core.c revision d92d95b6bf2722ffa0fefa7651c51bf336743dd7
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regmap.h>
28#include <linux/regulator/of_regulator.h>
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
32#include <linux/module.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
37#include "dummy.h"
38
39#define rdev_crit(rdev, fmt, ...)					\
40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_err(rdev, fmt, ...)					\
42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...)					\
44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...)					\
46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...)					\
48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
53static bool has_full_constraints;
54static bool board_wants_dummy_regulator;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64	struct list_head list;
65	const char *dev_name;   /* The dev_name() for the consumer */
66	const char *supply;
67	struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76	struct device *dev;
77	struct list_head list;
78	unsigned int always_on:1;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85	struct dentry *debugfs;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96				     int min_uV, int max_uV);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98					  struct device *dev,
99					  const char *supply_name);
100
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103	if (rdev->constraints && rdev->constraints->name)
104		return rdev->constraints->name;
105	else if (rdev->desc->name)
106		return rdev->desc->name;
107	else
108		return "";
109}
110
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114	struct regulator *regulator = NULL;
115	struct regulator_dev *rdev;
116
117	mutex_lock(&regulator_list_mutex);
118	list_for_each_entry(rdev, &regulator_list, list) {
119		mutex_lock(&rdev->mutex);
120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
121			if (regulator->dev == dev) {
122				mutex_unlock(&rdev->mutex);
123				mutex_unlock(&regulator_list_mutex);
124				return regulator;
125			}
126		}
127		mutex_unlock(&rdev->mutex);
128	}
129	mutex_unlock(&regulator_list_mutex);
130	return NULL;
131}
132
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144	struct device_node *regnode = NULL;
145	char prop_name[32]; /* 32 is max size of property name */
146
147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149	snprintf(prop_name, 32, "%s-supply", supply);
150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152	if (!regnode) {
153		dev_dbg(dev, "Looking up %s property in node %s failed",
154				prop_name, dev->of_node->full_name);
155		return NULL;
156	}
157	return regnode;
158}
159
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162	if (!rdev->constraints)
163		return 0;
164
165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166		return 1;
167	else
168		return 0;
169}
170
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173				   int *min_uV, int *max_uV)
174{
175	BUG_ON(*min_uV > *max_uV);
176
177	if (!rdev->constraints) {
178		rdev_err(rdev, "no constraints\n");
179		return -ENODEV;
180	}
181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182		rdev_err(rdev, "operation not allowed\n");
183		return -EPERM;
184	}
185
186	if (*max_uV > rdev->constraints->max_uV)
187		*max_uV = rdev->constraints->max_uV;
188	if (*min_uV < rdev->constraints->min_uV)
189		*min_uV = rdev->constraints->min_uV;
190
191	if (*min_uV > *max_uV) {
192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193			 *min_uV, *max_uV);
194		return -EINVAL;
195	}
196
197	return 0;
198}
199
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204				     int *min_uV, int *max_uV)
205{
206	struct regulator *regulator;
207
208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209		/*
210		 * Assume consumers that didn't say anything are OK
211		 * with anything in the constraint range.
212		 */
213		if (!regulator->min_uV && !regulator->max_uV)
214			continue;
215
216		if (*max_uV > regulator->max_uV)
217			*max_uV = regulator->max_uV;
218		if (*min_uV < regulator->min_uV)
219			*min_uV = regulator->min_uV;
220	}
221
222	if (*min_uV > *max_uV)
223		return -EINVAL;
224
225	return 0;
226}
227
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230					int *min_uA, int *max_uA)
231{
232	BUG_ON(*min_uA > *max_uA);
233
234	if (!rdev->constraints) {
235		rdev_err(rdev, "no constraints\n");
236		return -ENODEV;
237	}
238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239		rdev_err(rdev, "operation not allowed\n");
240		return -EPERM;
241	}
242
243	if (*max_uA > rdev->constraints->max_uA)
244		*max_uA = rdev->constraints->max_uA;
245	if (*min_uA < rdev->constraints->min_uA)
246		*min_uA = rdev->constraints->min_uA;
247
248	if (*min_uA > *max_uA) {
249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250			 *min_uA, *max_uA);
251		return -EINVAL;
252	}
253
254	return 0;
255}
256
257/* operating mode constraint check */
258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259{
260	switch (*mode) {
261	case REGULATOR_MODE_FAST:
262	case REGULATOR_MODE_NORMAL:
263	case REGULATOR_MODE_IDLE:
264	case REGULATOR_MODE_STANDBY:
265		break;
266	default:
267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
268		return -EINVAL;
269	}
270
271	if (!rdev->constraints) {
272		rdev_err(rdev, "no constraints\n");
273		return -ENODEV;
274	}
275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276		rdev_err(rdev, "operation not allowed\n");
277		return -EPERM;
278	}
279
280	/* The modes are bitmasks, the most power hungry modes having
281	 * the lowest values. If the requested mode isn't supported
282	 * try higher modes. */
283	while (*mode) {
284		if (rdev->constraints->valid_modes_mask & *mode)
285			return 0;
286		*mode /= 2;
287	}
288
289	return -EINVAL;
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295	if (!rdev->constraints) {
296		rdev_err(rdev, "no constraints\n");
297		return -ENODEV;
298	}
299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300		rdev_err(rdev, "operation not allowed\n");
301		return -EPERM;
302	}
303	return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307			     struct device_attribute *attr, char *buf)
308{
309	struct regulator *regulator;
310
311	regulator = get_device_regulator(dev);
312	if (regulator == NULL)
313		return 0;
314
315	return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319				struct device_attribute *attr, char *buf)
320{
321	struct regulator_dev *rdev = dev_get_drvdata(dev);
322	ssize_t ret;
323
324	mutex_lock(&rdev->mutex);
325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326	mutex_unlock(&rdev->mutex);
327
328	return ret;
329}
330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332static ssize_t regulator_uA_show(struct device *dev,
333				struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341static ssize_t regulator_name_show(struct device *dev,
342			     struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
347}
348
349static ssize_t regulator_print_opmode(char *buf, int mode)
350{
351	switch (mode) {
352	case REGULATOR_MODE_FAST:
353		return sprintf(buf, "fast\n");
354	case REGULATOR_MODE_NORMAL:
355		return sprintf(buf, "normal\n");
356	case REGULATOR_MODE_IDLE:
357		return sprintf(buf, "idle\n");
358	case REGULATOR_MODE_STANDBY:
359		return sprintf(buf, "standby\n");
360	}
361	return sprintf(buf, "unknown\n");
362}
363
364static ssize_t regulator_opmode_show(struct device *dev,
365				    struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
375	if (state > 0)
376		return sprintf(buf, "enabled\n");
377	else if (state == 0)
378		return sprintf(buf, "disabled\n");
379	else
380		return sprintf(buf, "unknown\n");
381}
382
383static ssize_t regulator_state_show(struct device *dev,
384				   struct device_attribute *attr, char *buf)
385{
386	struct regulator_dev *rdev = dev_get_drvdata(dev);
387	ssize_t ret;
388
389	mutex_lock(&rdev->mutex);
390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391	mutex_unlock(&rdev->mutex);
392
393	return ret;
394}
395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397static ssize_t regulator_status_show(struct device *dev,
398				   struct device_attribute *attr, char *buf)
399{
400	struct regulator_dev *rdev = dev_get_drvdata(dev);
401	int status;
402	char *label;
403
404	status = rdev->desc->ops->get_status(rdev);
405	if (status < 0)
406		return status;
407
408	switch (status) {
409	case REGULATOR_STATUS_OFF:
410		label = "off";
411		break;
412	case REGULATOR_STATUS_ON:
413		label = "on";
414		break;
415	case REGULATOR_STATUS_ERROR:
416		label = "error";
417		break;
418	case REGULATOR_STATUS_FAST:
419		label = "fast";
420		break;
421	case REGULATOR_STATUS_NORMAL:
422		label = "normal";
423		break;
424	case REGULATOR_STATUS_IDLE:
425		label = "idle";
426		break;
427	case REGULATOR_STATUS_STANDBY:
428		label = "standby";
429		break;
430	default:
431		return -ERANGE;
432	}
433
434	return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438static ssize_t regulator_min_uA_show(struct device *dev,
439				    struct device_attribute *attr, char *buf)
440{
441	struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443	if (!rdev->constraints)
444		return sprintf(buf, "constraint not defined\n");
445
446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451				    struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	if (!rdev->constraints)
456		return sprintf(buf, "constraint not defined\n");
457
458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463				    struct device_attribute *attr, char *buf)
464{
465	struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467	if (!rdev->constraints)
468		return sprintf(buf, "constraint not defined\n");
469
470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475				    struct device_attribute *attr, char *buf)
476{
477	struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479	if (!rdev->constraints)
480		return sprintf(buf, "constraint not defined\n");
481
482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487				      struct device_attribute *attr, char *buf)
488{
489	struct regulator_dev *rdev = dev_get_drvdata(dev);
490	struct regulator *regulator;
491	int uA = 0;
492
493	mutex_lock(&rdev->mutex);
494	list_for_each_entry(regulator, &rdev->consumer_list, list)
495		uA += regulator->uA_load;
496	mutex_unlock(&rdev->mutex);
497	return sprintf(buf, "%d\n", uA);
498}
499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501static ssize_t regulator_num_users_show(struct device *dev,
502				      struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505	return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509				  struct device_attribute *attr, char *buf)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513	switch (rdev->desc->type) {
514	case REGULATOR_VOLTAGE:
515		return sprintf(buf, "voltage\n");
516	case REGULATOR_CURRENT:
517		return sprintf(buf, "current\n");
518	}
519	return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523				struct device_attribute *attr, char *buf)
524{
525	struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530		regulator_suspend_mem_uV_show, NULL);
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533				struct device_attribute *attr, char *buf)
534{
535	struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540		regulator_suspend_disk_uV_show, NULL);
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543				struct device_attribute *attr, char *buf)
544{
545	struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550		regulator_suspend_standby_uV_show, NULL);
551
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_mem.mode);
559}
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561		regulator_suspend_mem_mode_show, NULL);
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_disk.mode);
570}
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572		regulator_suspend_disk_mode_show, NULL);
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575				struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_opmode(buf,
580		rdev->constraints->state_standby.mode);
581}
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583		regulator_suspend_standby_mode_show, NULL);
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_mem.enabled);
592}
593static DEVICE_ATTR(suspend_mem_state, 0444,
594		regulator_suspend_mem_state_show, NULL);
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_disk.enabled);
603}
604static DEVICE_ATTR(suspend_disk_state, 0444,
605		regulator_suspend_disk_state_show, NULL);
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608				   struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612	return regulator_print_state(buf,
613			rdev->constraints->state_standby.enabled);
614}
615static DEVICE_ATTR(suspend_standby_state, 0444,
616		regulator_suspend_standby_state_show, NULL);
617
618
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623static struct device_attribute regulator_dev_attrs[] = {
624	__ATTR(name, 0444, regulator_name_show, NULL),
625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
626	__ATTR(type, 0444, regulator_type_show, NULL),
627	__ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
632	struct regulator_dev *rdev = dev_get_drvdata(dev);
633	kfree(rdev);
634}
635
636static struct class regulator_class = {
637	.name = "regulator",
638	.dev_release = regulator_dev_release,
639	.dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646	struct regulator *sibling;
647	int current_uA = 0, output_uV, input_uV, err;
648	unsigned int mode;
649
650	err = regulator_check_drms(rdev);
651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652	    (!rdev->desc->ops->get_voltage &&
653	     !rdev->desc->ops->get_voltage_sel) ||
654	    !rdev->desc->ops->set_mode)
655		return;
656
657	/* get output voltage */
658	output_uV = _regulator_get_voltage(rdev);
659	if (output_uV <= 0)
660		return;
661
662	/* get input voltage */
663	input_uV = 0;
664	if (rdev->supply)
665		input_uV = regulator_get_voltage(rdev->supply);
666	if (input_uV <= 0)
667		input_uV = rdev->constraints->input_uV;
668	if (input_uV <= 0)
669		return;
670
671	/* calc total requested load */
672	list_for_each_entry(sibling, &rdev->consumer_list, list)
673		current_uA += sibling->uA_load;
674
675	/* now get the optimum mode for our new total regulator load */
676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677						  output_uV, current_uA);
678
679	/* check the new mode is allowed */
680	err = regulator_mode_constrain(rdev, &mode);
681	if (err == 0)
682		rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686	struct regulator_state *rstate)
687{
688	int ret = 0;
689
690	/* If we have no suspend mode configration don't set anything;
691	 * only warn if the driver implements set_suspend_voltage or
692	 * set_suspend_mode callback.
693	 */
694	if (!rstate->enabled && !rstate->disabled) {
695		if (rdev->desc->ops->set_suspend_voltage ||
696		    rdev->desc->ops->set_suspend_mode)
697			rdev_warn(rdev, "No configuration\n");
698		return 0;
699	}
700
701	if (rstate->enabled && rstate->disabled) {
702		rdev_err(rdev, "invalid configuration\n");
703		return -EINVAL;
704	}
705
706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707		ret = rdev->desc->ops->set_suspend_enable(rdev);
708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709		ret = rdev->desc->ops->set_suspend_disable(rdev);
710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711		ret = 0;
712
713	if (ret < 0) {
714		rdev_err(rdev, "failed to enabled/disable\n");
715		return ret;
716	}
717
718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set voltage\n");
722			return ret;
723		}
724	}
725
726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728		if (ret < 0) {
729			rdev_err(rdev, "failed to set mode\n");
730			return ret;
731		}
732	}
733	return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739	if (!rdev->constraints)
740		return -EINVAL;
741
742	switch (state) {
743	case PM_SUSPEND_STANDBY:
744		return suspend_set_state(rdev,
745			&rdev->constraints->state_standby);
746	case PM_SUSPEND_MEM:
747		return suspend_set_state(rdev,
748			&rdev->constraints->state_mem);
749	case PM_SUSPEND_MAX:
750		return suspend_set_state(rdev,
751			&rdev->constraints->state_disk);
752	default:
753		return -EINVAL;
754	}
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759	struct regulation_constraints *constraints = rdev->constraints;
760	char buf[80] = "";
761	int count = 0;
762	int ret;
763
764	if (constraints->min_uV && constraints->max_uV) {
765		if (constraints->min_uV == constraints->max_uV)
766			count += sprintf(buf + count, "%d mV ",
767					 constraints->min_uV / 1000);
768		else
769			count += sprintf(buf + count, "%d <--> %d mV ",
770					 constraints->min_uV / 1000,
771					 constraints->max_uV / 1000);
772	}
773
774	if (!constraints->min_uV ||
775	    constraints->min_uV != constraints->max_uV) {
776		ret = _regulator_get_voltage(rdev);
777		if (ret > 0)
778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
779	}
780
781	if (constraints->uV_offset)
782		count += sprintf(buf, "%dmV offset ",
783				 constraints->uV_offset / 1000);
784
785	if (constraints->min_uA && constraints->max_uA) {
786		if (constraints->min_uA == constraints->max_uA)
787			count += sprintf(buf + count, "%d mA ",
788					 constraints->min_uA / 1000);
789		else
790			count += sprintf(buf + count, "%d <--> %d mA ",
791					 constraints->min_uA / 1000,
792					 constraints->max_uA / 1000);
793	}
794
795	if (!constraints->min_uA ||
796	    constraints->min_uA != constraints->max_uA) {
797		ret = _regulator_get_current_limit(rdev);
798		if (ret > 0)
799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
800	}
801
802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803		count += sprintf(buf + count, "fast ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805		count += sprintf(buf + count, "normal ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807		count += sprintf(buf + count, "idle ");
808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809		count += sprintf(buf + count, "standby");
810
811	rdev_info(rdev, "%s\n", buf);
812
813	if ((constraints->min_uV != constraints->max_uV) &&
814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815		rdev_warn(rdev,
816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817}
818
819static int machine_constraints_voltage(struct regulator_dev *rdev,
820	struct regulation_constraints *constraints)
821{
822	struct regulator_ops *ops = rdev->desc->ops;
823	int ret;
824
825	/* do we need to apply the constraint voltage */
826	if (rdev->constraints->apply_uV &&
827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
828		ret = _regulator_do_set_voltage(rdev,
829						rdev->constraints->min_uV,
830						rdev->constraints->max_uV);
831		if (ret < 0) {
832			rdev_err(rdev, "failed to apply %duV constraint\n",
833				 rdev->constraints->min_uV);
834			return ret;
835		}
836	}
837
838	/* constrain machine-level voltage specs to fit
839	 * the actual range supported by this regulator.
840	 */
841	if (ops->list_voltage && rdev->desc->n_voltages) {
842		int	count = rdev->desc->n_voltages;
843		int	i;
844		int	min_uV = INT_MAX;
845		int	max_uV = INT_MIN;
846		int	cmin = constraints->min_uV;
847		int	cmax = constraints->max_uV;
848
849		/* it's safe to autoconfigure fixed-voltage supplies
850		   and the constraints are used by list_voltage. */
851		if (count == 1 && !cmin) {
852			cmin = 1;
853			cmax = INT_MAX;
854			constraints->min_uV = cmin;
855			constraints->max_uV = cmax;
856		}
857
858		/* voltage constraints are optional */
859		if ((cmin == 0) && (cmax == 0))
860			return 0;
861
862		/* else require explicit machine-level constraints */
863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864			rdev_err(rdev, "invalid voltage constraints\n");
865			return -EINVAL;
866		}
867
868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869		for (i = 0; i < count; i++) {
870			int	value;
871
872			value = ops->list_voltage(rdev, i);
873			if (value <= 0)
874				continue;
875
876			/* maybe adjust [min_uV..max_uV] */
877			if (value >= cmin && value < min_uV)
878				min_uV = value;
879			if (value <= cmax && value > max_uV)
880				max_uV = value;
881		}
882
883		/* final: [min_uV..max_uV] valid iff constraints valid */
884		if (max_uV < min_uV) {
885			rdev_err(rdev, "unsupportable voltage constraints\n");
886			return -EINVAL;
887		}
888
889		/* use regulator's subset of machine constraints */
890		if (constraints->min_uV < min_uV) {
891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892				 constraints->min_uV, min_uV);
893			constraints->min_uV = min_uV;
894		}
895		if (constraints->max_uV > max_uV) {
896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897				 constraints->max_uV, max_uV);
898			constraints->max_uV = max_uV;
899		}
900	}
901
902	return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
917	const struct regulation_constraints *constraints)
918{
919	int ret = 0;
920	struct regulator_ops *ops = rdev->desc->ops;
921
922	if (constraints)
923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924					    GFP_KERNEL);
925	else
926		rdev->constraints = kzalloc(sizeof(*constraints),
927					    GFP_KERNEL);
928	if (!rdev->constraints)
929		return -ENOMEM;
930
931	ret = machine_constraints_voltage(rdev, rdev->constraints);
932	if (ret != 0)
933		goto out;
934
935	/* do we need to setup our suspend state */
936	if (rdev->constraints->initial_state) {
937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938		if (ret < 0) {
939			rdev_err(rdev, "failed to set suspend state\n");
940			goto out;
941		}
942	}
943
944	if (rdev->constraints->initial_mode) {
945		if (!ops->set_mode) {
946			rdev_err(rdev, "no set_mode operation\n");
947			ret = -EINVAL;
948			goto out;
949		}
950
951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952		if (ret < 0) {
953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954			goto out;
955		}
956	}
957
958	/* If the constraints say the regulator should be on at this point
959	 * and we have control then make sure it is enabled.
960	 */
961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962	    ops->enable) {
963		ret = ops->enable(rdev);
964		if (ret < 0) {
965			rdev_err(rdev, "failed to enable\n");
966			goto out;
967		}
968	}
969
970	print_constraints(rdev);
971	return 0;
972out:
973	kfree(rdev->constraints);
974	rdev->constraints = NULL;
975	return ret;
976}
977
978/**
979 * set_supply - set regulator supply regulator
980 * @rdev: regulator name
981 * @supply_rdev: supply regulator name
982 *
983 * Called by platform initialisation code to set the supply regulator for this
984 * regulator. This ensures that a regulators supply will also be enabled by the
985 * core if it's child is enabled.
986 */
987static int set_supply(struct regulator_dev *rdev,
988		      struct regulator_dev *supply_rdev)
989{
990	int err;
991
992	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995	if (rdev->supply == NULL) {
996		err = -ENOMEM;
997		return err;
998	}
999
1000	return 0;
1001}
1002
1003/**
1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005 * @rdev:         regulator source
1006 * @consumer_dev_name: dev_name() string for device supply applies to
1007 * @supply:       symbolic name for supply
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices.  Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
1015				      const char *consumer_dev_name,
1016				      const char *supply)
1017{
1018	struct regulator_map *node;
1019	int has_dev;
1020
1021	if (supply == NULL)
1022		return -EINVAL;
1023
1024	if (consumer_dev_name != NULL)
1025		has_dev = 1;
1026	else
1027		has_dev = 0;
1028
1029	list_for_each_entry(node, &regulator_map_list, list) {
1030		if (node->dev_name && consumer_dev_name) {
1031			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032				continue;
1033		} else if (node->dev_name || consumer_dev_name) {
1034			continue;
1035		}
1036
1037		if (strcmp(node->supply, supply) != 0)
1038			continue;
1039
1040		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041			 consumer_dev_name,
1042			 dev_name(&node->regulator->dev),
1043			 node->regulator->desc->name,
1044			 supply,
1045			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046		return -EBUSY;
1047	}
1048
1049	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050	if (node == NULL)
1051		return -ENOMEM;
1052
1053	node->regulator = rdev;
1054	node->supply = supply;
1055
1056	if (has_dev) {
1057		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058		if (node->dev_name == NULL) {
1059			kfree(node);
1060			return -ENOMEM;
1061		}
1062	}
1063
1064	list_add(&node->list, &regulator_map_list);
1065	return 0;
1066}
1067
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070	struct regulator_map *node, *n;
1071
1072	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073		if (rdev == node->regulator) {
1074			list_del(&node->list);
1075			kfree(node->dev_name);
1076			kfree(node);
1077		}
1078	}
1079}
1080
1081#define REG_STR_SIZE	64
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084					  struct device *dev,
1085					  const char *supply_name)
1086{
1087	struct regulator *regulator;
1088	char buf[REG_STR_SIZE];
1089	int err, size;
1090
1091	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092	if (regulator == NULL)
1093		return NULL;
1094
1095	mutex_lock(&rdev->mutex);
1096	regulator->rdev = rdev;
1097	list_add(&regulator->list, &rdev->consumer_list);
1098
1099	if (dev) {
1100		/* create a 'requested_microamps_name' sysfs entry */
1101		size = scnprintf(buf, REG_STR_SIZE,
1102				 "microamps_requested_%s-%s",
1103				 dev_name(dev), supply_name);
1104		if (size >= REG_STR_SIZE)
1105			goto overflow_err;
1106
1107		regulator->dev = dev;
1108		sysfs_attr_init(&regulator->dev_attr.attr);
1109		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110		if (regulator->dev_attr.attr.name == NULL)
1111			goto attr_name_err;
1112
1113		regulator->dev_attr.attr.mode = 0444;
1114		regulator->dev_attr.show = device_requested_uA_show;
1115		err = device_create_file(dev, &regulator->dev_attr);
1116		if (err < 0) {
1117			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118			goto attr_name_err;
1119		}
1120
1121		/* also add a link to the device sysfs entry */
1122		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123				 dev->kobj.name, supply_name);
1124		if (size >= REG_STR_SIZE)
1125			goto attr_err;
1126
1127		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto attr_err;
1130
1131		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132					buf);
1133		if (err) {
1134			rdev_warn(rdev, "could not add device link %s err %d\n",
1135				  dev->kobj.name, err);
1136			goto link_name_err;
1137		}
1138	} else {
1139		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto attr_err;
1142	}
1143
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (!regulator->debugfs) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156
1157	/*
1158	 * Check now if the regulator is an always on regulator - if
1159	 * it is then we don't need to do nearly so much work for
1160	 * enable/disable calls.
1161	 */
1162	if (!_regulator_can_change_status(rdev) &&
1163	    _regulator_is_enabled(rdev))
1164		regulator->always_on = true;
1165
1166	mutex_unlock(&rdev->mutex);
1167	return regulator;
1168link_name_err:
1169	kfree(regulator->supply_name);
1170attr_err:
1171	device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173	kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175	list_del(&regulator->list);
1176	kfree(regulator);
1177	mutex_unlock(&rdev->mutex);
1178	return NULL;
1179}
1180
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
1183	if (!rdev->desc->ops->enable_time)
1184		return 0;
1185	return rdev->desc->ops->enable_time(rdev);
1186}
1187
1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189						  const char *supply,
1190						  int *ret)
1191{
1192	struct regulator_dev *r;
1193	struct device_node *node;
1194	struct regulator_map *map;
1195	const char *devname = NULL;
1196
1197	/* first do a dt based lookup */
1198	if (dev && dev->of_node) {
1199		node = of_get_regulator(dev, supply);
1200		if (node) {
1201			list_for_each_entry(r, &regulator_list, list)
1202				if (r->dev.parent &&
1203					node == r->dev.of_node)
1204					return r;
1205		} else {
1206			/*
1207			 * If we couldn't even get the node then it's
1208			 * not just that the device didn't register
1209			 * yet, there's no node and we'll never
1210			 * succeed.
1211			 */
1212			*ret = -ENODEV;
1213		}
1214	}
1215
1216	/* if not found, try doing it non-dt way */
1217	if (dev)
1218		devname = dev_name(dev);
1219
1220	list_for_each_entry(r, &regulator_list, list)
1221		if (strcmp(rdev_get_name(r), supply) == 0)
1222			return r;
1223
1224	list_for_each_entry(map, &regulator_map_list, list) {
1225		/* If the mapping has a device set up it must match */
1226		if (map->dev_name &&
1227		    (!devname || strcmp(map->dev_name, devname)))
1228			continue;
1229
1230		if (strcmp(map->supply, supply) == 0)
1231			return map->regulator;
1232	}
1233
1234
1235	return NULL;
1236}
1237
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240					int exclusive)
1241{
1242	struct regulator_dev *rdev;
1243	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244	const char *devname = NULL;
1245	int ret;
1246
1247	if (id == NULL) {
1248		pr_err("get() with no identifier\n");
1249		return regulator;
1250	}
1251
1252	if (dev)
1253		devname = dev_name(dev);
1254
1255	mutex_lock(&regulator_list_mutex);
1256
1257	rdev = regulator_dev_lookup(dev, id, &ret);
1258	if (rdev)
1259		goto found;
1260
1261	if (board_wants_dummy_regulator) {
1262		rdev = dummy_regulator_rdev;
1263		goto found;
1264	}
1265
1266#ifdef CONFIG_REGULATOR_DUMMY
1267	if (!devname)
1268		devname = "deviceless";
1269
1270	/* If the board didn't flag that it was fully constrained then
1271	 * substitute in a dummy regulator so consumers can continue.
1272	 */
1273	if (!has_full_constraints) {
1274		pr_warn("%s supply %s not found, using dummy regulator\n",
1275			devname, id);
1276		rdev = dummy_regulator_rdev;
1277		goto found;
1278	}
1279#endif
1280
1281	mutex_unlock(&regulator_list_mutex);
1282	return regulator;
1283
1284found:
1285	if (rdev->exclusive) {
1286		regulator = ERR_PTR(-EPERM);
1287		goto out;
1288	}
1289
1290	if (exclusive && rdev->open_count) {
1291		regulator = ERR_PTR(-EBUSY);
1292		goto out;
1293	}
1294
1295	if (!try_module_get(rdev->owner))
1296		goto out;
1297
1298	regulator = create_regulator(rdev, dev, id);
1299	if (regulator == NULL) {
1300		regulator = ERR_PTR(-ENOMEM);
1301		module_put(rdev->owner);
1302		goto out;
1303	}
1304
1305	rdev->open_count++;
1306	if (exclusive) {
1307		rdev->exclusive = 1;
1308
1309		ret = _regulator_is_enabled(rdev);
1310		if (ret > 0)
1311			rdev->use_count = 1;
1312		else
1313			rdev->use_count = 0;
1314	}
1315
1316out:
1317	mutex_unlock(&regulator_list_mutex);
1318
1319	return regulator;
1320}
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged.  It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337	return _regulator_get(dev, id, 0);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343	regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357	struct regulator **ptr, *regulator;
1358
1359	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360	if (!ptr)
1361		return ERR_PTR(-ENOMEM);
1362
1363	regulator = regulator_get(dev, id);
1364	if (!IS_ERR(regulator)) {
1365		*ptr = regulator;
1366		devres_add(dev, ptr);
1367	} else {
1368		devres_free(ptr);
1369	}
1370
1371	return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno.  Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged.  It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398	return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410void regulator_put(struct regulator *regulator)
1411{
1412	struct regulator_dev *rdev;
1413
1414	if (regulator == NULL || IS_ERR(regulator))
1415		return;
1416
1417	mutex_lock(&regulator_list_mutex);
1418	rdev = regulator->rdev;
1419
1420	debugfs_remove_recursive(regulator->debugfs);
1421
1422	/* remove any sysfs entries */
1423	if (regulator->dev) {
1424		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425		device_remove_file(regulator->dev, &regulator->dev_attr);
1426		kfree(regulator->dev_attr.attr.name);
1427	}
1428	kfree(regulator->supply_name);
1429	list_del(&regulator->list);
1430	kfree(regulator);
1431
1432	rdev->open_count--;
1433	rdev->exclusive = 0;
1434
1435	module_put(rdev->owner);
1436	mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
1441{
1442	struct regulator **r = res;
1443	if (!r || !*r) {
1444		WARN_ON(!r || !*r);
1445		return 0;
1446	}
1447	return *r == data;
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460	int rc;
1461
1462	rc = devres_destroy(regulator->dev, devm_regulator_release,
1463			    devm_regulator_match, regulator);
1464	if (rc == 0)
1465		regulator_put(regulator);
1466	else
1467		WARN_ON(rc);
1468}
1469EXPORT_SYMBOL_GPL(devm_regulator_put);
1470
1471/* locks held by regulator_enable() */
1472static int _regulator_enable(struct regulator_dev *rdev)
1473{
1474	int ret, delay;
1475
1476	/* check voltage and requested load before enabling */
1477	if (rdev->constraints &&
1478	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1479		drms_uA_update(rdev);
1480
1481	if (rdev->use_count == 0) {
1482		/* The regulator may on if it's not switchable or left on */
1483		ret = _regulator_is_enabled(rdev);
1484		if (ret == -EINVAL || ret == 0) {
1485			if (!_regulator_can_change_status(rdev))
1486				return -EPERM;
1487
1488			if (!rdev->desc->ops->enable)
1489				return -EINVAL;
1490
1491			/* Query before enabling in case configuration
1492			 * dependent.  */
1493			ret = _regulator_get_enable_time(rdev);
1494			if (ret >= 0) {
1495				delay = ret;
1496			} else {
1497				rdev_warn(rdev, "enable_time() failed: %d\n",
1498					   ret);
1499				delay = 0;
1500			}
1501
1502			trace_regulator_enable(rdev_get_name(rdev));
1503
1504			/* Allow the regulator to ramp; it would be useful
1505			 * to extend this for bulk operations so that the
1506			 * regulators can ramp together.  */
1507			ret = rdev->desc->ops->enable(rdev);
1508			if (ret < 0)
1509				return ret;
1510
1511			trace_regulator_enable_delay(rdev_get_name(rdev));
1512
1513			if (delay >= 1000) {
1514				mdelay(delay / 1000);
1515				udelay(delay % 1000);
1516			} else if (delay) {
1517				udelay(delay);
1518			}
1519
1520			trace_regulator_enable_complete(rdev_get_name(rdev));
1521
1522		} else if (ret < 0) {
1523			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524			return ret;
1525		}
1526		/* Fallthrough on positive return values - already enabled */
1527	}
1528
1529	rdev->use_count++;
1530
1531	return 0;
1532}
1533
1534/**
1535 * regulator_enable - enable regulator output
1536 * @regulator: regulator source
1537 *
1538 * Request that the regulator be enabled with the regulator output at
1539 * the predefined voltage or current value.  Calls to regulator_enable()
1540 * must be balanced with calls to regulator_disable().
1541 *
1542 * NOTE: the output value can be set by other drivers, boot loader or may be
1543 * hardwired in the regulator.
1544 */
1545int regulator_enable(struct regulator *regulator)
1546{
1547	struct regulator_dev *rdev = regulator->rdev;
1548	int ret = 0;
1549
1550	if (regulator->always_on)
1551		return 0;
1552
1553	if (rdev->supply) {
1554		ret = regulator_enable(rdev->supply);
1555		if (ret != 0)
1556			return ret;
1557	}
1558
1559	mutex_lock(&rdev->mutex);
1560	ret = _regulator_enable(rdev);
1561	mutex_unlock(&rdev->mutex);
1562
1563	if (ret != 0 && rdev->supply)
1564		regulator_disable(rdev->supply);
1565
1566	return ret;
1567}
1568EXPORT_SYMBOL_GPL(regulator_enable);
1569
1570/* locks held by regulator_disable() */
1571static int _regulator_disable(struct regulator_dev *rdev)
1572{
1573	int ret = 0;
1574
1575	if (WARN(rdev->use_count <= 0,
1576		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1577		return -EIO;
1578
1579	/* are we the last user and permitted to disable ? */
1580	if (rdev->use_count == 1 &&
1581	    (rdev->constraints && !rdev->constraints->always_on)) {
1582
1583		/* we are last user */
1584		if (_regulator_can_change_status(rdev) &&
1585		    rdev->desc->ops->disable) {
1586			trace_regulator_disable(rdev_get_name(rdev));
1587
1588			ret = rdev->desc->ops->disable(rdev);
1589			if (ret < 0) {
1590				rdev_err(rdev, "failed to disable\n");
1591				return ret;
1592			}
1593
1594			trace_regulator_disable_complete(rdev_get_name(rdev));
1595
1596			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1597					     NULL);
1598		}
1599
1600		rdev->use_count = 0;
1601	} else if (rdev->use_count > 1) {
1602
1603		if (rdev->constraints &&
1604			(rdev->constraints->valid_ops_mask &
1605			REGULATOR_CHANGE_DRMS))
1606			drms_uA_update(rdev);
1607
1608		rdev->use_count--;
1609	}
1610
1611	return ret;
1612}
1613
1614/**
1615 * regulator_disable - disable regulator output
1616 * @regulator: regulator source
1617 *
1618 * Disable the regulator output voltage or current.  Calls to
1619 * regulator_enable() must be balanced with calls to
1620 * regulator_disable().
1621 *
1622 * NOTE: this will only disable the regulator output if no other consumer
1623 * devices have it enabled, the regulator device supports disabling and
1624 * machine constraints permit this operation.
1625 */
1626int regulator_disable(struct regulator *regulator)
1627{
1628	struct regulator_dev *rdev = regulator->rdev;
1629	int ret = 0;
1630
1631	if (regulator->always_on)
1632		return 0;
1633
1634	mutex_lock(&rdev->mutex);
1635	ret = _regulator_disable(rdev);
1636	mutex_unlock(&rdev->mutex);
1637
1638	if (ret == 0 && rdev->supply)
1639		regulator_disable(rdev->supply);
1640
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(regulator_disable);
1644
1645/* locks held by regulator_force_disable() */
1646static int _regulator_force_disable(struct regulator_dev *rdev)
1647{
1648	int ret = 0;
1649
1650	/* force disable */
1651	if (rdev->desc->ops->disable) {
1652		/* ah well, who wants to live forever... */
1653		ret = rdev->desc->ops->disable(rdev);
1654		if (ret < 0) {
1655			rdev_err(rdev, "failed to force disable\n");
1656			return ret;
1657		}
1658		/* notify other consumers that power has been forced off */
1659		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1660			REGULATOR_EVENT_DISABLE, NULL);
1661	}
1662
1663	return ret;
1664}
1665
1666/**
1667 * regulator_force_disable - force disable regulator output
1668 * @regulator: regulator source
1669 *
1670 * Forcibly disable the regulator output voltage or current.
1671 * NOTE: this *will* disable the regulator output even if other consumer
1672 * devices have it enabled. This should be used for situations when device
1673 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1674 */
1675int regulator_force_disable(struct regulator *regulator)
1676{
1677	struct regulator_dev *rdev = regulator->rdev;
1678	int ret;
1679
1680	mutex_lock(&rdev->mutex);
1681	regulator->uA_load = 0;
1682	ret = _regulator_force_disable(regulator->rdev);
1683	mutex_unlock(&rdev->mutex);
1684
1685	if (rdev->supply)
1686		while (rdev->open_count--)
1687			regulator_disable(rdev->supply);
1688
1689	return ret;
1690}
1691EXPORT_SYMBOL_GPL(regulator_force_disable);
1692
1693static void regulator_disable_work(struct work_struct *work)
1694{
1695	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1696						  disable_work.work);
1697	int count, i, ret;
1698
1699	mutex_lock(&rdev->mutex);
1700
1701	BUG_ON(!rdev->deferred_disables);
1702
1703	count = rdev->deferred_disables;
1704	rdev->deferred_disables = 0;
1705
1706	for (i = 0; i < count; i++) {
1707		ret = _regulator_disable(rdev);
1708		if (ret != 0)
1709			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1710	}
1711
1712	mutex_unlock(&rdev->mutex);
1713
1714	if (rdev->supply) {
1715		for (i = 0; i < count; i++) {
1716			ret = regulator_disable(rdev->supply);
1717			if (ret != 0) {
1718				rdev_err(rdev,
1719					 "Supply disable failed: %d\n", ret);
1720			}
1721		}
1722	}
1723}
1724
1725/**
1726 * regulator_disable_deferred - disable regulator output with delay
1727 * @regulator: regulator source
1728 * @ms: miliseconds until the regulator is disabled
1729 *
1730 * Execute regulator_disable() on the regulator after a delay.  This
1731 * is intended for use with devices that require some time to quiesce.
1732 *
1733 * NOTE: this will only disable the regulator output if no other consumer
1734 * devices have it enabled, the regulator device supports disabling and
1735 * machine constraints permit this operation.
1736 */
1737int regulator_disable_deferred(struct regulator *regulator, int ms)
1738{
1739	struct regulator_dev *rdev = regulator->rdev;
1740	int ret;
1741
1742	if (regulator->always_on)
1743		return 0;
1744
1745	mutex_lock(&rdev->mutex);
1746	rdev->deferred_disables++;
1747	mutex_unlock(&rdev->mutex);
1748
1749	ret = schedule_delayed_work(&rdev->disable_work,
1750				    msecs_to_jiffies(ms));
1751	if (ret < 0)
1752		return ret;
1753	else
1754		return 0;
1755}
1756EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1757
1758/**
1759 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their is_enabled operation, saving some code.
1766 */
1767int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1768{
1769	unsigned int val;
1770	int ret;
1771
1772	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1773	if (ret != 0)
1774		return ret;
1775
1776	return (val & rdev->desc->enable_mask) != 0;
1777}
1778EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1779
1780/**
1781 * regulator_enable_regmap - standard enable() for regmap users
1782 *
1783 * @rdev: regulator to operate on
1784 *
1785 * Regulators that use regmap for their register I/O can set the
1786 * enable_reg and enable_mask fields in their descriptor and then use
1787 * this as their enable() operation, saving some code.
1788 */
1789int regulator_enable_regmap(struct regulator_dev *rdev)
1790{
1791	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1792				  rdev->desc->enable_mask,
1793				  rdev->desc->enable_mask);
1794}
1795EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1796
1797/**
1798 * regulator_disable_regmap - standard disable() for regmap users
1799 *
1800 * @rdev: regulator to operate on
1801 *
1802 * Regulators that use regmap for their register I/O can set the
1803 * enable_reg and enable_mask fields in their descriptor and then use
1804 * this as their disable() operation, saving some code.
1805 */
1806int regulator_disable_regmap(struct regulator_dev *rdev)
1807{
1808	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1809				  rdev->desc->enable_mask, 0);
1810}
1811EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1812
1813static int _regulator_is_enabled(struct regulator_dev *rdev)
1814{
1815	/* If we don't know then assume that the regulator is always on */
1816	if (!rdev->desc->ops->is_enabled)
1817		return 1;
1818
1819	return rdev->desc->ops->is_enabled(rdev);
1820}
1821
1822/**
1823 * regulator_is_enabled - is the regulator output enabled
1824 * @regulator: regulator source
1825 *
1826 * Returns positive if the regulator driver backing the source/client
1827 * has requested that the device be enabled, zero if it hasn't, else a
1828 * negative errno code.
1829 *
1830 * Note that the device backing this regulator handle can have multiple
1831 * users, so it might be enabled even if regulator_enable() was never
1832 * called for this particular source.
1833 */
1834int regulator_is_enabled(struct regulator *regulator)
1835{
1836	int ret;
1837
1838	if (regulator->always_on)
1839		return 1;
1840
1841	mutex_lock(&regulator->rdev->mutex);
1842	ret = _regulator_is_enabled(regulator->rdev);
1843	mutex_unlock(&regulator->rdev->mutex);
1844
1845	return ret;
1846}
1847EXPORT_SYMBOL_GPL(regulator_is_enabled);
1848
1849/**
1850 * regulator_count_voltages - count regulator_list_voltage() selectors
1851 * @regulator: regulator source
1852 *
1853 * Returns number of selectors, or negative errno.  Selectors are
1854 * numbered starting at zero, and typically correspond to bitfields
1855 * in hardware registers.
1856 */
1857int regulator_count_voltages(struct regulator *regulator)
1858{
1859	struct regulator_dev	*rdev = regulator->rdev;
1860
1861	return rdev->desc->n_voltages ? : -EINVAL;
1862}
1863EXPORT_SYMBOL_GPL(regulator_count_voltages);
1864
1865/**
1866 * regulator_list_voltage_linear - List voltages with simple calculation
1867 *
1868 * @rdev: Regulator device
1869 * @selector: Selector to convert into a voltage
1870 *
1871 * Regulators with a simple linear mapping between voltages and
1872 * selectors can set min_uV and uV_step in the regulator descriptor
1873 * and then use this function as their list_voltage() operation,
1874 */
1875int regulator_list_voltage_linear(struct regulator_dev *rdev,
1876				  unsigned int selector)
1877{
1878	if (selector >= rdev->desc->n_voltages)
1879		return -EINVAL;
1880
1881	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1882}
1883EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1884
1885/**
1886 * regulator_list_voltage - enumerate supported voltages
1887 * @regulator: regulator source
1888 * @selector: identify voltage to list
1889 * Context: can sleep
1890 *
1891 * Returns a voltage that can be passed to @regulator_set_voltage(),
1892 * zero if this selector code can't be used on this system, or a
1893 * negative errno.
1894 */
1895int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1896{
1897	struct regulator_dev	*rdev = regulator->rdev;
1898	struct regulator_ops	*ops = rdev->desc->ops;
1899	int			ret;
1900
1901	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1902		return -EINVAL;
1903
1904	mutex_lock(&rdev->mutex);
1905	ret = ops->list_voltage(rdev, selector);
1906	mutex_unlock(&rdev->mutex);
1907
1908	if (ret > 0) {
1909		if (ret < rdev->constraints->min_uV)
1910			ret = 0;
1911		else if (ret > rdev->constraints->max_uV)
1912			ret = 0;
1913	}
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regulator_list_voltage);
1918
1919/**
1920 * regulator_is_supported_voltage - check if a voltage range can be supported
1921 *
1922 * @regulator: Regulator to check.
1923 * @min_uV: Minimum required voltage in uV.
1924 * @max_uV: Maximum required voltage in uV.
1925 *
1926 * Returns a boolean or a negative error code.
1927 */
1928int regulator_is_supported_voltage(struct regulator *regulator,
1929				   int min_uV, int max_uV)
1930{
1931	int i, voltages, ret;
1932
1933	ret = regulator_count_voltages(regulator);
1934	if (ret < 0)
1935		return ret;
1936	voltages = ret;
1937
1938	for (i = 0; i < voltages; i++) {
1939		ret = regulator_list_voltage(regulator, i);
1940
1941		if (ret >= min_uV && ret <= max_uV)
1942			return 1;
1943	}
1944
1945	return 0;
1946}
1947EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948
1949/**
1950 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1951 *
1952 * @rdev: regulator to operate on
1953 *
1954 * Regulators that use regmap for their register I/O can set the
1955 * vsel_reg and vsel_mask fields in their descriptor and then use this
1956 * as their get_voltage_vsel operation, saving some code.
1957 */
1958int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1959{
1960	unsigned int val;
1961	int ret;
1962
1963	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1964	if (ret != 0)
1965		return ret;
1966
1967	val &= rdev->desc->vsel_mask;
1968	val >>= ffs(rdev->desc->vsel_mask) - 1;
1969
1970	return val;
1971}
1972EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1973
1974/**
1975 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1976 *
1977 * @rdev: regulator to operate on
1978 * @sel: Selector to set
1979 *
1980 * Regulators that use regmap for their register I/O can set the
1981 * vsel_reg and vsel_mask fields in their descriptor and then use this
1982 * as their set_voltage_vsel operation, saving some code.
1983 */
1984int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1985{
1986	sel <<= ffs(rdev->desc->vsel_mask) - 1;
1987
1988	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1989				  rdev->desc->vsel_mask, sel);
1990}
1991EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1992
1993/**
1994 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1995 *
1996 * @rdev: Regulator to operate on
1997 * @min_uV: Lower bound for voltage
1998 * @max_uV: Upper bound for voltage
1999 *
2000 * Drivers implementing set_voltage_sel() and list_voltage() can use
2001 * this as their map_voltage() operation.  It will find a suitable
2002 * voltage by calling list_voltage() until it gets something in bounds
2003 * for the requested voltages.
2004 */
2005int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2006				  int min_uV, int max_uV)
2007{
2008	int best_val = INT_MAX;
2009	int selector = 0;
2010	int i, ret;
2011
2012	/* Find the smallest voltage that falls within the specified
2013	 * range.
2014	 */
2015	for (i = 0; i < rdev->desc->n_voltages; i++) {
2016		ret = rdev->desc->ops->list_voltage(rdev, i);
2017		if (ret < 0)
2018			continue;
2019
2020		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2021			best_val = ret;
2022			selector = i;
2023		}
2024	}
2025
2026	if (best_val != INT_MAX)
2027		return selector;
2028	else
2029		return -EINVAL;
2030}
2031EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2032
2033/**
2034 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2035 *
2036 * @rdev: Regulator to operate on
2037 * @min_uV: Lower bound for voltage
2038 * @max_uV: Upper bound for voltage
2039 *
2040 * Drivers providing min_uV and uV_step in their regulator_desc can
2041 * use this as their map_voltage() operation.
2042 */
2043int regulator_map_voltage_linear(struct regulator_dev *rdev,
2044				 int min_uV, int max_uV)
2045{
2046	int ret, voltage;
2047
2048	if (!rdev->desc->uV_step) {
2049		BUG_ON(!rdev->desc->uV_step);
2050		return -EINVAL;
2051	}
2052
2053	if (min_uV < rdev->desc->min_uV)
2054		min_uV = rdev->desc->min_uV;
2055
2056	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2057	if (ret < 0)
2058		return ret;
2059
2060	/* Map back into a voltage to verify we're still in bounds */
2061	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2062	if (voltage < min_uV || voltage > max_uV)
2063		return -EINVAL;
2064
2065	return ret;
2066}
2067EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2068
2069static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2070				     int min_uV, int max_uV)
2071{
2072	int ret;
2073	int delay = 0;
2074	int best_val;
2075	unsigned int selector;
2076	int old_selector = -1;
2077
2078	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2079
2080	min_uV += rdev->constraints->uV_offset;
2081	max_uV += rdev->constraints->uV_offset;
2082
2083	/*
2084	 * If we can't obtain the old selector there is not enough
2085	 * info to call set_voltage_time_sel().
2086	 */
2087	if (rdev->desc->ops->set_voltage_time_sel &&
2088	    rdev->desc->ops->get_voltage_sel) {
2089		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2090		if (old_selector < 0)
2091			return old_selector;
2092	}
2093
2094	if (rdev->desc->ops->set_voltage) {
2095		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2096						   &selector);
2097	} else if (rdev->desc->ops->set_voltage_sel) {
2098		if (rdev->desc->ops->map_voltage)
2099			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2100							   max_uV);
2101		else
2102			ret = regulator_map_voltage_iterate(rdev, min_uV,
2103							    max_uV);
2104
2105		if (ret >= 0) {
2106			selector = ret;
2107			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2108		}
2109	} else {
2110		ret = -EINVAL;
2111	}
2112
2113	if (rdev->desc->ops->list_voltage)
2114		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2115	else
2116		best_val = -1;
2117
2118	/* Call set_voltage_time_sel if successfully obtained old_selector */
2119	if (ret == 0 && old_selector >= 0 &&
2120	    rdev->desc->ops->set_voltage_time_sel) {
2121
2122		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2123						old_selector, selector);
2124		if (delay < 0) {
2125			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2126				  delay);
2127			delay = 0;
2128		}
2129	}
2130
2131	/* Insert any necessary delays */
2132	if (delay >= 1000) {
2133		mdelay(delay / 1000);
2134		udelay(delay % 1000);
2135	} else if (delay) {
2136		udelay(delay);
2137	}
2138
2139	if (ret == 0)
2140		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2141				     NULL);
2142
2143	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2144
2145	return ret;
2146}
2147
2148/**
2149 * regulator_set_voltage - set regulator output voltage
2150 * @regulator: regulator source
2151 * @min_uV: Minimum required voltage in uV
2152 * @max_uV: Maximum acceptable voltage in uV
2153 *
2154 * Sets a voltage regulator to the desired output voltage. This can be set
2155 * during any regulator state. IOW, regulator can be disabled or enabled.
2156 *
2157 * If the regulator is enabled then the voltage will change to the new value
2158 * immediately otherwise if the regulator is disabled the regulator will
2159 * output at the new voltage when enabled.
2160 *
2161 * NOTE: If the regulator is shared between several devices then the lowest
2162 * request voltage that meets the system constraints will be used.
2163 * Regulator system constraints must be set for this regulator before
2164 * calling this function otherwise this call will fail.
2165 */
2166int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2167{
2168	struct regulator_dev *rdev = regulator->rdev;
2169	int ret = 0;
2170
2171	mutex_lock(&rdev->mutex);
2172
2173	/* If we're setting the same range as last time the change
2174	 * should be a noop (some cpufreq implementations use the same
2175	 * voltage for multiple frequencies, for example).
2176	 */
2177	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2178		goto out;
2179
2180	/* sanity check */
2181	if (!rdev->desc->ops->set_voltage &&
2182	    !rdev->desc->ops->set_voltage_sel) {
2183		ret = -EINVAL;
2184		goto out;
2185	}
2186
2187	/* constraints check */
2188	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2189	if (ret < 0)
2190		goto out;
2191	regulator->min_uV = min_uV;
2192	regulator->max_uV = max_uV;
2193
2194	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2195	if (ret < 0)
2196		goto out;
2197
2198	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2199
2200out:
2201	mutex_unlock(&rdev->mutex);
2202	return ret;
2203}
2204EXPORT_SYMBOL_GPL(regulator_set_voltage);
2205
2206/**
2207 * regulator_set_voltage_time - get raise/fall time
2208 * @regulator: regulator source
2209 * @old_uV: starting voltage in microvolts
2210 * @new_uV: target voltage in microvolts
2211 *
2212 * Provided with the starting and ending voltage, this function attempts to
2213 * calculate the time in microseconds required to rise or fall to this new
2214 * voltage.
2215 */
2216int regulator_set_voltage_time(struct regulator *regulator,
2217			       int old_uV, int new_uV)
2218{
2219	struct regulator_dev	*rdev = regulator->rdev;
2220	struct regulator_ops	*ops = rdev->desc->ops;
2221	int old_sel = -1;
2222	int new_sel = -1;
2223	int voltage;
2224	int i;
2225
2226	/* Currently requires operations to do this */
2227	if (!ops->list_voltage || !ops->set_voltage_time_sel
2228	    || !rdev->desc->n_voltages)
2229		return -EINVAL;
2230
2231	for (i = 0; i < rdev->desc->n_voltages; i++) {
2232		/* We only look for exact voltage matches here */
2233		voltage = regulator_list_voltage(regulator, i);
2234		if (voltage < 0)
2235			return -EINVAL;
2236		if (voltage == 0)
2237			continue;
2238		if (voltage == old_uV)
2239			old_sel = i;
2240		if (voltage == new_uV)
2241			new_sel = i;
2242	}
2243
2244	if (old_sel < 0 || new_sel < 0)
2245		return -EINVAL;
2246
2247	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2248}
2249EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2250
2251/**
2252 * regulator_sync_voltage - re-apply last regulator output voltage
2253 * @regulator: regulator source
2254 *
2255 * Re-apply the last configured voltage.  This is intended to be used
2256 * where some external control source the consumer is cooperating with
2257 * has caused the configured voltage to change.
2258 */
2259int regulator_sync_voltage(struct regulator *regulator)
2260{
2261	struct regulator_dev *rdev = regulator->rdev;
2262	int ret, min_uV, max_uV;
2263
2264	mutex_lock(&rdev->mutex);
2265
2266	if (!rdev->desc->ops->set_voltage &&
2267	    !rdev->desc->ops->set_voltage_sel) {
2268		ret = -EINVAL;
2269		goto out;
2270	}
2271
2272	/* This is only going to work if we've had a voltage configured. */
2273	if (!regulator->min_uV && !regulator->max_uV) {
2274		ret = -EINVAL;
2275		goto out;
2276	}
2277
2278	min_uV = regulator->min_uV;
2279	max_uV = regulator->max_uV;
2280
2281	/* This should be a paranoia check... */
2282	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2283	if (ret < 0)
2284		goto out;
2285
2286	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2287	if (ret < 0)
2288		goto out;
2289
2290	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2291
2292out:
2293	mutex_unlock(&rdev->mutex);
2294	return ret;
2295}
2296EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2297
2298static int _regulator_get_voltage(struct regulator_dev *rdev)
2299{
2300	int sel, ret;
2301
2302	if (rdev->desc->ops->get_voltage_sel) {
2303		sel = rdev->desc->ops->get_voltage_sel(rdev);
2304		if (sel < 0)
2305			return sel;
2306		ret = rdev->desc->ops->list_voltage(rdev, sel);
2307	} else if (rdev->desc->ops->get_voltage) {
2308		ret = rdev->desc->ops->get_voltage(rdev);
2309	} else {
2310		return -EINVAL;
2311	}
2312
2313	if (ret < 0)
2314		return ret;
2315	return ret - rdev->constraints->uV_offset;
2316}
2317
2318/**
2319 * regulator_get_voltage - get regulator output voltage
2320 * @regulator: regulator source
2321 *
2322 * This returns the current regulator voltage in uV.
2323 *
2324 * NOTE: If the regulator is disabled it will return the voltage value. This
2325 * function should not be used to determine regulator state.
2326 */
2327int regulator_get_voltage(struct regulator *regulator)
2328{
2329	int ret;
2330
2331	mutex_lock(&regulator->rdev->mutex);
2332
2333	ret = _regulator_get_voltage(regulator->rdev);
2334
2335	mutex_unlock(&regulator->rdev->mutex);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_get_voltage);
2340
2341/**
2342 * regulator_set_current_limit - set regulator output current limit
2343 * @regulator: regulator source
2344 * @min_uA: Minimuum supported current in uA
2345 * @max_uA: Maximum supported current in uA
2346 *
2347 * Sets current sink to the desired output current. This can be set during
2348 * any regulator state. IOW, regulator can be disabled or enabled.
2349 *
2350 * If the regulator is enabled then the current will change to the new value
2351 * immediately otherwise if the regulator is disabled the regulator will
2352 * output at the new current when enabled.
2353 *
2354 * NOTE: Regulator system constraints must be set for this regulator before
2355 * calling this function otherwise this call will fail.
2356 */
2357int regulator_set_current_limit(struct regulator *regulator,
2358			       int min_uA, int max_uA)
2359{
2360	struct regulator_dev *rdev = regulator->rdev;
2361	int ret;
2362
2363	mutex_lock(&rdev->mutex);
2364
2365	/* sanity check */
2366	if (!rdev->desc->ops->set_current_limit) {
2367		ret = -EINVAL;
2368		goto out;
2369	}
2370
2371	/* constraints check */
2372	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2373	if (ret < 0)
2374		goto out;
2375
2376	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2377out:
2378	mutex_unlock(&rdev->mutex);
2379	return ret;
2380}
2381EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2382
2383static int _regulator_get_current_limit(struct regulator_dev *rdev)
2384{
2385	int ret;
2386
2387	mutex_lock(&rdev->mutex);
2388
2389	/* sanity check */
2390	if (!rdev->desc->ops->get_current_limit) {
2391		ret = -EINVAL;
2392		goto out;
2393	}
2394
2395	ret = rdev->desc->ops->get_current_limit(rdev);
2396out:
2397	mutex_unlock(&rdev->mutex);
2398	return ret;
2399}
2400
2401/**
2402 * regulator_get_current_limit - get regulator output current
2403 * @regulator: regulator source
2404 *
2405 * This returns the current supplied by the specified current sink in uA.
2406 *
2407 * NOTE: If the regulator is disabled it will return the current value. This
2408 * function should not be used to determine regulator state.
2409 */
2410int regulator_get_current_limit(struct regulator *regulator)
2411{
2412	return _regulator_get_current_limit(regulator->rdev);
2413}
2414EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2415
2416/**
2417 * regulator_set_mode - set regulator operating mode
2418 * @regulator: regulator source
2419 * @mode: operating mode - one of the REGULATOR_MODE constants
2420 *
2421 * Set regulator operating mode to increase regulator efficiency or improve
2422 * regulation performance.
2423 *
2424 * NOTE: Regulator system constraints must be set for this regulator before
2425 * calling this function otherwise this call will fail.
2426 */
2427int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2428{
2429	struct regulator_dev *rdev = regulator->rdev;
2430	int ret;
2431	int regulator_curr_mode;
2432
2433	mutex_lock(&rdev->mutex);
2434
2435	/* sanity check */
2436	if (!rdev->desc->ops->set_mode) {
2437		ret = -EINVAL;
2438		goto out;
2439	}
2440
2441	/* return if the same mode is requested */
2442	if (rdev->desc->ops->get_mode) {
2443		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2444		if (regulator_curr_mode == mode) {
2445			ret = 0;
2446			goto out;
2447		}
2448	}
2449
2450	/* constraints check */
2451	ret = regulator_mode_constrain(rdev, &mode);
2452	if (ret < 0)
2453		goto out;
2454
2455	ret = rdev->desc->ops->set_mode(rdev, mode);
2456out:
2457	mutex_unlock(&rdev->mutex);
2458	return ret;
2459}
2460EXPORT_SYMBOL_GPL(regulator_set_mode);
2461
2462static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2463{
2464	int ret;
2465
2466	mutex_lock(&rdev->mutex);
2467
2468	/* sanity check */
2469	if (!rdev->desc->ops->get_mode) {
2470		ret = -EINVAL;
2471		goto out;
2472	}
2473
2474	ret = rdev->desc->ops->get_mode(rdev);
2475out:
2476	mutex_unlock(&rdev->mutex);
2477	return ret;
2478}
2479
2480/**
2481 * regulator_get_mode - get regulator operating mode
2482 * @regulator: regulator source
2483 *
2484 * Get the current regulator operating mode.
2485 */
2486unsigned int regulator_get_mode(struct regulator *regulator)
2487{
2488	return _regulator_get_mode(regulator->rdev);
2489}
2490EXPORT_SYMBOL_GPL(regulator_get_mode);
2491
2492/**
2493 * regulator_set_optimum_mode - set regulator optimum operating mode
2494 * @regulator: regulator source
2495 * @uA_load: load current
2496 *
2497 * Notifies the regulator core of a new device load. This is then used by
2498 * DRMS (if enabled by constraints) to set the most efficient regulator
2499 * operating mode for the new regulator loading.
2500 *
2501 * Consumer devices notify their supply regulator of the maximum power
2502 * they will require (can be taken from device datasheet in the power
2503 * consumption tables) when they change operational status and hence power
2504 * state. Examples of operational state changes that can affect power
2505 * consumption are :-
2506 *
2507 *    o Device is opened / closed.
2508 *    o Device I/O is about to begin or has just finished.
2509 *    o Device is idling in between work.
2510 *
2511 * This information is also exported via sysfs to userspace.
2512 *
2513 * DRMS will sum the total requested load on the regulator and change
2514 * to the most efficient operating mode if platform constraints allow.
2515 *
2516 * Returns the new regulator mode or error.
2517 */
2518int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2519{
2520	struct regulator_dev *rdev = regulator->rdev;
2521	struct regulator *consumer;
2522	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2523	unsigned int mode;
2524
2525	if (rdev->supply)
2526		input_uV = regulator_get_voltage(rdev->supply);
2527
2528	mutex_lock(&rdev->mutex);
2529
2530	/*
2531	 * first check to see if we can set modes at all, otherwise just
2532	 * tell the consumer everything is OK.
2533	 */
2534	regulator->uA_load = uA_load;
2535	ret = regulator_check_drms(rdev);
2536	if (ret < 0) {
2537		ret = 0;
2538		goto out;
2539	}
2540
2541	if (!rdev->desc->ops->get_optimum_mode)
2542		goto out;
2543
2544	/*
2545	 * we can actually do this so any errors are indicators of
2546	 * potential real failure.
2547	 */
2548	ret = -EINVAL;
2549
2550	if (!rdev->desc->ops->set_mode)
2551		goto out;
2552
2553	/* get output voltage */
2554	output_uV = _regulator_get_voltage(rdev);
2555	if (output_uV <= 0) {
2556		rdev_err(rdev, "invalid output voltage found\n");
2557		goto out;
2558	}
2559
2560	/* No supply? Use constraint voltage */
2561	if (input_uV <= 0)
2562		input_uV = rdev->constraints->input_uV;
2563	if (input_uV <= 0) {
2564		rdev_err(rdev, "invalid input voltage found\n");
2565		goto out;
2566	}
2567
2568	/* calc total requested load for this regulator */
2569	list_for_each_entry(consumer, &rdev->consumer_list, list)
2570		total_uA_load += consumer->uA_load;
2571
2572	mode = rdev->desc->ops->get_optimum_mode(rdev,
2573						 input_uV, output_uV,
2574						 total_uA_load);
2575	ret = regulator_mode_constrain(rdev, &mode);
2576	if (ret < 0) {
2577		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2578			 total_uA_load, input_uV, output_uV);
2579		goto out;
2580	}
2581
2582	ret = rdev->desc->ops->set_mode(rdev, mode);
2583	if (ret < 0) {
2584		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2585		goto out;
2586	}
2587	ret = mode;
2588out:
2589	mutex_unlock(&rdev->mutex);
2590	return ret;
2591}
2592EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2593
2594/**
2595 * regulator_register_notifier - register regulator event notifier
2596 * @regulator: regulator source
2597 * @nb: notifier block
2598 *
2599 * Register notifier block to receive regulator events.
2600 */
2601int regulator_register_notifier(struct regulator *regulator,
2602			      struct notifier_block *nb)
2603{
2604	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2605						nb);
2606}
2607EXPORT_SYMBOL_GPL(regulator_register_notifier);
2608
2609/**
2610 * regulator_unregister_notifier - unregister regulator event notifier
2611 * @regulator: regulator source
2612 * @nb: notifier block
2613 *
2614 * Unregister regulator event notifier block.
2615 */
2616int regulator_unregister_notifier(struct regulator *regulator,
2617				struct notifier_block *nb)
2618{
2619	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2620						  nb);
2621}
2622EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2623
2624/* notify regulator consumers and downstream regulator consumers.
2625 * Note mutex must be held by caller.
2626 */
2627static void _notifier_call_chain(struct regulator_dev *rdev,
2628				  unsigned long event, void *data)
2629{
2630	/* call rdev chain first */
2631	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2632}
2633
2634/**
2635 * regulator_bulk_get - get multiple regulator consumers
2636 *
2637 * @dev:           Device to supply
2638 * @num_consumers: Number of consumers to register
2639 * @consumers:     Configuration of consumers; clients are stored here.
2640 *
2641 * @return 0 on success, an errno on failure.
2642 *
2643 * This helper function allows drivers to get several regulator
2644 * consumers in one operation.  If any of the regulators cannot be
2645 * acquired then any regulators that were allocated will be freed
2646 * before returning to the caller.
2647 */
2648int regulator_bulk_get(struct device *dev, int num_consumers,
2649		       struct regulator_bulk_data *consumers)
2650{
2651	int i;
2652	int ret;
2653
2654	for (i = 0; i < num_consumers; i++)
2655		consumers[i].consumer = NULL;
2656
2657	for (i = 0; i < num_consumers; i++) {
2658		consumers[i].consumer = regulator_get(dev,
2659						      consumers[i].supply);
2660		if (IS_ERR(consumers[i].consumer)) {
2661			ret = PTR_ERR(consumers[i].consumer);
2662			dev_err(dev, "Failed to get supply '%s': %d\n",
2663				consumers[i].supply, ret);
2664			consumers[i].consumer = NULL;
2665			goto err;
2666		}
2667	}
2668
2669	return 0;
2670
2671err:
2672	while (--i >= 0)
2673		regulator_put(consumers[i].consumer);
2674
2675	return ret;
2676}
2677EXPORT_SYMBOL_GPL(regulator_bulk_get);
2678
2679/**
2680 * devm_regulator_bulk_get - managed get multiple regulator consumers
2681 *
2682 * @dev:           Device to supply
2683 * @num_consumers: Number of consumers to register
2684 * @consumers:     Configuration of consumers; clients are stored here.
2685 *
2686 * @return 0 on success, an errno on failure.
2687 *
2688 * This helper function allows drivers to get several regulator
2689 * consumers in one operation with management, the regulators will
2690 * automatically be freed when the device is unbound.  If any of the
2691 * regulators cannot be acquired then any regulators that were
2692 * allocated will be freed before returning to the caller.
2693 */
2694int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2695			    struct regulator_bulk_data *consumers)
2696{
2697	int i;
2698	int ret;
2699
2700	for (i = 0; i < num_consumers; i++)
2701		consumers[i].consumer = NULL;
2702
2703	for (i = 0; i < num_consumers; i++) {
2704		consumers[i].consumer = devm_regulator_get(dev,
2705							   consumers[i].supply);
2706		if (IS_ERR(consumers[i].consumer)) {
2707			ret = PTR_ERR(consumers[i].consumer);
2708			dev_err(dev, "Failed to get supply '%s': %d\n",
2709				consumers[i].supply, ret);
2710			consumers[i].consumer = NULL;
2711			goto err;
2712		}
2713	}
2714
2715	return 0;
2716
2717err:
2718	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2719		devm_regulator_put(consumers[i].consumer);
2720
2721	return ret;
2722}
2723EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2724
2725static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2726{
2727	struct regulator_bulk_data *bulk = data;
2728
2729	bulk->ret = regulator_enable(bulk->consumer);
2730}
2731
2732/**
2733 * regulator_bulk_enable - enable multiple regulator consumers
2734 *
2735 * @num_consumers: Number of consumers
2736 * @consumers:     Consumer data; clients are stored here.
2737 * @return         0 on success, an errno on failure
2738 *
2739 * This convenience API allows consumers to enable multiple regulator
2740 * clients in a single API call.  If any consumers cannot be enabled
2741 * then any others that were enabled will be disabled again prior to
2742 * return.
2743 */
2744int regulator_bulk_enable(int num_consumers,
2745			  struct regulator_bulk_data *consumers)
2746{
2747	LIST_HEAD(async_domain);
2748	int i;
2749	int ret = 0;
2750
2751	for (i = 0; i < num_consumers; i++) {
2752		if (consumers[i].consumer->always_on)
2753			consumers[i].ret = 0;
2754		else
2755			async_schedule_domain(regulator_bulk_enable_async,
2756					      &consumers[i], &async_domain);
2757	}
2758
2759	async_synchronize_full_domain(&async_domain);
2760
2761	/* If any consumer failed we need to unwind any that succeeded */
2762	for (i = 0; i < num_consumers; i++) {
2763		if (consumers[i].ret != 0) {
2764			ret = consumers[i].ret;
2765			goto err;
2766		}
2767	}
2768
2769	return 0;
2770
2771err:
2772	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2773	while (--i >= 0)
2774		regulator_disable(consumers[i].consumer);
2775
2776	return ret;
2777}
2778EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2779
2780/**
2781 * regulator_bulk_disable - disable multiple regulator consumers
2782 *
2783 * @num_consumers: Number of consumers
2784 * @consumers:     Consumer data; clients are stored here.
2785 * @return         0 on success, an errno on failure
2786 *
2787 * This convenience API allows consumers to disable multiple regulator
2788 * clients in a single API call.  If any consumers cannot be disabled
2789 * then any others that were disabled will be enabled again prior to
2790 * return.
2791 */
2792int regulator_bulk_disable(int num_consumers,
2793			   struct regulator_bulk_data *consumers)
2794{
2795	int i;
2796	int ret, r;
2797
2798	for (i = num_consumers - 1; i >= 0; --i) {
2799		ret = regulator_disable(consumers[i].consumer);
2800		if (ret != 0)
2801			goto err;
2802	}
2803
2804	return 0;
2805
2806err:
2807	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2808	for (++i; i < num_consumers; ++i) {
2809		r = regulator_enable(consumers[i].consumer);
2810		if (r != 0)
2811			pr_err("Failed to reename %s: %d\n",
2812			       consumers[i].supply, r);
2813	}
2814
2815	return ret;
2816}
2817EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2818
2819/**
2820 * regulator_bulk_force_disable - force disable multiple regulator consumers
2821 *
2822 * @num_consumers: Number of consumers
2823 * @consumers:     Consumer data; clients are stored here.
2824 * @return         0 on success, an errno on failure
2825 *
2826 * This convenience API allows consumers to forcibly disable multiple regulator
2827 * clients in a single API call.
2828 * NOTE: This should be used for situations when device damage will
2829 * likely occur if the regulators are not disabled (e.g. over temp).
2830 * Although regulator_force_disable function call for some consumers can
2831 * return error numbers, the function is called for all consumers.
2832 */
2833int regulator_bulk_force_disable(int num_consumers,
2834			   struct regulator_bulk_data *consumers)
2835{
2836	int i;
2837	int ret;
2838
2839	for (i = 0; i < num_consumers; i++)
2840		consumers[i].ret =
2841			    regulator_force_disable(consumers[i].consumer);
2842
2843	for (i = 0; i < num_consumers; i++) {
2844		if (consumers[i].ret != 0) {
2845			ret = consumers[i].ret;
2846			goto out;
2847		}
2848	}
2849
2850	return 0;
2851out:
2852	return ret;
2853}
2854EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2855
2856/**
2857 * regulator_bulk_free - free multiple regulator consumers
2858 *
2859 * @num_consumers: Number of consumers
2860 * @consumers:     Consumer data; clients are stored here.
2861 *
2862 * This convenience API allows consumers to free multiple regulator
2863 * clients in a single API call.
2864 */
2865void regulator_bulk_free(int num_consumers,
2866			 struct regulator_bulk_data *consumers)
2867{
2868	int i;
2869
2870	for (i = 0; i < num_consumers; i++) {
2871		regulator_put(consumers[i].consumer);
2872		consumers[i].consumer = NULL;
2873	}
2874}
2875EXPORT_SYMBOL_GPL(regulator_bulk_free);
2876
2877/**
2878 * regulator_notifier_call_chain - call regulator event notifier
2879 * @rdev: regulator source
2880 * @event: notifier block
2881 * @data: callback-specific data.
2882 *
2883 * Called by regulator drivers to notify clients a regulator event has
2884 * occurred. We also notify regulator clients downstream.
2885 * Note lock must be held by caller.
2886 */
2887int regulator_notifier_call_chain(struct regulator_dev *rdev,
2888				  unsigned long event, void *data)
2889{
2890	_notifier_call_chain(rdev, event, data);
2891	return NOTIFY_DONE;
2892
2893}
2894EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2895
2896/**
2897 * regulator_mode_to_status - convert a regulator mode into a status
2898 *
2899 * @mode: Mode to convert
2900 *
2901 * Convert a regulator mode into a status.
2902 */
2903int regulator_mode_to_status(unsigned int mode)
2904{
2905	switch (mode) {
2906	case REGULATOR_MODE_FAST:
2907		return REGULATOR_STATUS_FAST;
2908	case REGULATOR_MODE_NORMAL:
2909		return REGULATOR_STATUS_NORMAL;
2910	case REGULATOR_MODE_IDLE:
2911		return REGULATOR_STATUS_IDLE;
2912	case REGULATOR_STATUS_STANDBY:
2913		return REGULATOR_STATUS_STANDBY;
2914	default:
2915		return 0;
2916	}
2917}
2918EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2919
2920/*
2921 * To avoid cluttering sysfs (and memory) with useless state, only
2922 * create attributes that can be meaningfully displayed.
2923 */
2924static int add_regulator_attributes(struct regulator_dev *rdev)
2925{
2926	struct device		*dev = &rdev->dev;
2927	struct regulator_ops	*ops = rdev->desc->ops;
2928	int			status = 0;
2929
2930	/* some attributes need specific methods to be displayed */
2931	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2932	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2933		status = device_create_file(dev, &dev_attr_microvolts);
2934		if (status < 0)
2935			return status;
2936	}
2937	if (ops->get_current_limit) {
2938		status = device_create_file(dev, &dev_attr_microamps);
2939		if (status < 0)
2940			return status;
2941	}
2942	if (ops->get_mode) {
2943		status = device_create_file(dev, &dev_attr_opmode);
2944		if (status < 0)
2945			return status;
2946	}
2947	if (ops->is_enabled) {
2948		status = device_create_file(dev, &dev_attr_state);
2949		if (status < 0)
2950			return status;
2951	}
2952	if (ops->get_status) {
2953		status = device_create_file(dev, &dev_attr_status);
2954		if (status < 0)
2955			return status;
2956	}
2957
2958	/* some attributes are type-specific */
2959	if (rdev->desc->type == REGULATOR_CURRENT) {
2960		status = device_create_file(dev, &dev_attr_requested_microamps);
2961		if (status < 0)
2962			return status;
2963	}
2964
2965	/* all the other attributes exist to support constraints;
2966	 * don't show them if there are no constraints, or if the
2967	 * relevant supporting methods are missing.
2968	 */
2969	if (!rdev->constraints)
2970		return status;
2971
2972	/* constraints need specific supporting methods */
2973	if (ops->set_voltage || ops->set_voltage_sel) {
2974		status = device_create_file(dev, &dev_attr_min_microvolts);
2975		if (status < 0)
2976			return status;
2977		status = device_create_file(dev, &dev_attr_max_microvolts);
2978		if (status < 0)
2979			return status;
2980	}
2981	if (ops->set_current_limit) {
2982		status = device_create_file(dev, &dev_attr_min_microamps);
2983		if (status < 0)
2984			return status;
2985		status = device_create_file(dev, &dev_attr_max_microamps);
2986		if (status < 0)
2987			return status;
2988	}
2989
2990	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2991	if (status < 0)
2992		return status;
2993	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2994	if (status < 0)
2995		return status;
2996	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2997	if (status < 0)
2998		return status;
2999
3000	if (ops->set_suspend_voltage) {
3001		status = device_create_file(dev,
3002				&dev_attr_suspend_standby_microvolts);
3003		if (status < 0)
3004			return status;
3005		status = device_create_file(dev,
3006				&dev_attr_suspend_mem_microvolts);
3007		if (status < 0)
3008			return status;
3009		status = device_create_file(dev,
3010				&dev_attr_suspend_disk_microvolts);
3011		if (status < 0)
3012			return status;
3013	}
3014
3015	if (ops->set_suspend_mode) {
3016		status = device_create_file(dev,
3017				&dev_attr_suspend_standby_mode);
3018		if (status < 0)
3019			return status;
3020		status = device_create_file(dev,
3021				&dev_attr_suspend_mem_mode);
3022		if (status < 0)
3023			return status;
3024		status = device_create_file(dev,
3025				&dev_attr_suspend_disk_mode);
3026		if (status < 0)
3027			return status;
3028	}
3029
3030	return status;
3031}
3032
3033static void rdev_init_debugfs(struct regulator_dev *rdev)
3034{
3035	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3036	if (!rdev->debugfs) {
3037		rdev_warn(rdev, "Failed to create debugfs directory\n");
3038		return;
3039	}
3040
3041	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3042			   &rdev->use_count);
3043	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3044			   &rdev->open_count);
3045}
3046
3047/**
3048 * regulator_register - register regulator
3049 * @regulator_desc: regulator to register
3050 * @config: runtime configuration for regulator
3051 *
3052 * Called by regulator drivers to register a regulator.
3053 * Returns 0 on success.
3054 */
3055struct regulator_dev *
3056regulator_register(const struct regulator_desc *regulator_desc,
3057		   const struct regulator_config *config)
3058{
3059	const struct regulation_constraints *constraints = NULL;
3060	const struct regulator_init_data *init_data;
3061	static atomic_t regulator_no = ATOMIC_INIT(0);
3062	struct regulator_dev *rdev;
3063	struct device *dev;
3064	int ret, i;
3065	const char *supply = NULL;
3066
3067	if (regulator_desc == NULL || config == NULL)
3068		return ERR_PTR(-EINVAL);
3069
3070	dev = config->dev;
3071	WARN_ON(!dev);
3072
3073	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3074		return ERR_PTR(-EINVAL);
3075
3076	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3077	    regulator_desc->type != REGULATOR_CURRENT)
3078		return ERR_PTR(-EINVAL);
3079
3080	/* Only one of each should be implemented */
3081	WARN_ON(regulator_desc->ops->get_voltage &&
3082		regulator_desc->ops->get_voltage_sel);
3083	WARN_ON(regulator_desc->ops->set_voltage &&
3084		regulator_desc->ops->set_voltage_sel);
3085
3086	/* If we're using selectors we must implement list_voltage. */
3087	if (regulator_desc->ops->get_voltage_sel &&
3088	    !regulator_desc->ops->list_voltage) {
3089		return ERR_PTR(-EINVAL);
3090	}
3091	if (regulator_desc->ops->set_voltage_sel &&
3092	    !regulator_desc->ops->list_voltage) {
3093		return ERR_PTR(-EINVAL);
3094	}
3095
3096	init_data = config->init_data;
3097
3098	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3099	if (rdev == NULL)
3100		return ERR_PTR(-ENOMEM);
3101
3102	mutex_lock(&regulator_list_mutex);
3103
3104	mutex_init(&rdev->mutex);
3105	rdev->reg_data = config->driver_data;
3106	rdev->owner = regulator_desc->owner;
3107	rdev->desc = regulator_desc;
3108	rdev->regmap = config->regmap;
3109	INIT_LIST_HEAD(&rdev->consumer_list);
3110	INIT_LIST_HEAD(&rdev->list);
3111	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3112	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3113
3114	/* preform any regulator specific init */
3115	if (init_data && init_data->regulator_init) {
3116		ret = init_data->regulator_init(rdev->reg_data);
3117		if (ret < 0)
3118			goto clean;
3119	}
3120
3121	/* register with sysfs */
3122	rdev->dev.class = &regulator_class;
3123	rdev->dev.of_node = config->of_node;
3124	rdev->dev.parent = dev;
3125	dev_set_name(&rdev->dev, "regulator.%d",
3126		     atomic_inc_return(&regulator_no) - 1);
3127	ret = device_register(&rdev->dev);
3128	if (ret != 0) {
3129		put_device(&rdev->dev);
3130		goto clean;
3131	}
3132
3133	dev_set_drvdata(&rdev->dev, rdev);
3134
3135	/* set regulator constraints */
3136	if (init_data)
3137		constraints = &init_data->constraints;
3138
3139	ret = set_machine_constraints(rdev, constraints);
3140	if (ret < 0)
3141		goto scrub;
3142
3143	/* add attributes supported by this regulator */
3144	ret = add_regulator_attributes(rdev);
3145	if (ret < 0)
3146		goto scrub;
3147
3148	if (init_data && init_data->supply_regulator)
3149		supply = init_data->supply_regulator;
3150	else if (regulator_desc->supply_name)
3151		supply = regulator_desc->supply_name;
3152
3153	if (supply) {
3154		struct regulator_dev *r;
3155
3156		r = regulator_dev_lookup(dev, supply, &ret);
3157
3158		if (!r) {
3159			dev_err(dev, "Failed to find supply %s\n", supply);
3160			ret = -EPROBE_DEFER;
3161			goto scrub;
3162		}
3163
3164		ret = set_supply(rdev, r);
3165		if (ret < 0)
3166			goto scrub;
3167
3168		/* Enable supply if rail is enabled */
3169		if (_regulator_is_enabled(rdev)) {
3170			ret = regulator_enable(rdev->supply);
3171			if (ret < 0)
3172				goto scrub;
3173		}
3174	}
3175
3176	/* add consumers devices */
3177	if (init_data) {
3178		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3179			ret = set_consumer_device_supply(rdev,
3180				init_data->consumer_supplies[i].dev_name,
3181				init_data->consumer_supplies[i].supply);
3182			if (ret < 0) {
3183				dev_err(dev, "Failed to set supply %s\n",
3184					init_data->consumer_supplies[i].supply);
3185				goto unset_supplies;
3186			}
3187		}
3188	}
3189
3190	list_add(&rdev->list, &regulator_list);
3191
3192	rdev_init_debugfs(rdev);
3193out:
3194	mutex_unlock(&regulator_list_mutex);
3195	return rdev;
3196
3197unset_supplies:
3198	unset_regulator_supplies(rdev);
3199
3200scrub:
3201	if (rdev->supply)
3202		regulator_put(rdev->supply);
3203	kfree(rdev->constraints);
3204	device_unregister(&rdev->dev);
3205	/* device core frees rdev */
3206	rdev = ERR_PTR(ret);
3207	goto out;
3208
3209clean:
3210	kfree(rdev);
3211	rdev = ERR_PTR(ret);
3212	goto out;
3213}
3214EXPORT_SYMBOL_GPL(regulator_register);
3215
3216/**
3217 * regulator_unregister - unregister regulator
3218 * @rdev: regulator to unregister
3219 *
3220 * Called by regulator drivers to unregister a regulator.
3221 */
3222void regulator_unregister(struct regulator_dev *rdev)
3223{
3224	if (rdev == NULL)
3225		return;
3226
3227	if (rdev->supply)
3228		regulator_put(rdev->supply);
3229	mutex_lock(&regulator_list_mutex);
3230	debugfs_remove_recursive(rdev->debugfs);
3231	flush_work_sync(&rdev->disable_work.work);
3232	WARN_ON(rdev->open_count);
3233	unset_regulator_supplies(rdev);
3234	list_del(&rdev->list);
3235	kfree(rdev->constraints);
3236	device_unregister(&rdev->dev);
3237	mutex_unlock(&regulator_list_mutex);
3238}
3239EXPORT_SYMBOL_GPL(regulator_unregister);
3240
3241/**
3242 * regulator_suspend_prepare - prepare regulators for system wide suspend
3243 * @state: system suspend state
3244 *
3245 * Configure each regulator with it's suspend operating parameters for state.
3246 * This will usually be called by machine suspend code prior to supending.
3247 */
3248int regulator_suspend_prepare(suspend_state_t state)
3249{
3250	struct regulator_dev *rdev;
3251	int ret = 0;
3252
3253	/* ON is handled by regulator active state */
3254	if (state == PM_SUSPEND_ON)
3255		return -EINVAL;
3256
3257	mutex_lock(&regulator_list_mutex);
3258	list_for_each_entry(rdev, &regulator_list, list) {
3259
3260		mutex_lock(&rdev->mutex);
3261		ret = suspend_prepare(rdev, state);
3262		mutex_unlock(&rdev->mutex);
3263
3264		if (ret < 0) {
3265			rdev_err(rdev, "failed to prepare\n");
3266			goto out;
3267		}
3268	}
3269out:
3270	mutex_unlock(&regulator_list_mutex);
3271	return ret;
3272}
3273EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3274
3275/**
3276 * regulator_suspend_finish - resume regulators from system wide suspend
3277 *
3278 * Turn on regulators that might be turned off by regulator_suspend_prepare
3279 * and that should be turned on according to the regulators properties.
3280 */
3281int regulator_suspend_finish(void)
3282{
3283	struct regulator_dev *rdev;
3284	int ret = 0, error;
3285
3286	mutex_lock(&regulator_list_mutex);
3287	list_for_each_entry(rdev, &regulator_list, list) {
3288		struct regulator_ops *ops = rdev->desc->ops;
3289
3290		mutex_lock(&rdev->mutex);
3291		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3292				ops->enable) {
3293			error = ops->enable(rdev);
3294			if (error)
3295				ret = error;
3296		} else {
3297			if (!has_full_constraints)
3298				goto unlock;
3299			if (!ops->disable)
3300				goto unlock;
3301			if (!_regulator_is_enabled(rdev))
3302				goto unlock;
3303
3304			error = ops->disable(rdev);
3305			if (error)
3306				ret = error;
3307		}
3308unlock:
3309		mutex_unlock(&rdev->mutex);
3310	}
3311	mutex_unlock(&regulator_list_mutex);
3312	return ret;
3313}
3314EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3315
3316/**
3317 * regulator_has_full_constraints - the system has fully specified constraints
3318 *
3319 * Calling this function will cause the regulator API to disable all
3320 * regulators which have a zero use count and don't have an always_on
3321 * constraint in a late_initcall.
3322 *
3323 * The intention is that this will become the default behaviour in a
3324 * future kernel release so users are encouraged to use this facility
3325 * now.
3326 */
3327void regulator_has_full_constraints(void)
3328{
3329	has_full_constraints = 1;
3330}
3331EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3332
3333/**
3334 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3335 *
3336 * Calling this function will cause the regulator API to provide a
3337 * dummy regulator to consumers if no physical regulator is found,
3338 * allowing most consumers to proceed as though a regulator were
3339 * configured.  This allows systems such as those with software
3340 * controllable regulators for the CPU core only to be brought up more
3341 * readily.
3342 */
3343void regulator_use_dummy_regulator(void)
3344{
3345	board_wants_dummy_regulator = true;
3346}
3347EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3348
3349/**
3350 * rdev_get_drvdata - get rdev regulator driver data
3351 * @rdev: regulator
3352 *
3353 * Get rdev regulator driver private data. This call can be used in the
3354 * regulator driver context.
3355 */
3356void *rdev_get_drvdata(struct regulator_dev *rdev)
3357{
3358	return rdev->reg_data;
3359}
3360EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3361
3362/**
3363 * regulator_get_drvdata - get regulator driver data
3364 * @regulator: regulator
3365 *
3366 * Get regulator driver private data. This call can be used in the consumer
3367 * driver context when non API regulator specific functions need to be called.
3368 */
3369void *regulator_get_drvdata(struct regulator *regulator)
3370{
3371	return regulator->rdev->reg_data;
3372}
3373EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3374
3375/**
3376 * regulator_set_drvdata - set regulator driver data
3377 * @regulator: regulator
3378 * @data: data
3379 */
3380void regulator_set_drvdata(struct regulator *regulator, void *data)
3381{
3382	regulator->rdev->reg_data = data;
3383}
3384EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3385
3386/**
3387 * regulator_get_id - get regulator ID
3388 * @rdev: regulator
3389 */
3390int rdev_get_id(struct regulator_dev *rdev)
3391{
3392	return rdev->desc->id;
3393}
3394EXPORT_SYMBOL_GPL(rdev_get_id);
3395
3396struct device *rdev_get_dev(struct regulator_dev *rdev)
3397{
3398	return &rdev->dev;
3399}
3400EXPORT_SYMBOL_GPL(rdev_get_dev);
3401
3402void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3403{
3404	return reg_init_data->driver_data;
3405}
3406EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3407
3408#ifdef CONFIG_DEBUG_FS
3409static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3410				    size_t count, loff_t *ppos)
3411{
3412	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3413	ssize_t len, ret = 0;
3414	struct regulator_map *map;
3415
3416	if (!buf)
3417		return -ENOMEM;
3418
3419	list_for_each_entry(map, &regulator_map_list, list) {
3420		len = snprintf(buf + ret, PAGE_SIZE - ret,
3421			       "%s -> %s.%s\n",
3422			       rdev_get_name(map->regulator), map->dev_name,
3423			       map->supply);
3424		if (len >= 0)
3425			ret += len;
3426		if (ret > PAGE_SIZE) {
3427			ret = PAGE_SIZE;
3428			break;
3429		}
3430	}
3431
3432	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3433
3434	kfree(buf);
3435
3436	return ret;
3437}
3438#endif
3439
3440static const struct file_operations supply_map_fops = {
3441#ifdef CONFIG_DEBUG_FS
3442	.read = supply_map_read_file,
3443	.llseek = default_llseek,
3444#endif
3445};
3446
3447static int __init regulator_init(void)
3448{
3449	int ret;
3450
3451	ret = class_register(&regulator_class);
3452
3453	debugfs_root = debugfs_create_dir("regulator", NULL);
3454	if (!debugfs_root)
3455		pr_warn("regulator: Failed to create debugfs directory\n");
3456
3457	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3458			    &supply_map_fops);
3459
3460	regulator_dummy_init();
3461
3462	return ret;
3463}
3464
3465/* init early to allow our consumers to complete system booting */
3466core_initcall(regulator_init);
3467
3468static int __init regulator_init_complete(void)
3469{
3470	struct regulator_dev *rdev;
3471	struct regulator_ops *ops;
3472	struct regulation_constraints *c;
3473	int enabled, ret;
3474
3475	mutex_lock(&regulator_list_mutex);
3476
3477	/* If we have a full configuration then disable any regulators
3478	 * which are not in use or always_on.  This will become the
3479	 * default behaviour in the future.
3480	 */
3481	list_for_each_entry(rdev, &regulator_list, list) {
3482		ops = rdev->desc->ops;
3483		c = rdev->constraints;
3484
3485		if (!ops->disable || (c && c->always_on))
3486			continue;
3487
3488		mutex_lock(&rdev->mutex);
3489
3490		if (rdev->use_count)
3491			goto unlock;
3492
3493		/* If we can't read the status assume it's on. */
3494		if (ops->is_enabled)
3495			enabled = ops->is_enabled(rdev);
3496		else
3497			enabled = 1;
3498
3499		if (!enabled)
3500			goto unlock;
3501
3502		if (has_full_constraints) {
3503			/* We log since this may kill the system if it
3504			 * goes wrong. */
3505			rdev_info(rdev, "disabling\n");
3506			ret = ops->disable(rdev);
3507			if (ret != 0) {
3508				rdev_err(rdev, "couldn't disable: %d\n", ret);
3509			}
3510		} else {
3511			/* The intention is that in future we will
3512			 * assume that full constraints are provided
3513			 * so warn even if we aren't going to do
3514			 * anything here.
3515			 */
3516			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3517		}
3518
3519unlock:
3520		mutex_unlock(&rdev->mutex);
3521	}
3522
3523	mutex_unlock(&regulator_list_mutex);
3524
3525	return 0;
3526}
3527late_initcall(regulator_init_complete);
3528