core.c revision ce0d10f887cabf9f16d1cbb60ef013021befbfdf
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static LIST_HEAD(regulator_ena_gpio_list);
55static bool has_full_constraints;
56static bool board_wants_dummy_regulator;
57
58static struct dentry *debugfs_root;
59
60/*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65struct regulator_map {
66	struct list_head list;
67	const char *dev_name;   /* The dev_name() for the consumer */
68	const char *supply;
69	struct regulator_dev *regulator;
70};
71
72/*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77struct regulator_enable_gpio {
78	struct list_head list;
79	int gpio;
80	u32 enable_count;	/* a number of enabled shared GPIO */
81	u32 request_count;	/* a number of requested shared GPIO */
82	unsigned int ena_gpio_invert:1;
83};
84
85/*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90struct regulator {
91	struct device *dev;
92	struct list_head list;
93	unsigned int always_on:1;
94	unsigned int bypass:1;
95	int uA_load;
96	int min_uV;
97	int max_uV;
98	char *supply_name;
99	struct device_attribute dev_attr;
100	struct regulator_dev *rdev;
101	struct dentry *debugfs;
102};
103
104static int _regulator_is_enabled(struct regulator_dev *rdev);
105static int _regulator_disable(struct regulator_dev *rdev);
106static int _regulator_get_voltage(struct regulator_dev *rdev);
107static int _regulator_get_current_limit(struct regulator_dev *rdev);
108static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109static void _notifier_call_chain(struct regulator_dev *rdev,
110				  unsigned long event, void *data);
111static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112				     int min_uV, int max_uV);
113static struct regulator *create_regulator(struct regulator_dev *rdev,
114					  struct device *dev,
115					  const char *supply_name);
116
117static const char *rdev_get_name(struct regulator_dev *rdev)
118{
119	if (rdev->constraints && rdev->constraints->name)
120		return rdev->constraints->name;
121	else if (rdev->desc->name)
122		return rdev->desc->name;
123	else
124		return "";
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t regulator_name_show(struct device *dev,
327			     struct device_attribute *attr, char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333
334static ssize_t regulator_print_opmode(char *buf, int mode)
335{
336	switch (mode) {
337	case REGULATOR_MODE_FAST:
338		return sprintf(buf, "fast\n");
339	case REGULATOR_MODE_NORMAL:
340		return sprintf(buf, "normal\n");
341	case REGULATOR_MODE_IDLE:
342		return sprintf(buf, "idle\n");
343	case REGULATOR_MODE_STANDBY:
344		return sprintf(buf, "standby\n");
345	}
346	return sprintf(buf, "unknown\n");
347}
348
349static ssize_t regulator_opmode_show(struct device *dev,
350				    struct device_attribute *attr, char *buf)
351{
352	struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355}
356static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358static ssize_t regulator_print_state(char *buf, int state)
359{
360	if (state > 0)
361		return sprintf(buf, "enabled\n");
362	else if (state == 0)
363		return sprintf(buf, "disabled\n");
364	else
365		return sprintf(buf, "unknown\n");
366}
367
368static ssize_t regulator_state_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	ssize_t ret;
373
374	mutex_lock(&rdev->mutex);
375	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376	mutex_unlock(&rdev->mutex);
377
378	return ret;
379}
380static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382static ssize_t regulator_status_show(struct device *dev,
383				   struct device_attribute *attr, char *buf)
384{
385	struct regulator_dev *rdev = dev_get_drvdata(dev);
386	int status;
387	char *label;
388
389	status = rdev->desc->ops->get_status(rdev);
390	if (status < 0)
391		return status;
392
393	switch (status) {
394	case REGULATOR_STATUS_OFF:
395		label = "off";
396		break;
397	case REGULATOR_STATUS_ON:
398		label = "on";
399		break;
400	case REGULATOR_STATUS_ERROR:
401		label = "error";
402		break;
403	case REGULATOR_STATUS_FAST:
404		label = "fast";
405		break;
406	case REGULATOR_STATUS_NORMAL:
407		label = "normal";
408		break;
409	case REGULATOR_STATUS_IDLE:
410		label = "idle";
411		break;
412	case REGULATOR_STATUS_STANDBY:
413		label = "standby";
414		break;
415	case REGULATOR_STATUS_BYPASS:
416		label = "bypass";
417		break;
418	case REGULATOR_STATUS_UNDEFINED:
419		label = "undefined";
420		break;
421	default:
422		return -ERANGE;
423	}
424
425	return sprintf(buf, "%s\n", label);
426}
427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429static ssize_t regulator_min_uA_show(struct device *dev,
430				    struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434	if (!rdev->constraints)
435		return sprintf(buf, "constraint not defined\n");
436
437	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438}
439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441static ssize_t regulator_max_uA_show(struct device *dev,
442				    struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	if (!rdev->constraints)
447		return sprintf(buf, "constraint not defined\n");
448
449	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450}
451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453static ssize_t regulator_min_uV_show(struct device *dev,
454				    struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	if (!rdev->constraints)
459		return sprintf(buf, "constraint not defined\n");
460
461	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462}
463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465static ssize_t regulator_max_uV_show(struct device *dev,
466				    struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	if (!rdev->constraints)
471		return sprintf(buf, "constraint not defined\n");
472
473	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474}
475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477static ssize_t regulator_total_uA_show(struct device *dev,
478				      struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481	struct regulator *regulator;
482	int uA = 0;
483
484	mutex_lock(&rdev->mutex);
485	list_for_each_entry(regulator, &rdev->consumer_list, list)
486		uA += regulator->uA_load;
487	mutex_unlock(&rdev->mutex);
488	return sprintf(buf, "%d\n", uA);
489}
490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492static ssize_t regulator_num_users_show(struct device *dev,
493				      struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496	return sprintf(buf, "%d\n", rdev->use_count);
497}
498
499static ssize_t regulator_type_show(struct device *dev,
500				  struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	switch (rdev->desc->type) {
505	case REGULATOR_VOLTAGE:
506		return sprintf(buf, "voltage\n");
507	case REGULATOR_CURRENT:
508		return sprintf(buf, "current\n");
509	}
510	return sprintf(buf, "unknown\n");
511}
512
513static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514				struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519}
520static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521		regulator_suspend_mem_uV_show, NULL);
522
523static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529}
530static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531		regulator_suspend_disk_uV_show, NULL);
532
533static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534				struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539}
540static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541		regulator_suspend_standby_uV_show, NULL);
542
543static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544				struct device_attribute *attr, char *buf)
545{
546	struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548	return regulator_print_opmode(buf,
549		rdev->constraints->state_mem.mode);
550}
551static DEVICE_ATTR(suspend_mem_mode, 0444,
552		regulator_suspend_mem_mode_show, NULL);
553
554static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555				struct device_attribute *attr, char *buf)
556{
557	struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559	return regulator_print_opmode(buf,
560		rdev->constraints->state_disk.mode);
561}
562static DEVICE_ATTR(suspend_disk_mode, 0444,
563		regulator_suspend_disk_mode_show, NULL);
564
565static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566				struct device_attribute *attr, char *buf)
567{
568	struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570	return regulator_print_opmode(buf,
571		rdev->constraints->state_standby.mode);
572}
573static DEVICE_ATTR(suspend_standby_mode, 0444,
574		regulator_suspend_standby_mode_show, NULL);
575
576static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577				   struct device_attribute *attr, char *buf)
578{
579	struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581	return regulator_print_state(buf,
582			rdev->constraints->state_mem.enabled);
583}
584static DEVICE_ATTR(suspend_mem_state, 0444,
585		regulator_suspend_mem_state_show, NULL);
586
587static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588				   struct device_attribute *attr, char *buf)
589{
590	struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592	return regulator_print_state(buf,
593			rdev->constraints->state_disk.enabled);
594}
595static DEVICE_ATTR(suspend_disk_state, 0444,
596		regulator_suspend_disk_state_show, NULL);
597
598static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599				   struct device_attribute *attr, char *buf)
600{
601	struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603	return regulator_print_state(buf,
604			rdev->constraints->state_standby.enabled);
605}
606static DEVICE_ATTR(suspend_standby_state, 0444,
607		regulator_suspend_standby_state_show, NULL);
608
609static ssize_t regulator_bypass_show(struct device *dev,
610				     struct device_attribute *attr, char *buf)
611{
612	struct regulator_dev *rdev = dev_get_drvdata(dev);
613	const char *report;
614	bool bypass;
615	int ret;
616
617	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619	if (ret != 0)
620		report = "unknown";
621	else if (bypass)
622		report = "enabled";
623	else
624		report = "disabled";
625
626	return sprintf(buf, "%s\n", report);
627}
628static DEVICE_ATTR(bypass, 0444,
629		   regulator_bypass_show, NULL);
630
631/*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635static struct device_attribute regulator_dev_attrs[] = {
636	__ATTR(name, 0444, regulator_name_show, NULL),
637	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
638	__ATTR(type, 0444, regulator_type_show, NULL),
639	__ATTR_NULL,
640};
641
642static void regulator_dev_release(struct device *dev)
643{
644	struct regulator_dev *rdev = dev_get_drvdata(dev);
645	kfree(rdev);
646}
647
648static struct class regulator_class = {
649	.name = "regulator",
650	.dev_release = regulator_dev_release,
651	.dev_attrs = regulator_dev_attrs,
652};
653
654/* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656static void drms_uA_update(struct regulator_dev *rdev)
657{
658	struct regulator *sibling;
659	int current_uA = 0, output_uV, input_uV, err;
660	unsigned int mode;
661
662	err = regulator_check_drms(rdev);
663	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664	    (!rdev->desc->ops->get_voltage &&
665	     !rdev->desc->ops->get_voltage_sel) ||
666	    !rdev->desc->ops->set_mode)
667		return;
668
669	/* get output voltage */
670	output_uV = _regulator_get_voltage(rdev);
671	if (output_uV <= 0)
672		return;
673
674	/* get input voltage */
675	input_uV = 0;
676	if (rdev->supply)
677		input_uV = regulator_get_voltage(rdev->supply);
678	if (input_uV <= 0)
679		input_uV = rdev->constraints->input_uV;
680	if (input_uV <= 0)
681		return;
682
683	/* calc total requested load */
684	list_for_each_entry(sibling, &rdev->consumer_list, list)
685		current_uA += sibling->uA_load;
686
687	/* now get the optimum mode for our new total regulator load */
688	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689						  output_uV, current_uA);
690
691	/* check the new mode is allowed */
692	err = regulator_mode_constrain(rdev, &mode);
693	if (err == 0)
694		rdev->desc->ops->set_mode(rdev, mode);
695}
696
697static int suspend_set_state(struct regulator_dev *rdev,
698	struct regulator_state *rstate)
699{
700	int ret = 0;
701
702	/* If we have no suspend mode configration don't set anything;
703	 * only warn if the driver implements set_suspend_voltage or
704	 * set_suspend_mode callback.
705	 */
706	if (!rstate->enabled && !rstate->disabled) {
707		if (rdev->desc->ops->set_suspend_voltage ||
708		    rdev->desc->ops->set_suspend_mode)
709			rdev_warn(rdev, "No configuration\n");
710		return 0;
711	}
712
713	if (rstate->enabled && rstate->disabled) {
714		rdev_err(rdev, "invalid configuration\n");
715		return -EINVAL;
716	}
717
718	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719		ret = rdev->desc->ops->set_suspend_enable(rdev);
720	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721		ret = rdev->desc->ops->set_suspend_disable(rdev);
722	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723		ret = 0;
724
725	if (ret < 0) {
726		rdev_err(rdev, "failed to enabled/disable\n");
727		return ret;
728	}
729
730	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732		if (ret < 0) {
733			rdev_err(rdev, "failed to set voltage\n");
734			return ret;
735		}
736	}
737
738	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740		if (ret < 0) {
741			rdev_err(rdev, "failed to set mode\n");
742			return ret;
743		}
744	}
745	return ret;
746}
747
748/* locks held by caller */
749static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750{
751	if (!rdev->constraints)
752		return -EINVAL;
753
754	switch (state) {
755	case PM_SUSPEND_STANDBY:
756		return suspend_set_state(rdev,
757			&rdev->constraints->state_standby);
758	case PM_SUSPEND_MEM:
759		return suspend_set_state(rdev,
760			&rdev->constraints->state_mem);
761	case PM_SUSPEND_MAX:
762		return suspend_set_state(rdev,
763			&rdev->constraints->state_disk);
764	default:
765		return -EINVAL;
766	}
767}
768
769static void print_constraints(struct regulator_dev *rdev)
770{
771	struct regulation_constraints *constraints = rdev->constraints;
772	char buf[80] = "";
773	int count = 0;
774	int ret;
775
776	if (constraints->min_uV && constraints->max_uV) {
777		if (constraints->min_uV == constraints->max_uV)
778			count += sprintf(buf + count, "%d mV ",
779					 constraints->min_uV / 1000);
780		else
781			count += sprintf(buf + count, "%d <--> %d mV ",
782					 constraints->min_uV / 1000,
783					 constraints->max_uV / 1000);
784	}
785
786	if (!constraints->min_uV ||
787	    constraints->min_uV != constraints->max_uV) {
788		ret = _regulator_get_voltage(rdev);
789		if (ret > 0)
790			count += sprintf(buf + count, "at %d mV ", ret / 1000);
791	}
792
793	if (constraints->uV_offset)
794		count += sprintf(buf, "%dmV offset ",
795				 constraints->uV_offset / 1000);
796
797	if (constraints->min_uA && constraints->max_uA) {
798		if (constraints->min_uA == constraints->max_uA)
799			count += sprintf(buf + count, "%d mA ",
800					 constraints->min_uA / 1000);
801		else
802			count += sprintf(buf + count, "%d <--> %d mA ",
803					 constraints->min_uA / 1000,
804					 constraints->max_uA / 1000);
805	}
806
807	if (!constraints->min_uA ||
808	    constraints->min_uA != constraints->max_uA) {
809		ret = _regulator_get_current_limit(rdev);
810		if (ret > 0)
811			count += sprintf(buf + count, "at %d mA ", ret / 1000);
812	}
813
814	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815		count += sprintf(buf + count, "fast ");
816	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817		count += sprintf(buf + count, "normal ");
818	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819		count += sprintf(buf + count, "idle ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821		count += sprintf(buf + count, "standby");
822
823	if (!count)
824		sprintf(buf, "no parameters");
825
826	rdev_info(rdev, "%s\n", buf);
827
828	if ((constraints->min_uV != constraints->max_uV) &&
829	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830		rdev_warn(rdev,
831			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832}
833
834static int machine_constraints_voltage(struct regulator_dev *rdev,
835	struct regulation_constraints *constraints)
836{
837	struct regulator_ops *ops = rdev->desc->ops;
838	int ret;
839
840	/* do we need to apply the constraint voltage */
841	if (rdev->constraints->apply_uV &&
842	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
843		ret = _regulator_do_set_voltage(rdev,
844						rdev->constraints->min_uV,
845						rdev->constraints->max_uV);
846		if (ret < 0) {
847			rdev_err(rdev, "failed to apply %duV constraint\n",
848				 rdev->constraints->min_uV);
849			return ret;
850		}
851	}
852
853	/* constrain machine-level voltage specs to fit
854	 * the actual range supported by this regulator.
855	 */
856	if (ops->list_voltage && rdev->desc->n_voltages) {
857		int	count = rdev->desc->n_voltages;
858		int	i;
859		int	min_uV = INT_MAX;
860		int	max_uV = INT_MIN;
861		int	cmin = constraints->min_uV;
862		int	cmax = constraints->max_uV;
863
864		/* it's safe to autoconfigure fixed-voltage supplies
865		   and the constraints are used by list_voltage. */
866		if (count == 1 && !cmin) {
867			cmin = 1;
868			cmax = INT_MAX;
869			constraints->min_uV = cmin;
870			constraints->max_uV = cmax;
871		}
872
873		/* voltage constraints are optional */
874		if ((cmin == 0) && (cmax == 0))
875			return 0;
876
877		/* else require explicit machine-level constraints */
878		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879			rdev_err(rdev, "invalid voltage constraints\n");
880			return -EINVAL;
881		}
882
883		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884		for (i = 0; i < count; i++) {
885			int	value;
886
887			value = ops->list_voltage(rdev, i);
888			if (value <= 0)
889				continue;
890
891			/* maybe adjust [min_uV..max_uV] */
892			if (value >= cmin && value < min_uV)
893				min_uV = value;
894			if (value <= cmax && value > max_uV)
895				max_uV = value;
896		}
897
898		/* final: [min_uV..max_uV] valid iff constraints valid */
899		if (max_uV < min_uV) {
900			rdev_err(rdev,
901				 "unsupportable voltage constraints %u-%uuV\n",
902				 min_uV, max_uV);
903			return -EINVAL;
904		}
905
906		/* use regulator's subset of machine constraints */
907		if (constraints->min_uV < min_uV) {
908			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909				 constraints->min_uV, min_uV);
910			constraints->min_uV = min_uV;
911		}
912		if (constraints->max_uV > max_uV) {
913			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914				 constraints->max_uV, max_uV);
915			constraints->max_uV = max_uV;
916		}
917	}
918
919	return 0;
920}
921
922/**
923 * set_machine_constraints - sets regulator constraints
924 * @rdev: regulator source
925 * @constraints: constraints to apply
926 *
927 * Allows platform initialisation code to define and constrain
928 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
929 * Constraints *must* be set by platform code in order for some
930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
931 * set_mode.
932 */
933static int set_machine_constraints(struct regulator_dev *rdev,
934	const struct regulation_constraints *constraints)
935{
936	int ret = 0;
937	struct regulator_ops *ops = rdev->desc->ops;
938
939	if (constraints)
940		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941					    GFP_KERNEL);
942	else
943		rdev->constraints = kzalloc(sizeof(*constraints),
944					    GFP_KERNEL);
945	if (!rdev->constraints)
946		return -ENOMEM;
947
948	ret = machine_constraints_voltage(rdev, rdev->constraints);
949	if (ret != 0)
950		goto out;
951
952	/* do we need to setup our suspend state */
953	if (rdev->constraints->initial_state) {
954		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to set suspend state\n");
957			goto out;
958		}
959	}
960
961	if (rdev->constraints->initial_mode) {
962		if (!ops->set_mode) {
963			rdev_err(rdev, "no set_mode operation\n");
964			ret = -EINVAL;
965			goto out;
966		}
967
968		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969		if (ret < 0) {
970			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971			goto out;
972		}
973	}
974
975	/* If the constraints say the regulator should be on at this point
976	 * and we have control then make sure it is enabled.
977	 */
978	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979	    ops->enable) {
980		ret = ops->enable(rdev);
981		if (ret < 0) {
982			rdev_err(rdev, "failed to enable\n");
983			goto out;
984		}
985	}
986
987	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989		if (ret < 0) {
990			rdev_err(rdev, "failed to set ramp_delay\n");
991			goto out;
992		}
993	}
994
995	print_constraints(rdev);
996	return 0;
997out:
998	kfree(rdev->constraints);
999	rdev->constraints = NULL;
1000	return ret;
1001}
1002
1003/**
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1007 *
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1011 */
1012static int set_supply(struct regulator_dev *rdev,
1013		      struct regulator_dev *supply_rdev)
1014{
1015	int err;
1016
1017	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020	if (rdev->supply == NULL) {
1021		err = -ENOMEM;
1022		return err;
1023	}
1024	supply_rdev->open_count++;
1025
1026	return 0;
1027}
1028
1029/**
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev:         regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply:       symbolic name for supply
1034 *
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices.  Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1039 */
1040static int set_consumer_device_supply(struct regulator_dev *rdev,
1041				      const char *consumer_dev_name,
1042				      const char *supply)
1043{
1044	struct regulator_map *node;
1045	int has_dev;
1046
1047	if (supply == NULL)
1048		return -EINVAL;
1049
1050	if (consumer_dev_name != NULL)
1051		has_dev = 1;
1052	else
1053		has_dev = 0;
1054
1055	list_for_each_entry(node, &regulator_map_list, list) {
1056		if (node->dev_name && consumer_dev_name) {
1057			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058				continue;
1059		} else if (node->dev_name || consumer_dev_name) {
1060			continue;
1061		}
1062
1063		if (strcmp(node->supply, supply) != 0)
1064			continue;
1065
1066		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067			 consumer_dev_name,
1068			 dev_name(&node->regulator->dev),
1069			 node->regulator->desc->name,
1070			 supply,
1071			 dev_name(&rdev->dev), rdev_get_name(rdev));
1072		return -EBUSY;
1073	}
1074
1075	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076	if (node == NULL)
1077		return -ENOMEM;
1078
1079	node->regulator = rdev;
1080	node->supply = supply;
1081
1082	if (has_dev) {
1083		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084		if (node->dev_name == NULL) {
1085			kfree(node);
1086			return -ENOMEM;
1087		}
1088	}
1089
1090	list_add(&node->list, &regulator_map_list);
1091	return 0;
1092}
1093
1094static void unset_regulator_supplies(struct regulator_dev *rdev)
1095{
1096	struct regulator_map *node, *n;
1097
1098	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099		if (rdev == node->regulator) {
1100			list_del(&node->list);
1101			kfree(node->dev_name);
1102			kfree(node);
1103		}
1104	}
1105}
1106
1107#define REG_STR_SIZE	64
1108
1109static struct regulator *create_regulator(struct regulator_dev *rdev,
1110					  struct device *dev,
1111					  const char *supply_name)
1112{
1113	struct regulator *regulator;
1114	char buf[REG_STR_SIZE];
1115	int err, size;
1116
1117	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118	if (regulator == NULL)
1119		return NULL;
1120
1121	mutex_lock(&rdev->mutex);
1122	regulator->rdev = rdev;
1123	list_add(&regulator->list, &rdev->consumer_list);
1124
1125	if (dev) {
1126		regulator->dev = dev;
1127
1128		/* Add a link to the device sysfs entry */
1129		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130				 dev->kobj.name, supply_name);
1131		if (size >= REG_STR_SIZE)
1132			goto overflow_err;
1133
1134		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135		if (regulator->supply_name == NULL)
1136			goto overflow_err;
1137
1138		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139					buf);
1140		if (err) {
1141			rdev_warn(rdev, "could not add device link %s err %d\n",
1142				  dev->kobj.name, err);
1143			/* non-fatal */
1144		}
1145	} else {
1146		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147		if (regulator->supply_name == NULL)
1148			goto overflow_err;
1149	}
1150
1151	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152						rdev->debugfs);
1153	if (!regulator->debugfs) {
1154		rdev_warn(rdev, "Failed to create debugfs directory\n");
1155	} else {
1156		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157				   &regulator->uA_load);
1158		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159				   &regulator->min_uV);
1160		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161				   &regulator->max_uV);
1162	}
1163
1164	/*
1165	 * Check now if the regulator is an always on regulator - if
1166	 * it is then we don't need to do nearly so much work for
1167	 * enable/disable calls.
1168	 */
1169	if (!_regulator_can_change_status(rdev) &&
1170	    _regulator_is_enabled(rdev))
1171		regulator->always_on = true;
1172
1173	mutex_unlock(&rdev->mutex);
1174	return regulator;
1175overflow_err:
1176	list_del(&regulator->list);
1177	kfree(regulator);
1178	mutex_unlock(&rdev->mutex);
1179	return NULL;
1180}
1181
1182static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183{
1184	if (!rdev->desc->ops->enable_time)
1185		return rdev->desc->enable_time;
1186	return rdev->desc->ops->enable_time(rdev);
1187}
1188
1189static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190						  const char *supply,
1191						  int *ret)
1192{
1193	struct regulator_dev *r;
1194	struct device_node *node;
1195	struct regulator_map *map;
1196	const char *devname = NULL;
1197
1198	/* first do a dt based lookup */
1199	if (dev && dev->of_node) {
1200		node = of_get_regulator(dev, supply);
1201		if (node) {
1202			list_for_each_entry(r, &regulator_list, list)
1203				if (r->dev.parent &&
1204					node == r->dev.of_node)
1205					return r;
1206		} else {
1207			/*
1208			 * If we couldn't even get the node then it's
1209			 * not just that the device didn't register
1210			 * yet, there's no node and we'll never
1211			 * succeed.
1212			 */
1213			*ret = -ENODEV;
1214		}
1215	}
1216
1217	/* if not found, try doing it non-dt way */
1218	if (dev)
1219		devname = dev_name(dev);
1220
1221	list_for_each_entry(r, &regulator_list, list)
1222		if (strcmp(rdev_get_name(r), supply) == 0)
1223			return r;
1224
1225	list_for_each_entry(map, &regulator_map_list, list) {
1226		/* If the mapping has a device set up it must match */
1227		if (map->dev_name &&
1228		    (!devname || strcmp(map->dev_name, devname)))
1229			continue;
1230
1231		if (strcmp(map->supply, supply) == 0)
1232			return map->regulator;
1233	}
1234
1235
1236	return NULL;
1237}
1238
1239/* Internal regulator request function */
1240static struct regulator *_regulator_get(struct device *dev, const char *id,
1241					int exclusive)
1242{
1243	struct regulator_dev *rdev;
1244	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245	const char *devname = NULL;
1246	int ret = 0;
1247
1248	if (id == NULL) {
1249		pr_err("get() with no identifier\n");
1250		return regulator;
1251	}
1252
1253	if (dev)
1254		devname = dev_name(dev);
1255
1256	mutex_lock(&regulator_list_mutex);
1257
1258	rdev = regulator_dev_lookup(dev, id, &ret);
1259	if (rdev)
1260		goto found;
1261
1262	/*
1263	 * If we have return value from dev_lookup fail, we do not expect to
1264	 * succeed, so, quit with appropriate error value
1265	 */
1266	if (ret) {
1267		regulator = ERR_PTR(ret);
1268		goto out;
1269	}
1270
1271	if (board_wants_dummy_regulator) {
1272		rdev = dummy_regulator_rdev;
1273		goto found;
1274	}
1275
1276#ifdef CONFIG_REGULATOR_DUMMY
1277	if (!devname)
1278		devname = "deviceless";
1279
1280	/* If the board didn't flag that it was fully constrained then
1281	 * substitute in a dummy regulator so consumers can continue.
1282	 */
1283	if (!has_full_constraints) {
1284		pr_warn("%s supply %s not found, using dummy regulator\n",
1285			devname, id);
1286		rdev = dummy_regulator_rdev;
1287		goto found;
1288	}
1289#endif
1290
1291	mutex_unlock(&regulator_list_mutex);
1292	return regulator;
1293
1294found:
1295	if (rdev->exclusive) {
1296		regulator = ERR_PTR(-EPERM);
1297		goto out;
1298	}
1299
1300	if (exclusive && rdev->open_count) {
1301		regulator = ERR_PTR(-EBUSY);
1302		goto out;
1303	}
1304
1305	if (!try_module_get(rdev->owner))
1306		goto out;
1307
1308	regulator = create_regulator(rdev, dev, id);
1309	if (regulator == NULL) {
1310		regulator = ERR_PTR(-ENOMEM);
1311		module_put(rdev->owner);
1312		goto out;
1313	}
1314
1315	rdev->open_count++;
1316	if (exclusive) {
1317		rdev->exclusive = 1;
1318
1319		ret = _regulator_is_enabled(rdev);
1320		if (ret > 0)
1321			rdev->use_count = 1;
1322		else
1323			rdev->use_count = 0;
1324	}
1325
1326out:
1327	mutex_unlock(&regulator_list_mutex);
1328
1329	return regulator;
1330}
1331
1332/**
1333 * regulator_get - lookup and obtain a reference to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1336 *
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno.
1339 *
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged.  It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1344 */
1345struct regulator *regulator_get(struct device *dev, const char *id)
1346{
1347	return _regulator_get(dev, id, 0);
1348}
1349EXPORT_SYMBOL_GPL(regulator_get);
1350
1351static void devm_regulator_release(struct device *dev, void *res)
1352{
1353	regulator_put(*(struct regulator **)res);
1354}
1355
1356/**
1357 * devm_regulator_get - Resource managed regulator_get()
1358 * @dev: device for regulator "consumer"
1359 * @id: Supply name or regulator ID.
1360 *
1361 * Managed regulator_get(). Regulators returned from this function are
1362 * automatically regulator_put() on driver detach. See regulator_get() for more
1363 * information.
1364 */
1365struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366{
1367	struct regulator **ptr, *regulator;
1368
1369	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370	if (!ptr)
1371		return ERR_PTR(-ENOMEM);
1372
1373	regulator = regulator_get(dev, id);
1374	if (!IS_ERR(regulator)) {
1375		*ptr = regulator;
1376		devres_add(dev, ptr);
1377	} else {
1378		devres_free(ptr);
1379	}
1380
1381	return regulator;
1382}
1383EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385/**
1386 * regulator_get_exclusive - obtain exclusive access to a regulator.
1387 * @dev: device for regulator "consumer"
1388 * @id: Supply name or regulator ID.
1389 *
1390 * Returns a struct regulator corresponding to the regulator producer,
1391 * or IS_ERR() condition containing errno.  Other consumers will be
1392 * unable to obtain this reference is held and the use count for the
1393 * regulator will be initialised to reflect the current state of the
1394 * regulator.
1395 *
1396 * This is intended for use by consumers which cannot tolerate shared
1397 * use of the regulator such as those which need to force the
1398 * regulator off for correct operation of the hardware they are
1399 * controlling.
1400 *
1401 * Use of supply names configured via regulator_set_device_supply() is
1402 * strongly encouraged.  It is recommended that the supply name used
1403 * should match the name used for the supply and/or the relevant
1404 * device pins in the datasheet.
1405 */
1406struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407{
1408	return _regulator_get(dev, id, 1);
1409}
1410EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412/* Locks held by regulator_put() */
1413static void _regulator_put(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev;
1416
1417	if (regulator == NULL || IS_ERR(regulator))
1418		return;
1419
1420	rdev = regulator->rdev;
1421
1422	debugfs_remove_recursive(regulator->debugfs);
1423
1424	/* remove any sysfs entries */
1425	if (regulator->dev)
1426		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427	kfree(regulator->supply_name);
1428	list_del(&regulator->list);
1429	kfree(regulator);
1430
1431	rdev->open_count--;
1432	rdev->exclusive = 0;
1433
1434	module_put(rdev->owner);
1435}
1436
1437/**
1438 * regulator_put - "free" the regulator source
1439 * @regulator: regulator source
1440 *
1441 * Note: drivers must ensure that all regulator_enable calls made on this
1442 * regulator source are balanced by regulator_disable calls prior to calling
1443 * this function.
1444 */
1445void regulator_put(struct regulator *regulator)
1446{
1447	mutex_lock(&regulator_list_mutex);
1448	_regulator_put(regulator);
1449	mutex_unlock(&regulator_list_mutex);
1450}
1451EXPORT_SYMBOL_GPL(regulator_put);
1452
1453static int devm_regulator_match(struct device *dev, void *res, void *data)
1454{
1455	struct regulator **r = res;
1456	if (!r || !*r) {
1457		WARN_ON(!r || !*r);
1458		return 0;
1459	}
1460	return *r == data;
1461}
1462
1463/**
1464 * devm_regulator_put - Resource managed regulator_put()
1465 * @regulator: regulator to free
1466 *
1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468 * this function will not need to be called and the resource management
1469 * code will ensure that the resource is freed.
1470 */
1471void devm_regulator_put(struct regulator *regulator)
1472{
1473	int rc;
1474
1475	rc = devres_release(regulator->dev, devm_regulator_release,
1476			    devm_regulator_match, regulator);
1477	if (rc != 0)
1478		WARN_ON(rc);
1479}
1480EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484				const struct regulator_config *config)
1485{
1486	struct regulator_enable_gpio *pin;
1487	int ret;
1488
1489	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490		if (pin->gpio == config->ena_gpio) {
1491			rdev_dbg(rdev, "GPIO %d is already used\n",
1492				config->ena_gpio);
1493			goto update_ena_gpio_to_rdev;
1494		}
1495	}
1496
1497	ret = gpio_request_one(config->ena_gpio,
1498				GPIOF_DIR_OUT | config->ena_gpio_flags,
1499				rdev_get_name(rdev));
1500	if (ret)
1501		return ret;
1502
1503	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504	if (pin == NULL) {
1505		gpio_free(config->ena_gpio);
1506		return -ENOMEM;
1507	}
1508
1509	pin->gpio = config->ena_gpio;
1510	pin->ena_gpio_invert = config->ena_gpio_invert;
1511	list_add(&pin->list, &regulator_ena_gpio_list);
1512
1513update_ena_gpio_to_rdev:
1514	pin->request_count++;
1515	rdev->ena_pin = pin;
1516	return 0;
1517}
1518
1519static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520{
1521	struct regulator_enable_gpio *pin, *n;
1522
1523	if (!rdev->ena_pin)
1524		return;
1525
1526	/* Free the GPIO only in case of no use */
1527	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528		if (pin->gpio == rdev->ena_pin->gpio) {
1529			if (pin->request_count <= 1) {
1530				pin->request_count = 0;
1531				gpio_free(pin->gpio);
1532				list_del(&pin->list);
1533				kfree(pin);
1534			} else {
1535				pin->request_count--;
1536			}
1537		}
1538	}
1539}
1540
1541/**
1542 * Balance enable_count of each GPIO and actual GPIO pin control.
1543 * GPIO is enabled in case of initial use. (enable_count is 0)
1544 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1545 */
1546static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1547{
1548	struct regulator_enable_gpio *pin = rdev->ena_pin;
1549
1550	if (!pin)
1551		return -EINVAL;
1552
1553	if (enable) {
1554		/* Enable GPIO at initial use */
1555		if (pin->enable_count == 0)
1556			gpio_set_value_cansleep(pin->gpio,
1557						!pin->ena_gpio_invert);
1558
1559		pin->enable_count++;
1560	} else {
1561		if (pin->enable_count > 1) {
1562			pin->enable_count--;
1563			return 0;
1564		}
1565
1566		/* Disable GPIO if not used */
1567		if (pin->enable_count <= 1) {
1568			gpio_set_value_cansleep(pin->gpio,
1569						pin->ena_gpio_invert);
1570			pin->enable_count = 0;
1571		}
1572	}
1573
1574	return 0;
1575}
1576
1577static int _regulator_do_enable(struct regulator_dev *rdev)
1578{
1579	int ret, delay;
1580
1581	/* Query before enabling in case configuration dependent.  */
1582	ret = _regulator_get_enable_time(rdev);
1583	if (ret >= 0) {
1584		delay = ret;
1585	} else {
1586		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1587		delay = 0;
1588	}
1589
1590	trace_regulator_enable(rdev_get_name(rdev));
1591
1592	if (rdev->ena_pin) {
1593		ret = regulator_ena_gpio_ctrl(rdev, true);
1594		if (ret < 0)
1595			return ret;
1596		rdev->ena_gpio_state = 1;
1597	} else if (rdev->desc->ops->enable) {
1598		ret = rdev->desc->ops->enable(rdev);
1599		if (ret < 0)
1600			return ret;
1601	} else {
1602		return -EINVAL;
1603	}
1604
1605	/* Allow the regulator to ramp; it would be useful to extend
1606	 * this for bulk operations so that the regulators can ramp
1607	 * together.  */
1608	trace_regulator_enable_delay(rdev_get_name(rdev));
1609
1610	if (delay >= 1000) {
1611		mdelay(delay / 1000);
1612		udelay(delay % 1000);
1613	} else if (delay) {
1614		udelay(delay);
1615	}
1616
1617	trace_regulator_enable_complete(rdev_get_name(rdev));
1618
1619	return 0;
1620}
1621
1622/* locks held by regulator_enable() */
1623static int _regulator_enable(struct regulator_dev *rdev)
1624{
1625	int ret;
1626
1627	/* check voltage and requested load before enabling */
1628	if (rdev->constraints &&
1629	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1630		drms_uA_update(rdev);
1631
1632	if (rdev->use_count == 0) {
1633		/* The regulator may on if it's not switchable or left on */
1634		ret = _regulator_is_enabled(rdev);
1635		if (ret == -EINVAL || ret == 0) {
1636			if (!_regulator_can_change_status(rdev))
1637				return -EPERM;
1638
1639			ret = _regulator_do_enable(rdev);
1640			if (ret < 0)
1641				return ret;
1642
1643		} else if (ret < 0) {
1644			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1645			return ret;
1646		}
1647		/* Fallthrough on positive return values - already enabled */
1648	}
1649
1650	rdev->use_count++;
1651
1652	return 0;
1653}
1654
1655/**
1656 * regulator_enable - enable regulator output
1657 * @regulator: regulator source
1658 *
1659 * Request that the regulator be enabled with the regulator output at
1660 * the predefined voltage or current value.  Calls to regulator_enable()
1661 * must be balanced with calls to regulator_disable().
1662 *
1663 * NOTE: the output value can be set by other drivers, boot loader or may be
1664 * hardwired in the regulator.
1665 */
1666int regulator_enable(struct regulator *regulator)
1667{
1668	struct regulator_dev *rdev = regulator->rdev;
1669	int ret = 0;
1670
1671	if (regulator->always_on)
1672		return 0;
1673
1674	if (rdev->supply) {
1675		ret = regulator_enable(rdev->supply);
1676		if (ret != 0)
1677			return ret;
1678	}
1679
1680	mutex_lock(&rdev->mutex);
1681	ret = _regulator_enable(rdev);
1682	mutex_unlock(&rdev->mutex);
1683
1684	if (ret != 0 && rdev->supply)
1685		regulator_disable(rdev->supply);
1686
1687	return ret;
1688}
1689EXPORT_SYMBOL_GPL(regulator_enable);
1690
1691static int _regulator_do_disable(struct regulator_dev *rdev)
1692{
1693	int ret;
1694
1695	trace_regulator_disable(rdev_get_name(rdev));
1696
1697	if (rdev->ena_pin) {
1698		ret = regulator_ena_gpio_ctrl(rdev, false);
1699		if (ret < 0)
1700			return ret;
1701		rdev->ena_gpio_state = 0;
1702
1703	} else if (rdev->desc->ops->disable) {
1704		ret = rdev->desc->ops->disable(rdev);
1705		if (ret != 0)
1706			return ret;
1707	}
1708
1709	trace_regulator_disable_complete(rdev_get_name(rdev));
1710
1711	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1712			     NULL);
1713	return 0;
1714}
1715
1716/* locks held by regulator_disable() */
1717static int _regulator_disable(struct regulator_dev *rdev)
1718{
1719	int ret = 0;
1720
1721	if (WARN(rdev->use_count <= 0,
1722		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1723		return -EIO;
1724
1725	/* are we the last user and permitted to disable ? */
1726	if (rdev->use_count == 1 &&
1727	    (rdev->constraints && !rdev->constraints->always_on)) {
1728
1729		/* we are last user */
1730		if (_regulator_can_change_status(rdev)) {
1731			ret = _regulator_do_disable(rdev);
1732			if (ret < 0) {
1733				rdev_err(rdev, "failed to disable\n");
1734				return ret;
1735			}
1736		}
1737
1738		rdev->use_count = 0;
1739	} else if (rdev->use_count > 1) {
1740
1741		if (rdev->constraints &&
1742			(rdev->constraints->valid_ops_mask &
1743			REGULATOR_CHANGE_DRMS))
1744			drms_uA_update(rdev);
1745
1746		rdev->use_count--;
1747	}
1748
1749	return ret;
1750}
1751
1752/**
1753 * regulator_disable - disable regulator output
1754 * @regulator: regulator source
1755 *
1756 * Disable the regulator output voltage or current.  Calls to
1757 * regulator_enable() must be balanced with calls to
1758 * regulator_disable().
1759 *
1760 * NOTE: this will only disable the regulator output if no other consumer
1761 * devices have it enabled, the regulator device supports disabling and
1762 * machine constraints permit this operation.
1763 */
1764int regulator_disable(struct regulator *regulator)
1765{
1766	struct regulator_dev *rdev = regulator->rdev;
1767	int ret = 0;
1768
1769	if (regulator->always_on)
1770		return 0;
1771
1772	mutex_lock(&rdev->mutex);
1773	ret = _regulator_disable(rdev);
1774	mutex_unlock(&rdev->mutex);
1775
1776	if (ret == 0 && rdev->supply)
1777		regulator_disable(rdev->supply);
1778
1779	return ret;
1780}
1781EXPORT_SYMBOL_GPL(regulator_disable);
1782
1783/* locks held by regulator_force_disable() */
1784static int _regulator_force_disable(struct regulator_dev *rdev)
1785{
1786	int ret = 0;
1787
1788	/* force disable */
1789	if (rdev->desc->ops->disable) {
1790		/* ah well, who wants to live forever... */
1791		ret = rdev->desc->ops->disable(rdev);
1792		if (ret < 0) {
1793			rdev_err(rdev, "failed to force disable\n");
1794			return ret;
1795		}
1796		/* notify other consumers that power has been forced off */
1797		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1798			REGULATOR_EVENT_DISABLE, NULL);
1799	}
1800
1801	return ret;
1802}
1803
1804/**
1805 * regulator_force_disable - force disable regulator output
1806 * @regulator: regulator source
1807 *
1808 * Forcibly disable the regulator output voltage or current.
1809 * NOTE: this *will* disable the regulator output even if other consumer
1810 * devices have it enabled. This should be used for situations when device
1811 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1812 */
1813int regulator_force_disable(struct regulator *regulator)
1814{
1815	struct regulator_dev *rdev = regulator->rdev;
1816	int ret;
1817
1818	mutex_lock(&rdev->mutex);
1819	regulator->uA_load = 0;
1820	ret = _regulator_force_disable(regulator->rdev);
1821	mutex_unlock(&rdev->mutex);
1822
1823	if (rdev->supply)
1824		while (rdev->open_count--)
1825			regulator_disable(rdev->supply);
1826
1827	return ret;
1828}
1829EXPORT_SYMBOL_GPL(regulator_force_disable);
1830
1831static void regulator_disable_work(struct work_struct *work)
1832{
1833	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1834						  disable_work.work);
1835	int count, i, ret;
1836
1837	mutex_lock(&rdev->mutex);
1838
1839	BUG_ON(!rdev->deferred_disables);
1840
1841	count = rdev->deferred_disables;
1842	rdev->deferred_disables = 0;
1843
1844	for (i = 0; i < count; i++) {
1845		ret = _regulator_disable(rdev);
1846		if (ret != 0)
1847			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1848	}
1849
1850	mutex_unlock(&rdev->mutex);
1851
1852	if (rdev->supply) {
1853		for (i = 0; i < count; i++) {
1854			ret = regulator_disable(rdev->supply);
1855			if (ret != 0) {
1856				rdev_err(rdev,
1857					 "Supply disable failed: %d\n", ret);
1858			}
1859		}
1860	}
1861}
1862
1863/**
1864 * regulator_disable_deferred - disable regulator output with delay
1865 * @regulator: regulator source
1866 * @ms: miliseconds until the regulator is disabled
1867 *
1868 * Execute regulator_disable() on the regulator after a delay.  This
1869 * is intended for use with devices that require some time to quiesce.
1870 *
1871 * NOTE: this will only disable the regulator output if no other consumer
1872 * devices have it enabled, the regulator device supports disabling and
1873 * machine constraints permit this operation.
1874 */
1875int regulator_disable_deferred(struct regulator *regulator, int ms)
1876{
1877	struct regulator_dev *rdev = regulator->rdev;
1878	int ret;
1879
1880	if (regulator->always_on)
1881		return 0;
1882
1883	if (!ms)
1884		return regulator_disable(regulator);
1885
1886	mutex_lock(&rdev->mutex);
1887	rdev->deferred_disables++;
1888	mutex_unlock(&rdev->mutex);
1889
1890	ret = schedule_delayed_work(&rdev->disable_work,
1891				    msecs_to_jiffies(ms));
1892	if (ret < 0)
1893		return ret;
1894	else
1895		return 0;
1896}
1897EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1898
1899/**
1900 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1901 *
1902 * @rdev: regulator to operate on
1903 *
1904 * Regulators that use regmap for their register I/O can set the
1905 * enable_reg and enable_mask fields in their descriptor and then use
1906 * this as their is_enabled operation, saving some code.
1907 */
1908int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1909{
1910	unsigned int val;
1911	int ret;
1912
1913	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1914	if (ret != 0)
1915		return ret;
1916
1917	if (rdev->desc->enable_is_inverted)
1918		return (val & rdev->desc->enable_mask) == 0;
1919	else
1920		return (val & rdev->desc->enable_mask) != 0;
1921}
1922EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1923
1924/**
1925 * regulator_enable_regmap - standard enable() for regmap users
1926 *
1927 * @rdev: regulator to operate on
1928 *
1929 * Regulators that use regmap for their register I/O can set the
1930 * enable_reg and enable_mask fields in their descriptor and then use
1931 * this as their enable() operation, saving some code.
1932 */
1933int regulator_enable_regmap(struct regulator_dev *rdev)
1934{
1935	unsigned int val;
1936
1937	if (rdev->desc->enable_is_inverted)
1938		val = 0;
1939	else
1940		val = rdev->desc->enable_mask;
1941
1942	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1943				  rdev->desc->enable_mask, val);
1944}
1945EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1946
1947/**
1948 * regulator_disable_regmap - standard disable() for regmap users
1949 *
1950 * @rdev: regulator to operate on
1951 *
1952 * Regulators that use regmap for their register I/O can set the
1953 * enable_reg and enable_mask fields in their descriptor and then use
1954 * this as their disable() operation, saving some code.
1955 */
1956int regulator_disable_regmap(struct regulator_dev *rdev)
1957{
1958	unsigned int val;
1959
1960	if (rdev->desc->enable_is_inverted)
1961		val = rdev->desc->enable_mask;
1962	else
1963		val = 0;
1964
1965	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1966				  rdev->desc->enable_mask, val);
1967}
1968EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1969
1970static int _regulator_is_enabled(struct regulator_dev *rdev)
1971{
1972	/* A GPIO control always takes precedence */
1973	if (rdev->ena_pin)
1974		return rdev->ena_gpio_state;
1975
1976	/* If we don't know then assume that the regulator is always on */
1977	if (!rdev->desc->ops->is_enabled)
1978		return 1;
1979
1980	return rdev->desc->ops->is_enabled(rdev);
1981}
1982
1983/**
1984 * regulator_is_enabled - is the regulator output enabled
1985 * @regulator: regulator source
1986 *
1987 * Returns positive if the regulator driver backing the source/client
1988 * has requested that the device be enabled, zero if it hasn't, else a
1989 * negative errno code.
1990 *
1991 * Note that the device backing this regulator handle can have multiple
1992 * users, so it might be enabled even if regulator_enable() was never
1993 * called for this particular source.
1994 */
1995int regulator_is_enabled(struct regulator *regulator)
1996{
1997	int ret;
1998
1999	if (regulator->always_on)
2000		return 1;
2001
2002	mutex_lock(&regulator->rdev->mutex);
2003	ret = _regulator_is_enabled(regulator->rdev);
2004	mutex_unlock(&regulator->rdev->mutex);
2005
2006	return ret;
2007}
2008EXPORT_SYMBOL_GPL(regulator_is_enabled);
2009
2010/**
2011 * regulator_can_change_voltage - check if regulator can change voltage
2012 * @regulator: regulator source
2013 *
2014 * Returns positive if the regulator driver backing the source/client
2015 * can change its voltage, false otherwise. Usefull for detecting fixed
2016 * or dummy regulators and disabling voltage change logic in the client
2017 * driver.
2018 */
2019int regulator_can_change_voltage(struct regulator *regulator)
2020{
2021	struct regulator_dev	*rdev = regulator->rdev;
2022
2023	if (rdev->constraints &&
2024	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2025		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2026			return 1;
2027
2028		if (rdev->desc->continuous_voltage_range &&
2029		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2030		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2031			return 1;
2032	}
2033
2034	return 0;
2035}
2036EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2037
2038/**
2039 * regulator_count_voltages - count regulator_list_voltage() selectors
2040 * @regulator: regulator source
2041 *
2042 * Returns number of selectors, or negative errno.  Selectors are
2043 * numbered starting at zero, and typically correspond to bitfields
2044 * in hardware registers.
2045 */
2046int regulator_count_voltages(struct regulator *regulator)
2047{
2048	struct regulator_dev	*rdev = regulator->rdev;
2049
2050	return rdev->desc->n_voltages ? : -EINVAL;
2051}
2052EXPORT_SYMBOL_GPL(regulator_count_voltages);
2053
2054/**
2055 * regulator_list_voltage_linear - List voltages with simple calculation
2056 *
2057 * @rdev: Regulator device
2058 * @selector: Selector to convert into a voltage
2059 *
2060 * Regulators with a simple linear mapping between voltages and
2061 * selectors can set min_uV and uV_step in the regulator descriptor
2062 * and then use this function as their list_voltage() operation,
2063 */
2064int regulator_list_voltage_linear(struct regulator_dev *rdev,
2065				  unsigned int selector)
2066{
2067	if (selector >= rdev->desc->n_voltages)
2068		return -EINVAL;
2069	if (selector < rdev->desc->linear_min_sel)
2070		return 0;
2071
2072	selector -= rdev->desc->linear_min_sel;
2073
2074	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2075}
2076EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2077
2078/**
2079 * regulator_list_voltage_table - List voltages with table based mapping
2080 *
2081 * @rdev: Regulator device
2082 * @selector: Selector to convert into a voltage
2083 *
2084 * Regulators with table based mapping between voltages and
2085 * selectors can set volt_table in the regulator descriptor
2086 * and then use this function as their list_voltage() operation.
2087 */
2088int regulator_list_voltage_table(struct regulator_dev *rdev,
2089				 unsigned int selector)
2090{
2091	if (!rdev->desc->volt_table) {
2092		BUG_ON(!rdev->desc->volt_table);
2093		return -EINVAL;
2094	}
2095
2096	if (selector >= rdev->desc->n_voltages)
2097		return -EINVAL;
2098
2099	return rdev->desc->volt_table[selector];
2100}
2101EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2102
2103/**
2104 * regulator_list_voltage - enumerate supported voltages
2105 * @regulator: regulator source
2106 * @selector: identify voltage to list
2107 * Context: can sleep
2108 *
2109 * Returns a voltage that can be passed to @regulator_set_voltage(),
2110 * zero if this selector code can't be used on this system, or a
2111 * negative errno.
2112 */
2113int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2114{
2115	struct regulator_dev	*rdev = regulator->rdev;
2116	struct regulator_ops	*ops = rdev->desc->ops;
2117	int			ret;
2118
2119	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2120		return -EINVAL;
2121
2122	mutex_lock(&rdev->mutex);
2123	ret = ops->list_voltage(rdev, selector);
2124	mutex_unlock(&rdev->mutex);
2125
2126	if (ret > 0) {
2127		if (ret < rdev->constraints->min_uV)
2128			ret = 0;
2129		else if (ret > rdev->constraints->max_uV)
2130			ret = 0;
2131	}
2132
2133	return ret;
2134}
2135EXPORT_SYMBOL_GPL(regulator_list_voltage);
2136
2137/**
2138 * regulator_is_supported_voltage - check if a voltage range can be supported
2139 *
2140 * @regulator: Regulator to check.
2141 * @min_uV: Minimum required voltage in uV.
2142 * @max_uV: Maximum required voltage in uV.
2143 *
2144 * Returns a boolean or a negative error code.
2145 */
2146int regulator_is_supported_voltage(struct regulator *regulator,
2147				   int min_uV, int max_uV)
2148{
2149	struct regulator_dev *rdev = regulator->rdev;
2150	int i, voltages, ret;
2151
2152	/* If we can't change voltage check the current voltage */
2153	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2154		ret = regulator_get_voltage(regulator);
2155		if (ret >= 0)
2156			return (min_uV <= ret && ret <= max_uV);
2157		else
2158			return ret;
2159	}
2160
2161	/* Any voltage within constrains range is fine? */
2162	if (rdev->desc->continuous_voltage_range)
2163		return min_uV >= rdev->constraints->min_uV &&
2164				max_uV <= rdev->constraints->max_uV;
2165
2166	ret = regulator_count_voltages(regulator);
2167	if (ret < 0)
2168		return ret;
2169	voltages = ret;
2170
2171	for (i = 0; i < voltages; i++) {
2172		ret = regulator_list_voltage(regulator, i);
2173
2174		if (ret >= min_uV && ret <= max_uV)
2175			return 1;
2176	}
2177
2178	return 0;
2179}
2180EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2181
2182/**
2183 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2184 *
2185 * @rdev: regulator to operate on
2186 *
2187 * Regulators that use regmap for their register I/O can set the
2188 * vsel_reg and vsel_mask fields in their descriptor and then use this
2189 * as their get_voltage_vsel operation, saving some code.
2190 */
2191int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2192{
2193	unsigned int val;
2194	int ret;
2195
2196	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2197	if (ret != 0)
2198		return ret;
2199
2200	val &= rdev->desc->vsel_mask;
2201	val >>= ffs(rdev->desc->vsel_mask) - 1;
2202
2203	return val;
2204}
2205EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2206
2207/**
2208 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2209 *
2210 * @rdev: regulator to operate on
2211 * @sel: Selector to set
2212 *
2213 * Regulators that use regmap for their register I/O can set the
2214 * vsel_reg and vsel_mask fields in their descriptor and then use this
2215 * as their set_voltage_vsel operation, saving some code.
2216 */
2217int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2218{
2219	int ret;
2220
2221	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2222
2223	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2224				  rdev->desc->vsel_mask, sel);
2225	if (ret)
2226		return ret;
2227
2228	if (rdev->desc->apply_bit)
2229		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2230					 rdev->desc->apply_bit,
2231					 rdev->desc->apply_bit);
2232	return ret;
2233}
2234EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2235
2236/**
2237 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2238 *
2239 * @rdev: Regulator to operate on
2240 * @min_uV: Lower bound for voltage
2241 * @max_uV: Upper bound for voltage
2242 *
2243 * Drivers implementing set_voltage_sel() and list_voltage() can use
2244 * this as their map_voltage() operation.  It will find a suitable
2245 * voltage by calling list_voltage() until it gets something in bounds
2246 * for the requested voltages.
2247 */
2248int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2249				  int min_uV, int max_uV)
2250{
2251	int best_val = INT_MAX;
2252	int selector = 0;
2253	int i, ret;
2254
2255	/* Find the smallest voltage that falls within the specified
2256	 * range.
2257	 */
2258	for (i = 0; i < rdev->desc->n_voltages; i++) {
2259		ret = rdev->desc->ops->list_voltage(rdev, i);
2260		if (ret < 0)
2261			continue;
2262
2263		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2264			best_val = ret;
2265			selector = i;
2266		}
2267	}
2268
2269	if (best_val != INT_MAX)
2270		return selector;
2271	else
2272		return -EINVAL;
2273}
2274EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2275
2276/**
2277 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2278 *
2279 * @rdev: Regulator to operate on
2280 * @min_uV: Lower bound for voltage
2281 * @max_uV: Upper bound for voltage
2282 *
2283 * Drivers that have ascendant voltage list can use this as their
2284 * map_voltage() operation.
2285 */
2286int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2287				 int min_uV, int max_uV)
2288{
2289	int i, ret;
2290
2291	for (i = 0; i < rdev->desc->n_voltages; i++) {
2292		ret = rdev->desc->ops->list_voltage(rdev, i);
2293		if (ret < 0)
2294			continue;
2295
2296		if (ret > max_uV)
2297			break;
2298
2299		if (ret >= min_uV && ret <= max_uV)
2300			return i;
2301	}
2302
2303	return -EINVAL;
2304}
2305EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2306
2307/**
2308 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2309 *
2310 * @rdev: Regulator to operate on
2311 * @min_uV: Lower bound for voltage
2312 * @max_uV: Upper bound for voltage
2313 *
2314 * Drivers providing min_uV and uV_step in their regulator_desc can
2315 * use this as their map_voltage() operation.
2316 */
2317int regulator_map_voltage_linear(struct regulator_dev *rdev,
2318				 int min_uV, int max_uV)
2319{
2320	int ret, voltage;
2321
2322	/* Allow uV_step to be 0 for fixed voltage */
2323	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2324		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2325			return 0;
2326		else
2327			return -EINVAL;
2328	}
2329
2330	if (!rdev->desc->uV_step) {
2331		BUG_ON(!rdev->desc->uV_step);
2332		return -EINVAL;
2333	}
2334
2335	if (min_uV < rdev->desc->min_uV)
2336		min_uV = rdev->desc->min_uV;
2337
2338	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2339	if (ret < 0)
2340		return ret;
2341
2342	ret += rdev->desc->linear_min_sel;
2343
2344	/* Map back into a voltage to verify we're still in bounds */
2345	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2346	if (voltage < min_uV || voltage > max_uV)
2347		return -EINVAL;
2348
2349	return ret;
2350}
2351EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2352
2353static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2354				     int min_uV, int max_uV)
2355{
2356	int ret;
2357	int delay = 0;
2358	int best_val = 0;
2359	unsigned int selector;
2360	int old_selector = -1;
2361
2362	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2363
2364	min_uV += rdev->constraints->uV_offset;
2365	max_uV += rdev->constraints->uV_offset;
2366
2367	/*
2368	 * If we can't obtain the old selector there is not enough
2369	 * info to call set_voltage_time_sel().
2370	 */
2371	if (_regulator_is_enabled(rdev) &&
2372	    rdev->desc->ops->set_voltage_time_sel &&
2373	    rdev->desc->ops->get_voltage_sel) {
2374		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2375		if (old_selector < 0)
2376			return old_selector;
2377	}
2378
2379	if (rdev->desc->ops->set_voltage) {
2380		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2381						   &selector);
2382
2383		if (ret >= 0) {
2384			if (rdev->desc->ops->list_voltage)
2385				best_val = rdev->desc->ops->list_voltage(rdev,
2386									 selector);
2387			else
2388				best_val = _regulator_get_voltage(rdev);
2389		}
2390
2391	} else if (rdev->desc->ops->set_voltage_sel) {
2392		if (rdev->desc->ops->map_voltage) {
2393			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2394							   max_uV);
2395		} else {
2396			if (rdev->desc->ops->list_voltage ==
2397			    regulator_list_voltage_linear)
2398				ret = regulator_map_voltage_linear(rdev,
2399								min_uV, max_uV);
2400			else
2401				ret = regulator_map_voltage_iterate(rdev,
2402								min_uV, max_uV);
2403		}
2404
2405		if (ret >= 0) {
2406			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2407			if (min_uV <= best_val && max_uV >= best_val) {
2408				selector = ret;
2409				if (old_selector == selector)
2410					ret = 0;
2411				else
2412					ret = rdev->desc->ops->set_voltage_sel(
2413								rdev, ret);
2414			} else {
2415				ret = -EINVAL;
2416			}
2417		}
2418	} else {
2419		ret = -EINVAL;
2420	}
2421
2422	/* Call set_voltage_time_sel if successfully obtained old_selector */
2423	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2424	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2425
2426		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2427						old_selector, selector);
2428		if (delay < 0) {
2429			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2430				  delay);
2431			delay = 0;
2432		}
2433
2434		/* Insert any necessary delays */
2435		if (delay >= 1000) {
2436			mdelay(delay / 1000);
2437			udelay(delay % 1000);
2438		} else if (delay) {
2439			udelay(delay);
2440		}
2441	}
2442
2443	if (ret == 0 && best_val >= 0) {
2444		unsigned long data = best_val;
2445
2446		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2447				     (void *)data);
2448	}
2449
2450	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2451
2452	return ret;
2453}
2454
2455/**
2456 * regulator_set_voltage - set regulator output voltage
2457 * @regulator: regulator source
2458 * @min_uV: Minimum required voltage in uV
2459 * @max_uV: Maximum acceptable voltage in uV
2460 *
2461 * Sets a voltage regulator to the desired output voltage. This can be set
2462 * during any regulator state. IOW, regulator can be disabled or enabled.
2463 *
2464 * If the regulator is enabled then the voltage will change to the new value
2465 * immediately otherwise if the regulator is disabled the regulator will
2466 * output at the new voltage when enabled.
2467 *
2468 * NOTE: If the regulator is shared between several devices then the lowest
2469 * request voltage that meets the system constraints will be used.
2470 * Regulator system constraints must be set for this regulator before
2471 * calling this function otherwise this call will fail.
2472 */
2473int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2474{
2475	struct regulator_dev *rdev = regulator->rdev;
2476	int ret = 0;
2477	int old_min_uV, old_max_uV;
2478
2479	mutex_lock(&rdev->mutex);
2480
2481	/* If we're setting the same range as last time the change
2482	 * should be a noop (some cpufreq implementations use the same
2483	 * voltage for multiple frequencies, for example).
2484	 */
2485	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2486		goto out;
2487
2488	/* sanity check */
2489	if (!rdev->desc->ops->set_voltage &&
2490	    !rdev->desc->ops->set_voltage_sel) {
2491		ret = -EINVAL;
2492		goto out;
2493	}
2494
2495	/* constraints check */
2496	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2497	if (ret < 0)
2498		goto out;
2499
2500	/* restore original values in case of error */
2501	old_min_uV = regulator->min_uV;
2502	old_max_uV = regulator->max_uV;
2503	regulator->min_uV = min_uV;
2504	regulator->max_uV = max_uV;
2505
2506	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2507	if (ret < 0)
2508		goto out2;
2509
2510	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2511	if (ret < 0)
2512		goto out2;
2513
2514out:
2515	mutex_unlock(&rdev->mutex);
2516	return ret;
2517out2:
2518	regulator->min_uV = old_min_uV;
2519	regulator->max_uV = old_max_uV;
2520	mutex_unlock(&rdev->mutex);
2521	return ret;
2522}
2523EXPORT_SYMBOL_GPL(regulator_set_voltage);
2524
2525/**
2526 * regulator_set_voltage_time - get raise/fall time
2527 * @regulator: regulator source
2528 * @old_uV: starting voltage in microvolts
2529 * @new_uV: target voltage in microvolts
2530 *
2531 * Provided with the starting and ending voltage, this function attempts to
2532 * calculate the time in microseconds required to rise or fall to this new
2533 * voltage.
2534 */
2535int regulator_set_voltage_time(struct regulator *regulator,
2536			       int old_uV, int new_uV)
2537{
2538	struct regulator_dev	*rdev = regulator->rdev;
2539	struct regulator_ops	*ops = rdev->desc->ops;
2540	int old_sel = -1;
2541	int new_sel = -1;
2542	int voltage;
2543	int i;
2544
2545	/* Currently requires operations to do this */
2546	if (!ops->list_voltage || !ops->set_voltage_time_sel
2547	    || !rdev->desc->n_voltages)
2548		return -EINVAL;
2549
2550	for (i = 0; i < rdev->desc->n_voltages; i++) {
2551		/* We only look for exact voltage matches here */
2552		voltage = regulator_list_voltage(regulator, i);
2553		if (voltage < 0)
2554			return -EINVAL;
2555		if (voltage == 0)
2556			continue;
2557		if (voltage == old_uV)
2558			old_sel = i;
2559		if (voltage == new_uV)
2560			new_sel = i;
2561	}
2562
2563	if (old_sel < 0 || new_sel < 0)
2564		return -EINVAL;
2565
2566	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2567}
2568EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2569
2570/**
2571 * regulator_set_voltage_time_sel - get raise/fall time
2572 * @rdev: regulator source device
2573 * @old_selector: selector for starting voltage
2574 * @new_selector: selector for target voltage
2575 *
2576 * Provided with the starting and target voltage selectors, this function
2577 * returns time in microseconds required to rise or fall to this new voltage
2578 *
2579 * Drivers providing ramp_delay in regulation_constraints can use this as their
2580 * set_voltage_time_sel() operation.
2581 */
2582int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2583				   unsigned int old_selector,
2584				   unsigned int new_selector)
2585{
2586	unsigned int ramp_delay = 0;
2587	int old_volt, new_volt;
2588
2589	if (rdev->constraints->ramp_delay)
2590		ramp_delay = rdev->constraints->ramp_delay;
2591	else if (rdev->desc->ramp_delay)
2592		ramp_delay = rdev->desc->ramp_delay;
2593
2594	if (ramp_delay == 0) {
2595		rdev_warn(rdev, "ramp_delay not set\n");
2596		return 0;
2597	}
2598
2599	/* sanity check */
2600	if (!rdev->desc->ops->list_voltage)
2601		return -EINVAL;
2602
2603	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2604	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2605
2606	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2607}
2608EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2609
2610/**
2611 * regulator_sync_voltage - re-apply last regulator output voltage
2612 * @regulator: regulator source
2613 *
2614 * Re-apply the last configured voltage.  This is intended to be used
2615 * where some external control source the consumer is cooperating with
2616 * has caused the configured voltage to change.
2617 */
2618int regulator_sync_voltage(struct regulator *regulator)
2619{
2620	struct regulator_dev *rdev = regulator->rdev;
2621	int ret, min_uV, max_uV;
2622
2623	mutex_lock(&rdev->mutex);
2624
2625	if (!rdev->desc->ops->set_voltage &&
2626	    !rdev->desc->ops->set_voltage_sel) {
2627		ret = -EINVAL;
2628		goto out;
2629	}
2630
2631	/* This is only going to work if we've had a voltage configured. */
2632	if (!regulator->min_uV && !regulator->max_uV) {
2633		ret = -EINVAL;
2634		goto out;
2635	}
2636
2637	min_uV = regulator->min_uV;
2638	max_uV = regulator->max_uV;
2639
2640	/* This should be a paranoia check... */
2641	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2642	if (ret < 0)
2643		goto out;
2644
2645	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2646	if (ret < 0)
2647		goto out;
2648
2649	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2650
2651out:
2652	mutex_unlock(&rdev->mutex);
2653	return ret;
2654}
2655EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2656
2657static int _regulator_get_voltage(struct regulator_dev *rdev)
2658{
2659	int sel, ret;
2660
2661	if (rdev->desc->ops->get_voltage_sel) {
2662		sel = rdev->desc->ops->get_voltage_sel(rdev);
2663		if (sel < 0)
2664			return sel;
2665		ret = rdev->desc->ops->list_voltage(rdev, sel);
2666	} else if (rdev->desc->ops->get_voltage) {
2667		ret = rdev->desc->ops->get_voltage(rdev);
2668	} else if (rdev->desc->ops->list_voltage) {
2669		ret = rdev->desc->ops->list_voltage(rdev, 0);
2670	} else {
2671		return -EINVAL;
2672	}
2673
2674	if (ret < 0)
2675		return ret;
2676	return ret - rdev->constraints->uV_offset;
2677}
2678
2679/**
2680 * regulator_get_voltage - get regulator output voltage
2681 * @regulator: regulator source
2682 *
2683 * This returns the current regulator voltage in uV.
2684 *
2685 * NOTE: If the regulator is disabled it will return the voltage value. This
2686 * function should not be used to determine regulator state.
2687 */
2688int regulator_get_voltage(struct regulator *regulator)
2689{
2690	int ret;
2691
2692	mutex_lock(&regulator->rdev->mutex);
2693
2694	ret = _regulator_get_voltage(regulator->rdev);
2695
2696	mutex_unlock(&regulator->rdev->mutex);
2697
2698	return ret;
2699}
2700EXPORT_SYMBOL_GPL(regulator_get_voltage);
2701
2702/**
2703 * regulator_set_current_limit - set regulator output current limit
2704 * @regulator: regulator source
2705 * @min_uA: Minimum supported current in uA
2706 * @max_uA: Maximum supported current in uA
2707 *
2708 * Sets current sink to the desired output current. This can be set during
2709 * any regulator state. IOW, regulator can be disabled or enabled.
2710 *
2711 * If the regulator is enabled then the current will change to the new value
2712 * immediately otherwise if the regulator is disabled the regulator will
2713 * output at the new current when enabled.
2714 *
2715 * NOTE: Regulator system constraints must be set for this regulator before
2716 * calling this function otherwise this call will fail.
2717 */
2718int regulator_set_current_limit(struct regulator *regulator,
2719			       int min_uA, int max_uA)
2720{
2721	struct regulator_dev *rdev = regulator->rdev;
2722	int ret;
2723
2724	mutex_lock(&rdev->mutex);
2725
2726	/* sanity check */
2727	if (!rdev->desc->ops->set_current_limit) {
2728		ret = -EINVAL;
2729		goto out;
2730	}
2731
2732	/* constraints check */
2733	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2734	if (ret < 0)
2735		goto out;
2736
2737	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2738out:
2739	mutex_unlock(&rdev->mutex);
2740	return ret;
2741}
2742EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2743
2744static int _regulator_get_current_limit(struct regulator_dev *rdev)
2745{
2746	int ret;
2747
2748	mutex_lock(&rdev->mutex);
2749
2750	/* sanity check */
2751	if (!rdev->desc->ops->get_current_limit) {
2752		ret = -EINVAL;
2753		goto out;
2754	}
2755
2756	ret = rdev->desc->ops->get_current_limit(rdev);
2757out:
2758	mutex_unlock(&rdev->mutex);
2759	return ret;
2760}
2761
2762/**
2763 * regulator_get_current_limit - get regulator output current
2764 * @regulator: regulator source
2765 *
2766 * This returns the current supplied by the specified current sink in uA.
2767 *
2768 * NOTE: If the regulator is disabled it will return the current value. This
2769 * function should not be used to determine regulator state.
2770 */
2771int regulator_get_current_limit(struct regulator *regulator)
2772{
2773	return _regulator_get_current_limit(regulator->rdev);
2774}
2775EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2776
2777/**
2778 * regulator_set_mode - set regulator operating mode
2779 * @regulator: regulator source
2780 * @mode: operating mode - one of the REGULATOR_MODE constants
2781 *
2782 * Set regulator operating mode to increase regulator efficiency or improve
2783 * regulation performance.
2784 *
2785 * NOTE: Regulator system constraints must be set for this regulator before
2786 * calling this function otherwise this call will fail.
2787 */
2788int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2789{
2790	struct regulator_dev *rdev = regulator->rdev;
2791	int ret;
2792	int regulator_curr_mode;
2793
2794	mutex_lock(&rdev->mutex);
2795
2796	/* sanity check */
2797	if (!rdev->desc->ops->set_mode) {
2798		ret = -EINVAL;
2799		goto out;
2800	}
2801
2802	/* return if the same mode is requested */
2803	if (rdev->desc->ops->get_mode) {
2804		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2805		if (regulator_curr_mode == mode) {
2806			ret = 0;
2807			goto out;
2808		}
2809	}
2810
2811	/* constraints check */
2812	ret = regulator_mode_constrain(rdev, &mode);
2813	if (ret < 0)
2814		goto out;
2815
2816	ret = rdev->desc->ops->set_mode(rdev, mode);
2817out:
2818	mutex_unlock(&rdev->mutex);
2819	return ret;
2820}
2821EXPORT_SYMBOL_GPL(regulator_set_mode);
2822
2823static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2824{
2825	int ret;
2826
2827	mutex_lock(&rdev->mutex);
2828
2829	/* sanity check */
2830	if (!rdev->desc->ops->get_mode) {
2831		ret = -EINVAL;
2832		goto out;
2833	}
2834
2835	ret = rdev->desc->ops->get_mode(rdev);
2836out:
2837	mutex_unlock(&rdev->mutex);
2838	return ret;
2839}
2840
2841/**
2842 * regulator_get_mode - get regulator operating mode
2843 * @regulator: regulator source
2844 *
2845 * Get the current regulator operating mode.
2846 */
2847unsigned int regulator_get_mode(struct regulator *regulator)
2848{
2849	return _regulator_get_mode(regulator->rdev);
2850}
2851EXPORT_SYMBOL_GPL(regulator_get_mode);
2852
2853/**
2854 * regulator_set_optimum_mode - set regulator optimum operating mode
2855 * @regulator: regulator source
2856 * @uA_load: load current
2857 *
2858 * Notifies the regulator core of a new device load. This is then used by
2859 * DRMS (if enabled by constraints) to set the most efficient regulator
2860 * operating mode for the new regulator loading.
2861 *
2862 * Consumer devices notify their supply regulator of the maximum power
2863 * they will require (can be taken from device datasheet in the power
2864 * consumption tables) when they change operational status and hence power
2865 * state. Examples of operational state changes that can affect power
2866 * consumption are :-
2867 *
2868 *    o Device is opened / closed.
2869 *    o Device I/O is about to begin or has just finished.
2870 *    o Device is idling in between work.
2871 *
2872 * This information is also exported via sysfs to userspace.
2873 *
2874 * DRMS will sum the total requested load on the regulator and change
2875 * to the most efficient operating mode if platform constraints allow.
2876 *
2877 * Returns the new regulator mode or error.
2878 */
2879int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2880{
2881	struct regulator_dev *rdev = regulator->rdev;
2882	struct regulator *consumer;
2883	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2884	unsigned int mode;
2885
2886	if (rdev->supply)
2887		input_uV = regulator_get_voltage(rdev->supply);
2888
2889	mutex_lock(&rdev->mutex);
2890
2891	/*
2892	 * first check to see if we can set modes at all, otherwise just
2893	 * tell the consumer everything is OK.
2894	 */
2895	regulator->uA_load = uA_load;
2896	ret = regulator_check_drms(rdev);
2897	if (ret < 0) {
2898		ret = 0;
2899		goto out;
2900	}
2901
2902	if (!rdev->desc->ops->get_optimum_mode)
2903		goto out;
2904
2905	/*
2906	 * we can actually do this so any errors are indicators of
2907	 * potential real failure.
2908	 */
2909	ret = -EINVAL;
2910
2911	if (!rdev->desc->ops->set_mode)
2912		goto out;
2913
2914	/* get output voltage */
2915	output_uV = _regulator_get_voltage(rdev);
2916	if (output_uV <= 0) {
2917		rdev_err(rdev, "invalid output voltage found\n");
2918		goto out;
2919	}
2920
2921	/* No supply? Use constraint voltage */
2922	if (input_uV <= 0)
2923		input_uV = rdev->constraints->input_uV;
2924	if (input_uV <= 0) {
2925		rdev_err(rdev, "invalid input voltage found\n");
2926		goto out;
2927	}
2928
2929	/* calc total requested load for this regulator */
2930	list_for_each_entry(consumer, &rdev->consumer_list, list)
2931		total_uA_load += consumer->uA_load;
2932
2933	mode = rdev->desc->ops->get_optimum_mode(rdev,
2934						 input_uV, output_uV,
2935						 total_uA_load);
2936	ret = regulator_mode_constrain(rdev, &mode);
2937	if (ret < 0) {
2938		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2939			 total_uA_load, input_uV, output_uV);
2940		goto out;
2941	}
2942
2943	ret = rdev->desc->ops->set_mode(rdev, mode);
2944	if (ret < 0) {
2945		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2946		goto out;
2947	}
2948	ret = mode;
2949out:
2950	mutex_unlock(&rdev->mutex);
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2954
2955/**
2956 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2957 *
2958 * @rdev: device to operate on.
2959 * @enable: state to set.
2960 */
2961int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2962{
2963	unsigned int val;
2964
2965	if (enable)
2966		val = rdev->desc->bypass_mask;
2967	else
2968		val = 0;
2969
2970	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2971				  rdev->desc->bypass_mask, val);
2972}
2973EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2974
2975/**
2976 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2977 *
2978 * @rdev: device to operate on.
2979 * @enable: current state.
2980 */
2981int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2982{
2983	unsigned int val;
2984	int ret;
2985
2986	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2987	if (ret != 0)
2988		return ret;
2989
2990	*enable = val & rdev->desc->bypass_mask;
2991
2992	return 0;
2993}
2994EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2995
2996/**
2997 * regulator_allow_bypass - allow the regulator to go into bypass mode
2998 *
2999 * @regulator: Regulator to configure
3000 * @enable: enable or disable bypass mode
3001 *
3002 * Allow the regulator to go into bypass mode if all other consumers
3003 * for the regulator also enable bypass mode and the machine
3004 * constraints allow this.  Bypass mode means that the regulator is
3005 * simply passing the input directly to the output with no regulation.
3006 */
3007int regulator_allow_bypass(struct regulator *regulator, bool enable)
3008{
3009	struct regulator_dev *rdev = regulator->rdev;
3010	int ret = 0;
3011
3012	if (!rdev->desc->ops->set_bypass)
3013		return 0;
3014
3015	if (rdev->constraints &&
3016	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3017		return 0;
3018
3019	mutex_lock(&rdev->mutex);
3020
3021	if (enable && !regulator->bypass) {
3022		rdev->bypass_count++;
3023
3024		if (rdev->bypass_count == rdev->open_count) {
3025			ret = rdev->desc->ops->set_bypass(rdev, enable);
3026			if (ret != 0)
3027				rdev->bypass_count--;
3028		}
3029
3030	} else if (!enable && regulator->bypass) {
3031		rdev->bypass_count--;
3032
3033		if (rdev->bypass_count != rdev->open_count) {
3034			ret = rdev->desc->ops->set_bypass(rdev, enable);
3035			if (ret != 0)
3036				rdev->bypass_count++;
3037		}
3038	}
3039
3040	if (ret == 0)
3041		regulator->bypass = enable;
3042
3043	mutex_unlock(&rdev->mutex);
3044
3045	return ret;
3046}
3047EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3048
3049/**
3050 * regulator_register_notifier - register regulator event notifier
3051 * @regulator: regulator source
3052 * @nb: notifier block
3053 *
3054 * Register notifier block to receive regulator events.
3055 */
3056int regulator_register_notifier(struct regulator *regulator,
3057			      struct notifier_block *nb)
3058{
3059	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3060						nb);
3061}
3062EXPORT_SYMBOL_GPL(regulator_register_notifier);
3063
3064/**
3065 * regulator_unregister_notifier - unregister regulator event notifier
3066 * @regulator: regulator source
3067 * @nb: notifier block
3068 *
3069 * Unregister regulator event notifier block.
3070 */
3071int regulator_unregister_notifier(struct regulator *regulator,
3072				struct notifier_block *nb)
3073{
3074	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3075						  nb);
3076}
3077EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3078
3079/* notify regulator consumers and downstream regulator consumers.
3080 * Note mutex must be held by caller.
3081 */
3082static void _notifier_call_chain(struct regulator_dev *rdev,
3083				  unsigned long event, void *data)
3084{
3085	/* call rdev chain first */
3086	blocking_notifier_call_chain(&rdev->notifier, event, data);
3087}
3088
3089/**
3090 * regulator_bulk_get - get multiple regulator consumers
3091 *
3092 * @dev:           Device to supply
3093 * @num_consumers: Number of consumers to register
3094 * @consumers:     Configuration of consumers; clients are stored here.
3095 *
3096 * @return 0 on success, an errno on failure.
3097 *
3098 * This helper function allows drivers to get several regulator
3099 * consumers in one operation.  If any of the regulators cannot be
3100 * acquired then any regulators that were allocated will be freed
3101 * before returning to the caller.
3102 */
3103int regulator_bulk_get(struct device *dev, int num_consumers,
3104		       struct regulator_bulk_data *consumers)
3105{
3106	int i;
3107	int ret;
3108
3109	for (i = 0; i < num_consumers; i++)
3110		consumers[i].consumer = NULL;
3111
3112	for (i = 0; i < num_consumers; i++) {
3113		consumers[i].consumer = regulator_get(dev,
3114						      consumers[i].supply);
3115		if (IS_ERR(consumers[i].consumer)) {
3116			ret = PTR_ERR(consumers[i].consumer);
3117			dev_err(dev, "Failed to get supply '%s': %d\n",
3118				consumers[i].supply, ret);
3119			consumers[i].consumer = NULL;
3120			goto err;
3121		}
3122	}
3123
3124	return 0;
3125
3126err:
3127	while (--i >= 0)
3128		regulator_put(consumers[i].consumer);
3129
3130	return ret;
3131}
3132EXPORT_SYMBOL_GPL(regulator_bulk_get);
3133
3134/**
3135 * devm_regulator_bulk_get - managed get multiple regulator consumers
3136 *
3137 * @dev:           Device to supply
3138 * @num_consumers: Number of consumers to register
3139 * @consumers:     Configuration of consumers; clients are stored here.
3140 *
3141 * @return 0 on success, an errno on failure.
3142 *
3143 * This helper function allows drivers to get several regulator
3144 * consumers in one operation with management, the regulators will
3145 * automatically be freed when the device is unbound.  If any of the
3146 * regulators cannot be acquired then any regulators that were
3147 * allocated will be freed before returning to the caller.
3148 */
3149int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3150			    struct regulator_bulk_data *consumers)
3151{
3152	int i;
3153	int ret;
3154
3155	for (i = 0; i < num_consumers; i++)
3156		consumers[i].consumer = NULL;
3157
3158	for (i = 0; i < num_consumers; i++) {
3159		consumers[i].consumer = devm_regulator_get(dev,
3160							   consumers[i].supply);
3161		if (IS_ERR(consumers[i].consumer)) {
3162			ret = PTR_ERR(consumers[i].consumer);
3163			dev_err(dev, "Failed to get supply '%s': %d\n",
3164				consumers[i].supply, ret);
3165			consumers[i].consumer = NULL;
3166			goto err;
3167		}
3168	}
3169
3170	return 0;
3171
3172err:
3173	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3174		devm_regulator_put(consumers[i].consumer);
3175
3176	return ret;
3177}
3178EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3179
3180static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3181{
3182	struct regulator_bulk_data *bulk = data;
3183
3184	bulk->ret = regulator_enable(bulk->consumer);
3185}
3186
3187/**
3188 * regulator_bulk_enable - enable multiple regulator consumers
3189 *
3190 * @num_consumers: Number of consumers
3191 * @consumers:     Consumer data; clients are stored here.
3192 * @return         0 on success, an errno on failure
3193 *
3194 * This convenience API allows consumers to enable multiple regulator
3195 * clients in a single API call.  If any consumers cannot be enabled
3196 * then any others that were enabled will be disabled again prior to
3197 * return.
3198 */
3199int regulator_bulk_enable(int num_consumers,
3200			  struct regulator_bulk_data *consumers)
3201{
3202	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3203	int i;
3204	int ret = 0;
3205
3206	for (i = 0; i < num_consumers; i++) {
3207		if (consumers[i].consumer->always_on)
3208			consumers[i].ret = 0;
3209		else
3210			async_schedule_domain(regulator_bulk_enable_async,
3211					      &consumers[i], &async_domain);
3212	}
3213
3214	async_synchronize_full_domain(&async_domain);
3215
3216	/* If any consumer failed we need to unwind any that succeeded */
3217	for (i = 0; i < num_consumers; i++) {
3218		if (consumers[i].ret != 0) {
3219			ret = consumers[i].ret;
3220			goto err;
3221		}
3222	}
3223
3224	return 0;
3225
3226err:
3227	for (i = 0; i < num_consumers; i++) {
3228		if (consumers[i].ret < 0)
3229			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3230			       consumers[i].ret);
3231		else
3232			regulator_disable(consumers[i].consumer);
3233	}
3234
3235	return ret;
3236}
3237EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3238
3239/**
3240 * regulator_bulk_disable - disable multiple regulator consumers
3241 *
3242 * @num_consumers: Number of consumers
3243 * @consumers:     Consumer data; clients are stored here.
3244 * @return         0 on success, an errno on failure
3245 *
3246 * This convenience API allows consumers to disable multiple regulator
3247 * clients in a single API call.  If any consumers cannot be disabled
3248 * then any others that were disabled will be enabled again prior to
3249 * return.
3250 */
3251int regulator_bulk_disable(int num_consumers,
3252			   struct regulator_bulk_data *consumers)
3253{
3254	int i;
3255	int ret, r;
3256
3257	for (i = num_consumers - 1; i >= 0; --i) {
3258		ret = regulator_disable(consumers[i].consumer);
3259		if (ret != 0)
3260			goto err;
3261	}
3262
3263	return 0;
3264
3265err:
3266	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3267	for (++i; i < num_consumers; ++i) {
3268		r = regulator_enable(consumers[i].consumer);
3269		if (r != 0)
3270			pr_err("Failed to reename %s: %d\n",
3271			       consumers[i].supply, r);
3272	}
3273
3274	return ret;
3275}
3276EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3277
3278/**
3279 * regulator_bulk_force_disable - force disable multiple regulator consumers
3280 *
3281 * @num_consumers: Number of consumers
3282 * @consumers:     Consumer data; clients are stored here.
3283 * @return         0 on success, an errno on failure
3284 *
3285 * This convenience API allows consumers to forcibly disable multiple regulator
3286 * clients in a single API call.
3287 * NOTE: This should be used for situations when device damage will
3288 * likely occur if the regulators are not disabled (e.g. over temp).
3289 * Although regulator_force_disable function call for some consumers can
3290 * return error numbers, the function is called for all consumers.
3291 */
3292int regulator_bulk_force_disable(int num_consumers,
3293			   struct regulator_bulk_data *consumers)
3294{
3295	int i;
3296	int ret;
3297
3298	for (i = 0; i < num_consumers; i++)
3299		consumers[i].ret =
3300			    regulator_force_disable(consumers[i].consumer);
3301
3302	for (i = 0; i < num_consumers; i++) {
3303		if (consumers[i].ret != 0) {
3304			ret = consumers[i].ret;
3305			goto out;
3306		}
3307	}
3308
3309	return 0;
3310out:
3311	return ret;
3312}
3313EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3314
3315/**
3316 * regulator_bulk_free - free multiple regulator consumers
3317 *
3318 * @num_consumers: Number of consumers
3319 * @consumers:     Consumer data; clients are stored here.
3320 *
3321 * This convenience API allows consumers to free multiple regulator
3322 * clients in a single API call.
3323 */
3324void regulator_bulk_free(int num_consumers,
3325			 struct regulator_bulk_data *consumers)
3326{
3327	int i;
3328
3329	for (i = 0; i < num_consumers; i++) {
3330		regulator_put(consumers[i].consumer);
3331		consumers[i].consumer = NULL;
3332	}
3333}
3334EXPORT_SYMBOL_GPL(regulator_bulk_free);
3335
3336/**
3337 * regulator_notifier_call_chain - call regulator event notifier
3338 * @rdev: regulator source
3339 * @event: notifier block
3340 * @data: callback-specific data.
3341 *
3342 * Called by regulator drivers to notify clients a regulator event has
3343 * occurred. We also notify regulator clients downstream.
3344 * Note lock must be held by caller.
3345 */
3346int regulator_notifier_call_chain(struct regulator_dev *rdev,
3347				  unsigned long event, void *data)
3348{
3349	_notifier_call_chain(rdev, event, data);
3350	return NOTIFY_DONE;
3351
3352}
3353EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3354
3355/**
3356 * regulator_mode_to_status - convert a regulator mode into a status
3357 *
3358 * @mode: Mode to convert
3359 *
3360 * Convert a regulator mode into a status.
3361 */
3362int regulator_mode_to_status(unsigned int mode)
3363{
3364	switch (mode) {
3365	case REGULATOR_MODE_FAST:
3366		return REGULATOR_STATUS_FAST;
3367	case REGULATOR_MODE_NORMAL:
3368		return REGULATOR_STATUS_NORMAL;
3369	case REGULATOR_MODE_IDLE:
3370		return REGULATOR_STATUS_IDLE;
3371	case REGULATOR_MODE_STANDBY:
3372		return REGULATOR_STATUS_STANDBY;
3373	default:
3374		return REGULATOR_STATUS_UNDEFINED;
3375	}
3376}
3377EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3378
3379/*
3380 * To avoid cluttering sysfs (and memory) with useless state, only
3381 * create attributes that can be meaningfully displayed.
3382 */
3383static int add_regulator_attributes(struct regulator_dev *rdev)
3384{
3385	struct device		*dev = &rdev->dev;
3386	struct regulator_ops	*ops = rdev->desc->ops;
3387	int			status = 0;
3388
3389	/* some attributes need specific methods to be displayed */
3390	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3391	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3392	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3393		status = device_create_file(dev, &dev_attr_microvolts);
3394		if (status < 0)
3395			return status;
3396	}
3397	if (ops->get_current_limit) {
3398		status = device_create_file(dev, &dev_attr_microamps);
3399		if (status < 0)
3400			return status;
3401	}
3402	if (ops->get_mode) {
3403		status = device_create_file(dev, &dev_attr_opmode);
3404		if (status < 0)
3405			return status;
3406	}
3407	if (rdev->ena_pin || ops->is_enabled) {
3408		status = device_create_file(dev, &dev_attr_state);
3409		if (status < 0)
3410			return status;
3411	}
3412	if (ops->get_status) {
3413		status = device_create_file(dev, &dev_attr_status);
3414		if (status < 0)
3415			return status;
3416	}
3417	if (ops->get_bypass) {
3418		status = device_create_file(dev, &dev_attr_bypass);
3419		if (status < 0)
3420			return status;
3421	}
3422
3423	/* some attributes are type-specific */
3424	if (rdev->desc->type == REGULATOR_CURRENT) {
3425		status = device_create_file(dev, &dev_attr_requested_microamps);
3426		if (status < 0)
3427			return status;
3428	}
3429
3430	/* all the other attributes exist to support constraints;
3431	 * don't show them if there are no constraints, or if the
3432	 * relevant supporting methods are missing.
3433	 */
3434	if (!rdev->constraints)
3435		return status;
3436
3437	/* constraints need specific supporting methods */
3438	if (ops->set_voltage || ops->set_voltage_sel) {
3439		status = device_create_file(dev, &dev_attr_min_microvolts);
3440		if (status < 0)
3441			return status;
3442		status = device_create_file(dev, &dev_attr_max_microvolts);
3443		if (status < 0)
3444			return status;
3445	}
3446	if (ops->set_current_limit) {
3447		status = device_create_file(dev, &dev_attr_min_microamps);
3448		if (status < 0)
3449			return status;
3450		status = device_create_file(dev, &dev_attr_max_microamps);
3451		if (status < 0)
3452			return status;
3453	}
3454
3455	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3456	if (status < 0)
3457		return status;
3458	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3459	if (status < 0)
3460		return status;
3461	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3462	if (status < 0)
3463		return status;
3464
3465	if (ops->set_suspend_voltage) {
3466		status = device_create_file(dev,
3467				&dev_attr_suspend_standby_microvolts);
3468		if (status < 0)
3469			return status;
3470		status = device_create_file(dev,
3471				&dev_attr_suspend_mem_microvolts);
3472		if (status < 0)
3473			return status;
3474		status = device_create_file(dev,
3475				&dev_attr_suspend_disk_microvolts);
3476		if (status < 0)
3477			return status;
3478	}
3479
3480	if (ops->set_suspend_mode) {
3481		status = device_create_file(dev,
3482				&dev_attr_suspend_standby_mode);
3483		if (status < 0)
3484			return status;
3485		status = device_create_file(dev,
3486				&dev_attr_suspend_mem_mode);
3487		if (status < 0)
3488			return status;
3489		status = device_create_file(dev,
3490				&dev_attr_suspend_disk_mode);
3491		if (status < 0)
3492			return status;
3493	}
3494
3495	return status;
3496}
3497
3498static void rdev_init_debugfs(struct regulator_dev *rdev)
3499{
3500	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3501	if (!rdev->debugfs) {
3502		rdev_warn(rdev, "Failed to create debugfs directory\n");
3503		return;
3504	}
3505
3506	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3507			   &rdev->use_count);
3508	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3509			   &rdev->open_count);
3510	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3511			   &rdev->bypass_count);
3512}
3513
3514/**
3515 * regulator_register - register regulator
3516 * @regulator_desc: regulator to register
3517 * @config: runtime configuration for regulator
3518 *
3519 * Called by regulator drivers to register a regulator.
3520 * Returns a valid pointer to struct regulator_dev on success
3521 * or an ERR_PTR() on error.
3522 */
3523struct regulator_dev *
3524regulator_register(const struct regulator_desc *regulator_desc,
3525		   const struct regulator_config *config)
3526{
3527	const struct regulation_constraints *constraints = NULL;
3528	const struct regulator_init_data *init_data;
3529	static atomic_t regulator_no = ATOMIC_INIT(0);
3530	struct regulator_dev *rdev;
3531	struct device *dev;
3532	int ret, i;
3533	const char *supply = NULL;
3534
3535	if (regulator_desc == NULL || config == NULL)
3536		return ERR_PTR(-EINVAL);
3537
3538	dev = config->dev;
3539	WARN_ON(!dev);
3540
3541	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3542		return ERR_PTR(-EINVAL);
3543
3544	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3545	    regulator_desc->type != REGULATOR_CURRENT)
3546		return ERR_PTR(-EINVAL);
3547
3548	/* Only one of each should be implemented */
3549	WARN_ON(regulator_desc->ops->get_voltage &&
3550		regulator_desc->ops->get_voltage_sel);
3551	WARN_ON(regulator_desc->ops->set_voltage &&
3552		regulator_desc->ops->set_voltage_sel);
3553
3554	/* If we're using selectors we must implement list_voltage. */
3555	if (regulator_desc->ops->get_voltage_sel &&
3556	    !regulator_desc->ops->list_voltage) {
3557		return ERR_PTR(-EINVAL);
3558	}
3559	if (regulator_desc->ops->set_voltage_sel &&
3560	    !regulator_desc->ops->list_voltage) {
3561		return ERR_PTR(-EINVAL);
3562	}
3563
3564	init_data = config->init_data;
3565
3566	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3567	if (rdev == NULL)
3568		return ERR_PTR(-ENOMEM);
3569
3570	mutex_lock(&regulator_list_mutex);
3571
3572	mutex_init(&rdev->mutex);
3573	rdev->reg_data = config->driver_data;
3574	rdev->owner = regulator_desc->owner;
3575	rdev->desc = regulator_desc;
3576	if (config->regmap)
3577		rdev->regmap = config->regmap;
3578	else if (dev_get_regmap(dev, NULL))
3579		rdev->regmap = dev_get_regmap(dev, NULL);
3580	else if (dev->parent)
3581		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3582	INIT_LIST_HEAD(&rdev->consumer_list);
3583	INIT_LIST_HEAD(&rdev->list);
3584	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3585	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3586
3587	/* preform any regulator specific init */
3588	if (init_data && init_data->regulator_init) {
3589		ret = init_data->regulator_init(rdev->reg_data);
3590		if (ret < 0)
3591			goto clean;
3592	}
3593
3594	/* register with sysfs */
3595	rdev->dev.class = &regulator_class;
3596	rdev->dev.of_node = config->of_node;
3597	rdev->dev.parent = dev;
3598	dev_set_name(&rdev->dev, "regulator.%d",
3599		     atomic_inc_return(&regulator_no) - 1);
3600	ret = device_register(&rdev->dev);
3601	if (ret != 0) {
3602		put_device(&rdev->dev);
3603		goto clean;
3604	}
3605
3606	dev_set_drvdata(&rdev->dev, rdev);
3607
3608	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3609		ret = regulator_ena_gpio_request(rdev, config);
3610		if (ret != 0) {
3611			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3612				 config->ena_gpio, ret);
3613			goto wash;
3614		}
3615
3616		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3617			rdev->ena_gpio_state = 1;
3618
3619		if (config->ena_gpio_invert)
3620			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3621	}
3622
3623	/* set regulator constraints */
3624	if (init_data)
3625		constraints = &init_data->constraints;
3626
3627	ret = set_machine_constraints(rdev, constraints);
3628	if (ret < 0)
3629		goto scrub;
3630
3631	/* add attributes supported by this regulator */
3632	ret = add_regulator_attributes(rdev);
3633	if (ret < 0)
3634		goto scrub;
3635
3636	if (init_data && init_data->supply_regulator)
3637		supply = init_data->supply_regulator;
3638	else if (regulator_desc->supply_name)
3639		supply = regulator_desc->supply_name;
3640
3641	if (supply) {
3642		struct regulator_dev *r;
3643
3644		r = regulator_dev_lookup(dev, supply, &ret);
3645
3646		if (ret == -ENODEV) {
3647			/*
3648			 * No supply was specified for this regulator and
3649			 * there will never be one.
3650			 */
3651			ret = 0;
3652			goto add_dev;
3653		} else if (!r) {
3654			dev_err(dev, "Failed to find supply %s\n", supply);
3655			ret = -EPROBE_DEFER;
3656			goto scrub;
3657		}
3658
3659		ret = set_supply(rdev, r);
3660		if (ret < 0)
3661			goto scrub;
3662
3663		/* Enable supply if rail is enabled */
3664		if (_regulator_is_enabled(rdev)) {
3665			ret = regulator_enable(rdev->supply);
3666			if (ret < 0)
3667				goto scrub;
3668		}
3669	}
3670
3671add_dev:
3672	/* add consumers devices */
3673	if (init_data) {
3674		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3675			ret = set_consumer_device_supply(rdev,
3676				init_data->consumer_supplies[i].dev_name,
3677				init_data->consumer_supplies[i].supply);
3678			if (ret < 0) {
3679				dev_err(dev, "Failed to set supply %s\n",
3680					init_data->consumer_supplies[i].supply);
3681				goto unset_supplies;
3682			}
3683		}
3684	}
3685
3686	list_add(&rdev->list, &regulator_list);
3687
3688	rdev_init_debugfs(rdev);
3689out:
3690	mutex_unlock(&regulator_list_mutex);
3691	return rdev;
3692
3693unset_supplies:
3694	unset_regulator_supplies(rdev);
3695
3696scrub:
3697	if (rdev->supply)
3698		_regulator_put(rdev->supply);
3699	regulator_ena_gpio_free(rdev);
3700	kfree(rdev->constraints);
3701wash:
3702	device_unregister(&rdev->dev);
3703	/* device core frees rdev */
3704	rdev = ERR_PTR(ret);
3705	goto out;
3706
3707clean:
3708	kfree(rdev);
3709	rdev = ERR_PTR(ret);
3710	goto out;
3711}
3712EXPORT_SYMBOL_GPL(regulator_register);
3713
3714/**
3715 * regulator_unregister - unregister regulator
3716 * @rdev: regulator to unregister
3717 *
3718 * Called by regulator drivers to unregister a regulator.
3719 */
3720void regulator_unregister(struct regulator_dev *rdev)
3721{
3722	if (rdev == NULL)
3723		return;
3724
3725	if (rdev->supply)
3726		regulator_put(rdev->supply);
3727	mutex_lock(&regulator_list_mutex);
3728	debugfs_remove_recursive(rdev->debugfs);
3729	flush_work(&rdev->disable_work.work);
3730	WARN_ON(rdev->open_count);
3731	unset_regulator_supplies(rdev);
3732	list_del(&rdev->list);
3733	kfree(rdev->constraints);
3734	regulator_ena_gpio_free(rdev);
3735	device_unregister(&rdev->dev);
3736	mutex_unlock(&regulator_list_mutex);
3737}
3738EXPORT_SYMBOL_GPL(regulator_unregister);
3739
3740/**
3741 * regulator_suspend_prepare - prepare regulators for system wide suspend
3742 * @state: system suspend state
3743 *
3744 * Configure each regulator with it's suspend operating parameters for state.
3745 * This will usually be called by machine suspend code prior to supending.
3746 */
3747int regulator_suspend_prepare(suspend_state_t state)
3748{
3749	struct regulator_dev *rdev;
3750	int ret = 0;
3751
3752	/* ON is handled by regulator active state */
3753	if (state == PM_SUSPEND_ON)
3754		return -EINVAL;
3755
3756	mutex_lock(&regulator_list_mutex);
3757	list_for_each_entry(rdev, &regulator_list, list) {
3758
3759		mutex_lock(&rdev->mutex);
3760		ret = suspend_prepare(rdev, state);
3761		mutex_unlock(&rdev->mutex);
3762
3763		if (ret < 0) {
3764			rdev_err(rdev, "failed to prepare\n");
3765			goto out;
3766		}
3767	}
3768out:
3769	mutex_unlock(&regulator_list_mutex);
3770	return ret;
3771}
3772EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3773
3774/**
3775 * regulator_suspend_finish - resume regulators from system wide suspend
3776 *
3777 * Turn on regulators that might be turned off by regulator_suspend_prepare
3778 * and that should be turned on according to the regulators properties.
3779 */
3780int regulator_suspend_finish(void)
3781{
3782	struct regulator_dev *rdev;
3783	int ret = 0, error;
3784
3785	mutex_lock(&regulator_list_mutex);
3786	list_for_each_entry(rdev, &regulator_list, list) {
3787		struct regulator_ops *ops = rdev->desc->ops;
3788
3789		mutex_lock(&rdev->mutex);
3790		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3791				ops->enable) {
3792			error = ops->enable(rdev);
3793			if (error)
3794				ret = error;
3795		} else {
3796			if (!has_full_constraints)
3797				goto unlock;
3798			if (!ops->disable)
3799				goto unlock;
3800			if (!_regulator_is_enabled(rdev))
3801				goto unlock;
3802
3803			error = ops->disable(rdev);
3804			if (error)
3805				ret = error;
3806		}
3807unlock:
3808		mutex_unlock(&rdev->mutex);
3809	}
3810	mutex_unlock(&regulator_list_mutex);
3811	return ret;
3812}
3813EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3814
3815/**
3816 * regulator_has_full_constraints - the system has fully specified constraints
3817 *
3818 * Calling this function will cause the regulator API to disable all
3819 * regulators which have a zero use count and don't have an always_on
3820 * constraint in a late_initcall.
3821 *
3822 * The intention is that this will become the default behaviour in a
3823 * future kernel release so users are encouraged to use this facility
3824 * now.
3825 */
3826void regulator_has_full_constraints(void)
3827{
3828	has_full_constraints = 1;
3829}
3830EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3831
3832/**
3833 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3834 *
3835 * Calling this function will cause the regulator API to provide a
3836 * dummy regulator to consumers if no physical regulator is found,
3837 * allowing most consumers to proceed as though a regulator were
3838 * configured.  This allows systems such as those with software
3839 * controllable regulators for the CPU core only to be brought up more
3840 * readily.
3841 */
3842void regulator_use_dummy_regulator(void)
3843{
3844	board_wants_dummy_regulator = true;
3845}
3846EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3847
3848/**
3849 * rdev_get_drvdata - get rdev regulator driver data
3850 * @rdev: regulator
3851 *
3852 * Get rdev regulator driver private data. This call can be used in the
3853 * regulator driver context.
3854 */
3855void *rdev_get_drvdata(struct regulator_dev *rdev)
3856{
3857	return rdev->reg_data;
3858}
3859EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3860
3861/**
3862 * regulator_get_drvdata - get regulator driver data
3863 * @regulator: regulator
3864 *
3865 * Get regulator driver private data. This call can be used in the consumer
3866 * driver context when non API regulator specific functions need to be called.
3867 */
3868void *regulator_get_drvdata(struct regulator *regulator)
3869{
3870	return regulator->rdev->reg_data;
3871}
3872EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3873
3874/**
3875 * regulator_set_drvdata - set regulator driver data
3876 * @regulator: regulator
3877 * @data: data
3878 */
3879void regulator_set_drvdata(struct regulator *regulator, void *data)
3880{
3881	regulator->rdev->reg_data = data;
3882}
3883EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3884
3885/**
3886 * regulator_get_id - get regulator ID
3887 * @rdev: regulator
3888 */
3889int rdev_get_id(struct regulator_dev *rdev)
3890{
3891	return rdev->desc->id;
3892}
3893EXPORT_SYMBOL_GPL(rdev_get_id);
3894
3895struct device *rdev_get_dev(struct regulator_dev *rdev)
3896{
3897	return &rdev->dev;
3898}
3899EXPORT_SYMBOL_GPL(rdev_get_dev);
3900
3901void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3902{
3903	return reg_init_data->driver_data;
3904}
3905EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3906
3907#ifdef CONFIG_DEBUG_FS
3908static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3909				    size_t count, loff_t *ppos)
3910{
3911	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3912	ssize_t len, ret = 0;
3913	struct regulator_map *map;
3914
3915	if (!buf)
3916		return -ENOMEM;
3917
3918	list_for_each_entry(map, &regulator_map_list, list) {
3919		len = snprintf(buf + ret, PAGE_SIZE - ret,
3920			       "%s -> %s.%s\n",
3921			       rdev_get_name(map->regulator), map->dev_name,
3922			       map->supply);
3923		if (len >= 0)
3924			ret += len;
3925		if (ret > PAGE_SIZE) {
3926			ret = PAGE_SIZE;
3927			break;
3928		}
3929	}
3930
3931	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3932
3933	kfree(buf);
3934
3935	return ret;
3936}
3937#endif
3938
3939static const struct file_operations supply_map_fops = {
3940#ifdef CONFIG_DEBUG_FS
3941	.read = supply_map_read_file,
3942	.llseek = default_llseek,
3943#endif
3944};
3945
3946static int __init regulator_init(void)
3947{
3948	int ret;
3949
3950	ret = class_register(&regulator_class);
3951
3952	debugfs_root = debugfs_create_dir("regulator", NULL);
3953	if (!debugfs_root)
3954		pr_warn("regulator: Failed to create debugfs directory\n");
3955
3956	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3957			    &supply_map_fops);
3958
3959	regulator_dummy_init();
3960
3961	return ret;
3962}
3963
3964/* init early to allow our consumers to complete system booting */
3965core_initcall(regulator_init);
3966
3967static int __init regulator_init_complete(void)
3968{
3969	struct regulator_dev *rdev;
3970	struct regulator_ops *ops;
3971	struct regulation_constraints *c;
3972	int enabled, ret;
3973
3974	/*
3975	 * Since DT doesn't provide an idiomatic mechanism for
3976	 * enabling full constraints and since it's much more natural
3977	 * with DT to provide them just assume that a DT enabled
3978	 * system has full constraints.
3979	 */
3980	if (of_have_populated_dt())
3981		has_full_constraints = true;
3982
3983	mutex_lock(&regulator_list_mutex);
3984
3985	/* If we have a full configuration then disable any regulators
3986	 * which are not in use or always_on.  This will become the
3987	 * default behaviour in the future.
3988	 */
3989	list_for_each_entry(rdev, &regulator_list, list) {
3990		ops = rdev->desc->ops;
3991		c = rdev->constraints;
3992
3993		if (!ops->disable || (c && c->always_on))
3994			continue;
3995
3996		mutex_lock(&rdev->mutex);
3997
3998		if (rdev->use_count)
3999			goto unlock;
4000
4001		/* If we can't read the status assume it's on. */
4002		if (ops->is_enabled)
4003			enabled = ops->is_enabled(rdev);
4004		else
4005			enabled = 1;
4006
4007		if (!enabled)
4008			goto unlock;
4009
4010		if (has_full_constraints) {
4011			/* We log since this may kill the system if it
4012			 * goes wrong. */
4013			rdev_info(rdev, "disabling\n");
4014			ret = ops->disable(rdev);
4015			if (ret != 0) {
4016				rdev_err(rdev, "couldn't disable: %d\n", ret);
4017			}
4018		} else {
4019			/* The intention is that in future we will
4020			 * assume that full constraints are provided
4021			 * so warn even if we aren't going to do
4022			 * anything here.
4023			 */
4024			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4025		}
4026
4027unlock:
4028		mutex_unlock(&rdev->mutex);
4029	}
4030
4031	mutex_unlock(&regulator_list_mutex);
4032
4033	return 0;
4034}
4035late_initcall(regulator_init_complete);
4036