator is disabled it will return the current value. This
1494 * function should not be used to determine regulator state.
1495 */
1496int regulator_get_current_limit(struct regulator *regulator)
1497{
1498	return _regulator_get_current_limit(regulator->rdev);
1499}
1500EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1501
1502/**
1503 * regulator_set_mode - set regulator operating mode
1504 * @regulator: regulator source
1505 * @mode: operating mode - one of the REGULATOR_MODE constants
1506 *
1507 * Set regulator operating mode to increase regulator efficiency or improve
1508 * regulation performance.
1509 *
1510 * NOTE: Regulator system constraints must be set for this regulator before
1511 * calling this function otherwise this call will fail.
1512 */
1513int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1514{
1515	struct regulator_dev *rdev = regulator->rdev;
1516	int ret;
1517
1518	mutex_lock(&rdev->mutex);
1519
1520	/* sanity check */
1521	if (!rdev->desc->ops->set_mode) {
1522		ret = -EINVAL;
1523		goto out;
1524	}
1525
1526	/* constraints check */
1527	ret = regulator_check_mode(rdev, mode);
1528	if (ret < 0)
1529		goto out;
1530
1531	ret = rdev->desc->ops->set_mode(rdev, mode);
1532out:
1533	mutex_unlock(&rdev->mutex);
1534	return ret;
1535}
1536EXPORT_SYMBOL_GPL(regulator_set_mode);
1537
1538static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1539{
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543
1544	/* sanity check */
1545	if (!rdev->desc->ops->get_mode) {
1546		ret = -EINVAL;
1547		goto out;
1548	}
1549
1550	ret = rdev->desc->ops->get_mode(rdev);
1551out:
1552	mutex_unlock(&rdev->mutex);
1553	return ret;
1554}
1555
1556/**
1557 * regulator_get_mode - get regulator operating mode
1558 * @regulator: regulator source
1559 *
1560 * Get the current regulator operating mode.
1561 */
1562unsigned int regulator_get_mode(struct regulator *regulator)
1563{
1564	return _regulator_get_mode(regulator->rdev);
1565}
1566EXPORT_SYMBOL_GPL(regulator_get_mode);
1567
1568/**
1569 * regulator_set_optimum_mode - set regulator optimum operating mode
1570 * @regulator: regulator source
1571 * @uA_load: load current
1572 *
1573 * Notifies the regulator core of a new device load. This is then used by
1574 * DRMS (if enabled by constraints) to set the most efficient regulator
1575 * operating mode for the new regulator loading.
1576 *
1577 * Consumer devices notify their supply regulator of the maximum power
1578 * they will require (can be taken from device datasheet in the power
1579 * consumption tables) when they change operational status and hence power
1580 * state. Examples of operational state changes that can affect power
1581 * consumption are :-
1582 *
1583 *    o Device is opened / closed.
1584 *    o Device I/O is about to begin or has just finished.
1585 *    o Device is idling in between work.
1586 *
1587 * This information is also exported via sysfs to userspace.
1588 *
1589 * DRMS will sum the total requested load on the regulator and change
1590 * to the most efficient operating mode if platform constraints allow.
1591 *
1592 * Returns the new regulator mode or error.
1593 */
1594int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1595{
1596	struct regulator_dev *rdev = regulator->rdev;
1597	struct regulator *consumer;
1598	int ret, output_uV, input_uV, total_uA_load = 0;
1599	unsigned int mode;
1600
1601	mutex_lock(&rdev->mutex);
1602
1603	regulator->uA_load = uA_load;
1604	ret = regulator_check_drms(rdev);
1605	if (ret < 0)
1606		goto out;
1607	ret = -EINVAL;
1608
1609	/* sanity check */
1610	if (!rdev->desc->ops->get_optimum_mode)
1611		goto out;
1612
1613	/* get output voltage */
1614	output_uV = rdev->desc->ops->get_voltage(rdev);
1615	if (output_uV <= 0) {
1616		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1617			__func__, rdev->desc->name);
1618		goto out;
1619	}
1620
1621	/* get input voltage */
1622	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1623		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1624	else
1625		input_uV = rdev->constraints->input_uV;
1626	if (input_uV <= 0) {
1627		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1628			__func__, rdev->desc->name);
1629		goto out;
1630	}
1631
1632	/* calc total requested load for this regulator */
1633	list_for_each_entry(consumer, &rdev->consumer_list, list)
1634	    total_uA_load += consumer->uA_load;
1635
1636	mode = rdev->desc->ops->get_optimum_mode(rdev,
1637						 input_uV, output_uV,
1638						 total_uA_load);
1639	ret = regulator_check_mode(rdev, mode);
1640	if (ret < 0) {
1641		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1642			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1643			total_uA_load, input_uV, output_uV);
1644		goto out;
1645	}
1646
1647	ret = rdev->desc->ops->set_mode(rdev, mode);
1648	if (ret < 0) {
1649		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1650			__func__, mode, rdev->desc->name);
1651		goto out;
1652	}
1653	ret = mode;
1654out:
1655	mutex_unlock(&rdev->mutex);
1656	return ret;
1657}
1658EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1659
1660/**
1661 * regulator_register_notifier - register regulator event notifier
1662 * @regulator: regulator source
1663 * @nb: notifier block
1664 *
1665 * Register notifier block to receive regulator events.
1666 */
1667int regulator_register_notifier(struct regulator *regulator,
1668			      struct notifier_block *nb)
1669{
1670	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1671						nb);
1672}
1673EXPORT_SYMBOL_GPL(regulator_register_notifier);
1674
1675/**
1676 * regulator_unregister_notifier - unregister regulator event notifier
1677 * @regulator: regulator source
1678 * @nb: notifier block
1679 *
1680 * Unregister regulator event notifier block.
1681 */
1682int regulator_unregister_notifier(struct regulator *regulator,
1683				struct notifier_block *nb)
1684{
1685	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1686						  nb);
1687}
1688EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1689
1690/* notify regulator consumers and downstream regulator consumers.
1691 * Note mutex must be held by caller.
1692 */
1693static void _notifier_call_chain(struct regulator_dev *rdev,
1694				  unsigned long event, void *data)
1695{
1696	struct regulator_dev *_rdev;
1697
1698	/* call rdev chain first */
1699	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1700
1701	/* now notify regulator we supply */
1702	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1703	  mutex_lock(&_rdev->mutex);
1704	  _notifier_call_chain(_rdev, event, data);
1705	  mutex_unlock(&_rdev->mutex);
1706	}
1707}
1708
1709/**
1710 * regulator_bulk_get - get multiple regulator consumers
1711 *
1712 * @dev:           Device to supply
1713 * @num_consumers: Number of consumers to register
1714 * @consumers:     Configuration of consumers; clients are stored here.
1715 *
1716 * @return 0 on success, an errno on failure.
1717 *
1718 * This helper function allows drivers to get several regulator
1719 * consumers in one operation.  If any of the regulators cannot be
1720 * acquired then any regulators that were allocated will be freed
1721 * before returning to the caller.
1722 */
1723int regulator_bulk_get(struct device *dev, int num_consumers,
1724		       struct regulator_bulk_data *consumers)
1725{
1726	int i;
1727	int ret;
1728
1729	for (i = 0; i < num_consumers; i++)
1730		consumers[i].consumer = NULL;
1731
1732	for (i = 0; i < num_consumers; i++) {
1733		consumers[i].consumer = regulator_get(dev,
1734						      consumers[i].supply);
1735		if (IS_ERR(consumers[i].consumer)) {
1736			dev_err(dev, "Failed to get supply '%s'\n",
1737				consumers[i].supply);
1738			ret = PTR_ERR(consumers[i].consumer);
1739			consumers[i].consumer = NULL;
1740			goto err;
1741		}
1742	}
1743
1744	return 0;
1745
1746err:
1747	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1748		regulator_put(consumers[i].consumer);
1749
1750	return ret;
1751}
1752EXPORT_SYMBOL_GPL(regulator_bulk_get);
1753
1754/**
1755 * regulator_bulk_enable - enable multiple regulator consumers
1756 *
1757 * @num_consumers: Number of consumers
1758 * @consumers:     Consumer data; clients are stored here.
1759 * @return         0 on success, an errno on failure
1760 *
1761 * This convenience API allows consumers to enable multiple regulator
1762 * clients in a single API call.  If any consumers cannot be enabled
1763 * then any others that were enabled will be disabled again prior to
1764 * return.
1765 */
1766int regulator_bulk_enable(int num_consumers,
1767			  struct regulator_bulk_data *consumers)
1768{
1769	int i;
1770	int ret;
1771
1772	for (i = 0; i < num_consumers; i++) {
1773		ret = regulator_enable(consumers[i].consumer);
1774		if (ret != 0)
1775			goto err;
1776	}
1777
1778	return 0;
1779
1780err:
1781	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1782	for (i = 0; i < num_consumers; i++)
1783		regulator_disable(consumers[i].consumer);
1784
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1788
1789/**
1790 * regulator_bulk_disable - disable multiple regulator consumers
1791 *
1792 * @num_consumers: Number of consumers
1793 * @consumers:     Consumer data; clients are stored here.
1794 * @return         0 on success, an errno on failure
1795 *
1796 * This convenience API allows consumers to disable multiple regulator
1797 * clients in a single API call.  If any consumers cannot be enabled
1798 * then any others that were disabled will be disabled again prior to
1799 * return.
1800 */
1801int regulator_bulk_disable(int num_consumers,
1802			   struct regulator_bulk_data *consumers)
1803{
1804	int i;
1805	int ret;
1806
1807	for (i = 0; i < num_consumers; i++) {
1808		ret = regulator_disable(consumers[i].consumer);
1809		if (ret != 0)
1810			goto err;
1811	}
1812
1813	return 0;
1814
1815err:
1816	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1817	for (i = 0; i < num_consumers; i++)
1818		regulator_enable(consumers[i].consumer);
1819
1820	return ret;
1821}
1822EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1823
1824/**
1825 * regulator_bulk_free - free multiple regulator consumers
1826 *
1827 * @num_consumers: Number of consumers
1828 * @consumers:     Consumer data; clients are stored here.
1829 *
1830 * This convenience API allows consumers to free multiple regulator
1831 * clients in a single API call.
1832 */
1833void regulator_bulk_free(int num_consumers,
1834			 struct regulator_bulk_data *consumers)
1835{
1836	int i;
1837
1838	for (i = 0; i < num_consumers; i++) {
1839		regulator_put(consumers[i].consumer);
1840		consumers[i].consumer = NULL;
1841	}
1842}
1843EXPORT_SYMBOL_GPL(regulator_bulk_free);
1844
1845/**
1846 * regulator_notifier_call_chain - call regulator event notifier
1847 * @rdev: regulator source
1848 * @event: notifier block
1849 * @data: callback-specific data.
1850 *
1851 * Called by regulator drivers to notify clients a regulator event has
1852 * occurred. We also notify regulator clients downstream.
1853 * Note lock must be held by caller.
1854 */
1855int regulator_notifier_call_chain(struct regulator_dev *rdev,
1856				  unsigned long event, void *data)
1857{
1858	_notifier_call_chain(rdev, event, data);
1859	return NOTIFY_DONE;
1860
1861}
1862EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1863
1864/*
1865 * To avoid cluttering sysfs (and memory) with useless state, only
1866 * create attributes that can be meaningfully displayed.
1867 */
1868static int add_regulator_attributes(struct regulator_dev *rdev)
1869{
1870	struct device		*dev = &rdev->dev;
1871	struct regulator_ops	*ops = rdev->desc->ops;
1872	int			status = 0;
1873
1874	/* some attributes need specific methods to be displayed */
1875	if (ops->get_voltage) {
1876		status = device_create_file(dev, &dev_attr_microvolts);
1877		if (status < 0)
1878			return status;
1879	}
1880	if (ops->get_current_limit) {
1881		status = device_create_file(dev, &dev_attr_microamps);
1882		if (status < 0)
1883			return status;
1884	}
1885	if (ops->get_mode) {
1886		status = device_create_file(dev, &dev_attr_opmode);
1887		if (status < 0)
1888			return status;
1889	}
1890	if (ops->is_enabled) {
1891		status = device_create_file(dev, &dev_attr_state);
1892		if (status < 0)
1893			return status;
1894	}
1895	if (ops->get_status) {
1896		status = device_create_file(dev, &dev_attr_status);
1897		if (status < 0)
1898			return status;
1899	}
1900
1901	/* some attributes are type-specific */
1902	if (rdev->desc->type == REGULATOR_CURRENT) {
1903		status = device_create_file(dev, &dev_attr_requested_microamps);
1904		if (status < 0)
1905			return status;
1906	}
1907
1908	/* all the other attributes exist to support constraints;
1909	 * don't show them if there are no constraints, or if the
1910	 * relevant supporting methods are missing.
1911	 */
1912	if (!rdev->constraints)
1913		return status;
1914
1915	/* constraints need specific supporting methods */
1916	if (ops->set_voltage) {
1917		status = device_create_file(dev, &dev_attr_min_microvolts);
1918		if (status < 0)
1919			return status;
1920		status = device_create_file(dev, &dev_attr_max_microvolts);
1921		if (status < 0)
1922			return status;
1923	}
1924	if (ops->set_current_limit) {
1925		status = device_create_file(dev, &dev_attr_min_microamps);
1926		if (status < 0)
1927			return status;
1928		status = device_create_file(dev, &dev_attr_max_microamps);
1929		if (status < 0)
1930			return status;
1931	}
1932
1933	/* suspend mode constraints need multiple supporting methods */
1934	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1935		return status;
1936
1937	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1938	if (status < 0)
1939		return status;
1940	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1941	if (status < 0)
1942		return status;
1943	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1944	if (status < 0)
1945		return status;
1946
1947	if (ops->set_suspend_voltage) {
1948		status = device_create_file(dev,
1949				&dev_attr_suspend_standby_microvolts);
1950		if (status < 0)
1951			return status;
1952		status = device_create_file(dev,
1953				&dev_attr_suspend_mem_microvolts);
1954		if (status < 0)
1955			return status;
1956		status = device_create_file(dev,
1957				&dev_attr_suspend_disk_microvolts);
1958		if (status < 0)
1959			return status;
1960	}
1961
1962	if (ops->set_suspend_mode) {
1963		status = device_create_file(dev,
1964				&dev_attr_suspend_standby_mode);
1965		if (status < 0)
1966			return status;
1967		status = device_create_file(dev,
1968				&dev_attr_suspend_mem_mode);
1969		if (status < 0)
1970			return status;
1971		status = device_create_file(dev,
1972				&dev_attr_suspend_disk_mode);
1973		if (status < 0)
1974			return status;
1975	}
1976
1977	return status;
1978}
1979
1980/**
1981 * regulator_register - register regulator
1982 * @regulator_desc: regulator to register
1983 * @dev: struct device for the regulator
1984 * @init_data: platform provided init data, passed through by driver
1985 * @driver_data: private regulator data
1986 *
1987 * Called by regulator drivers to register a regulator.
1988 * Returns 0 on success.
1989 */
1990struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1991	struct device *dev, struct regulator_init_data *init_data,
1992	void *driver_data)
1993{
1994	static atomic_t regulator_no = ATOMIC_INIT(0);
1995	struct regulator_dev *rdev;
1996	int ret, i;
1997
1998	if (regulator_desc == NULL)
1999		return ERR_PTR(-EINVAL);
2000
2001	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2002		return ERR_PTR(-EINVAL);
2003
2004	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2005	    !regulator_desc->type == REGULATOR_CURRENT)
2006		return ERR_PTR(-EINVAL);
2007
2008	if (!init_data)
2009		return ERR_PTR(-EINVAL);
2010
2011	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2012	if (rdev == NULL)
2013		return ERR_PTR(-ENOMEM);
2014
2015	mutex_lock(&regulator_list_mutex);
2016
2017	mutex_init(&rdev->mutex);
2018	rdev->reg_data = driver_data;
2019	rdev->owner = regulator_desc->owner;
2020	rdev->desc = regulator_desc;
2021	INIT_LIST_HEAD(&rdev->consumer_list);
2022	INIT_LIST_HEAD(&rdev->supply_list);
2023	INIT_LIST_HEAD(&rdev->list);
2024	INIT_LIST_HEAD(&rdev->slist);
2025	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2026
2027	/* preform any regulator specific init */
2028	if (init_data->regulator_init) {
2029		ret = init_data->regulator_init(rdev->reg_data);
2030		if (ret < 0)
2031			goto clean;
2032	}
2033
2034	/* register with sysfs */
2035	rdev->dev.class = &regulator_class;
2036	rdev->dev.parent = dev;
2037	dev_set_name(&rdev->dev, "regulator.%d",
2038		     atomic_inc_return(&regulator_no) - 1);
2039	ret = device_register(&rdev->dev);
2040	if (ret != 0)
2041		goto clean;
2042
2043	dev_set_drvdata(&rdev->dev, rdev);
2044
2045	/* set regulator constraints */
2046	ret = set_machine_constraints(rdev, &init_data->constraints);
2047	if (ret < 0)
2048		goto scrub;
2049
2050	/* add attributes supported by this regulator */
2051	ret = add_regulator_attributes(rdev);
2052	if (ret < 0)
2053		goto scrub;
2054
2055	/* set supply regulator if it exists */
2056	if (init_data->supply_regulator_dev) {
2057		ret = set_supply(rdev,
2058			dev_get_drvdata(init_data->supply_regulator_dev));
2059		if (ret < 0)
2060			goto scrub;
2061	}
2062
2063	/* add consumers devices */
2064	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2065		ret = set_consumer_device_supply(rdev,
2066			init_data->consumer_supplies[i].dev,
2067			init_data->consumer_supplies[i].supply);
2068		if (ret < 0) {
2069			for (--i; i >= 0; i--)
2070				unset_consumer_device_supply(rdev,
2071					init_data->consumer_supplies[i].dev);
2072			goto scrub;
2073		}
2074	}
2075
2076	list_add(&rdev->list, &regulator_list);
2077out:
2078	mutex_unlock(&regulator_list_mutex);
2079	return rdev;
2080
2081scrub:
2082	device_unregister(&rdev->dev);
2083clean:
2084	kfree(rdev);
2085	rdev = ERR_PTR(ret);
2086	goto out;
2087}
2088EXPORT_SYMBOL_GPL(regulator_register);
2089
2090/**
2091 * regulator_unregister - unregister regulator
2092 * @rdev: regulator to unregister
2093 *
2094 * Called by regulator drivers to unregister a regulator.
2095 */
2096void regulator_unregister(struct regulator_dev *rdev)
2097{
2098	if (rdev == NULL)
2099		return;
2100
2101	mutex_lock(&regulator_list_mutex);
2102	unset_regulator_supplies(rdev);
2103	list_del(&rdev->list);
2104	if (rdev->supply)
2105		sysfs_remove_link(&rdev->dev.kobj, "supply");
2106	device_unregister(&rdev->dev);
2107	mutex_unlock(&regulator_list_mutex);
2108}
2109EXPORT_SYMBOL_GPL(regulator_unregister);
2110
2111/**
2112 * regulator_suspend_prepare - prepare regulators for system wide suspend
2113 * @state: system suspend state
2114 *
2115 * Configure each regulator with it's suspend operating parameters for state.
2116 * This will usually be called by machine suspend code prior to supending.
2117 */
2118int regulator_suspend_prepare(suspend_state_t state)
2119{
2120	struct regulator_dev *rdev;
2121	int ret = 0;
2122
2123	/* ON is handled by regulator active state */
2124	if (state == PM_SUSPEND_ON)
2125		return -EINVAL;
2126
2127	mutex_lock(&regulator_list_mutex);
2128	list_for_each_entry(rdev, &regulator_list, list) {
2129
2130		mutex_lock(&rdev->mutex);
2131		ret = suspend_prepare(rdev, state);
2132		mutex_unlock(&rdev->mutex);
2133
2134		if (ret < 0) {
2135			printk(KERN_ERR "%s: failed to prepare %s\n",
2136				__func__, rdev->desc->name);
2137			goto out;
2138		}
2139	}
2140out:
2141	mutex_unlock(&regulator_list_mutex);
2142	return ret;
2143}
2144EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2145
2146/**
2147 * rdev_get_drvdata - get rdev regulator driver data
2148 * @rdev: regulator
2149 *
2150 * Get rdev regulator driver private data. This call can be used in the
2151 * regulator driver context.
2152 */
2153void *rdev_get_drvdata(struct regulator_dev *rdev)
2154{
2155	return rdev->reg_data;
2156}
2157EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2158
2159/**
2160 * regulator_get_drvdata - get regulator driver data
2161 * @regulator: regulator
2162 *
2163 * Get regulator driver private data. This call can be used in the consumer
2164 * driver context when non API regulator specific functions need to be called.
2165 */
2166void *regulator_get_drvdata(struct regulator *regulator)
2167{
2168	return regulator->rdev->reg_data;
2169}
2170EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2171
2172/**
2173 * regulator_set_drvdata - set regulator driver data
2174 * @regulator: regulator
2175 * @data: data
2176 */
2177void regulator_set_drvdata(struct regulator *regulator, void *data)
2178{
2179	regulator->rdev->reg_data = data;
2180}
2181EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2182
2183/**
2184 * regulator_get_id - get regulator ID
2185 * @rdev: regulator
2186 */
2187int rdev_get_id(struct regulator_dev *rdev)
2188{
2189	return rdev->desc->id;
2190}
2191EXPORT_SYMBOL_GPL(rdev_get_id);
2192
2193struct device *rdev_get_dev(struct regulator_dev *rdev)
2194{
2195	return &rdev->dev;
2196}
2197EXPORT_SYMBOL_GPL(rdev_get_dev);
2198
2199void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2200{
2201	return reg_init_data->driver_data;
2202}
2203EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2204
2205static int __init regulator_init(void)
2206{
2207	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2208	return class_register(&regulator_class);
2209}
2210
2211/* init early to allow our consumers to complete system booting */
2212core_initcall(regulator_init);
2213