core.c revision dd8004af2b0e903b2ee9fce305cb615245fa12ee
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV) {
203		dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
204			regulator->min_uV, regulator->max_uV);
205		return -EINVAL;
206	}
207
208	return 0;
209}
210
211/* current constraint check */
212static int regulator_check_current_limit(struct regulator_dev *rdev,
213					int *min_uA, int *max_uA)
214{
215	BUG_ON(*min_uA > *max_uA);
216
217	if (!rdev->constraints) {
218		rdev_err(rdev, "no constraints\n");
219		return -ENODEV;
220	}
221	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222		rdev_err(rdev, "operation not allowed\n");
223		return -EPERM;
224	}
225
226	if (*max_uA > rdev->constraints->max_uA)
227		*max_uA = rdev->constraints->max_uA;
228	if (*min_uA < rdev->constraints->min_uA)
229		*min_uA = rdev->constraints->min_uA;
230
231	if (*min_uA > *max_uA) {
232		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233			 *min_uA, *max_uA);
234		return -EINVAL;
235	}
236
237	return 0;
238}
239
240/* operating mode constraint check */
241static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242{
243	switch (*mode) {
244	case REGULATOR_MODE_FAST:
245	case REGULATOR_MODE_NORMAL:
246	case REGULATOR_MODE_IDLE:
247	case REGULATOR_MODE_STANDBY:
248		break;
249	default:
250		rdev_err(rdev, "invalid mode %x specified\n", *mode);
251		return -EINVAL;
252	}
253
254	if (!rdev->constraints) {
255		rdev_err(rdev, "no constraints\n");
256		return -ENODEV;
257	}
258	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259		rdev_err(rdev, "operation not allowed\n");
260		return -EPERM;
261	}
262
263	/* The modes are bitmasks, the most power hungry modes having
264	 * the lowest values. If the requested mode isn't supported
265	 * try higher modes. */
266	while (*mode) {
267		if (rdev->constraints->valid_modes_mask & *mode)
268			return 0;
269		*mode /= 2;
270	}
271
272	return -EINVAL;
273}
274
275/* dynamic regulator mode switching constraint check */
276static int regulator_check_drms(struct regulator_dev *rdev)
277{
278	if (!rdev->constraints) {
279		rdev_err(rdev, "no constraints\n");
280		return -ENODEV;
281	}
282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283		rdev_err(rdev, "operation not allowed\n");
284		return -EPERM;
285	}
286	return 0;
287}
288
289static ssize_t regulator_uV_show(struct device *dev,
290				struct device_attribute *attr, char *buf)
291{
292	struct regulator_dev *rdev = dev_get_drvdata(dev);
293	ssize_t ret;
294
295	mutex_lock(&rdev->mutex);
296	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297	mutex_unlock(&rdev->mutex);
298
299	return ret;
300}
301static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303static ssize_t regulator_uA_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309}
310static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312static ssize_t regulator_name_show(struct device *dev,
313			     struct device_attribute *attr, char *buf)
314{
315	struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317	return sprintf(buf, "%s\n", rdev_get_name(rdev));
318}
319
320static ssize_t regulator_print_opmode(char *buf, int mode)
321{
322	switch (mode) {
323	case REGULATOR_MODE_FAST:
324		return sprintf(buf, "fast\n");
325	case REGULATOR_MODE_NORMAL:
326		return sprintf(buf, "normal\n");
327	case REGULATOR_MODE_IDLE:
328		return sprintf(buf, "idle\n");
329	case REGULATOR_MODE_STANDBY:
330		return sprintf(buf, "standby\n");
331	}
332	return sprintf(buf, "unknown\n");
333}
334
335static ssize_t regulator_opmode_show(struct device *dev,
336				    struct device_attribute *attr, char *buf)
337{
338	struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341}
342static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344static ssize_t regulator_print_state(char *buf, int state)
345{
346	if (state > 0)
347		return sprintf(buf, "enabled\n");
348	else if (state == 0)
349		return sprintf(buf, "disabled\n");
350	else
351		return sprintf(buf, "unknown\n");
352}
353
354static ssize_t regulator_state_show(struct device *dev,
355				   struct device_attribute *attr, char *buf)
356{
357	struct regulator_dev *rdev = dev_get_drvdata(dev);
358	ssize_t ret;
359
360	mutex_lock(&rdev->mutex);
361	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362	mutex_unlock(&rdev->mutex);
363
364	return ret;
365}
366static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368static ssize_t regulator_status_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	int status;
373	char *label;
374
375	status = rdev->desc->ops->get_status(rdev);
376	if (status < 0)
377		return status;
378
379	switch (status) {
380	case REGULATOR_STATUS_OFF:
381		label = "off";
382		break;
383	case REGULATOR_STATUS_ON:
384		label = "on";
385		break;
386	case REGULATOR_STATUS_ERROR:
387		label = "error";
388		break;
389	case REGULATOR_STATUS_FAST:
390		label = "fast";
391		break;
392	case REGULATOR_STATUS_NORMAL:
393		label = "normal";
394		break;
395	case REGULATOR_STATUS_IDLE:
396		label = "idle";
397		break;
398	case REGULATOR_STATUS_STANDBY:
399		label = "standby";
400		break;
401	case REGULATOR_STATUS_BYPASS:
402		label = "bypass";
403		break;
404	case REGULATOR_STATUS_UNDEFINED:
405		label = "undefined";
406		break;
407	default:
408		return -ERANGE;
409	}
410
411	return sprintf(buf, "%s\n", label);
412}
413static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415static ssize_t regulator_min_uA_show(struct device *dev,
416				    struct device_attribute *attr, char *buf)
417{
418	struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420	if (!rdev->constraints)
421		return sprintf(buf, "constraint not defined\n");
422
423	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424}
425static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427static ssize_t regulator_max_uA_show(struct device *dev,
428				    struct device_attribute *attr, char *buf)
429{
430	struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432	if (!rdev->constraints)
433		return sprintf(buf, "constraint not defined\n");
434
435	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436}
437static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439static ssize_t regulator_min_uV_show(struct device *dev,
440				    struct device_attribute *attr, char *buf)
441{
442	struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444	if (!rdev->constraints)
445		return sprintf(buf, "constraint not defined\n");
446
447	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448}
449static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451static ssize_t regulator_max_uV_show(struct device *dev,
452				    struct device_attribute *attr, char *buf)
453{
454	struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456	if (!rdev->constraints)
457		return sprintf(buf, "constraint not defined\n");
458
459	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460}
461static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463static ssize_t regulator_total_uA_show(struct device *dev,
464				      struct device_attribute *attr, char *buf)
465{
466	struct regulator_dev *rdev = dev_get_drvdata(dev);
467	struct regulator *regulator;
468	int uA = 0;
469
470	mutex_lock(&rdev->mutex);
471	list_for_each_entry(regulator, &rdev->consumer_list, list)
472		uA += regulator->uA_load;
473	mutex_unlock(&rdev->mutex);
474	return sprintf(buf, "%d\n", uA);
475}
476static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478static ssize_t regulator_num_users_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	return sprintf(buf, "%d\n", rdev->use_count);
483}
484
485static ssize_t regulator_type_show(struct device *dev,
486				  struct device_attribute *attr, char *buf)
487{
488	struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490	switch (rdev->desc->type) {
491	case REGULATOR_VOLTAGE:
492		return sprintf(buf, "voltage\n");
493	case REGULATOR_CURRENT:
494		return sprintf(buf, "current\n");
495	}
496	return sprintf(buf, "unknown\n");
497}
498
499static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500				struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505}
506static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507		regulator_suspend_mem_uV_show, NULL);
508
509static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515}
516static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517		regulator_suspend_disk_uV_show, NULL);
518
519static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525}
526static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527		regulator_suspend_standby_uV_show, NULL);
528
529static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return regulator_print_opmode(buf,
535		rdev->constraints->state_mem.mode);
536}
537static DEVICE_ATTR(suspend_mem_mode, 0444,
538		regulator_suspend_mem_mode_show, NULL);
539
540static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541				struct device_attribute *attr, char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545	return regulator_print_opmode(buf,
546		rdev->constraints->state_disk.mode);
547}
548static DEVICE_ATTR(suspend_disk_mode, 0444,
549		regulator_suspend_disk_mode_show, NULL);
550
551static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552				struct device_attribute *attr, char *buf)
553{
554	struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556	return regulator_print_opmode(buf,
557		rdev->constraints->state_standby.mode);
558}
559static DEVICE_ATTR(suspend_standby_mode, 0444,
560		regulator_suspend_standby_mode_show, NULL);
561
562static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563				   struct device_attribute *attr, char *buf)
564{
565	struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567	return regulator_print_state(buf,
568			rdev->constraints->state_mem.enabled);
569}
570static DEVICE_ATTR(suspend_mem_state, 0444,
571		regulator_suspend_mem_state_show, NULL);
572
573static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574				   struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return regulator_print_state(buf,
579			rdev->constraints->state_disk.enabled);
580}
581static DEVICE_ATTR(suspend_disk_state, 0444,
582		regulator_suspend_disk_state_show, NULL);
583
584static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585				   struct device_attribute *attr, char *buf)
586{
587	struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589	return regulator_print_state(buf,
590			rdev->constraints->state_standby.enabled);
591}
592static DEVICE_ATTR(suspend_standby_state, 0444,
593		regulator_suspend_standby_state_show, NULL);
594
595static ssize_t regulator_bypass_show(struct device *dev,
596				     struct device_attribute *attr, char *buf)
597{
598	struct regulator_dev *rdev = dev_get_drvdata(dev);
599	const char *report;
600	bool bypass;
601	int ret;
602
603	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605	if (ret != 0)
606		report = "unknown";
607	else if (bypass)
608		report = "enabled";
609	else
610		report = "disabled";
611
612	return sprintf(buf, "%s\n", report);
613}
614static DEVICE_ATTR(bypass, 0444,
615		   regulator_bypass_show, NULL);
616
617/*
618 * These are the only attributes are present for all regulators.
619 * Other attributes are a function of regulator functionality.
620 */
621static struct device_attribute regulator_dev_attrs[] = {
622	__ATTR(name, 0444, regulator_name_show, NULL),
623	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
624	__ATTR(type, 0444, regulator_type_show, NULL),
625	__ATTR_NULL,
626};
627
628static void regulator_dev_release(struct device *dev)
629{
630	struct regulator_dev *rdev = dev_get_drvdata(dev);
631	kfree(rdev);
632}
633
634static struct class regulator_class = {
635	.name = "regulator",
636	.dev_release = regulator_dev_release,
637	.dev_attrs = regulator_dev_attrs,
638};
639
640/* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
642static void drms_uA_update(struct regulator_dev *rdev)
643{
644	struct regulator *sibling;
645	int current_uA = 0, output_uV, input_uV, err;
646	unsigned int mode;
647
648	err = regulator_check_drms(rdev);
649	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650	    (!rdev->desc->ops->get_voltage &&
651	     !rdev->desc->ops->get_voltage_sel) ||
652	    !rdev->desc->ops->set_mode)
653		return;
654
655	/* get output voltage */
656	output_uV = _regulator_get_voltage(rdev);
657	if (output_uV <= 0)
658		return;
659
660	/* get input voltage */
661	input_uV = 0;
662	if (rdev->supply)
663		input_uV = regulator_get_voltage(rdev->supply);
664	if (input_uV <= 0)
665		input_uV = rdev->constraints->input_uV;
666	if (input_uV <= 0)
667		return;
668
669	/* calc total requested load */
670	list_for_each_entry(sibling, &rdev->consumer_list, list)
671		current_uA += sibling->uA_load;
672
673	/* now get the optimum mode for our new total regulator load */
674	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675						  output_uV, current_uA);
676
677	/* check the new mode is allowed */
678	err = regulator_mode_constrain(rdev, &mode);
679	if (err == 0)
680		rdev->desc->ops->set_mode(rdev, mode);
681}
682
683static int suspend_set_state(struct regulator_dev *rdev,
684	struct regulator_state *rstate)
685{
686	int ret = 0;
687
688	/* If we have no suspend mode configration don't set anything;
689	 * only warn if the driver implements set_suspend_voltage or
690	 * set_suspend_mode callback.
691	 */
692	if (!rstate->enabled && !rstate->disabled) {
693		if (rdev->desc->ops->set_suspend_voltage ||
694		    rdev->desc->ops->set_suspend_mode)
695			rdev_warn(rdev, "No configuration\n");
696		return 0;
697	}
698
699	if (rstate->enabled && rstate->disabled) {
700		rdev_err(rdev, "invalid configuration\n");
701		return -EINVAL;
702	}
703
704	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705		ret = rdev->desc->ops->set_suspend_enable(rdev);
706	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707		ret = rdev->desc->ops->set_suspend_disable(rdev);
708	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709		ret = 0;
710
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	if (!count)
810		sprintf(buf, "no parameters");
811
812	rdev_info(rdev, "%s\n", buf);
813
814	if ((constraints->min_uV != constraints->max_uV) &&
815	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816		rdev_warn(rdev,
817			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818}
819
820static int machine_constraints_voltage(struct regulator_dev *rdev,
821	struct regulation_constraints *constraints)
822{
823	struct regulator_ops *ops = rdev->desc->ops;
824	int ret;
825
826	/* do we need to apply the constraint voltage */
827	if (rdev->constraints->apply_uV &&
828	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
829		ret = _regulator_do_set_voltage(rdev,
830						rdev->constraints->min_uV,
831						rdev->constraints->max_uV);
832		if (ret < 0) {
833			rdev_err(rdev, "failed to apply %duV constraint\n",
834				 rdev->constraints->min_uV);
835			return ret;
836		}
837	}
838
839	/* constrain machine-level voltage specs to fit
840	 * the actual range supported by this regulator.
841	 */
842	if (ops->list_voltage && rdev->desc->n_voltages) {
843		int	count = rdev->desc->n_voltages;
844		int	i;
845		int	min_uV = INT_MAX;
846		int	max_uV = INT_MIN;
847		int	cmin = constraints->min_uV;
848		int	cmax = constraints->max_uV;
849
850		/* it's safe to autoconfigure fixed-voltage supplies
851		   and the constraints are used by list_voltage. */
852		if (count == 1 && !cmin) {
853			cmin = 1;
854			cmax = INT_MAX;
855			constraints->min_uV = cmin;
856			constraints->max_uV = cmax;
857		}
858
859		/* voltage constraints are optional */
860		if ((cmin == 0) && (cmax == 0))
861			return 0;
862
863		/* else require explicit machine-level constraints */
864		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865			rdev_err(rdev, "invalid voltage constraints\n");
866			return -EINVAL;
867		}
868
869		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870		for (i = 0; i < count; i++) {
871			int	value;
872
873			value = ops->list_voltage(rdev, i);
874			if (value <= 0)
875				continue;
876
877			/* maybe adjust [min_uV..max_uV] */
878			if (value >= cmin && value < min_uV)
879				min_uV = value;
880			if (value <= cmax && value > max_uV)
881				max_uV = value;
882		}
883
884		/* final: [min_uV..max_uV] valid iff constraints valid */
885		if (max_uV < min_uV) {
886			rdev_err(rdev, "unsupportable voltage constraints\n");
887			return -EINVAL;
888		}
889
890		/* use regulator's subset of machine constraints */
891		if (constraints->min_uV < min_uV) {
892			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
893				 constraints->min_uV, min_uV);
894			constraints->min_uV = min_uV;
895		}
896		if (constraints->max_uV > max_uV) {
897			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
898				 constraints->max_uV, max_uV);
899			constraints->max_uV = max_uV;
900		}
901	}
902
903	return 0;
904}
905
906/**
907 * set_machine_constraints - sets regulator constraints
908 * @rdev: regulator source
909 * @constraints: constraints to apply
910 *
911 * Allows platform initialisation code to define and constrain
912 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
913 * Constraints *must* be set by platform code in order for some
914 * regulator operations to proceed i.e. set_voltage, set_current_limit,
915 * set_mode.
916 */
917static int set_machine_constraints(struct regulator_dev *rdev,
918	const struct regulation_constraints *constraints)
919{
920	int ret = 0;
921	struct regulator_ops *ops = rdev->desc->ops;
922
923	if (constraints)
924		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
925					    GFP_KERNEL);
926	else
927		rdev->constraints = kzalloc(sizeof(*constraints),
928					    GFP_KERNEL);
929	if (!rdev->constraints)
930		return -ENOMEM;
931
932	ret = machine_constraints_voltage(rdev, rdev->constraints);
933	if (ret != 0)
934		goto out;
935
936	/* do we need to setup our suspend state */
937	if (rdev->constraints->initial_state) {
938		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
939		if (ret < 0) {
940			rdev_err(rdev, "failed to set suspend state\n");
941			goto out;
942		}
943	}
944
945	if (rdev->constraints->initial_mode) {
946		if (!ops->set_mode) {
947			rdev_err(rdev, "no set_mode operation\n");
948			ret = -EINVAL;
949			goto out;
950		}
951
952		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
953		if (ret < 0) {
954			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
955			goto out;
956		}
957	}
958
959	/* If the constraints say the regulator should be on at this point
960	 * and we have control then make sure it is enabled.
961	 */
962	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
963	    ops->enable) {
964		ret = ops->enable(rdev);
965		if (ret < 0) {
966			rdev_err(rdev, "failed to enable\n");
967			goto out;
968		}
969	}
970
971	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
972		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
973		if (ret < 0) {
974			rdev_err(rdev, "failed to set ramp_delay\n");
975			goto out;
976		}
977	}
978
979	print_constraints(rdev);
980	return 0;
981out:
982	kfree(rdev->constraints);
983	rdev->constraints = NULL;
984	return ret;
985}
986
987/**
988 * set_supply - set regulator supply regulator
989 * @rdev: regulator name
990 * @supply_rdev: supply regulator name
991 *
992 * Called by platform initialisation code to set the supply regulator for this
993 * regulator. This ensures that a regulators supply will also be enabled by the
994 * core if it's child is enabled.
995 */
996static int set_supply(struct regulator_dev *rdev,
997		      struct regulator_dev *supply_rdev)
998{
999	int err;
1000
1001	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1002
1003	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1004	if (rdev->supply == NULL) {
1005		err = -ENOMEM;
1006		return err;
1007	}
1008	supply_rdev->open_count++;
1009
1010	return 0;
1011}
1012
1013/**
1014 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1015 * @rdev:         regulator source
1016 * @consumer_dev_name: dev_name() string for device supply applies to
1017 * @supply:       symbolic name for supply
1018 *
1019 * Allows platform initialisation code to map physical regulator
1020 * sources to symbolic names for supplies for use by devices.  Devices
1021 * should use these symbolic names to request regulators, avoiding the
1022 * need to provide board-specific regulator names as platform data.
1023 */
1024static int set_consumer_device_supply(struct regulator_dev *rdev,
1025				      const char *consumer_dev_name,
1026				      const char *supply)
1027{
1028	struct regulator_map *node;
1029	int has_dev;
1030
1031	if (supply == NULL)
1032		return -EINVAL;
1033
1034	if (consumer_dev_name != NULL)
1035		has_dev = 1;
1036	else
1037		has_dev = 0;
1038
1039	list_for_each_entry(node, &regulator_map_list, list) {
1040		if (node->dev_name && consumer_dev_name) {
1041			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1042				continue;
1043		} else if (node->dev_name || consumer_dev_name) {
1044			continue;
1045		}
1046
1047		if (strcmp(node->supply, supply) != 0)
1048			continue;
1049
1050		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1051			 consumer_dev_name,
1052			 dev_name(&node->regulator->dev),
1053			 node->regulator->desc->name,
1054			 supply,
1055			 dev_name(&rdev->dev), rdev_get_name(rdev));
1056		return -EBUSY;
1057	}
1058
1059	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1060	if (node == NULL)
1061		return -ENOMEM;
1062
1063	node->regulator = rdev;
1064	node->supply = supply;
1065
1066	if (has_dev) {
1067		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1068		if (node->dev_name == NULL) {
1069			kfree(node);
1070			return -ENOMEM;
1071		}
1072	}
1073
1074	list_add(&node->list, &regulator_map_list);
1075	return 0;
1076}
1077
1078static void unset_regulator_supplies(struct regulator_dev *rdev)
1079{
1080	struct regulator_map *node, *n;
1081
1082	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1083		if (rdev == node->regulator) {
1084			list_del(&node->list);
1085			kfree(node->dev_name);
1086			kfree(node);
1087		}
1088	}
1089}
1090
1091#define REG_STR_SIZE	64
1092
1093static struct regulator *create_regulator(struct regulator_dev *rdev,
1094					  struct device *dev,
1095					  const char *supply_name)
1096{
1097	struct regulator *regulator;
1098	char buf[REG_STR_SIZE];
1099	int err, size;
1100
1101	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1102	if (regulator == NULL)
1103		return NULL;
1104
1105	mutex_lock(&rdev->mutex);
1106	regulator->rdev = rdev;
1107	list_add(&regulator->list, &rdev->consumer_list);
1108
1109	if (dev) {
1110		regulator->dev = dev;
1111
1112		/* Add a link to the device sysfs entry */
1113		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1114				 dev->kobj.name, supply_name);
1115		if (size >= REG_STR_SIZE)
1116			goto overflow_err;
1117
1118		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1119		if (regulator->supply_name == NULL)
1120			goto overflow_err;
1121
1122		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1123					buf);
1124		if (err) {
1125			rdev_warn(rdev, "could not add device link %s err %d\n",
1126				  dev->kobj.name, err);
1127			/* non-fatal */
1128		}
1129	} else {
1130		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1131		if (regulator->supply_name == NULL)
1132			goto overflow_err;
1133	}
1134
1135	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1136						rdev->debugfs);
1137	if (!regulator->debugfs) {
1138		rdev_warn(rdev, "Failed to create debugfs directory\n");
1139	} else {
1140		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1141				   &regulator->uA_load);
1142		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1143				   &regulator->min_uV);
1144		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1145				   &regulator->max_uV);
1146	}
1147
1148	/*
1149	 * Check now if the regulator is an always on regulator - if
1150	 * it is then we don't need to do nearly so much work for
1151	 * enable/disable calls.
1152	 */
1153	if (!_regulator_can_change_status(rdev) &&
1154	    _regulator_is_enabled(rdev))
1155		regulator->always_on = true;
1156
1157	mutex_unlock(&rdev->mutex);
1158	return regulator;
1159overflow_err:
1160	list_del(&regulator->list);
1161	kfree(regulator);
1162	mutex_unlock(&rdev->mutex);
1163	return NULL;
1164}
1165
1166static int _regulator_get_enable_time(struct regulator_dev *rdev)
1167{
1168	if (!rdev->desc->ops->enable_time)
1169		return rdev->desc->enable_time;
1170	return rdev->desc->ops->enable_time(rdev);
1171}
1172
1173static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1174						  const char *supply,
1175						  int *ret)
1176{
1177	struct regulator_dev *r;
1178	struct device_node *node;
1179	struct regulator_map *map;
1180	const char *devname = NULL;
1181
1182	/* first do a dt based lookup */
1183	if (dev && dev->of_node) {
1184		node = of_get_regulator(dev, supply);
1185		if (node) {
1186			list_for_each_entry(r, &regulator_list, list)
1187				if (r->dev.parent &&
1188					node == r->dev.of_node)
1189					return r;
1190		} else {
1191			/*
1192			 * If we couldn't even get the node then it's
1193			 * not just that the device didn't register
1194			 * yet, there's no node and we'll never
1195			 * succeed.
1196			 */
1197			*ret = -ENODEV;
1198		}
1199	}
1200
1201	/* if not found, try doing it non-dt way */
1202	if (dev)
1203		devname = dev_name(dev);
1204
1205	list_for_each_entry(r, &regulator_list, list)
1206		if (strcmp(rdev_get_name(r), supply) == 0)
1207			return r;
1208
1209	list_for_each_entry(map, &regulator_map_list, list) {
1210		/* If the mapping has a device set up it must match */
1211		if (map->dev_name &&
1212		    (!devname || strcmp(map->dev_name, devname)))
1213			continue;
1214
1215		if (strcmp(map->supply, supply) == 0)
1216			return map->regulator;
1217	}
1218
1219
1220	return NULL;
1221}
1222
1223/* Internal regulator request function */
1224static struct regulator *_regulator_get(struct device *dev, const char *id,
1225					int exclusive)
1226{
1227	struct regulator_dev *rdev;
1228	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1229	const char *devname = NULL;
1230	int ret;
1231
1232	if (id == NULL) {
1233		pr_err("get() with no identifier\n");
1234		return regulator;
1235	}
1236
1237	if (dev)
1238		devname = dev_name(dev);
1239
1240	mutex_lock(&regulator_list_mutex);
1241
1242	rdev = regulator_dev_lookup(dev, id, &ret);
1243	if (rdev)
1244		goto found;
1245
1246	if (board_wants_dummy_regulator) {
1247		rdev = dummy_regulator_rdev;
1248		goto found;
1249	}
1250
1251#ifdef CONFIG_REGULATOR_DUMMY
1252	if (!devname)
1253		devname = "deviceless";
1254
1255	/* If the board didn't flag that it was fully constrained then
1256	 * substitute in a dummy regulator so consumers can continue.
1257	 */
1258	if (!has_full_constraints) {
1259		pr_warn("%s supply %s not found, using dummy regulator\n",
1260			devname, id);
1261		rdev = dummy_regulator_rdev;
1262		goto found;
1263	}
1264#endif
1265
1266	mutex_unlock(&regulator_list_mutex);
1267	return regulator;
1268
1269found:
1270	if (rdev->exclusive) {
1271		regulator = ERR_PTR(-EPERM);
1272		goto out;
1273	}
1274
1275	if (exclusive && rdev->open_count) {
1276		regulator = ERR_PTR(-EBUSY);
1277		goto out;
1278	}
1279
1280	if (!try_module_get(rdev->owner))
1281		goto out;
1282
1283	regulator = create_regulator(rdev, dev, id);
1284	if (regulator == NULL) {
1285		regulator = ERR_PTR(-ENOMEM);
1286		module_put(rdev->owner);
1287		goto out;
1288	}
1289
1290	rdev->open_count++;
1291	if (exclusive) {
1292		rdev->exclusive = 1;
1293
1294		ret = _regulator_is_enabled(rdev);
1295		if (ret > 0)
1296			rdev->use_count = 1;
1297		else
1298			rdev->use_count = 0;
1299	}
1300
1301out:
1302	mutex_unlock(&regulator_list_mutex);
1303
1304	return regulator;
1305}
1306
1307/**
1308 * regulator_get - lookup and obtain a reference to a regulator.
1309 * @dev: device for regulator "consumer"
1310 * @id: Supply name or regulator ID.
1311 *
1312 * Returns a struct regulator corresponding to the regulator producer,
1313 * or IS_ERR() condition containing errno.
1314 *
1315 * Use of supply names configured via regulator_set_device_supply() is
1316 * strongly encouraged.  It is recommended that the supply name used
1317 * should match the name used for the supply and/or the relevant
1318 * device pins in the datasheet.
1319 */
1320struct regulator *regulator_get(struct device *dev, const char *id)
1321{
1322	return _regulator_get(dev, id, 0);
1323}
1324EXPORT_SYMBOL_GPL(regulator_get);
1325
1326static void devm_regulator_release(struct device *dev, void *res)
1327{
1328	regulator_put(*(struct regulator **)res);
1329}
1330
1331/**
1332 * devm_regulator_get - Resource managed regulator_get()
1333 * @dev: device for regulator "consumer"
1334 * @id: Supply name or regulator ID.
1335 *
1336 * Managed regulator_get(). Regulators returned from this function are
1337 * automatically regulator_put() on driver detach. See regulator_get() for more
1338 * information.
1339 */
1340struct regulator *devm_regulator_get(struct device *dev, const char *id)
1341{
1342	struct regulator **ptr, *regulator;
1343
1344	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1345	if (!ptr)
1346		return ERR_PTR(-ENOMEM);
1347
1348	regulator = regulator_get(dev, id);
1349	if (!IS_ERR(regulator)) {
1350		*ptr = regulator;
1351		devres_add(dev, ptr);
1352	} else {
1353		devres_free(ptr);
1354	}
1355
1356	return regulator;
1357}
1358EXPORT_SYMBOL_GPL(devm_regulator_get);
1359
1360/**
1361 * regulator_get_exclusive - obtain exclusive access to a regulator.
1362 * @dev: device for regulator "consumer"
1363 * @id: Supply name or regulator ID.
1364 *
1365 * Returns a struct regulator corresponding to the regulator producer,
1366 * or IS_ERR() condition containing errno.  Other consumers will be
1367 * unable to obtain this reference is held and the use count for the
1368 * regulator will be initialised to reflect the current state of the
1369 * regulator.
1370 *
1371 * This is intended for use by consumers which cannot tolerate shared
1372 * use of the regulator such as those which need to force the
1373 * regulator off for correct operation of the hardware they are
1374 * controlling.
1375 *
1376 * Use of supply names configured via regulator_set_device_supply() is
1377 * strongly encouraged.  It is recommended that the supply name used
1378 * should match the name used for the supply and/or the relevant
1379 * device pins in the datasheet.
1380 */
1381struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1382{
1383	return _regulator_get(dev, id, 1);
1384}
1385EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1386
1387/* Locks held by regulator_put() */
1388static void _regulator_put(struct regulator *regulator)
1389{
1390	struct regulator_dev *rdev;
1391
1392	if (regulator == NULL || IS_ERR(regulator))
1393		return;
1394
1395	rdev = regulator->rdev;
1396
1397	debugfs_remove_recursive(regulator->debugfs);
1398
1399	/* remove any sysfs entries */
1400	if (regulator->dev)
1401		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1402	kfree(regulator->supply_name);
1403	list_del(&regulator->list);
1404	kfree(regulator);
1405
1406	rdev->open_count--;
1407	rdev->exclusive = 0;
1408
1409	module_put(rdev->owner);
1410}
1411
1412/**
1413 * regulator_put - "free" the regulator source
1414 * @regulator: regulator source
1415 *
1416 * Note: drivers must ensure that all regulator_enable calls made on this
1417 * regulator source are balanced by regulator_disable calls prior to calling
1418 * this function.
1419 */
1420void regulator_put(struct regulator *regulator)
1421{
1422	mutex_lock(&regulator_list_mutex);
1423	_regulator_put(regulator);
1424	mutex_unlock(&regulator_list_mutex);
1425}
1426EXPORT_SYMBOL_GPL(regulator_put);
1427
1428static int devm_regulator_match(struct device *dev, void *res, void *data)
1429{
1430	struct regulator **r = res;
1431	if (!r || !*r) {
1432		WARN_ON(!r || !*r);
1433		return 0;
1434	}
1435	return *r == data;
1436}
1437
1438/**
1439 * devm_regulator_put - Resource managed regulator_put()
1440 * @regulator: regulator to free
1441 *
1442 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1443 * this function will not need to be called and the resource management
1444 * code will ensure that the resource is freed.
1445 */
1446void devm_regulator_put(struct regulator *regulator)
1447{
1448	int rc;
1449
1450	rc = devres_release(regulator->dev, devm_regulator_release,
1451			    devm_regulator_match, regulator);
1452	if (rc != 0)
1453		WARN_ON(rc);
1454}
1455EXPORT_SYMBOL_GPL(devm_regulator_put);
1456
1457static int _regulator_do_enable(struct regulator_dev *rdev)
1458{
1459	int ret, delay;
1460
1461	/* Query before enabling in case configuration dependent.  */
1462	ret = _regulator_get_enable_time(rdev);
1463	if (ret >= 0) {
1464		delay = ret;
1465	} else {
1466		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1467		delay = 0;
1468	}
1469
1470	trace_regulator_enable(rdev_get_name(rdev));
1471
1472	if (rdev->ena_gpio) {
1473		gpio_set_value_cansleep(rdev->ena_gpio,
1474					!rdev->ena_gpio_invert);
1475		rdev->ena_gpio_state = 1;
1476	} else if (rdev->desc->ops->enable) {
1477		ret = rdev->desc->ops->enable(rdev);
1478		if (ret < 0)
1479			return ret;
1480	} else {
1481		return -EINVAL;
1482	}
1483
1484	/* Allow the regulator to ramp; it would be useful to extend
1485	 * this for bulk operations so that the regulators can ramp
1486	 * together.  */
1487	trace_regulator_enable_delay(rdev_get_name(rdev));
1488
1489	if (delay >= 1000) {
1490		mdelay(delay / 1000);
1491		udelay(delay % 1000);
1492	} else if (delay) {
1493		udelay(delay);
1494	}
1495
1496	trace_regulator_enable_complete(rdev_get_name(rdev));
1497
1498	return 0;
1499}
1500
1501/* locks held by regulator_enable() */
1502static int _regulator_enable(struct regulator_dev *rdev)
1503{
1504	int ret;
1505
1506	/* check voltage and requested load before enabling */
1507	if (rdev->constraints &&
1508	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1509		drms_uA_update(rdev);
1510
1511	if (rdev->use_count == 0) {
1512		/* The regulator may on if it's not switchable or left on */
1513		ret = _regulator_is_enabled(rdev);
1514		if (ret == -EINVAL || ret == 0) {
1515			if (!_regulator_can_change_status(rdev))
1516				return -EPERM;
1517
1518			ret = _regulator_do_enable(rdev);
1519			if (ret < 0)
1520				return ret;
1521
1522		} else if (ret < 0) {
1523			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524			return ret;
1525		}
1526		/* Fallthrough on positive return values - already enabled */
1527	}
1528
1529	rdev->use_count++;
1530
1531	return 0;
1532}
1533
1534/**
1535 * regulator_enable - enable regulator output
1536 * @regulator: regulator source
1537 *
1538 * Request that the regulator be enabled with the regulator output at
1539 * the predefined voltage or current value.  Calls to regulator_enable()
1540 * must be balanced with calls to regulator_disable().
1541 *
1542 * NOTE: the output value can be set by other drivers, boot loader or may be
1543 * hardwired in the regulator.
1544 */
1545int regulator_enable(struct regulator *regulator)
1546{
1547	struct regulator_dev *rdev = regulator->rdev;
1548	int ret = 0;
1549
1550	if (regulator->always_on)
1551		return 0;
1552
1553	if (rdev->supply) {
1554		ret = regulator_enable(rdev->supply);
1555		if (ret != 0)
1556			return ret;
1557	}
1558
1559	mutex_lock(&rdev->mutex);
1560	ret = _regulator_enable(rdev);
1561	mutex_unlock(&rdev->mutex);
1562
1563	if (ret != 0 && rdev->supply)
1564		regulator_disable(rdev->supply);
1565
1566	return ret;
1567}
1568EXPORT_SYMBOL_GPL(regulator_enable);
1569
1570static int _regulator_do_disable(struct regulator_dev *rdev)
1571{
1572	int ret;
1573
1574	trace_regulator_disable(rdev_get_name(rdev));
1575
1576	if (rdev->ena_gpio) {
1577		gpio_set_value_cansleep(rdev->ena_gpio,
1578					rdev->ena_gpio_invert);
1579		rdev->ena_gpio_state = 0;
1580
1581	} else if (rdev->desc->ops->disable) {
1582		ret = rdev->desc->ops->disable(rdev);
1583		if (ret != 0)
1584			return ret;
1585	}
1586
1587	trace_regulator_disable_complete(rdev_get_name(rdev));
1588
1589	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1590			     NULL);
1591	return 0;
1592}
1593
1594/* locks held by regulator_disable() */
1595static int _regulator_disable(struct regulator_dev *rdev)
1596{
1597	int ret = 0;
1598
1599	if (WARN(rdev->use_count <= 0,
1600		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1601		return -EIO;
1602
1603	/* are we the last user and permitted to disable ? */
1604	if (rdev->use_count == 1 &&
1605	    (rdev->constraints && !rdev->constraints->always_on)) {
1606
1607		/* we are last user */
1608		if (_regulator_can_change_status(rdev)) {
1609			ret = _regulator_do_disable(rdev);
1610			if (ret < 0) {
1611				rdev_err(rdev, "failed to disable\n");
1612				return ret;
1613			}
1614		}
1615
1616		rdev->use_count = 0;
1617	} else if (rdev->use_count > 1) {
1618
1619		if (rdev->constraints &&
1620			(rdev->constraints->valid_ops_mask &
1621			REGULATOR_CHANGE_DRMS))
1622			drms_uA_update(rdev);
1623
1624		rdev->use_count--;
1625	}
1626
1627	return ret;
1628}
1629
1630/**
1631 * regulator_disable - disable regulator output
1632 * @regulator: regulator source
1633 *
1634 * Disable the regulator output voltage or current.  Calls to
1635 * regulator_enable() must be balanced with calls to
1636 * regulator_disable().
1637 *
1638 * NOTE: this will only disable the regulator output if no other consumer
1639 * devices have it enabled, the regulator device supports disabling and
1640 * machine constraints permit this operation.
1641 */
1642int regulator_disable(struct regulator *regulator)
1643{
1644	struct regulator_dev *rdev = regulator->rdev;
1645	int ret = 0;
1646
1647	if (regulator->always_on)
1648		return 0;
1649
1650	mutex_lock(&rdev->mutex);
1651	ret = _regulator_disable(rdev);
1652	mutex_unlock(&rdev->mutex);
1653
1654	if (ret == 0 && rdev->supply)
1655		regulator_disable(rdev->supply);
1656
1657	return ret;
1658}
1659EXPORT_SYMBOL_GPL(regulator_disable);
1660
1661/* locks held by regulator_force_disable() */
1662static int _regulator_force_disable(struct regulator_dev *rdev)
1663{
1664	int ret = 0;
1665
1666	/* force disable */
1667	if (rdev->desc->ops->disable) {
1668		/* ah well, who wants to live forever... */
1669		ret = rdev->desc->ops->disable(rdev);
1670		if (ret < 0) {
1671			rdev_err(rdev, "failed to force disable\n");
1672			return ret;
1673		}
1674		/* notify other consumers that power has been forced off */
1675		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1676			REGULATOR_EVENT_DISABLE, NULL);
1677	}
1678
1679	return ret;
1680}
1681
1682/**
1683 * regulator_force_disable - force disable regulator output
1684 * @regulator: regulator source
1685 *
1686 * Forcibly disable the regulator output voltage or current.
1687 * NOTE: this *will* disable the regulator output even if other consumer
1688 * devices have it enabled. This should be used for situations when device
1689 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1690 */
1691int regulator_force_disable(struct regulator *regulator)
1692{
1693	struct regulator_dev *rdev = regulator->rdev;
1694	int ret;
1695
1696	mutex_lock(&rdev->mutex);
1697	regulator->uA_load = 0;
1698	ret = _regulator_force_disable(regulator->rdev);
1699	mutex_unlock(&rdev->mutex);
1700
1701	if (rdev->supply)
1702		while (rdev->open_count--)
1703			regulator_disable(rdev->supply);
1704
1705	return ret;
1706}
1707EXPORT_SYMBOL_GPL(regulator_force_disable);
1708
1709static void regulator_disable_work(struct work_struct *work)
1710{
1711	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1712						  disable_work.work);
1713	int count, i, ret;
1714
1715	mutex_lock(&rdev->mutex);
1716
1717	BUG_ON(!rdev->deferred_disables);
1718
1719	count = rdev->deferred_disables;
1720	rdev->deferred_disables = 0;
1721
1722	for (i = 0; i < count; i++) {
1723		ret = _regulator_disable(rdev);
1724		if (ret != 0)
1725			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1726	}
1727
1728	mutex_unlock(&rdev->mutex);
1729
1730	if (rdev->supply) {
1731		for (i = 0; i < count; i++) {
1732			ret = regulator_disable(rdev->supply);
1733			if (ret != 0) {
1734				rdev_err(rdev,
1735					 "Supply disable failed: %d\n", ret);
1736			}
1737		}
1738	}
1739}
1740
1741/**
1742 * regulator_disable_deferred - disable regulator output with delay
1743 * @regulator: regulator source
1744 * @ms: miliseconds until the regulator is disabled
1745 *
1746 * Execute regulator_disable() on the regulator after a delay.  This
1747 * is intended for use with devices that require some time to quiesce.
1748 *
1749 * NOTE: this will only disable the regulator output if no other consumer
1750 * devices have it enabled, the regulator device supports disabling and
1751 * machine constraints permit this operation.
1752 */
1753int regulator_disable_deferred(struct regulator *regulator, int ms)
1754{
1755	struct regulator_dev *rdev = regulator->rdev;
1756	int ret;
1757
1758	if (regulator->always_on)
1759		return 0;
1760
1761	if (!ms)
1762		return regulator_disable(regulator);
1763
1764	mutex_lock(&rdev->mutex);
1765	rdev->deferred_disables++;
1766	mutex_unlock(&rdev->mutex);
1767
1768	ret = schedule_delayed_work(&rdev->disable_work,
1769				    msecs_to_jiffies(ms));
1770	if (ret < 0)
1771		return ret;
1772	else
1773		return 0;
1774}
1775EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1776
1777/**
1778 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1779 *
1780 * @rdev: regulator to operate on
1781 *
1782 * Regulators that use regmap for their register I/O can set the
1783 * enable_reg and enable_mask fields in their descriptor and then use
1784 * this as their is_enabled operation, saving some code.
1785 */
1786int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1787{
1788	unsigned int val;
1789	int ret;
1790
1791	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1792	if (ret != 0)
1793		return ret;
1794
1795	return (val & rdev->desc->enable_mask) != 0;
1796}
1797EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1798
1799/**
1800 * regulator_enable_regmap - standard enable() for regmap users
1801 *
1802 * @rdev: regulator to operate on
1803 *
1804 * Regulators that use regmap for their register I/O can set the
1805 * enable_reg and enable_mask fields in their descriptor and then use
1806 * this as their enable() operation, saving some code.
1807 */
1808int regulator_enable_regmap(struct regulator_dev *rdev)
1809{
1810	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1811				  rdev->desc->enable_mask,
1812				  rdev->desc->enable_mask);
1813}
1814EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1815
1816/**
1817 * regulator_disable_regmap - standard disable() for regmap users
1818 *
1819 * @rdev: regulator to operate on
1820 *
1821 * Regulators that use regmap for their register I/O can set the
1822 * enable_reg and enable_mask fields in their descriptor and then use
1823 * this as their disable() operation, saving some code.
1824 */
1825int regulator_disable_regmap(struct regulator_dev *rdev)
1826{
1827	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1828				  rdev->desc->enable_mask, 0);
1829}
1830EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1831
1832static int _regulator_is_enabled(struct regulator_dev *rdev)
1833{
1834	/* A GPIO control always takes precedence */
1835	if (rdev->ena_gpio)
1836		return rdev->ena_gpio_state;
1837
1838	/* If we don't know then assume that the regulator is always on */
1839	if (!rdev->desc->ops->is_enabled)
1840		return 1;
1841
1842	return rdev->desc->ops->is_enabled(rdev);
1843}
1844
1845/**
1846 * regulator_is_enabled - is the regulator output enabled
1847 * @regulator: regulator source
1848 *
1849 * Returns positive if the regulator driver backing the source/client
1850 * has requested that the device be enabled, zero if it hasn't, else a
1851 * negative errno code.
1852 *
1853 * Note that the device backing this regulator handle can have multiple
1854 * users, so it might be enabled even if regulator_enable() was never
1855 * called for this particular source.
1856 */
1857int regulator_is_enabled(struct regulator *regulator)
1858{
1859	int ret;
1860
1861	if (regulator->always_on)
1862		return 1;
1863
1864	mutex_lock(&regulator->rdev->mutex);
1865	ret = _regulator_is_enabled(regulator->rdev);
1866	mutex_unlock(&regulator->rdev->mutex);
1867
1868	return ret;
1869}
1870EXPORT_SYMBOL_GPL(regulator_is_enabled);
1871
1872/**
1873 * regulator_count_voltages - count regulator_list_voltage() selectors
1874 * @regulator: regulator source
1875 *
1876 * Returns number of selectors, or negative errno.  Selectors are
1877 * numbered starting at zero, and typically correspond to bitfields
1878 * in hardware registers.
1879 */
1880int regulator_count_voltages(struct regulator *regulator)
1881{
1882	struct regulator_dev	*rdev = regulator->rdev;
1883
1884	return rdev->desc->n_voltages ? : -EINVAL;
1885}
1886EXPORT_SYMBOL_GPL(regulator_count_voltages);
1887
1888/**
1889 * regulator_list_voltage_linear - List voltages with simple calculation
1890 *
1891 * @rdev: Regulator device
1892 * @selector: Selector to convert into a voltage
1893 *
1894 * Regulators with a simple linear mapping between voltages and
1895 * selectors can set min_uV and uV_step in the regulator descriptor
1896 * and then use this function as their list_voltage() operation,
1897 */
1898int regulator_list_voltage_linear(struct regulator_dev *rdev,
1899				  unsigned int selector)
1900{
1901	if (selector >= rdev->desc->n_voltages)
1902		return -EINVAL;
1903
1904	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1905}
1906EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1907
1908/**
1909 * regulator_list_voltage_table - List voltages with table based mapping
1910 *
1911 * @rdev: Regulator device
1912 * @selector: Selector to convert into a voltage
1913 *
1914 * Regulators with table based mapping between voltages and
1915 * selectors can set volt_table in the regulator descriptor
1916 * and then use this function as their list_voltage() operation.
1917 */
1918int regulator_list_voltage_table(struct regulator_dev *rdev,
1919				 unsigned int selector)
1920{
1921	if (!rdev->desc->volt_table) {
1922		BUG_ON(!rdev->desc->volt_table);
1923		return -EINVAL;
1924	}
1925
1926	if (selector >= rdev->desc->n_voltages)
1927		return -EINVAL;
1928
1929	return rdev->desc->volt_table[selector];
1930}
1931EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1932
1933/**
1934 * regulator_list_voltage - enumerate supported voltages
1935 * @regulator: regulator source
1936 * @selector: identify voltage to list
1937 * Context: can sleep
1938 *
1939 * Returns a voltage that can be passed to @regulator_set_voltage(),
1940 * zero if this selector code can't be used on this system, or a
1941 * negative errno.
1942 */
1943int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1944{
1945	struct regulator_dev	*rdev = regulator->rdev;
1946	struct regulator_ops	*ops = rdev->desc->ops;
1947	int			ret;
1948
1949	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1950		return -EINVAL;
1951
1952	mutex_lock(&rdev->mutex);
1953	ret = ops->list_voltage(rdev, selector);
1954	mutex_unlock(&rdev->mutex);
1955
1956	if (ret > 0) {
1957		if (ret < rdev->constraints->min_uV)
1958			ret = 0;
1959		else if (ret > rdev->constraints->max_uV)
1960			ret = 0;
1961	}
1962
1963	return ret;
1964}
1965EXPORT_SYMBOL_GPL(regulator_list_voltage);
1966
1967/**
1968 * regulator_is_supported_voltage - check if a voltage range can be supported
1969 *
1970 * @regulator: Regulator to check.
1971 * @min_uV: Minimum required voltage in uV.
1972 * @max_uV: Maximum required voltage in uV.
1973 *
1974 * Returns a boolean or a negative error code.
1975 */
1976int regulator_is_supported_voltage(struct regulator *regulator,
1977				   int min_uV, int max_uV)
1978{
1979	struct regulator_dev *rdev = regulator->rdev;
1980	int i, voltages, ret;
1981
1982	/* If we can't change voltage check the current voltage */
1983	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1984		ret = regulator_get_voltage(regulator);
1985		if (ret >= 0)
1986			return (min_uV <= ret && ret <= max_uV);
1987		else
1988			return ret;
1989	}
1990
1991	ret = regulator_count_voltages(regulator);
1992	if (ret < 0)
1993		return ret;
1994	voltages = ret;
1995
1996	for (i = 0; i < voltages; i++) {
1997		ret = regulator_list_voltage(regulator, i);
1998
1999		if (ret >= min_uV && ret <= max_uV)
2000			return 1;
2001	}
2002
2003	return 0;
2004}
2005EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2006
2007/**
2008 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2009 *
2010 * @rdev: regulator to operate on
2011 *
2012 * Regulators that use regmap for their register I/O can set the
2013 * vsel_reg and vsel_mask fields in their descriptor and then use this
2014 * as their get_voltage_vsel operation, saving some code.
2015 */
2016int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2017{
2018	unsigned int val;
2019	int ret;
2020
2021	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2022	if (ret != 0)
2023		return ret;
2024
2025	val &= rdev->desc->vsel_mask;
2026	val >>= ffs(rdev->desc->vsel_mask) - 1;
2027
2028	return val;
2029}
2030EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2031
2032/**
2033 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2034 *
2035 * @rdev: regulator to operate on
2036 * @sel: Selector to set
2037 *
2038 * Regulators that use regmap for their register I/O can set the
2039 * vsel_reg and vsel_mask fields in their descriptor and then use this
2040 * as their set_voltage_vsel operation, saving some code.
2041 */
2042int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2043{
2044	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2045
2046	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2047				  rdev->desc->vsel_mask, sel);
2048}
2049EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2050
2051/**
2052 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2053 *
2054 * @rdev: Regulator to operate on
2055 * @min_uV: Lower bound for voltage
2056 * @max_uV: Upper bound for voltage
2057 *
2058 * Drivers implementing set_voltage_sel() and list_voltage() can use
2059 * this as their map_voltage() operation.  It will find a suitable
2060 * voltage by calling list_voltage() until it gets something in bounds
2061 * for the requested voltages.
2062 */
2063int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2064				  int min_uV, int max_uV)
2065{
2066	int best_val = INT_MAX;
2067	int selector = 0;
2068	int i, ret;
2069
2070	/* Find the smallest voltage that falls within the specified
2071	 * range.
2072	 */
2073	for (i = 0; i < rdev->desc->n_voltages; i++) {
2074		ret = rdev->desc->ops->list_voltage(rdev, i);
2075		if (ret < 0)
2076			continue;
2077
2078		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2079			best_val = ret;
2080			selector = i;
2081		}
2082	}
2083
2084	if (best_val != INT_MAX)
2085		return selector;
2086	else
2087		return -EINVAL;
2088}
2089EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2090
2091/**
2092 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2093 *
2094 * @rdev: Regulator to operate on
2095 * @min_uV: Lower bound for voltage
2096 * @max_uV: Upper bound for voltage
2097 *
2098 * Drivers providing min_uV and uV_step in their regulator_desc can
2099 * use this as their map_voltage() operation.
2100 */
2101int regulator_map_voltage_linear(struct regulator_dev *rdev,
2102				 int min_uV, int max_uV)
2103{
2104	int ret, voltage;
2105
2106	/* Allow uV_step to be 0 for fixed voltage */
2107	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2108		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2109			return 0;
2110		else
2111			return -EINVAL;
2112	}
2113
2114	if (!rdev->desc->uV_step) {
2115		BUG_ON(!rdev->desc->uV_step);
2116		return -EINVAL;
2117	}
2118
2119	if (min_uV < rdev->desc->min_uV)
2120		min_uV = rdev->desc->min_uV;
2121
2122	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2123	if (ret < 0)
2124		return ret;
2125
2126	/* Map back into a voltage to verify we're still in bounds */
2127	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2128	if (voltage < min_uV || voltage > max_uV)
2129		return -EINVAL;
2130
2131	return ret;
2132}
2133EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2134
2135static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2136				     int min_uV, int max_uV)
2137{
2138	int ret;
2139	int delay = 0;
2140	int best_val = 0;
2141	unsigned int selector;
2142	int old_selector = -1;
2143
2144	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2145
2146	min_uV += rdev->constraints->uV_offset;
2147	max_uV += rdev->constraints->uV_offset;
2148
2149	/*
2150	 * If we can't obtain the old selector there is not enough
2151	 * info to call set_voltage_time_sel().
2152	 */
2153	if (_regulator_is_enabled(rdev) &&
2154	    rdev->desc->ops->set_voltage_time_sel &&
2155	    rdev->desc->ops->get_voltage_sel) {
2156		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2157		if (old_selector < 0)
2158			return old_selector;
2159	}
2160
2161	if (rdev->desc->ops->set_voltage) {
2162		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2163						   &selector);
2164
2165		if (ret >= 0) {
2166			if (rdev->desc->ops->list_voltage)
2167				best_val = rdev->desc->ops->list_voltage(rdev,
2168									 selector);
2169			else
2170				best_val = _regulator_get_voltage(rdev);
2171		}
2172
2173	} else if (rdev->desc->ops->set_voltage_sel) {
2174		if (rdev->desc->ops->map_voltage) {
2175			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2176							   max_uV);
2177		} else {
2178			if (rdev->desc->ops->list_voltage ==
2179			    regulator_list_voltage_linear)
2180				ret = regulator_map_voltage_linear(rdev,
2181								min_uV, max_uV);
2182			else
2183				ret = regulator_map_voltage_iterate(rdev,
2184								min_uV, max_uV);
2185		}
2186
2187		if (ret >= 0) {
2188			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2189			if (min_uV <= best_val && max_uV >= best_val) {
2190				selector = ret;
2191				ret = rdev->desc->ops->set_voltage_sel(rdev,
2192								       ret);
2193			} else {
2194				ret = -EINVAL;
2195			}
2196		}
2197	} else {
2198		ret = -EINVAL;
2199	}
2200
2201	/* Call set_voltage_time_sel if successfully obtained old_selector */
2202	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2203	    rdev->desc->ops->set_voltage_time_sel) {
2204
2205		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2206						old_selector, selector);
2207		if (delay < 0) {
2208			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2209				  delay);
2210			delay = 0;
2211		}
2212
2213		/* Insert any necessary delays */
2214		if (delay >= 1000) {
2215			mdelay(delay / 1000);
2216			udelay(delay % 1000);
2217		} else if (delay) {
2218			udelay(delay);
2219		}
2220	}
2221
2222	if (ret == 0 && best_val >= 0) {
2223		unsigned long data = best_val;
2224
2225		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2226				     (void *)data);
2227	}
2228
2229	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2230
2231	return ret;
2232}
2233
2234/**
2235 * regulator_set_voltage - set regulator output voltage
2236 * @regulator: regulator source
2237 * @min_uV: Minimum required voltage in uV
2238 * @max_uV: Maximum acceptable voltage in uV
2239 *
2240 * Sets a voltage regulator to the desired output voltage. This can be set
2241 * during any regulator state. IOW, regulator can be disabled or enabled.
2242 *
2243 * If the regulator is enabled then the voltage will change to the new value
2244 * immediately otherwise if the regulator is disabled the regulator will
2245 * output at the new voltage when enabled.
2246 *
2247 * NOTE: If the regulator is shared between several devices then the lowest
2248 * request voltage that meets the system constraints will be used.
2249 * Regulator system constraints must be set for this regulator before
2250 * calling this function otherwise this call will fail.
2251 */
2252int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2253{
2254	struct regulator_dev *rdev = regulator->rdev;
2255	int ret = 0;
2256
2257	mutex_lock(&rdev->mutex);
2258
2259	/* If we're setting the same range as last time the change
2260	 * should be a noop (some cpufreq implementations use the same
2261	 * voltage for multiple frequencies, for example).
2262	 */
2263	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2264		goto out;
2265
2266	/* sanity check */
2267	if (!rdev->desc->ops->set_voltage &&
2268	    !rdev->desc->ops->set_voltage_sel) {
2269		ret = -EINVAL;
2270		goto out;
2271	}
2272
2273	/* constraints check */
2274	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2275	if (ret < 0)
2276		goto out;
2277	regulator->min_uV = min_uV;
2278	regulator->max_uV = max_uV;
2279
2280	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2281	if (ret < 0)
2282		goto out;
2283
2284	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2285
2286out:
2287	mutex_unlock(&rdev->mutex);
2288	return ret;
2289}
2290EXPORT_SYMBOL_GPL(regulator_set_voltage);
2291
2292/**
2293 * regulator_set_voltage_time - get raise/fall time
2294 * @regulator: regulator source
2295 * @old_uV: starting voltage in microvolts
2296 * @new_uV: target voltage in microvolts
2297 *
2298 * Provided with the starting and ending voltage, this function attempts to
2299 * calculate the time in microseconds required to rise or fall to this new
2300 * voltage.
2301 */
2302int regulator_set_voltage_time(struct regulator *regulator,
2303			       int old_uV, int new_uV)
2304{
2305	struct regulator_dev	*rdev = regulator->rdev;
2306	struct regulator_ops	*ops = rdev->desc->ops;
2307	int old_sel = -1;
2308	int new_sel = -1;
2309	int voltage;
2310	int i;
2311
2312	/* Currently requires operations to do this */
2313	if (!ops->list_voltage || !ops->set_voltage_time_sel
2314	    || !rdev->desc->n_voltages)
2315		return -EINVAL;
2316
2317	for (i = 0; i < rdev->desc->n_voltages; i++) {
2318		/* We only look for exact voltage matches here */
2319		voltage = regulator_list_voltage(regulator, i);
2320		if (voltage < 0)
2321			return -EINVAL;
2322		if (voltage == 0)
2323			continue;
2324		if (voltage == old_uV)
2325			old_sel = i;
2326		if (voltage == new_uV)
2327			new_sel = i;
2328	}
2329
2330	if (old_sel < 0 || new_sel < 0)
2331		return -EINVAL;
2332
2333	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2334}
2335EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2336
2337/**
2338 * regulator_set_voltage_time_sel - get raise/fall time
2339 * @rdev: regulator source device
2340 * @old_selector: selector for starting voltage
2341 * @new_selector: selector for target voltage
2342 *
2343 * Provided with the starting and target voltage selectors, this function
2344 * returns time in microseconds required to rise or fall to this new voltage
2345 *
2346 * Drivers providing ramp_delay in regulation_constraints can use this as their
2347 * set_voltage_time_sel() operation.
2348 */
2349int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2350				   unsigned int old_selector,
2351				   unsigned int new_selector)
2352{
2353	unsigned int ramp_delay = 0;
2354	int old_volt, new_volt;
2355
2356	if (rdev->constraints->ramp_delay)
2357		ramp_delay = rdev->constraints->ramp_delay;
2358	else if (rdev->desc->ramp_delay)
2359		ramp_delay = rdev->desc->ramp_delay;
2360
2361	if (ramp_delay == 0) {
2362		rdev_warn(rdev, "ramp_delay not set\n");
2363		return 0;
2364	}
2365
2366	/* sanity check */
2367	if (!rdev->desc->ops->list_voltage)
2368		return -EINVAL;
2369
2370	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2371	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2372
2373	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2374}
2375EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2376
2377/**
2378 * regulator_sync_voltage - re-apply last regulator output voltage
2379 * @regulator: regulator source
2380 *
2381 * Re-apply the last configured voltage.  This is intended to be used
2382 * where some external control source the consumer is cooperating with
2383 * has caused the configured voltage to change.
2384 */
2385int regulator_sync_voltage(struct regulator *regulator)
2386{
2387	struct regulator_dev *rdev = regulator->rdev;
2388	int ret, min_uV, max_uV;
2389
2390	mutex_lock(&rdev->mutex);
2391
2392	if (!rdev->desc->ops->set_voltage &&
2393	    !rdev->desc->ops->set_voltage_sel) {
2394		ret = -EINVAL;
2395		goto out;
2396	}
2397
2398	/* This is only going to work if we've had a voltage configured. */
2399	if (!regulator->min_uV && !regulator->max_uV) {
2400		ret = -EINVAL;
2401		goto out;
2402	}
2403
2404	min_uV = regulator->min_uV;
2405	max_uV = regulator->max_uV;
2406
2407	/* This should be a paranoia check... */
2408	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2409	if (ret < 0)
2410		goto out;
2411
2412	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2413	if (ret < 0)
2414		goto out;
2415
2416	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2417
2418out:
2419	mutex_unlock(&rdev->mutex);
2420	return ret;
2421}
2422EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2423
2424static int _regulator_get_voltage(struct regulator_dev *rdev)
2425{
2426	int sel, ret;
2427
2428	if (rdev->desc->ops->get_voltage_sel) {
2429		sel = rdev->desc->ops->get_voltage_sel(rdev);
2430		if (sel < 0)
2431			return sel;
2432		ret = rdev->desc->ops->list_voltage(rdev, sel);
2433	} else if (rdev->desc->ops->get_voltage) {
2434		ret = rdev->desc->ops->get_voltage(rdev);
2435	} else if (rdev->desc->ops->list_voltage) {
2436		ret = rdev->desc->ops->list_voltage(rdev, 0);
2437	} else {
2438		return -EINVAL;
2439	}
2440
2441	if (ret < 0)
2442		return ret;
2443	return ret - rdev->constraints->uV_offset;
2444}
2445
2446/**
2447 * regulator_get_voltage - get regulator output voltage
2448 * @regulator: regulator source
2449 *
2450 * This returns the current regulator voltage in uV.
2451 *
2452 * NOTE: If the regulator is disabled it will return the voltage value. This
2453 * function should not be used to determine regulator state.
2454 */
2455int regulator_get_voltage(struct regulator *regulator)
2456{
2457	int ret;
2458
2459	mutex_lock(&regulator->rdev->mutex);
2460
2461	ret = _regulator_get_voltage(regulator->rdev);
2462
2463	mutex_unlock(&regulator->rdev->mutex);
2464
2465	return ret;
2466}
2467EXPORT_SYMBOL_GPL(regulator_get_voltage);
2468
2469/**
2470 * regulator_set_current_limit - set regulator output current limit
2471 * @regulator: regulator source
2472 * @min_uA: Minimuum supported current in uA
2473 * @max_uA: Maximum supported current in uA
2474 *
2475 * Sets current sink to the desired output current. This can be set during
2476 * any regulator state. IOW, regulator can be disabled or enabled.
2477 *
2478 * If the regulator is enabled then the current will change to the new value
2479 * immediately otherwise if the regulator is disabled the regulator will
2480 * output at the new current when enabled.
2481 *
2482 * NOTE: Regulator system constraints must be set for this regulator before
2483 * calling this function otherwise this call will fail.
2484 */
2485int regulator_set_current_limit(struct regulator *regulator,
2486			       int min_uA, int max_uA)
2487{
2488	struct regulator_dev *rdev = regulator->rdev;
2489	int ret;
2490
2491	mutex_lock(&rdev->mutex);
2492
2493	/* sanity check */
2494	if (!rdev->desc->ops->set_current_limit) {
2495		ret = -EINVAL;
2496		goto out;
2497	}
2498
2499	/* constraints check */
2500	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2501	if (ret < 0)
2502		goto out;
2503
2504	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2505out:
2506	mutex_unlock(&rdev->mutex);
2507	return ret;
2508}
2509EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2510
2511static int _regulator_get_current_limit(struct regulator_dev *rdev)
2512{
2513	int ret;
2514
2515	mutex_lock(&rdev->mutex);
2516
2517	/* sanity check */
2518	if (!rdev->desc->ops->get_current_limit) {
2519		ret = -EINVAL;
2520		goto out;
2521	}
2522
2523	ret = rdev->desc->ops->get_current_limit(rdev);
2524out:
2525	mutex_unlock(&rdev->mutex);
2526	return ret;
2527}
2528
2529/**
2530 * regulator_get_current_limit - get regulator output current
2531 * @regulator: regulator source
2532 *
2533 * This returns the current supplied by the specified current sink in uA.
2534 *
2535 * NOTE: If the regulator is disabled it will return the current value. This
2536 * function should not be used to determine regulator state.
2537 */
2538int regulator_get_current_limit(struct regulator *regulator)
2539{
2540	return _regulator_get_current_limit(regulator->rdev);
2541}
2542EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2543
2544/**
2545 * regulator_set_mode - set regulator operating mode
2546 * @regulator: regulator source
2547 * @mode: operating mode - one of the REGULATOR_MODE constants
2548 *
2549 * Set regulator operating mode to increase regulator efficiency or improve
2550 * regulation performance.
2551 *
2552 * NOTE: Regulator system constraints must be set for this regulator before
2553 * calling this function otherwise this call will fail.
2554 */
2555int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2556{
2557	struct regulator_dev *rdev = regulator->rdev;
2558	int ret;
2559	int regulator_curr_mode;
2560
2561	mutex_lock(&rdev->mutex);
2562
2563	/* sanity check */
2564	if (!rdev->desc->ops->set_mode) {
2565		ret = -EINVAL;
2566		goto out;
2567	}
2568
2569	/* return if the same mode is requested */
2570	if (rdev->desc->ops->get_mode) {
2571		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2572		if (regulator_curr_mode == mode) {
2573			ret = 0;
2574			goto out;
2575		}
2576	}
2577
2578	/* constraints check */
2579	ret = regulator_mode_constrain(rdev, &mode);
2580	if (ret < 0)
2581		goto out;
2582
2583	ret = rdev->desc->ops->set_mode(rdev, mode);
2584out:
2585	mutex_unlock(&rdev->mutex);
2586	return ret;
2587}
2588EXPORT_SYMBOL_GPL(regulator_set_mode);
2589
2590static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2591{
2592	int ret;
2593
2594	mutex_lock(&rdev->mutex);
2595
2596	/* sanity check */
2597	if (!rdev->desc->ops->get_mode) {
2598		ret = -EINVAL;
2599		goto out;
2600	}
2601
2602	ret = rdev->desc->ops->get_mode(rdev);
2603out:
2604	mutex_unlock(&rdev->mutex);
2605	return ret;
2606}
2607
2608/**
2609 * regulator_get_mode - get regulator operating mode
2610 * @regulator: regulator source
2611 *
2612 * Get the current regulator operating mode.
2613 */
2614unsigned int regulator_get_mode(struct regulator *regulator)
2615{
2616	return _regulator_get_mode(regulator->rdev);
2617}
2618EXPORT_SYMBOL_GPL(regulator_get_mode);
2619
2620/**
2621 * regulator_set_optimum_mode - set regulator optimum operating mode
2622 * @regulator: regulator source
2623 * @uA_load: load current
2624 *
2625 * Notifies the regulator core of a new device load. This is then used by
2626 * DRMS (if enabled by constraints) to set the most efficient regulator
2627 * operating mode for the new regulator loading.
2628 *
2629 * Consumer devices notify their supply regulator of the maximum power
2630 * they will require (can be taken from device datasheet in the power
2631 * consumption tables) when they change operational status and hence power
2632 * state. Examples of operational state changes that can affect power
2633 * consumption are :-
2634 *
2635 *    o Device is opened / closed.
2636 *    o Device I/O is about to begin or has just finished.
2637 *    o Device is idling in between work.
2638 *
2639 * This information is also exported via sysfs to userspace.
2640 *
2641 * DRMS will sum the total requested load on the regulator and change
2642 * to the most efficient operating mode if platform constraints allow.
2643 *
2644 * Returns the new regulator mode or error.
2645 */
2646int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2647{
2648	struct regulator_dev *rdev = regulator->rdev;
2649	struct regulator *consumer;
2650	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2651	unsigned int mode;
2652
2653	if (rdev->supply)
2654		input_uV = regulator_get_voltage(rdev->supply);
2655
2656	mutex_lock(&rdev->mutex);
2657
2658	/*
2659	 * first check to see if we can set modes at all, otherwise just
2660	 * tell the consumer everything is OK.
2661	 */
2662	regulator->uA_load = uA_load;
2663	ret = regulator_check_drms(rdev);
2664	if (ret < 0) {
2665		ret = 0;
2666		goto out;
2667	}
2668
2669	if (!rdev->desc->ops->get_optimum_mode)
2670		goto out;
2671
2672	/*
2673	 * we can actually do this so any errors are indicators of
2674	 * potential real failure.
2675	 */
2676	ret = -EINVAL;
2677
2678	if (!rdev->desc->ops->set_mode)
2679		goto out;
2680
2681	/* get output voltage */
2682	output_uV = _regulator_get_voltage(rdev);
2683	if (output_uV <= 0) {
2684		rdev_err(rdev, "invalid output voltage found\n");
2685		goto out;
2686	}
2687
2688	/* No supply? Use constraint voltage */
2689	if (input_uV <= 0)
2690		input_uV = rdev->constraints->input_uV;
2691	if (input_uV <= 0) {
2692		rdev_err(rdev, "invalid input voltage found\n");
2693		goto out;
2694	}
2695
2696	/* calc total requested load for this regulator */
2697	list_for_each_entry(consumer, &rdev->consumer_list, list)
2698		total_uA_load += consumer->uA_load;
2699
2700	mode = rdev->desc->ops->get_optimum_mode(rdev,
2701						 input_uV, output_uV,
2702						 total_uA_load);
2703	ret = regulator_mode_constrain(rdev, &mode);
2704	if (ret < 0) {
2705		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2706			 total_uA_load, input_uV, output_uV);
2707		goto out;
2708	}
2709
2710	ret = rdev->desc->ops->set_mode(rdev, mode);
2711	if (ret < 0) {
2712		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2713		goto out;
2714	}
2715	ret = mode;
2716out:
2717	mutex_unlock(&rdev->mutex);
2718	return ret;
2719}
2720EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2721
2722/**
2723 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2724 *
2725 * @rdev: device to operate on.
2726 * @enable: state to set.
2727 */
2728int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2729{
2730	unsigned int val;
2731
2732	if (enable)
2733		val = rdev->desc->bypass_mask;
2734	else
2735		val = 0;
2736
2737	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2738				  rdev->desc->bypass_mask, val);
2739}
2740EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2741
2742/**
2743 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2744 *
2745 * @rdev: device to operate on.
2746 * @enable: current state.
2747 */
2748int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2749{
2750	unsigned int val;
2751	int ret;
2752
2753	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2754	if (ret != 0)
2755		return ret;
2756
2757	*enable = val & rdev->desc->bypass_mask;
2758
2759	return 0;
2760}
2761EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2762
2763/**
2764 * regulator_allow_bypass - allow the regulator to go into bypass mode
2765 *
2766 * @regulator: Regulator to configure
2767 * @allow: enable or disable bypass mode
2768 *
2769 * Allow the regulator to go into bypass mode if all other consumers
2770 * for the regulator also enable bypass mode and the machine
2771 * constraints allow this.  Bypass mode means that the regulator is
2772 * simply passing the input directly to the output with no regulation.
2773 */
2774int regulator_allow_bypass(struct regulator *regulator, bool enable)
2775{
2776	struct regulator_dev *rdev = regulator->rdev;
2777	int ret = 0;
2778
2779	if (!rdev->desc->ops->set_bypass)
2780		return 0;
2781
2782	if (rdev->constraints &&
2783	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2784		return 0;
2785
2786	mutex_lock(&rdev->mutex);
2787
2788	if (enable && !regulator->bypass) {
2789		rdev->bypass_count++;
2790
2791		if (rdev->bypass_count == rdev->open_count) {
2792			ret = rdev->desc->ops->set_bypass(rdev, enable);
2793			if (ret != 0)
2794				rdev->bypass_count--;
2795		}
2796
2797	} else if (!enable && regulator->bypass) {
2798		rdev->bypass_count--;
2799
2800		if (rdev->bypass_count != rdev->open_count) {
2801			ret = rdev->desc->ops->set_bypass(rdev, enable);
2802			if (ret != 0)
2803				rdev->bypass_count++;
2804		}
2805	}
2806
2807	if (ret == 0)
2808		regulator->bypass = enable;
2809
2810	mutex_unlock(&rdev->mutex);
2811
2812	return ret;
2813}
2814EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2815
2816/**
2817 * regulator_register_notifier - register regulator event notifier
2818 * @regulator: regulator source
2819 * @nb: notifier block
2820 *
2821 * Register notifier block to receive regulator events.
2822 */
2823int regulator_register_notifier(struct regulator *regulator,
2824			      struct notifier_block *nb)
2825{
2826	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2827						nb);
2828}
2829EXPORT_SYMBOL_GPL(regulator_register_notifier);
2830
2831/**
2832 * regulator_unregister_notifier - unregister regulator event notifier
2833 * @regulator: regulator source
2834 * @nb: notifier block
2835 *
2836 * Unregister regulator event notifier block.
2837 */
2838int regulator_unregister_notifier(struct regulator *regulator,
2839				struct notifier_block *nb)
2840{
2841	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2842						  nb);
2843}
2844EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2845
2846/* notify regulator consumers and downstream regulator consumers.
2847 * Note mutex must be held by caller.
2848 */
2849static void _notifier_call_chain(struct regulator_dev *rdev,
2850				  unsigned long event, void *data)
2851{
2852	/* call rdev chain first */
2853	blocking_notifier_call_chain(&rdev->notifier, event, data);
2854}
2855
2856/**
2857 * regulator_bulk_get - get multiple regulator consumers
2858 *
2859 * @dev:           Device to supply
2860 * @num_consumers: Number of consumers to register
2861 * @consumers:     Configuration of consumers; clients are stored here.
2862 *
2863 * @return 0 on success, an errno on failure.
2864 *
2865 * This helper function allows drivers to get several regulator
2866 * consumers in one operation.  If any of the regulators cannot be
2867 * acquired then any regulators that were allocated will be freed
2868 * before returning to the caller.
2869 */
2870int regulator_bulk_get(struct device *dev, int num_consumers,
2871		       struct regulator_bulk_data *consumers)
2872{
2873	int i;
2874	int ret;
2875
2876	for (i = 0; i < num_consumers; i++)
2877		consumers[i].consumer = NULL;
2878
2879	for (i = 0; i < num_consumers; i++) {
2880		consumers[i].consumer = regulator_get(dev,
2881						      consumers[i].supply);
2882		if (IS_ERR(consumers[i].consumer)) {
2883			ret = PTR_ERR(consumers[i].consumer);
2884			dev_err(dev, "Failed to get supply '%s': %d\n",
2885				consumers[i].supply, ret);
2886			consumers[i].consumer = NULL;
2887			goto err;
2888		}
2889	}
2890
2891	return 0;
2892
2893err:
2894	while (--i >= 0)
2895		regulator_put(consumers[i].consumer);
2896
2897	return ret;
2898}
2899EXPORT_SYMBOL_GPL(regulator_bulk_get);
2900
2901/**
2902 * devm_regulator_bulk_get - managed get multiple regulator consumers
2903 *
2904 * @dev:           Device to supply
2905 * @num_consumers: Number of consumers to register
2906 * @consumers:     Configuration of consumers; clients are stored here.
2907 *
2908 * @return 0 on success, an errno on failure.
2909 *
2910 * This helper function allows drivers to get several regulator
2911 * consumers in one operation with management, the regulators will
2912 * automatically be freed when the device is unbound.  If any of the
2913 * regulators cannot be acquired then any regulators that were
2914 * allocated will be freed before returning to the caller.
2915 */
2916int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2917			    struct regulator_bulk_data *consumers)
2918{
2919	int i;
2920	int ret;
2921
2922	for (i = 0; i < num_consumers; i++)
2923		consumers[i].consumer = NULL;
2924
2925	for (i = 0; i < num_consumers; i++) {
2926		consumers[i].consumer = devm_regulator_get(dev,
2927							   consumers[i].supply);
2928		if (IS_ERR(consumers[i].consumer)) {
2929			ret = PTR_ERR(consumers[i].consumer);
2930			dev_err(dev, "Failed to get supply '%s': %d\n",
2931				consumers[i].supply, ret);
2932			consumers[i].consumer = NULL;
2933			goto err;
2934		}
2935	}
2936
2937	return 0;
2938
2939err:
2940	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2941		devm_regulator_put(consumers[i].consumer);
2942
2943	return ret;
2944}
2945EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2946
2947static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2948{
2949	struct regulator_bulk_data *bulk = data;
2950
2951	bulk->ret = regulator_enable(bulk->consumer);
2952}
2953
2954/**
2955 * regulator_bulk_enable - enable multiple regulator consumers
2956 *
2957 * @num_consumers: Number of consumers
2958 * @consumers:     Consumer data; clients are stored here.
2959 * @return         0 on success, an errno on failure
2960 *
2961 * This convenience API allows consumers to enable multiple regulator
2962 * clients in a single API call.  If any consumers cannot be enabled
2963 * then any others that were enabled will be disabled again prior to
2964 * return.
2965 */
2966int regulator_bulk_enable(int num_consumers,
2967			  struct regulator_bulk_data *consumers)
2968{
2969	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2970	int i;
2971	int ret = 0;
2972
2973	for (i = 0; i < num_consumers; i++) {
2974		if (consumers[i].consumer->always_on)
2975			consumers[i].ret = 0;
2976		else
2977			async_schedule_domain(regulator_bulk_enable_async,
2978					      &consumers[i], &async_domain);
2979	}
2980
2981	async_synchronize_full_domain(&async_domain);
2982
2983	/* If any consumer failed we need to unwind any that succeeded */
2984	for (i = 0; i < num_consumers; i++) {
2985		if (consumers[i].ret != 0) {
2986			ret = consumers[i].ret;
2987			goto err;
2988		}
2989	}
2990
2991	return 0;
2992
2993err:
2994	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2995	while (--i >= 0)
2996		regulator_disable(consumers[i].consumer);
2997
2998	return ret;
2999}
3000EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3001
3002/**
3003 * regulator_bulk_disable - disable multiple regulator consumers
3004 *
3005 * @num_consumers: Number of consumers
3006 * @consumers:     Consumer data; clients are stored here.
3007 * @return         0 on success, an errno on failure
3008 *
3009 * This convenience API allows consumers to disable multiple regulator
3010 * clients in a single API call.  If any consumers cannot be disabled
3011 * then any others that were disabled will be enabled again prior to
3012 * return.
3013 */
3014int regulator_bulk_disable(int num_consumers,
3015			   struct regulator_bulk_data *consumers)
3016{
3017	int i;
3018	int ret, r;
3019
3020	for (i = num_consumers - 1; i >= 0; --i) {
3021		ret = regulator_disable(consumers[i].consumer);
3022		if (ret != 0)
3023			goto err;
3024	}
3025
3026	return 0;
3027
3028err:
3029	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3030	for (++i; i < num_consumers; ++i) {
3031		r = regulator_enable(consumers[i].consumer);
3032		if (r != 0)
3033			pr_err("Failed to reename %s: %d\n",
3034			       consumers[i].supply, r);
3035	}
3036
3037	return ret;
3038}
3039EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3040
3041/**
3042 * regulator_bulk_force_disable - force disable multiple regulator consumers
3043 *
3044 * @num_consumers: Number of consumers
3045 * @consumers:     Consumer data; clients are stored here.
3046 * @return         0 on success, an errno on failure
3047 *
3048 * This convenience API allows consumers to forcibly disable multiple regulator
3049 * clients in a single API call.
3050 * NOTE: This should be used for situations when device damage will
3051 * likely occur if the regulators are not disabled (e.g. over temp).
3052 * Although regulator_force_disable function call for some consumers can
3053 * return error numbers, the function is called for all consumers.
3054 */
3055int regulator_bulk_force_disable(int num_consumers,
3056			   struct regulator_bulk_data *consumers)
3057{
3058	int i;
3059	int ret;
3060
3061	for (i = 0; i < num_consumers; i++)
3062		consumers[i].ret =
3063			    regulator_force_disable(consumers[i].consumer);
3064
3065	for (i = 0; i < num_consumers; i++) {
3066		if (consumers[i].ret != 0) {
3067			ret = consumers[i].ret;
3068			goto out;
3069		}
3070	}
3071
3072	return 0;
3073out:
3074	return ret;
3075}
3076EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3077
3078/**
3079 * regulator_bulk_free - free multiple regulator consumers
3080 *
3081 * @num_consumers: Number of consumers
3082 * @consumers:     Consumer data; clients are stored here.
3083 *
3084 * This convenience API allows consumers to free multiple regulator
3085 * clients in a single API call.
3086 */
3087void regulator_bulk_free(int num_consumers,
3088			 struct regulator_bulk_data *consumers)
3089{
3090	int i;
3091
3092	for (i = 0; i < num_consumers; i++) {
3093		regulator_put(consumers[i].consumer);
3094		consumers[i].consumer = NULL;
3095	}
3096}
3097EXPORT_SYMBOL_GPL(regulator_bulk_free);
3098
3099/**
3100 * regulator_notifier_call_chain - call regulator event notifier
3101 * @rdev: regulator source
3102 * @event: notifier block
3103 * @data: callback-specific data.
3104 *
3105 * Called by regulator drivers to notify clients a regulator event has
3106 * occurred. We also notify regulator clients downstream.
3107 * Note lock must be held by caller.
3108 */
3109int regulator_notifier_call_chain(struct regulator_dev *rdev,
3110				  unsigned long event, void *data)
3111{
3112	_notifier_call_chain(rdev, event, data);
3113	return NOTIFY_DONE;
3114
3115}
3116EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3117
3118/**
3119 * regulator_mode_to_status - convert a regulator mode into a status
3120 *
3121 * @mode: Mode to convert
3122 *
3123 * Convert a regulator mode into a status.
3124 */
3125int regulator_mode_to_status(unsigned int mode)
3126{
3127	switch (mode) {
3128	case REGULATOR_MODE_FAST:
3129		return REGULATOR_STATUS_FAST;
3130	case REGULATOR_MODE_NORMAL:
3131		return REGULATOR_STATUS_NORMAL;
3132	case REGULATOR_MODE_IDLE:
3133		return REGULATOR_STATUS_IDLE;
3134	case REGULATOR_MODE_STANDBY:
3135		return REGULATOR_STATUS_STANDBY;
3136	default:
3137		return REGULATOR_STATUS_UNDEFINED;
3138	}
3139}
3140EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3141
3142/*
3143 * To avoid cluttering sysfs (and memory) with useless state, only
3144 * create attributes that can be meaningfully displayed.
3145 */
3146static int add_regulator_attributes(struct regulator_dev *rdev)
3147{
3148	struct device		*dev = &rdev->dev;
3149	struct regulator_ops	*ops = rdev->desc->ops;
3150	int			status = 0;
3151
3152	/* some attributes need specific methods to be displayed */
3153	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3154	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3155	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3156		status = device_create_file(dev, &dev_attr_microvolts);
3157		if (status < 0)
3158			return status;
3159	}
3160	if (ops->get_current_limit) {
3161		status = device_create_file(dev, &dev_attr_microamps);
3162		if (status < 0)
3163			return status;
3164	}
3165	if (ops->get_mode) {
3166		status = device_create_file(dev, &dev_attr_opmode);
3167		if (status < 0)
3168			return status;
3169	}
3170	if (ops->is_enabled) {
3171		status = device_create_file(dev, &dev_attr_state);
3172		if (status < 0)
3173			return status;
3174	}
3175	if (ops->get_status) {
3176		status = device_create_file(dev, &dev_attr_status);
3177		if (status < 0)
3178			return status;
3179	}
3180	if (ops->get_bypass) {
3181		status = device_create_file(dev, &dev_attr_bypass);
3182		if (status < 0)
3183			return status;
3184	}
3185
3186	/* some attributes are type-specific */
3187	if (rdev->desc->type == REGULATOR_CURRENT) {
3188		status = device_create_file(dev, &dev_attr_requested_microamps);
3189		if (status < 0)
3190			return status;
3191	}
3192
3193	/* all the other attributes exist to support constraints;
3194	 * don't show them if there are no constraints, or if the
3195	 * relevant supporting methods are missing.
3196	 */
3197	if (!rdev->constraints)
3198		return status;
3199
3200	/* constraints need specific supporting methods */
3201	if (ops->set_voltage || ops->set_voltage_sel) {
3202		status = device_create_file(dev, &dev_attr_min_microvolts);
3203		if (status < 0)
3204			return status;
3205		status = device_create_file(dev, &dev_attr_max_microvolts);
3206		if (status < 0)
3207			return status;
3208	}
3209	if (ops->set_current_limit) {
3210		status = device_create_file(dev, &dev_attr_min_microamps);
3211		if (status < 0)
3212			return status;
3213		status = device_create_file(dev, &dev_attr_max_microamps);
3214		if (status < 0)
3215			return status;
3216	}
3217
3218	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3219	if (status < 0)
3220		return status;
3221	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3222	if (status < 0)
3223		return status;
3224	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3225	if (status < 0)
3226		return status;
3227
3228	if (ops->set_suspend_voltage) {
3229		status = device_create_file(dev,
3230				&dev_attr_suspend_standby_microvolts);
3231		if (status < 0)
3232			return status;
3233		status = device_create_file(dev,
3234				&dev_attr_suspend_mem_microvolts);
3235		if (status < 0)
3236			return status;
3237		status = device_create_file(dev,
3238				&dev_attr_suspend_disk_microvolts);
3239		if (status < 0)
3240			return status;
3241	}
3242
3243	if (ops->set_suspend_mode) {
3244		status = device_create_file(dev,
3245				&dev_attr_suspend_standby_mode);
3246		if (status < 0)
3247			return status;
3248		status = device_create_file(dev,
3249				&dev_attr_suspend_mem_mode);
3250		if (status < 0)
3251			return status;
3252		status = device_create_file(dev,
3253				&dev_attr_suspend_disk_mode);
3254		if (status < 0)
3255			return status;
3256	}
3257
3258	return status;
3259}
3260
3261static void rdev_init_debugfs(struct regulator_dev *rdev)
3262{
3263	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3264	if (!rdev->debugfs) {
3265		rdev_warn(rdev, "Failed to create debugfs directory\n");
3266		return;
3267	}
3268
3269	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3270			   &rdev->use_count);
3271	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3272			   &rdev->open_count);
3273	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3274			   &rdev->bypass_count);
3275}
3276
3277/**
3278 * regulator_register - register regulator
3279 * @regulator_desc: regulator to register
3280 * @config: runtime configuration for regulator
3281 *
3282 * Called by regulator drivers to register a regulator.
3283 * Returns 0 on success.
3284 */
3285struct regulator_dev *
3286regulator_register(const struct regulator_desc *regulator_desc,
3287		   const struct regulator_config *config)
3288{
3289	const struct regulation_constraints *constraints = NULL;
3290	const struct regulator_init_data *init_data;
3291	static atomic_t regulator_no = ATOMIC_INIT(0);
3292	struct regulator_dev *rdev;
3293	struct device *dev;
3294	int ret, i;
3295	const char *supply = NULL;
3296
3297	if (regulator_desc == NULL || config == NULL)
3298		return ERR_PTR(-EINVAL);
3299
3300	dev = config->dev;
3301	WARN_ON(!dev);
3302
3303	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3304		return ERR_PTR(-EINVAL);
3305
3306	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3307	    regulator_desc->type != REGULATOR_CURRENT)
3308		return ERR_PTR(-EINVAL);
3309
3310	/* Only one of each should be implemented */
3311	WARN_ON(regulator_desc->ops->get_voltage &&
3312		regulator_desc->ops->get_voltage_sel);
3313	WARN_ON(regulator_desc->ops->set_voltage &&
3314		regulator_desc->ops->set_voltage_sel);
3315
3316	/* If we're using selectors we must implement list_voltage. */
3317	if (regulator_desc->ops->get_voltage_sel &&
3318	    !regulator_desc->ops->list_voltage) {
3319		return ERR_PTR(-EINVAL);
3320	}
3321	if (regulator_desc->ops->set_voltage_sel &&
3322	    !regulator_desc->ops->list_voltage) {
3323		return ERR_PTR(-EINVAL);
3324	}
3325
3326	init_data = config->init_data;
3327
3328	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3329	if (rdev == NULL)
3330		return ERR_PTR(-ENOMEM);
3331
3332	mutex_lock(&regulator_list_mutex);
3333
3334	mutex_init(&rdev->mutex);
3335	rdev->reg_data = config->driver_data;
3336	rdev->owner = regulator_desc->owner;
3337	rdev->desc = regulator_desc;
3338	if (config->regmap)
3339		rdev->regmap = config->regmap;
3340	else if (dev_get_regmap(dev, NULL))
3341		rdev->regmap = dev_get_regmap(dev, NULL);
3342	else if (dev->parent)
3343		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3344	INIT_LIST_HEAD(&rdev->consumer_list);
3345	INIT_LIST_HEAD(&rdev->list);
3346	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3347	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3348
3349	/* preform any regulator specific init */
3350	if (init_data && init_data->regulator_init) {
3351		ret = init_data->regulator_init(rdev->reg_data);
3352		if (ret < 0)
3353			goto clean;
3354	}
3355
3356	/* register with sysfs */
3357	rdev->dev.class = &regulator_class;
3358	rdev->dev.of_node = config->of_node;
3359	rdev->dev.parent = dev;
3360	dev_set_name(&rdev->dev, "regulator.%d",
3361		     atomic_inc_return(&regulator_no) - 1);
3362	ret = device_register(&rdev->dev);
3363	if (ret != 0) {
3364		put_device(&rdev->dev);
3365		goto clean;
3366	}
3367
3368	dev_set_drvdata(&rdev->dev, rdev);
3369
3370	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3371		ret = gpio_request_one(config->ena_gpio,
3372				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3373				       rdev_get_name(rdev));
3374		if (ret != 0) {
3375			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3376				 config->ena_gpio, ret);
3377			goto wash;
3378		}
3379
3380		rdev->ena_gpio = config->ena_gpio;
3381		rdev->ena_gpio_invert = config->ena_gpio_invert;
3382
3383		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3384			rdev->ena_gpio_state = 1;
3385
3386		if (rdev->ena_gpio_invert)
3387			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3388	}
3389
3390	/* set regulator constraints */
3391	if (init_data)
3392		constraints = &init_data->constraints;
3393
3394	ret = set_machine_constraints(rdev, constraints);
3395	if (ret < 0)
3396		goto scrub;
3397
3398	/* add attributes supported by this regulator */
3399	ret = add_regulator_attributes(rdev);
3400	if (ret < 0)
3401		goto scrub;
3402
3403	if (init_data && init_data->supply_regulator)
3404		supply = init_data->supply_regulator;
3405	else if (regulator_desc->supply_name)
3406		supply = regulator_desc->supply_name;
3407
3408	if (supply) {
3409		struct regulator_dev *r;
3410
3411		r = regulator_dev_lookup(dev, supply, &ret);
3412
3413		if (!r) {
3414			dev_err(dev, "Failed to find supply %s\n", supply);
3415			ret = -EPROBE_DEFER;
3416			goto scrub;
3417		}
3418
3419		ret = set_supply(rdev, r);
3420		if (ret < 0)
3421			goto scrub;
3422
3423		/* Enable supply if rail is enabled */
3424		if (_regulator_is_enabled(rdev)) {
3425			ret = regulator_enable(rdev->supply);
3426			if (ret < 0)
3427				goto scrub;
3428		}
3429	}
3430
3431	/* add consumers devices */
3432	if (init_data) {
3433		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3434			ret = set_consumer_device_supply(rdev,
3435				init_data->consumer_supplies[i].dev_name,
3436				init_data->consumer_supplies[i].supply);
3437			if (ret < 0) {
3438				dev_err(dev, "Failed to set supply %s\n",
3439					init_data->consumer_supplies[i].supply);
3440				goto unset_supplies;
3441			}
3442		}
3443	}
3444
3445	list_add(&rdev->list, &regulator_list);
3446
3447	rdev_init_debugfs(rdev);
3448out:
3449	mutex_unlock(&regulator_list_mutex);
3450	return rdev;
3451
3452unset_supplies:
3453	unset_regulator_supplies(rdev);
3454
3455scrub:
3456	if (rdev->supply)
3457		_regulator_put(rdev->supply);
3458	if (rdev->ena_gpio)
3459		gpio_free(rdev->ena_gpio);
3460	kfree(rdev->constraints);
3461wash:
3462	device_unregister(&rdev->dev);
3463	/* device core frees rdev */
3464	rdev = ERR_PTR(ret);
3465	goto out;
3466
3467clean:
3468	kfree(rdev);
3469	rdev = ERR_PTR(ret);
3470	goto out;
3471}
3472EXPORT_SYMBOL_GPL(regulator_register);
3473
3474/**
3475 * regulator_unregister - unregister regulator
3476 * @rdev: regulator to unregister
3477 *
3478 * Called by regulator drivers to unregister a regulator.
3479 */
3480void regulator_unregister(struct regulator_dev *rdev)
3481{
3482	if (rdev == NULL)
3483		return;
3484
3485	if (rdev->supply)
3486		regulator_put(rdev->supply);
3487	mutex_lock(&regulator_list_mutex);
3488	debugfs_remove_recursive(rdev->debugfs);
3489	flush_work(&rdev->disable_work.work);
3490	WARN_ON(rdev->open_count);
3491	unset_regulator_supplies(rdev);
3492	list_del(&rdev->list);
3493	kfree(rdev->constraints);
3494	if (rdev->ena_gpio)
3495		gpio_free(rdev->ena_gpio);
3496	device_unregister(&rdev->dev);
3497	mutex_unlock(&regulator_list_mutex);
3498}
3499EXPORT_SYMBOL_GPL(regulator_unregister);
3500
3501/**
3502 * regulator_suspend_prepare - prepare regulators for system wide suspend
3503 * @state: system suspend state
3504 *
3505 * Configure each regulator with it's suspend operating parameters for state.
3506 * This will usually be called by machine suspend code prior to supending.
3507 */
3508int regulator_suspend_prepare(suspend_state_t state)
3509{
3510	struct regulator_dev *rdev;
3511	int ret = 0;
3512
3513	/* ON is handled by regulator active state */
3514	if (state == PM_SUSPEND_ON)
3515		return -EINVAL;
3516
3517	mutex_lock(&regulator_list_mutex);
3518	list_for_each_entry(rdev, &regulator_list, list) {
3519
3520		mutex_lock(&rdev->mutex);
3521		ret = suspend_prepare(rdev, state);
3522		mutex_unlock(&rdev->mutex);
3523
3524		if (ret < 0) {
3525			rdev_err(rdev, "failed to prepare\n");
3526			goto out;
3527		}
3528	}
3529out:
3530	mutex_unlock(&regulator_list_mutex);
3531	return ret;
3532}
3533EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3534
3535/**
3536 * regulator_suspend_finish - resume regulators from system wide suspend
3537 *
3538 * Turn on regulators that might be turned off by regulator_suspend_prepare
3539 * and that should be turned on according to the regulators properties.
3540 */
3541int regulator_suspend_finish(void)
3542{
3543	struct regulator_dev *rdev;
3544	int ret = 0, error;
3545
3546	mutex_lock(&regulator_list_mutex);
3547	list_for_each_entry(rdev, &regulator_list, list) {
3548		struct regulator_ops *ops = rdev->desc->ops;
3549
3550		mutex_lock(&rdev->mutex);
3551		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3552				ops->enable) {
3553			error = ops->enable(rdev);
3554			if (error)
3555				ret = error;
3556		} else {
3557			if (!has_full_constraints)
3558				goto unlock;
3559			if (!ops->disable)
3560				goto unlock;
3561			if (!_regulator_is_enabled(rdev))
3562				goto unlock;
3563
3564			error = ops->disable(rdev);
3565			if (error)
3566				ret = error;
3567		}
3568unlock:
3569		mutex_unlock(&rdev->mutex);
3570	}
3571	mutex_unlock(&regulator_list_mutex);
3572	return ret;
3573}
3574EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3575
3576/**
3577 * regulator_has_full_constraints - the system has fully specified constraints
3578 *
3579 * Calling this function will cause the regulator API to disable all
3580 * regulators which have a zero use count and don't have an always_on
3581 * constraint in a late_initcall.
3582 *
3583 * The intention is that this will become the default behaviour in a
3584 * future kernel release so users are encouraged to use this facility
3585 * now.
3586 */
3587void regulator_has_full_constraints(void)
3588{
3589	has_full_constraints = 1;
3590}
3591EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3592
3593/**
3594 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3595 *
3596 * Calling this function will cause the regulator API to provide a
3597 * dummy regulator to consumers if no physical regulator is found,
3598 * allowing most consumers to proceed as though a regulator were
3599 * configured.  This allows systems such as those with software
3600 * controllable regulators for the CPU core only to be brought up more
3601 * readily.
3602 */
3603void regulator_use_dummy_regulator(void)
3604{
3605	board_wants_dummy_regulator = true;
3606}
3607EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3608
3609/**
3610 * rdev_get_drvdata - get rdev regulator driver data
3611 * @rdev: regulator
3612 *
3613 * Get rdev regulator driver private data. This call can be used in the
3614 * regulator driver context.
3615 */
3616void *rdev_get_drvdata(struct regulator_dev *rdev)
3617{
3618	return rdev->reg_data;
3619}
3620EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3621
3622/**
3623 * regulator_get_drvdata - get regulator driver data
3624 * @regulator: regulator
3625 *
3626 * Get regulator driver private data. This call can be used in the consumer
3627 * driver context when non API regulator specific functions need to be called.
3628 */
3629void *regulator_get_drvdata(struct regulator *regulator)
3630{
3631	return regulator->rdev->reg_data;
3632}
3633EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3634
3635/**
3636 * regulator_set_drvdata - set regulator driver data
3637 * @regulator: regulator
3638 * @data: data
3639 */
3640void regulator_set_drvdata(struct regulator *regulator, void *data)
3641{
3642	regulator->rdev->reg_data = data;
3643}
3644EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3645
3646/**
3647 * regulator_get_id - get regulator ID
3648 * @rdev: regulator
3649 */
3650int rdev_get_id(struct regulator_dev *rdev)
3651{
3652	return rdev->desc->id;
3653}
3654EXPORT_SYMBOL_GPL(rdev_get_id);
3655
3656struct device *rdev_get_dev(struct regulator_dev *rdev)
3657{
3658	return &rdev->dev;
3659}
3660EXPORT_SYMBOL_GPL(rdev_get_dev);
3661
3662void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3663{
3664	return reg_init_data->driver_data;
3665}
3666EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3667
3668#ifdef CONFIG_DEBUG_FS
3669static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3670				    size_t count, loff_t *ppos)
3671{
3672	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3673	ssize_t len, ret = 0;
3674	struct regulator_map *map;
3675
3676	if (!buf)
3677		return -ENOMEM;
3678
3679	list_for_each_entry(map, &regulator_map_list, list) {
3680		len = snprintf(buf + ret, PAGE_SIZE - ret,
3681			       "%s -> %s.%s\n",
3682			       rdev_get_name(map->regulator), map->dev_name,
3683			       map->supply);
3684		if (len >= 0)
3685			ret += len;
3686		if (ret > PAGE_SIZE) {
3687			ret = PAGE_SIZE;
3688			break;
3689		}
3690	}
3691
3692	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3693
3694	kfree(buf);
3695
3696	return ret;
3697}
3698#endif
3699
3700static const struct file_operations supply_map_fops = {
3701#ifdef CONFIG_DEBUG_FS
3702	.read = supply_map_read_file,
3703	.llseek = default_llseek,
3704#endif
3705};
3706
3707static int __init regulator_init(void)
3708{
3709	int ret;
3710
3711	ret = class_register(&regulator_class);
3712
3713	debugfs_root = debugfs_create_dir("regulator", NULL);
3714	if (!debugfs_root)
3715		pr_warn("regulator: Failed to create debugfs directory\n");
3716
3717	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3718			    &supply_map_fops);
3719
3720	regulator_dummy_init();
3721
3722	return ret;
3723}
3724
3725/* init early to allow our consumers to complete system booting */
3726core_initcall(regulator_init);
3727
3728static int __init regulator_init_complete(void)
3729{
3730	struct regulator_dev *rdev;
3731	struct regulator_ops *ops;
3732	struct regulation_constraints *c;
3733	int enabled, ret;
3734
3735	/*
3736	 * Since DT doesn't provide an idiomatic mechanism for
3737	 * enabling full constraints and since it's much more natural
3738	 * with DT to provide them just assume that a DT enabled
3739	 * system has full constraints.
3740	 */
3741	if (of_have_populated_dt())
3742		has_full_constraints = true;
3743
3744	mutex_lock(&regulator_list_mutex);
3745
3746	/* If we have a full configuration then disable any regulators
3747	 * which are not in use or always_on.  This will become the
3748	 * default behaviour in the future.
3749	 */
3750	list_for_each_entry(rdev, &regulator_list, list) {
3751		ops = rdev->desc->ops;
3752		c = rdev->constraints;
3753
3754		if (!ops->disable || (c && c->always_on))
3755			continue;
3756
3757		mutex_lock(&rdev->mutex);
3758
3759		if (rdev->use_count)
3760			goto unlock;
3761
3762		/* If we can't read the status assume it's on. */
3763		if (ops->is_enabled)
3764			enabled = ops->is_enabled(rdev);
3765		else
3766			enabled = 1;
3767
3768		if (!enabled)
3769			goto unlock;
3770
3771		if (has_full_constraints) {
3772			/* We log since this may kill the system if it
3773			 * goes wrong. */
3774			rdev_info(rdev, "disabling\n");
3775			ret = ops->disable(rdev);
3776			if (ret != 0) {
3777				rdev_err(rdev, "couldn't disable: %d\n", ret);
3778			}
3779		} else {
3780			/* The intention is that in future we will
3781			 * assume that full constraints are provided
3782			 * so warn even if we aren't going to do
3783			 * anything here.
3784			 */
3785			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3786		}
3787
3788unlock:
3789		mutex_unlock(&rdev->mutex);
3790	}
3791
3792	mutex_unlock(&regulator_list_mutex);
3793
3794	return 0;
3795}
3796late_initcall(regulator_init_complete);
3797