core.c revision df36793115b4f68181877a1c89bac54feadd965d
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV)
203		return -EINVAL;
204
205	return 0;
206}
207
208/* current constraint check */
209static int regulator_check_current_limit(struct regulator_dev *rdev,
210					int *min_uA, int *max_uA)
211{
212	BUG_ON(*min_uA > *max_uA);
213
214	if (!rdev->constraints) {
215		rdev_err(rdev, "no constraints\n");
216		return -ENODEV;
217	}
218	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219		rdev_err(rdev, "operation not allowed\n");
220		return -EPERM;
221	}
222
223	if (*max_uA > rdev->constraints->max_uA)
224		*max_uA = rdev->constraints->max_uA;
225	if (*min_uA < rdev->constraints->min_uA)
226		*min_uA = rdev->constraints->min_uA;
227
228	if (*min_uA > *max_uA) {
229		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230			 *min_uA, *max_uA);
231		return -EINVAL;
232	}
233
234	return 0;
235}
236
237/* operating mode constraint check */
238static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239{
240	switch (*mode) {
241	case REGULATOR_MODE_FAST:
242	case REGULATOR_MODE_NORMAL:
243	case REGULATOR_MODE_IDLE:
244	case REGULATOR_MODE_STANDBY:
245		break;
246	default:
247		rdev_err(rdev, "invalid mode %x specified\n", *mode);
248		return -EINVAL;
249	}
250
251	if (!rdev->constraints) {
252		rdev_err(rdev, "no constraints\n");
253		return -ENODEV;
254	}
255	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256		rdev_err(rdev, "operation not allowed\n");
257		return -EPERM;
258	}
259
260	/* The modes are bitmasks, the most power hungry modes having
261	 * the lowest values. If the requested mode isn't supported
262	 * try higher modes. */
263	while (*mode) {
264		if (rdev->constraints->valid_modes_mask & *mode)
265			return 0;
266		*mode /= 2;
267	}
268
269	return -EINVAL;
270}
271
272/* dynamic regulator mode switching constraint check */
273static int regulator_check_drms(struct regulator_dev *rdev)
274{
275	if (!rdev->constraints) {
276		rdev_err(rdev, "no constraints\n");
277		return -ENODEV;
278	}
279	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280		rdev_err(rdev, "operation not allowed\n");
281		return -EPERM;
282	}
283	return 0;
284}
285
286static ssize_t regulator_uV_show(struct device *dev,
287				struct device_attribute *attr, char *buf)
288{
289	struct regulator_dev *rdev = dev_get_drvdata(dev);
290	ssize_t ret;
291
292	mutex_lock(&rdev->mutex);
293	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294	mutex_unlock(&rdev->mutex);
295
296	return ret;
297}
298static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300static ssize_t regulator_uA_show(struct device *dev,
301				struct device_attribute *attr, char *buf)
302{
303	struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306}
307static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309static ssize_t regulator_name_show(struct device *dev,
310			     struct device_attribute *attr, char *buf)
311{
312	struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314	return sprintf(buf, "%s\n", rdev_get_name(rdev));
315}
316
317static ssize_t regulator_print_opmode(char *buf, int mode)
318{
319	switch (mode) {
320	case REGULATOR_MODE_FAST:
321		return sprintf(buf, "fast\n");
322	case REGULATOR_MODE_NORMAL:
323		return sprintf(buf, "normal\n");
324	case REGULATOR_MODE_IDLE:
325		return sprintf(buf, "idle\n");
326	case REGULATOR_MODE_STANDBY:
327		return sprintf(buf, "standby\n");
328	}
329	return sprintf(buf, "unknown\n");
330}
331
332static ssize_t regulator_opmode_show(struct device *dev,
333				    struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338}
339static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341static ssize_t regulator_print_state(char *buf, int state)
342{
343	if (state > 0)
344		return sprintf(buf, "enabled\n");
345	else if (state == 0)
346		return sprintf(buf, "disabled\n");
347	else
348		return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_state_show(struct device *dev,
352				   struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355	ssize_t ret;
356
357	mutex_lock(&rdev->mutex);
358	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359	mutex_unlock(&rdev->mutex);
360
361	return ret;
362}
363static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365static ssize_t regulator_status_show(struct device *dev,
366				   struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369	int status;
370	char *label;
371
372	status = rdev->desc->ops->get_status(rdev);
373	if (status < 0)
374		return status;
375
376	switch (status) {
377	case REGULATOR_STATUS_OFF:
378		label = "off";
379		break;
380	case REGULATOR_STATUS_ON:
381		label = "on";
382		break;
383	case REGULATOR_STATUS_ERROR:
384		label = "error";
385		break;
386	case REGULATOR_STATUS_FAST:
387		label = "fast";
388		break;
389	case REGULATOR_STATUS_NORMAL:
390		label = "normal";
391		break;
392	case REGULATOR_STATUS_IDLE:
393		label = "idle";
394		break;
395	case REGULATOR_STATUS_STANDBY:
396		label = "standby";
397		break;
398	case REGULATOR_STATUS_BYPASS:
399		label = "bypass";
400		break;
401	case REGULATOR_STATUS_UNDEFINED:
402		label = "undefined";
403		break;
404	default:
405		return -ERANGE;
406	}
407
408	return sprintf(buf, "%s\n", label);
409}
410static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412static ssize_t regulator_min_uA_show(struct device *dev,
413				    struct device_attribute *attr, char *buf)
414{
415	struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417	if (!rdev->constraints)
418		return sprintf(buf, "constraint not defined\n");
419
420	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421}
422static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424static ssize_t regulator_max_uA_show(struct device *dev,
425				    struct device_attribute *attr, char *buf)
426{
427	struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429	if (!rdev->constraints)
430		return sprintf(buf, "constraint not defined\n");
431
432	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433}
434static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436static ssize_t regulator_min_uV_show(struct device *dev,
437				    struct device_attribute *attr, char *buf)
438{
439	struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441	if (!rdev->constraints)
442		return sprintf(buf, "constraint not defined\n");
443
444	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445}
446static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448static ssize_t regulator_max_uV_show(struct device *dev,
449				    struct device_attribute *attr, char *buf)
450{
451	struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453	if (!rdev->constraints)
454		return sprintf(buf, "constraint not defined\n");
455
456	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457}
458static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460static ssize_t regulator_total_uA_show(struct device *dev,
461				      struct device_attribute *attr, char *buf)
462{
463	struct regulator_dev *rdev = dev_get_drvdata(dev);
464	struct regulator *regulator;
465	int uA = 0;
466
467	mutex_lock(&rdev->mutex);
468	list_for_each_entry(regulator, &rdev->consumer_list, list)
469		uA += regulator->uA_load;
470	mutex_unlock(&rdev->mutex);
471	return sprintf(buf, "%d\n", uA);
472}
473static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475static ssize_t regulator_num_users_show(struct device *dev,
476				      struct device_attribute *attr, char *buf)
477{
478	struct regulator_dev *rdev = dev_get_drvdata(dev);
479	return sprintf(buf, "%d\n", rdev->use_count);
480}
481
482static ssize_t regulator_type_show(struct device *dev,
483				  struct device_attribute *attr, char *buf)
484{
485	struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487	switch (rdev->desc->type) {
488	case REGULATOR_VOLTAGE:
489		return sprintf(buf, "voltage\n");
490	case REGULATOR_CURRENT:
491		return sprintf(buf, "current\n");
492	}
493	return sprintf(buf, "unknown\n");
494}
495
496static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497				struct device_attribute *attr, char *buf)
498{
499	struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502}
503static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504		regulator_suspend_mem_uV_show, NULL);
505
506static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507				struct device_attribute *attr, char *buf)
508{
509	struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512}
513static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514		regulator_suspend_disk_uV_show, NULL);
515
516static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517				struct device_attribute *attr, char *buf)
518{
519	struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522}
523static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524		regulator_suspend_standby_uV_show, NULL);
525
526static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527				struct device_attribute *attr, char *buf)
528{
529	struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531	return regulator_print_opmode(buf,
532		rdev->constraints->state_mem.mode);
533}
534static DEVICE_ATTR(suspend_mem_mode, 0444,
535		regulator_suspend_mem_mode_show, NULL);
536
537static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538				struct device_attribute *attr, char *buf)
539{
540	struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542	return regulator_print_opmode(buf,
543		rdev->constraints->state_disk.mode);
544}
545static DEVICE_ATTR(suspend_disk_mode, 0444,
546		regulator_suspend_disk_mode_show, NULL);
547
548static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549				struct device_attribute *attr, char *buf)
550{
551	struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553	return regulator_print_opmode(buf,
554		rdev->constraints->state_standby.mode);
555}
556static DEVICE_ATTR(suspend_standby_mode, 0444,
557		regulator_suspend_standby_mode_show, NULL);
558
559static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560				   struct device_attribute *attr, char *buf)
561{
562	struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564	return regulator_print_state(buf,
565			rdev->constraints->state_mem.enabled);
566}
567static DEVICE_ATTR(suspend_mem_state, 0444,
568		regulator_suspend_mem_state_show, NULL);
569
570static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571				   struct device_attribute *attr, char *buf)
572{
573	struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575	return regulator_print_state(buf,
576			rdev->constraints->state_disk.enabled);
577}
578static DEVICE_ATTR(suspend_disk_state, 0444,
579		regulator_suspend_disk_state_show, NULL);
580
581static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582				   struct device_attribute *attr, char *buf)
583{
584	struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586	return regulator_print_state(buf,
587			rdev->constraints->state_standby.enabled);
588}
589static DEVICE_ATTR(suspend_standby_state, 0444,
590		regulator_suspend_standby_state_show, NULL);
591
592static ssize_t regulator_bypass_show(struct device *dev,
593				     struct device_attribute *attr, char *buf)
594{
595	struct regulator_dev *rdev = dev_get_drvdata(dev);
596	const char *report;
597	bool bypass;
598	int ret;
599
600	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602	if (ret != 0)
603		report = "unknown";
604	else if (bypass)
605		report = "enabled";
606	else
607		report = "disabled";
608
609	return sprintf(buf, "%s\n", report);
610}
611static DEVICE_ATTR(bypass, 0444,
612		   regulator_bypass_show, NULL);
613
614/*
615 * These are the only attributes are present for all regulators.
616 * Other attributes are a function of regulator functionality.
617 */
618static struct device_attribute regulator_dev_attrs[] = {
619	__ATTR(name, 0444, regulator_name_show, NULL),
620	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
621	__ATTR(type, 0444, regulator_type_show, NULL),
622	__ATTR_NULL,
623};
624
625static void regulator_dev_release(struct device *dev)
626{
627	struct regulator_dev *rdev = dev_get_drvdata(dev);
628	kfree(rdev);
629}
630
631static struct class regulator_class = {
632	.name = "regulator",
633	.dev_release = regulator_dev_release,
634	.dev_attrs = regulator_dev_attrs,
635};
636
637/* Calculate the new optimum regulator operating mode based on the new total
638 * consumer load. All locks held by caller */
639static void drms_uA_update(struct regulator_dev *rdev)
640{
641	struct regulator *sibling;
642	int current_uA = 0, output_uV, input_uV, err;
643	unsigned int mode;
644
645	err = regulator_check_drms(rdev);
646	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647	    (!rdev->desc->ops->get_voltage &&
648	     !rdev->desc->ops->get_voltage_sel) ||
649	    !rdev->desc->ops->set_mode)
650		return;
651
652	/* get output voltage */
653	output_uV = _regulator_get_voltage(rdev);
654	if (output_uV <= 0)
655		return;
656
657	/* get input voltage */
658	input_uV = 0;
659	if (rdev->supply)
660		input_uV = regulator_get_voltage(rdev->supply);
661	if (input_uV <= 0)
662		input_uV = rdev->constraints->input_uV;
663	if (input_uV <= 0)
664		return;
665
666	/* calc total requested load */
667	list_for_each_entry(sibling, &rdev->consumer_list, list)
668		current_uA += sibling->uA_load;
669
670	/* now get the optimum mode for our new total regulator load */
671	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672						  output_uV, current_uA);
673
674	/* check the new mode is allowed */
675	err = regulator_mode_constrain(rdev, &mode);
676	if (err == 0)
677		rdev->desc->ops->set_mode(rdev, mode);
678}
679
680static int suspend_set_state(struct regulator_dev *rdev,
681	struct regulator_state *rstate)
682{
683	int ret = 0;
684
685	/* If we have no suspend mode configration don't set anything;
686	 * only warn if the driver implements set_suspend_voltage or
687	 * set_suspend_mode callback.
688	 */
689	if (!rstate->enabled && !rstate->disabled) {
690		if (rdev->desc->ops->set_suspend_voltage ||
691		    rdev->desc->ops->set_suspend_mode)
692			rdev_warn(rdev, "No configuration\n");
693		return 0;
694	}
695
696	if (rstate->enabled && rstate->disabled) {
697		rdev_err(rdev, "invalid configuration\n");
698		return -EINVAL;
699	}
700
701	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702		ret = rdev->desc->ops->set_suspend_enable(rdev);
703	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704		ret = rdev->desc->ops->set_suspend_disable(rdev);
705	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706		ret = 0;
707
708	if (ret < 0) {
709		rdev_err(rdev, "failed to enabled/disable\n");
710		return ret;
711	}
712
713	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715		if (ret < 0) {
716			rdev_err(rdev, "failed to set voltage\n");
717			return ret;
718		}
719	}
720
721	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723		if (ret < 0) {
724			rdev_err(rdev, "failed to set mode\n");
725			return ret;
726		}
727	}
728	return ret;
729}
730
731/* locks held by caller */
732static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733{
734	if (!rdev->constraints)
735		return -EINVAL;
736
737	switch (state) {
738	case PM_SUSPEND_STANDBY:
739		return suspend_set_state(rdev,
740			&rdev->constraints->state_standby);
741	case PM_SUSPEND_MEM:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_mem);
744	case PM_SUSPEND_MAX:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_disk);
747	default:
748		return -EINVAL;
749	}
750}
751
752static void print_constraints(struct regulator_dev *rdev)
753{
754	struct regulation_constraints *constraints = rdev->constraints;
755	char buf[80] = "";
756	int count = 0;
757	int ret;
758
759	if (constraints->min_uV && constraints->max_uV) {
760		if (constraints->min_uV == constraints->max_uV)
761			count += sprintf(buf + count, "%d mV ",
762					 constraints->min_uV / 1000);
763		else
764			count += sprintf(buf + count, "%d <--> %d mV ",
765					 constraints->min_uV / 1000,
766					 constraints->max_uV / 1000);
767	}
768
769	if (!constraints->min_uV ||
770	    constraints->min_uV != constraints->max_uV) {
771		ret = _regulator_get_voltage(rdev);
772		if (ret > 0)
773			count += sprintf(buf + count, "at %d mV ", ret / 1000);
774	}
775
776	if (constraints->uV_offset)
777		count += sprintf(buf, "%dmV offset ",
778				 constraints->uV_offset / 1000);
779
780	if (constraints->min_uA && constraints->max_uA) {
781		if (constraints->min_uA == constraints->max_uA)
782			count += sprintf(buf + count, "%d mA ",
783					 constraints->min_uA / 1000);
784		else
785			count += sprintf(buf + count, "%d <--> %d mA ",
786					 constraints->min_uA / 1000,
787					 constraints->max_uA / 1000);
788	}
789
790	if (!constraints->min_uA ||
791	    constraints->min_uA != constraints->max_uA) {
792		ret = _regulator_get_current_limit(rdev);
793		if (ret > 0)
794			count += sprintf(buf + count, "at %d mA ", ret / 1000);
795	}
796
797	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798		count += sprintf(buf + count, "fast ");
799	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800		count += sprintf(buf + count, "normal ");
801	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802		count += sprintf(buf + count, "idle ");
803	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804		count += sprintf(buf + count, "standby");
805
806	rdev_info(rdev, "%s\n", buf);
807
808	if ((constraints->min_uV != constraints->max_uV) &&
809	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
810		rdev_warn(rdev,
811			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
812}
813
814static int machine_constraints_voltage(struct regulator_dev *rdev,
815	struct regulation_constraints *constraints)
816{
817	struct regulator_ops *ops = rdev->desc->ops;
818	int ret;
819
820	/* do we need to apply the constraint voltage */
821	if (rdev->constraints->apply_uV &&
822	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
823		ret = _regulator_do_set_voltage(rdev,
824						rdev->constraints->min_uV,
825						rdev->constraints->max_uV);
826		if (ret < 0) {
827			rdev_err(rdev, "failed to apply %duV constraint\n",
828				 rdev->constraints->min_uV);
829			return ret;
830		}
831	}
832
833	/* constrain machine-level voltage specs to fit
834	 * the actual range supported by this regulator.
835	 */
836	if (ops->list_voltage && rdev->desc->n_voltages) {
837		int	count = rdev->desc->n_voltages;
838		int	i;
839		int	min_uV = INT_MAX;
840		int	max_uV = INT_MIN;
841		int	cmin = constraints->min_uV;
842		int	cmax = constraints->max_uV;
843
844		/* it's safe to autoconfigure fixed-voltage supplies
845		   and the constraints are used by list_voltage. */
846		if (count == 1 && !cmin) {
847			cmin = 1;
848			cmax = INT_MAX;
849			constraints->min_uV = cmin;
850			constraints->max_uV = cmax;
851		}
852
853		/* voltage constraints are optional */
854		if ((cmin == 0) && (cmax == 0))
855			return 0;
856
857		/* else require explicit machine-level constraints */
858		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
859			rdev_err(rdev, "invalid voltage constraints\n");
860			return -EINVAL;
861		}
862
863		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
864		for (i = 0; i < count; i++) {
865			int	value;
866
867			value = ops->list_voltage(rdev, i);
868			if (value <= 0)
869				continue;
870
871			/* maybe adjust [min_uV..max_uV] */
872			if (value >= cmin && value < min_uV)
873				min_uV = value;
874			if (value <= cmax && value > max_uV)
875				max_uV = value;
876		}
877
878		/* final: [min_uV..max_uV] valid iff constraints valid */
879		if (max_uV < min_uV) {
880			rdev_err(rdev, "unsupportable voltage constraints\n");
881			return -EINVAL;
882		}
883
884		/* use regulator's subset of machine constraints */
885		if (constraints->min_uV < min_uV) {
886			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
887				 constraints->min_uV, min_uV);
888			constraints->min_uV = min_uV;
889		}
890		if (constraints->max_uV > max_uV) {
891			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
892				 constraints->max_uV, max_uV);
893			constraints->max_uV = max_uV;
894		}
895	}
896
897	return 0;
898}
899
900/**
901 * set_machine_constraints - sets regulator constraints
902 * @rdev: regulator source
903 * @constraints: constraints to apply
904 *
905 * Allows platform initialisation code to define and constrain
906 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
907 * Constraints *must* be set by platform code in order for some
908 * regulator operations to proceed i.e. set_voltage, set_current_limit,
909 * set_mode.
910 */
911static int set_machine_constraints(struct regulator_dev *rdev,
912	const struct regulation_constraints *constraints)
913{
914	int ret = 0;
915	struct regulator_ops *ops = rdev->desc->ops;
916
917	if (constraints)
918		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
919					    GFP_KERNEL);
920	else
921		rdev->constraints = kzalloc(sizeof(*constraints),
922					    GFP_KERNEL);
923	if (!rdev->constraints)
924		return -ENOMEM;
925
926	ret = machine_constraints_voltage(rdev, rdev->constraints);
927	if (ret != 0)
928		goto out;
929
930	/* do we need to setup our suspend state */
931	if (rdev->constraints->initial_state) {
932		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
933		if (ret < 0) {
934			rdev_err(rdev, "failed to set suspend state\n");
935			goto out;
936		}
937	}
938
939	if (rdev->constraints->initial_mode) {
940		if (!ops->set_mode) {
941			rdev_err(rdev, "no set_mode operation\n");
942			ret = -EINVAL;
943			goto out;
944		}
945
946		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
947		if (ret < 0) {
948			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
949			goto out;
950		}
951	}
952
953	/* If the constraints say the regulator should be on at this point
954	 * and we have control then make sure it is enabled.
955	 */
956	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
957	    ops->enable) {
958		ret = ops->enable(rdev);
959		if (ret < 0) {
960			rdev_err(rdev, "failed to enable\n");
961			goto out;
962		}
963	}
964
965	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
966		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
967		if (ret < 0) {
968			rdev_err(rdev, "failed to set ramp_delay\n");
969			goto out;
970		}
971	}
972
973	print_constraints(rdev);
974	return 0;
975out:
976	kfree(rdev->constraints);
977	rdev->constraints = NULL;
978	return ret;
979}
980
981/**
982 * set_supply - set regulator supply regulator
983 * @rdev: regulator name
984 * @supply_rdev: supply regulator name
985 *
986 * Called by platform initialisation code to set the supply regulator for this
987 * regulator. This ensures that a regulators supply will also be enabled by the
988 * core if it's child is enabled.
989 */
990static int set_supply(struct regulator_dev *rdev,
991		      struct regulator_dev *supply_rdev)
992{
993	int err;
994
995	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
996
997	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
998	if (rdev->supply == NULL) {
999		err = -ENOMEM;
1000		return err;
1001	}
1002
1003	return 0;
1004}
1005
1006/**
1007 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1008 * @rdev:         regulator source
1009 * @consumer_dev_name: dev_name() string for device supply applies to
1010 * @supply:       symbolic name for supply
1011 *
1012 * Allows platform initialisation code to map physical regulator
1013 * sources to symbolic names for supplies for use by devices.  Devices
1014 * should use these symbolic names to request regulators, avoiding the
1015 * need to provide board-specific regulator names as platform data.
1016 */
1017static int set_consumer_device_supply(struct regulator_dev *rdev,
1018				      const char *consumer_dev_name,
1019				      const char *supply)
1020{
1021	struct regulator_map *node;
1022	int has_dev;
1023
1024	if (supply == NULL)
1025		return -EINVAL;
1026
1027	if (consumer_dev_name != NULL)
1028		has_dev = 1;
1029	else
1030		has_dev = 0;
1031
1032	list_for_each_entry(node, &regulator_map_list, list) {
1033		if (node->dev_name && consumer_dev_name) {
1034			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1035				continue;
1036		} else if (node->dev_name || consumer_dev_name) {
1037			continue;
1038		}
1039
1040		if (strcmp(node->supply, supply) != 0)
1041			continue;
1042
1043		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1044			 consumer_dev_name,
1045			 dev_name(&node->regulator->dev),
1046			 node->regulator->desc->name,
1047			 supply,
1048			 dev_name(&rdev->dev), rdev_get_name(rdev));
1049		return -EBUSY;
1050	}
1051
1052	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1053	if (node == NULL)
1054		return -ENOMEM;
1055
1056	node->regulator = rdev;
1057	node->supply = supply;
1058
1059	if (has_dev) {
1060		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1061		if (node->dev_name == NULL) {
1062			kfree(node);
1063			return -ENOMEM;
1064		}
1065	}
1066
1067	list_add(&node->list, &regulator_map_list);
1068	return 0;
1069}
1070
1071static void unset_regulator_supplies(struct regulator_dev *rdev)
1072{
1073	struct regulator_map *node, *n;
1074
1075	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1076		if (rdev == node->regulator) {
1077			list_del(&node->list);
1078			kfree(node->dev_name);
1079			kfree(node);
1080		}
1081	}
1082}
1083
1084#define REG_STR_SIZE	64
1085
1086static struct regulator *create_regulator(struct regulator_dev *rdev,
1087					  struct device *dev,
1088					  const char *supply_name)
1089{
1090	struct regulator *regulator;
1091	char buf[REG_STR_SIZE];
1092	int err, size;
1093
1094	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1095	if (regulator == NULL)
1096		return NULL;
1097
1098	mutex_lock(&rdev->mutex);
1099	regulator->rdev = rdev;
1100	list_add(&regulator->list, &rdev->consumer_list);
1101
1102	if (dev) {
1103		regulator->dev = dev;
1104
1105		/* Add a link to the device sysfs entry */
1106		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1107				 dev->kobj.name, supply_name);
1108		if (size >= REG_STR_SIZE)
1109			goto overflow_err;
1110
1111		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1112		if (regulator->supply_name == NULL)
1113			goto overflow_err;
1114
1115		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1116					buf);
1117		if (err) {
1118			rdev_warn(rdev, "could not add device link %s err %d\n",
1119				  dev->kobj.name, err);
1120			/* non-fatal */
1121		}
1122	} else {
1123		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1124		if (regulator->supply_name == NULL)
1125			goto overflow_err;
1126	}
1127
1128	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1129						rdev->debugfs);
1130	if (!regulator->debugfs) {
1131		rdev_warn(rdev, "Failed to create debugfs directory\n");
1132	} else {
1133		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1134				   &regulator->uA_load);
1135		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1136				   &regulator->min_uV);
1137		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1138				   &regulator->max_uV);
1139	}
1140
1141	/*
1142	 * Check now if the regulator is an always on regulator - if
1143	 * it is then we don't need to do nearly so much work for
1144	 * enable/disable calls.
1145	 */
1146	if (!_regulator_can_change_status(rdev) &&
1147	    _regulator_is_enabled(rdev))
1148		regulator->always_on = true;
1149
1150	mutex_unlock(&rdev->mutex);
1151	return regulator;
1152overflow_err:
1153	list_del(&regulator->list);
1154	kfree(regulator);
1155	mutex_unlock(&rdev->mutex);
1156	return NULL;
1157}
1158
1159static int _regulator_get_enable_time(struct regulator_dev *rdev)
1160{
1161	if (!rdev->desc->ops->enable_time)
1162		return rdev->desc->enable_time;
1163	return rdev->desc->ops->enable_time(rdev);
1164}
1165
1166static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1167						  const char *supply,
1168						  int *ret)
1169{
1170	struct regulator_dev *r;
1171	struct device_node *node;
1172	struct regulator_map *map;
1173	const char *devname = NULL;
1174
1175	/* first do a dt based lookup */
1176	if (dev && dev->of_node) {
1177		node = of_get_regulator(dev, supply);
1178		if (node) {
1179			list_for_each_entry(r, &regulator_list, list)
1180				if (r->dev.parent &&
1181					node == r->dev.of_node)
1182					return r;
1183		} else {
1184			/*
1185			 * If we couldn't even get the node then it's
1186			 * not just that the device didn't register
1187			 * yet, there's no node and we'll never
1188			 * succeed.
1189			 */
1190			*ret = -ENODEV;
1191		}
1192	}
1193
1194	/* if not found, try doing it non-dt way */
1195	if (dev)
1196		devname = dev_name(dev);
1197
1198	list_for_each_entry(r, &regulator_list, list)
1199		if (strcmp(rdev_get_name(r), supply) == 0)
1200			return r;
1201
1202	list_for_each_entry(map, &regulator_map_list, list) {
1203		/* If the mapping has a device set up it must match */
1204		if (map->dev_name &&
1205		    (!devname || strcmp(map->dev_name, devname)))
1206			continue;
1207
1208		if (strcmp(map->supply, supply) == 0)
1209			return map->regulator;
1210	}
1211
1212
1213	return NULL;
1214}
1215
1216/* Internal regulator request function */
1217static struct regulator *_regulator_get(struct device *dev, const char *id,
1218					int exclusive)
1219{
1220	struct regulator_dev *rdev;
1221	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1222	const char *devname = NULL;
1223	int ret;
1224
1225	if (id == NULL) {
1226		pr_err("get() with no identifier\n");
1227		return regulator;
1228	}
1229
1230	if (dev)
1231		devname = dev_name(dev);
1232
1233	mutex_lock(&regulator_list_mutex);
1234
1235	rdev = regulator_dev_lookup(dev, id, &ret);
1236	if (rdev)
1237		goto found;
1238
1239	if (board_wants_dummy_regulator) {
1240		rdev = dummy_regulator_rdev;
1241		goto found;
1242	}
1243
1244#ifdef CONFIG_REGULATOR_DUMMY
1245	if (!devname)
1246		devname = "deviceless";
1247
1248	/* If the board didn't flag that it was fully constrained then
1249	 * substitute in a dummy regulator so consumers can continue.
1250	 */
1251	if (!has_full_constraints) {
1252		pr_warn("%s supply %s not found, using dummy regulator\n",
1253			devname, id);
1254		rdev = dummy_regulator_rdev;
1255		goto found;
1256	}
1257#endif
1258
1259	mutex_unlock(&regulator_list_mutex);
1260	return regulator;
1261
1262found:
1263	if (rdev->exclusive) {
1264		regulator = ERR_PTR(-EPERM);
1265		goto out;
1266	}
1267
1268	if (exclusive && rdev->open_count) {
1269		regulator = ERR_PTR(-EBUSY);
1270		goto out;
1271	}
1272
1273	if (!try_module_get(rdev->owner))
1274		goto out;
1275
1276	regulator = create_regulator(rdev, dev, id);
1277	if (regulator == NULL) {
1278		regulator = ERR_PTR(-ENOMEM);
1279		module_put(rdev->owner);
1280		goto out;
1281	}
1282
1283	rdev->open_count++;
1284	if (exclusive) {
1285		rdev->exclusive = 1;
1286
1287		ret = _regulator_is_enabled(rdev);
1288		if (ret > 0)
1289			rdev->use_count = 1;
1290		else
1291			rdev->use_count = 0;
1292	}
1293
1294out:
1295	mutex_unlock(&regulator_list_mutex);
1296
1297	return regulator;
1298}
1299
1300/**
1301 * regulator_get - lookup and obtain a reference to a regulator.
1302 * @dev: device for regulator "consumer"
1303 * @id: Supply name or regulator ID.
1304 *
1305 * Returns a struct regulator corresponding to the regulator producer,
1306 * or IS_ERR() condition containing errno.
1307 *
1308 * Use of supply names configured via regulator_set_device_supply() is
1309 * strongly encouraged.  It is recommended that the supply name used
1310 * should match the name used for the supply and/or the relevant
1311 * device pins in the datasheet.
1312 */
1313struct regulator *regulator_get(struct device *dev, const char *id)
1314{
1315	return _regulator_get(dev, id, 0);
1316}
1317EXPORT_SYMBOL_GPL(regulator_get);
1318
1319static void devm_regulator_release(struct device *dev, void *res)
1320{
1321	regulator_put(*(struct regulator **)res);
1322}
1323
1324/**
1325 * devm_regulator_get - Resource managed regulator_get()
1326 * @dev: device for regulator "consumer"
1327 * @id: Supply name or regulator ID.
1328 *
1329 * Managed regulator_get(). Regulators returned from this function are
1330 * automatically regulator_put() on driver detach. See regulator_get() for more
1331 * information.
1332 */
1333struct regulator *devm_regulator_get(struct device *dev, const char *id)
1334{
1335	struct regulator **ptr, *regulator;
1336
1337	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1338	if (!ptr)
1339		return ERR_PTR(-ENOMEM);
1340
1341	regulator = regulator_get(dev, id);
1342	if (!IS_ERR(regulator)) {
1343		*ptr = regulator;
1344		devres_add(dev, ptr);
1345	} else {
1346		devres_free(ptr);
1347	}
1348
1349	return regulator;
1350}
1351EXPORT_SYMBOL_GPL(devm_regulator_get);
1352
1353/**
1354 * regulator_get_exclusive - obtain exclusive access to a regulator.
1355 * @dev: device for regulator "consumer"
1356 * @id: Supply name or regulator ID.
1357 *
1358 * Returns a struct regulator corresponding to the regulator producer,
1359 * or IS_ERR() condition containing errno.  Other consumers will be
1360 * unable to obtain this reference is held and the use count for the
1361 * regulator will be initialised to reflect the current state of the
1362 * regulator.
1363 *
1364 * This is intended for use by consumers which cannot tolerate shared
1365 * use of the regulator such as those which need to force the
1366 * regulator off for correct operation of the hardware they are
1367 * controlling.
1368 *
1369 * Use of supply names configured via regulator_set_device_supply() is
1370 * strongly encouraged.  It is recommended that the supply name used
1371 * should match the name used for the supply and/or the relevant
1372 * device pins in the datasheet.
1373 */
1374struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1375{
1376	return _regulator_get(dev, id, 1);
1377}
1378EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1379
1380/**
1381 * regulator_put - "free" the regulator source
1382 * @regulator: regulator source
1383 *
1384 * Note: drivers must ensure that all regulator_enable calls made on this
1385 * regulator source are balanced by regulator_disable calls prior to calling
1386 * this function.
1387 */
1388void regulator_put(struct regulator *regulator)
1389{
1390	struct regulator_dev *rdev;
1391
1392	if (regulator == NULL || IS_ERR(regulator))
1393		return;
1394
1395	mutex_lock(&regulator_list_mutex);
1396	rdev = regulator->rdev;
1397
1398	debugfs_remove_recursive(regulator->debugfs);
1399
1400	/* remove any sysfs entries */
1401	if (regulator->dev)
1402		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1403	kfree(regulator->supply_name);
1404	list_del(&regulator->list);
1405	kfree(regulator);
1406
1407	rdev->open_count--;
1408	rdev->exclusive = 0;
1409
1410	module_put(rdev->owner);
1411	mutex_unlock(&regulator_list_mutex);
1412}
1413EXPORT_SYMBOL_GPL(regulator_put);
1414
1415static int devm_regulator_match(struct device *dev, void *res, void *data)
1416{
1417	struct regulator **r = res;
1418	if (!r || !*r) {
1419		WARN_ON(!r || !*r);
1420		return 0;
1421	}
1422	return *r == data;
1423}
1424
1425/**
1426 * devm_regulator_put - Resource managed regulator_put()
1427 * @regulator: regulator to free
1428 *
1429 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1430 * this function will not need to be called and the resource management
1431 * code will ensure that the resource is freed.
1432 */
1433void devm_regulator_put(struct regulator *regulator)
1434{
1435	int rc;
1436
1437	rc = devres_release(regulator->dev, devm_regulator_release,
1438			    devm_regulator_match, regulator);
1439	if (rc != 0)
1440		WARN_ON(rc);
1441}
1442EXPORT_SYMBOL_GPL(devm_regulator_put);
1443
1444static int _regulator_do_enable(struct regulator_dev *rdev)
1445{
1446	int ret, delay;
1447
1448	/* Query before enabling in case configuration dependent.  */
1449	ret = _regulator_get_enable_time(rdev);
1450	if (ret >= 0) {
1451		delay = ret;
1452	} else {
1453		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1454		delay = 0;
1455	}
1456
1457	trace_regulator_enable(rdev_get_name(rdev));
1458
1459	if (rdev->ena_gpio) {
1460		gpio_set_value_cansleep(rdev->ena_gpio,
1461					!rdev->ena_gpio_invert);
1462		rdev->ena_gpio_state = 1;
1463	} else if (rdev->desc->ops->enable) {
1464		ret = rdev->desc->ops->enable(rdev);
1465		if (ret < 0)
1466			return ret;
1467	} else {
1468		return -EINVAL;
1469	}
1470
1471	/* Allow the regulator to ramp; it would be useful to extend
1472	 * this for bulk operations so that the regulators can ramp
1473	 * together.  */
1474	trace_regulator_enable_delay(rdev_get_name(rdev));
1475
1476	if (delay >= 1000) {
1477		mdelay(delay / 1000);
1478		udelay(delay % 1000);
1479	} else if (delay) {
1480		udelay(delay);
1481	}
1482
1483	trace_regulator_enable_complete(rdev_get_name(rdev));
1484
1485	return 0;
1486}
1487
1488/* locks held by regulator_enable() */
1489static int _regulator_enable(struct regulator_dev *rdev)
1490{
1491	int ret;
1492
1493	/* check voltage and requested load before enabling */
1494	if (rdev->constraints &&
1495	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1496		drms_uA_update(rdev);
1497
1498	if (rdev->use_count == 0) {
1499		/* The regulator may on if it's not switchable or left on */
1500		ret = _regulator_is_enabled(rdev);
1501		if (ret == -EINVAL || ret == 0) {
1502			if (!_regulator_can_change_status(rdev))
1503				return -EPERM;
1504
1505			ret = _regulator_do_enable(rdev);
1506			if (ret < 0)
1507				return ret;
1508
1509		} else if (ret < 0) {
1510			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1511			return ret;
1512		}
1513		/* Fallthrough on positive return values - already enabled */
1514	}
1515
1516	rdev->use_count++;
1517
1518	return 0;
1519}
1520
1521/**
1522 * regulator_enable - enable regulator output
1523 * @regulator: regulator source
1524 *
1525 * Request that the regulator be enabled with the regulator output at
1526 * the predefined voltage or current value.  Calls to regulator_enable()
1527 * must be balanced with calls to regulator_disable().
1528 *
1529 * NOTE: the output value can be set by other drivers, boot loader or may be
1530 * hardwired in the regulator.
1531 */
1532int regulator_enable(struct regulator *regulator)
1533{
1534	struct regulator_dev *rdev = regulator->rdev;
1535	int ret = 0;
1536
1537	if (regulator->always_on)
1538		return 0;
1539
1540	if (rdev->supply) {
1541		ret = regulator_enable(rdev->supply);
1542		if (ret != 0)
1543			return ret;
1544	}
1545
1546	mutex_lock(&rdev->mutex);
1547	ret = _regulator_enable(rdev);
1548	mutex_unlock(&rdev->mutex);
1549
1550	if (ret != 0 && rdev->supply)
1551		regulator_disable(rdev->supply);
1552
1553	return ret;
1554}
1555EXPORT_SYMBOL_GPL(regulator_enable);
1556
1557static int _regulator_do_disable(struct regulator_dev *rdev)
1558{
1559	int ret;
1560
1561	trace_regulator_disable(rdev_get_name(rdev));
1562
1563	if (rdev->ena_gpio) {
1564		gpio_set_value_cansleep(rdev->ena_gpio,
1565					rdev->ena_gpio_invert);
1566		rdev->ena_gpio_state = 0;
1567
1568	} else if (rdev->desc->ops->disable) {
1569		ret = rdev->desc->ops->disable(rdev);
1570		if (ret != 0)
1571			return ret;
1572	}
1573
1574	trace_regulator_disable_complete(rdev_get_name(rdev));
1575
1576	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1577			     NULL);
1578	return 0;
1579}
1580
1581/* locks held by regulator_disable() */
1582static int _regulator_disable(struct regulator_dev *rdev)
1583{
1584	int ret = 0;
1585
1586	if (WARN(rdev->use_count <= 0,
1587		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1588		return -EIO;
1589
1590	/* are we the last user and permitted to disable ? */
1591	if (rdev->use_count == 1 &&
1592	    (rdev->constraints && !rdev->constraints->always_on)) {
1593
1594		/* we are last user */
1595		if (_regulator_can_change_status(rdev)) {
1596			ret = _regulator_do_disable(rdev);
1597			if (ret < 0) {
1598				rdev_err(rdev, "failed to disable\n");
1599				return ret;
1600			}
1601		}
1602
1603		rdev->use_count = 0;
1604	} else if (rdev->use_count > 1) {
1605
1606		if (rdev->constraints &&
1607			(rdev->constraints->valid_ops_mask &
1608			REGULATOR_CHANGE_DRMS))
1609			drms_uA_update(rdev);
1610
1611		rdev->use_count--;
1612	}
1613
1614	return ret;
1615}
1616
1617/**
1618 * regulator_disable - disable regulator output
1619 * @regulator: regulator source
1620 *
1621 * Disable the regulator output voltage or current.  Calls to
1622 * regulator_enable() must be balanced with calls to
1623 * regulator_disable().
1624 *
1625 * NOTE: this will only disable the regulator output if no other consumer
1626 * devices have it enabled, the regulator device supports disabling and
1627 * machine constraints permit this operation.
1628 */
1629int regulator_disable(struct regulator *regulator)
1630{
1631	struct regulator_dev *rdev = regulator->rdev;
1632	int ret = 0;
1633
1634	if (regulator->always_on)
1635		return 0;
1636
1637	mutex_lock(&rdev->mutex);
1638	ret = _regulator_disable(rdev);
1639	mutex_unlock(&rdev->mutex);
1640
1641	if (ret == 0 && rdev->supply)
1642		regulator_disable(rdev->supply);
1643
1644	return ret;
1645}
1646EXPORT_SYMBOL_GPL(regulator_disable);
1647
1648/* locks held by regulator_force_disable() */
1649static int _regulator_force_disable(struct regulator_dev *rdev)
1650{
1651	int ret = 0;
1652
1653	/* force disable */
1654	if (rdev->desc->ops->disable) {
1655		/* ah well, who wants to live forever... */
1656		ret = rdev->desc->ops->disable(rdev);
1657		if (ret < 0) {
1658			rdev_err(rdev, "failed to force disable\n");
1659			return ret;
1660		}
1661		/* notify other consumers that power has been forced off */
1662		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1663			REGULATOR_EVENT_DISABLE, NULL);
1664	}
1665
1666	return ret;
1667}
1668
1669/**
1670 * regulator_force_disable - force disable regulator output
1671 * @regulator: regulator source
1672 *
1673 * Forcibly disable the regulator output voltage or current.
1674 * NOTE: this *will* disable the regulator output even if other consumer
1675 * devices have it enabled. This should be used for situations when device
1676 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1677 */
1678int regulator_force_disable(struct regulator *regulator)
1679{
1680	struct regulator_dev *rdev = regulator->rdev;
1681	int ret;
1682
1683	mutex_lock(&rdev->mutex);
1684	regulator->uA_load = 0;
1685	ret = _regulator_force_disable(regulator->rdev);
1686	mutex_unlock(&rdev->mutex);
1687
1688	if (rdev->supply)
1689		while (rdev->open_count--)
1690			regulator_disable(rdev->supply);
1691
1692	return ret;
1693}
1694EXPORT_SYMBOL_GPL(regulator_force_disable);
1695
1696static void regulator_disable_work(struct work_struct *work)
1697{
1698	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1699						  disable_work.work);
1700	int count, i, ret;
1701
1702	mutex_lock(&rdev->mutex);
1703
1704	BUG_ON(!rdev->deferred_disables);
1705
1706	count = rdev->deferred_disables;
1707	rdev->deferred_disables = 0;
1708
1709	for (i = 0; i < count; i++) {
1710		ret = _regulator_disable(rdev);
1711		if (ret != 0)
1712			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1713	}
1714
1715	mutex_unlock(&rdev->mutex);
1716
1717	if (rdev->supply) {
1718		for (i = 0; i < count; i++) {
1719			ret = regulator_disable(rdev->supply);
1720			if (ret != 0) {
1721				rdev_err(rdev,
1722					 "Supply disable failed: %d\n", ret);
1723			}
1724		}
1725	}
1726}
1727
1728/**
1729 * regulator_disable_deferred - disable regulator output with delay
1730 * @regulator: regulator source
1731 * @ms: miliseconds until the regulator is disabled
1732 *
1733 * Execute regulator_disable() on the regulator after a delay.  This
1734 * is intended for use with devices that require some time to quiesce.
1735 *
1736 * NOTE: this will only disable the regulator output if no other consumer
1737 * devices have it enabled, the regulator device supports disabling and
1738 * machine constraints permit this operation.
1739 */
1740int regulator_disable_deferred(struct regulator *regulator, int ms)
1741{
1742	struct regulator_dev *rdev = regulator->rdev;
1743	int ret;
1744
1745	if (regulator->always_on)
1746		return 0;
1747
1748	mutex_lock(&rdev->mutex);
1749	rdev->deferred_disables++;
1750	mutex_unlock(&rdev->mutex);
1751
1752	ret = schedule_delayed_work(&rdev->disable_work,
1753				    msecs_to_jiffies(ms));
1754	if (ret < 0)
1755		return ret;
1756	else
1757		return 0;
1758}
1759EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1760
1761/**
1762 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1763 *
1764 * @rdev: regulator to operate on
1765 *
1766 * Regulators that use regmap for their register I/O can set the
1767 * enable_reg and enable_mask fields in their descriptor and then use
1768 * this as their is_enabled operation, saving some code.
1769 */
1770int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1771{
1772	unsigned int val;
1773	int ret;
1774
1775	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1776	if (ret != 0)
1777		return ret;
1778
1779	return (val & rdev->desc->enable_mask) != 0;
1780}
1781EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1782
1783/**
1784 * regulator_enable_regmap - standard enable() for regmap users
1785 *
1786 * @rdev: regulator to operate on
1787 *
1788 * Regulators that use regmap for their register I/O can set the
1789 * enable_reg and enable_mask fields in their descriptor and then use
1790 * this as their enable() operation, saving some code.
1791 */
1792int regulator_enable_regmap(struct regulator_dev *rdev)
1793{
1794	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1795				  rdev->desc->enable_mask,
1796				  rdev->desc->enable_mask);
1797}
1798EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1799
1800/**
1801 * regulator_disable_regmap - standard disable() for regmap users
1802 *
1803 * @rdev: regulator to operate on
1804 *
1805 * Regulators that use regmap for their register I/O can set the
1806 * enable_reg and enable_mask fields in their descriptor and then use
1807 * this as their disable() operation, saving some code.
1808 */
1809int regulator_disable_regmap(struct regulator_dev *rdev)
1810{
1811	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1812				  rdev->desc->enable_mask, 0);
1813}
1814EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1815
1816static int _regulator_is_enabled(struct regulator_dev *rdev)
1817{
1818	/* A GPIO control always takes precedence */
1819	if (rdev->ena_gpio)
1820		return rdev->ena_gpio_state;
1821
1822	/* If we don't know then assume that the regulator is always on */
1823	if (!rdev->desc->ops->is_enabled)
1824		return 1;
1825
1826	return rdev->desc->ops->is_enabled(rdev);
1827}
1828
1829/**
1830 * regulator_is_enabled - is the regulator output enabled
1831 * @regulator: regulator source
1832 *
1833 * Returns positive if the regulator driver backing the source/client
1834 * has requested that the device be enabled, zero if it hasn't, else a
1835 * negative errno code.
1836 *
1837 * Note that the device backing this regulator handle can have multiple
1838 * users, so it might be enabled even if regulator_enable() was never
1839 * called for this particular source.
1840 */
1841int regulator_is_enabled(struct regulator *regulator)
1842{
1843	int ret;
1844
1845	if (regulator->always_on)
1846		return 1;
1847
1848	mutex_lock(&regulator->rdev->mutex);
1849	ret = _regulator_is_enabled(regulator->rdev);
1850	mutex_unlock(&regulator->rdev->mutex);
1851
1852	return ret;
1853}
1854EXPORT_SYMBOL_GPL(regulator_is_enabled);
1855
1856/**
1857 * regulator_count_voltages - count regulator_list_voltage() selectors
1858 * @regulator: regulator source
1859 *
1860 * Returns number of selectors, or negative errno.  Selectors are
1861 * numbered starting at zero, and typically correspond to bitfields
1862 * in hardware registers.
1863 */
1864int regulator_count_voltages(struct regulator *regulator)
1865{
1866	struct regulator_dev	*rdev = regulator->rdev;
1867
1868	return rdev->desc->n_voltages ? : -EINVAL;
1869}
1870EXPORT_SYMBOL_GPL(regulator_count_voltages);
1871
1872/**
1873 * regulator_list_voltage_linear - List voltages with simple calculation
1874 *
1875 * @rdev: Regulator device
1876 * @selector: Selector to convert into a voltage
1877 *
1878 * Regulators with a simple linear mapping between voltages and
1879 * selectors can set min_uV and uV_step in the regulator descriptor
1880 * and then use this function as their list_voltage() operation,
1881 */
1882int regulator_list_voltage_linear(struct regulator_dev *rdev,
1883				  unsigned int selector)
1884{
1885	if (selector >= rdev->desc->n_voltages)
1886		return -EINVAL;
1887
1888	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1889}
1890EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1891
1892/**
1893 * regulator_list_voltage_table - List voltages with table based mapping
1894 *
1895 * @rdev: Regulator device
1896 * @selector: Selector to convert into a voltage
1897 *
1898 * Regulators with table based mapping between voltages and
1899 * selectors can set volt_table in the regulator descriptor
1900 * and then use this function as their list_voltage() operation.
1901 */
1902int regulator_list_voltage_table(struct regulator_dev *rdev,
1903				 unsigned int selector)
1904{
1905	if (!rdev->desc->volt_table) {
1906		BUG_ON(!rdev->desc->volt_table);
1907		return -EINVAL;
1908	}
1909
1910	if (selector >= rdev->desc->n_voltages)
1911		return -EINVAL;
1912
1913	return rdev->desc->volt_table[selector];
1914}
1915EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1916
1917/**
1918 * regulator_list_voltage - enumerate supported voltages
1919 * @regulator: regulator source
1920 * @selector: identify voltage to list
1921 * Context: can sleep
1922 *
1923 * Returns a voltage that can be passed to @regulator_set_voltage(),
1924 * zero if this selector code can't be used on this system, or a
1925 * negative errno.
1926 */
1927int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1928{
1929	struct regulator_dev	*rdev = regulator->rdev;
1930	struct regulator_ops	*ops = rdev->desc->ops;
1931	int			ret;
1932
1933	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1934		return -EINVAL;
1935
1936	mutex_lock(&rdev->mutex);
1937	ret = ops->list_voltage(rdev, selector);
1938	mutex_unlock(&rdev->mutex);
1939
1940	if (ret > 0) {
1941		if (ret < rdev->constraints->min_uV)
1942			ret = 0;
1943		else if (ret > rdev->constraints->max_uV)
1944			ret = 0;
1945	}
1946
1947	return ret;
1948}
1949EXPORT_SYMBOL_GPL(regulator_list_voltage);
1950
1951/**
1952 * regulator_is_supported_voltage - check if a voltage range can be supported
1953 *
1954 * @regulator: Regulator to check.
1955 * @min_uV: Minimum required voltage in uV.
1956 * @max_uV: Maximum required voltage in uV.
1957 *
1958 * Returns a boolean or a negative error code.
1959 */
1960int regulator_is_supported_voltage(struct regulator *regulator,
1961				   int min_uV, int max_uV)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int i, voltages, ret;
1965
1966	/* If we can't change voltage check the current voltage */
1967	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1968		ret = regulator_get_voltage(regulator);
1969		if (ret >= 0)
1970			return (min_uV >= ret && ret <= max_uV);
1971		else
1972			return ret;
1973	}
1974
1975	ret = regulator_count_voltages(regulator);
1976	if (ret < 0)
1977		return ret;
1978	voltages = ret;
1979
1980	for (i = 0; i < voltages; i++) {
1981		ret = regulator_list_voltage(regulator, i);
1982
1983		if (ret >= min_uV && ret <= max_uV)
1984			return 1;
1985	}
1986
1987	return 0;
1988}
1989EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1990
1991/**
1992 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1993 *
1994 * @rdev: regulator to operate on
1995 *
1996 * Regulators that use regmap for their register I/O can set the
1997 * vsel_reg and vsel_mask fields in their descriptor and then use this
1998 * as their get_voltage_vsel operation, saving some code.
1999 */
2000int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2001{
2002	unsigned int val;
2003	int ret;
2004
2005	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2006	if (ret != 0)
2007		return ret;
2008
2009	val &= rdev->desc->vsel_mask;
2010	val >>= ffs(rdev->desc->vsel_mask) - 1;
2011
2012	return val;
2013}
2014EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2015
2016/**
2017 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2018 *
2019 * @rdev: regulator to operate on
2020 * @sel: Selector to set
2021 *
2022 * Regulators that use regmap for their register I/O can set the
2023 * vsel_reg and vsel_mask fields in their descriptor and then use this
2024 * as their set_voltage_vsel operation, saving some code.
2025 */
2026int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2027{
2028	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2029
2030	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2031				  rdev->desc->vsel_mask, sel);
2032}
2033EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2034
2035/**
2036 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2037 *
2038 * @rdev: Regulator to operate on
2039 * @min_uV: Lower bound for voltage
2040 * @max_uV: Upper bound for voltage
2041 *
2042 * Drivers implementing set_voltage_sel() and list_voltage() can use
2043 * this as their map_voltage() operation.  It will find a suitable
2044 * voltage by calling list_voltage() until it gets something in bounds
2045 * for the requested voltages.
2046 */
2047int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2048				  int min_uV, int max_uV)
2049{
2050	int best_val = INT_MAX;
2051	int selector = 0;
2052	int i, ret;
2053
2054	/* Find the smallest voltage that falls within the specified
2055	 * range.
2056	 */
2057	for (i = 0; i < rdev->desc->n_voltages; i++) {
2058		ret = rdev->desc->ops->list_voltage(rdev, i);
2059		if (ret < 0)
2060			continue;
2061
2062		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2063			best_val = ret;
2064			selector = i;
2065		}
2066	}
2067
2068	if (best_val != INT_MAX)
2069		return selector;
2070	else
2071		return -EINVAL;
2072}
2073EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2074
2075/**
2076 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2077 *
2078 * @rdev: Regulator to operate on
2079 * @min_uV: Lower bound for voltage
2080 * @max_uV: Upper bound for voltage
2081 *
2082 * Drivers providing min_uV and uV_step in their regulator_desc can
2083 * use this as their map_voltage() operation.
2084 */
2085int regulator_map_voltage_linear(struct regulator_dev *rdev,
2086				 int min_uV, int max_uV)
2087{
2088	int ret, voltage;
2089
2090	/* Allow uV_step to be 0 for fixed voltage */
2091	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2092		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2093			return 0;
2094		else
2095			return -EINVAL;
2096	}
2097
2098	if (!rdev->desc->uV_step) {
2099		BUG_ON(!rdev->desc->uV_step);
2100		return -EINVAL;
2101	}
2102
2103	if (min_uV < rdev->desc->min_uV)
2104		min_uV = rdev->desc->min_uV;
2105
2106	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2107	if (ret < 0)
2108		return ret;
2109
2110	/* Map back into a voltage to verify we're still in bounds */
2111	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2112	if (voltage < min_uV || voltage > max_uV)
2113		return -EINVAL;
2114
2115	return ret;
2116}
2117EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2118
2119static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2120				     int min_uV, int max_uV)
2121{
2122	int ret;
2123	int delay = 0;
2124	int best_val = 0;
2125	unsigned int selector;
2126	int old_selector = -1;
2127
2128	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2129
2130	min_uV += rdev->constraints->uV_offset;
2131	max_uV += rdev->constraints->uV_offset;
2132
2133	/*
2134	 * If we can't obtain the old selector there is not enough
2135	 * info to call set_voltage_time_sel().
2136	 */
2137	if (_regulator_is_enabled(rdev) &&
2138	    rdev->desc->ops->set_voltage_time_sel &&
2139	    rdev->desc->ops->get_voltage_sel) {
2140		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2141		if (old_selector < 0)
2142			return old_selector;
2143	}
2144
2145	if (rdev->desc->ops->set_voltage) {
2146		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2147						   &selector);
2148
2149		if (ret >= 0) {
2150			if (rdev->desc->ops->list_voltage)
2151				best_val = rdev->desc->ops->list_voltage(rdev,
2152									 selector);
2153			else
2154				best_val = _regulator_get_voltage(rdev);
2155		}
2156
2157	} else if (rdev->desc->ops->set_voltage_sel) {
2158		if (rdev->desc->ops->map_voltage) {
2159			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2160							   max_uV);
2161		} else {
2162			if (rdev->desc->ops->list_voltage ==
2163			    regulator_list_voltage_linear)
2164				ret = regulator_map_voltage_linear(rdev,
2165								min_uV, max_uV);
2166			else
2167				ret = regulator_map_voltage_iterate(rdev,
2168								min_uV, max_uV);
2169		}
2170
2171		if (ret >= 0) {
2172			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2173			if (min_uV <= best_val && max_uV >= best_val) {
2174				selector = ret;
2175				ret = rdev->desc->ops->set_voltage_sel(rdev,
2176								       ret);
2177			} else {
2178				ret = -EINVAL;
2179			}
2180		}
2181	} else {
2182		ret = -EINVAL;
2183	}
2184
2185	/* Call set_voltage_time_sel if successfully obtained old_selector */
2186	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2187	    rdev->desc->ops->set_voltage_time_sel) {
2188
2189		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2190						old_selector, selector);
2191		if (delay < 0) {
2192			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2193				  delay);
2194			delay = 0;
2195		}
2196
2197		/* Insert any necessary delays */
2198		if (delay >= 1000) {
2199			mdelay(delay / 1000);
2200			udelay(delay % 1000);
2201		} else if (delay) {
2202			udelay(delay);
2203		}
2204	}
2205
2206	if (ret == 0 && best_val >= 0)
2207		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2208				     (void *)best_val);
2209
2210	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2211
2212	return ret;
2213}
2214
2215/**
2216 * regulator_set_voltage - set regulator output voltage
2217 * @regulator: regulator source
2218 * @min_uV: Minimum required voltage in uV
2219 * @max_uV: Maximum acceptable voltage in uV
2220 *
2221 * Sets a voltage regulator to the desired output voltage. This can be set
2222 * during any regulator state. IOW, regulator can be disabled or enabled.
2223 *
2224 * If the regulator is enabled then the voltage will change to the new value
2225 * immediately otherwise if the regulator is disabled the regulator will
2226 * output at the new voltage when enabled.
2227 *
2228 * NOTE: If the regulator is shared between several devices then the lowest
2229 * request voltage that meets the system constraints will be used.
2230 * Regulator system constraints must be set for this regulator before
2231 * calling this function otherwise this call will fail.
2232 */
2233int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2234{
2235	struct regulator_dev *rdev = regulator->rdev;
2236	int ret = 0;
2237
2238	mutex_lock(&rdev->mutex);
2239
2240	/* If we're setting the same range as last time the change
2241	 * should be a noop (some cpufreq implementations use the same
2242	 * voltage for multiple frequencies, for example).
2243	 */
2244	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2245		goto out;
2246
2247	/* sanity check */
2248	if (!rdev->desc->ops->set_voltage &&
2249	    !rdev->desc->ops->set_voltage_sel) {
2250		ret = -EINVAL;
2251		goto out;
2252	}
2253
2254	/* constraints check */
2255	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2256	if (ret < 0)
2257		goto out;
2258	regulator->min_uV = min_uV;
2259	regulator->max_uV = max_uV;
2260
2261	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2262	if (ret < 0)
2263		goto out;
2264
2265	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2266
2267out:
2268	mutex_unlock(&rdev->mutex);
2269	return ret;
2270}
2271EXPORT_SYMBOL_GPL(regulator_set_voltage);
2272
2273/**
2274 * regulator_set_voltage_time - get raise/fall time
2275 * @regulator: regulator source
2276 * @old_uV: starting voltage in microvolts
2277 * @new_uV: target voltage in microvolts
2278 *
2279 * Provided with the starting and ending voltage, this function attempts to
2280 * calculate the time in microseconds required to rise or fall to this new
2281 * voltage.
2282 */
2283int regulator_set_voltage_time(struct regulator *regulator,
2284			       int old_uV, int new_uV)
2285{
2286	struct regulator_dev	*rdev = regulator->rdev;
2287	struct regulator_ops	*ops = rdev->desc->ops;
2288	int old_sel = -1;
2289	int new_sel = -1;
2290	int voltage;
2291	int i;
2292
2293	/* Currently requires operations to do this */
2294	if (!ops->list_voltage || !ops->set_voltage_time_sel
2295	    || !rdev->desc->n_voltages)
2296		return -EINVAL;
2297
2298	for (i = 0; i < rdev->desc->n_voltages; i++) {
2299		/* We only look for exact voltage matches here */
2300		voltage = regulator_list_voltage(regulator, i);
2301		if (voltage < 0)
2302			return -EINVAL;
2303		if (voltage == 0)
2304			continue;
2305		if (voltage == old_uV)
2306			old_sel = i;
2307		if (voltage == new_uV)
2308			new_sel = i;
2309	}
2310
2311	if (old_sel < 0 || new_sel < 0)
2312		return -EINVAL;
2313
2314	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2315}
2316EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2317
2318/**
2319 *regulator_set_voltage_time_sel - get raise/fall time
2320 * @regulator: regulator source
2321 * @old_selector: selector for starting voltage
2322 * @new_selector: selector for target voltage
2323 *
2324 * Provided with the starting and target voltage selectors, this function
2325 * returns time in microseconds required to rise or fall to this new voltage
2326 *
2327 * Drivers providing ramp_delay in regulation_constraints can use this as their
2328 * set_voltage_time_sel() operation.
2329 */
2330int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2331				   unsigned int old_selector,
2332				   unsigned int new_selector)
2333{
2334	unsigned int ramp_delay = 0;
2335	int old_volt, new_volt;
2336
2337	if (rdev->constraints->ramp_delay)
2338		ramp_delay = rdev->constraints->ramp_delay;
2339	else if (rdev->desc->ramp_delay)
2340		ramp_delay = rdev->desc->ramp_delay;
2341
2342	if (ramp_delay == 0) {
2343		rdev_warn(rdev, "ramp_delay not set\n");
2344		return 0;
2345	}
2346
2347	/* sanity check */
2348	if (!rdev->desc->ops->list_voltage)
2349		return -EINVAL;
2350
2351	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2352	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2353
2354	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2355}
2356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2357
2358/**
2359 * regulator_sync_voltage - re-apply last regulator output voltage
2360 * @regulator: regulator source
2361 *
2362 * Re-apply the last configured voltage.  This is intended to be used
2363 * where some external control source the consumer is cooperating with
2364 * has caused the configured voltage to change.
2365 */
2366int regulator_sync_voltage(struct regulator *regulator)
2367{
2368	struct regulator_dev *rdev = regulator->rdev;
2369	int ret, min_uV, max_uV;
2370
2371	mutex_lock(&rdev->mutex);
2372
2373	if (!rdev->desc->ops->set_voltage &&
2374	    !rdev->desc->ops->set_voltage_sel) {
2375		ret = -EINVAL;
2376		goto out;
2377	}
2378
2379	/* This is only going to work if we've had a voltage configured. */
2380	if (!regulator->min_uV && !regulator->max_uV) {
2381		ret = -EINVAL;
2382		goto out;
2383	}
2384
2385	min_uV = regulator->min_uV;
2386	max_uV = regulator->max_uV;
2387
2388	/* This should be a paranoia check... */
2389	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2390	if (ret < 0)
2391		goto out;
2392
2393	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2394	if (ret < 0)
2395		goto out;
2396
2397	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2398
2399out:
2400	mutex_unlock(&rdev->mutex);
2401	return ret;
2402}
2403EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2404
2405static int _regulator_get_voltage(struct regulator_dev *rdev)
2406{
2407	int sel, ret;
2408
2409	if (rdev->desc->ops->get_voltage_sel) {
2410		sel = rdev->desc->ops->get_voltage_sel(rdev);
2411		if (sel < 0)
2412			return sel;
2413		ret = rdev->desc->ops->list_voltage(rdev, sel);
2414	} else if (rdev->desc->ops->get_voltage) {
2415		ret = rdev->desc->ops->get_voltage(rdev);
2416	} else {
2417		return -EINVAL;
2418	}
2419
2420	if (ret < 0)
2421		return ret;
2422	return ret - rdev->constraints->uV_offset;
2423}
2424
2425/**
2426 * regulator_get_voltage - get regulator output voltage
2427 * @regulator: regulator source
2428 *
2429 * This returns the current regulator voltage in uV.
2430 *
2431 * NOTE: If the regulator is disabled it will return the voltage value. This
2432 * function should not be used to determine regulator state.
2433 */
2434int regulator_get_voltage(struct regulator *regulator)
2435{
2436	int ret;
2437
2438	mutex_lock(&regulator->rdev->mutex);
2439
2440	ret = _regulator_get_voltage(regulator->rdev);
2441
2442	mutex_unlock(&regulator->rdev->mutex);
2443
2444	return ret;
2445}
2446EXPORT_SYMBOL_GPL(regulator_get_voltage);
2447
2448/**
2449 * regulator_set_current_limit - set regulator output current limit
2450 * @regulator: regulator source
2451 * @min_uA: Minimuum supported current in uA
2452 * @max_uA: Maximum supported current in uA
2453 *
2454 * Sets current sink to the desired output current. This can be set during
2455 * any regulator state. IOW, regulator can be disabled or enabled.
2456 *
2457 * If the regulator is enabled then the current will change to the new value
2458 * immediately otherwise if the regulator is disabled the regulator will
2459 * output at the new current when enabled.
2460 *
2461 * NOTE: Regulator system constraints must be set for this regulator before
2462 * calling this function otherwise this call will fail.
2463 */
2464int regulator_set_current_limit(struct regulator *regulator,
2465			       int min_uA, int max_uA)
2466{
2467	struct regulator_dev *rdev = regulator->rdev;
2468	int ret;
2469
2470	mutex_lock(&rdev->mutex);
2471
2472	/* sanity check */
2473	if (!rdev->desc->ops->set_current_limit) {
2474		ret = -EINVAL;
2475		goto out;
2476	}
2477
2478	/* constraints check */
2479	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2480	if (ret < 0)
2481		goto out;
2482
2483	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2484out:
2485	mutex_unlock(&rdev->mutex);
2486	return ret;
2487}
2488EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2489
2490static int _regulator_get_current_limit(struct regulator_dev *rdev)
2491{
2492	int ret;
2493
2494	mutex_lock(&rdev->mutex);
2495
2496	/* sanity check */
2497	if (!rdev->desc->ops->get_current_limit) {
2498		ret = -EINVAL;
2499		goto out;
2500	}
2501
2502	ret = rdev->desc->ops->get_current_limit(rdev);
2503out:
2504	mutex_unlock(&rdev->mutex);
2505	return ret;
2506}
2507
2508/**
2509 * regulator_get_current_limit - get regulator output current
2510 * @regulator: regulator source
2511 *
2512 * This returns the current supplied by the specified current sink in uA.
2513 *
2514 * NOTE: If the regulator is disabled it will return the current value. This
2515 * function should not be used to determine regulator state.
2516 */
2517int regulator_get_current_limit(struct regulator *regulator)
2518{
2519	return _regulator_get_current_limit(regulator->rdev);
2520}
2521EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2522
2523/**
2524 * regulator_set_mode - set regulator operating mode
2525 * @regulator: regulator source
2526 * @mode: operating mode - one of the REGULATOR_MODE constants
2527 *
2528 * Set regulator operating mode to increase regulator efficiency or improve
2529 * regulation performance.
2530 *
2531 * NOTE: Regulator system constraints must be set for this regulator before
2532 * calling this function otherwise this call will fail.
2533 */
2534int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2535{
2536	struct regulator_dev *rdev = regulator->rdev;
2537	int ret;
2538	int regulator_curr_mode;
2539
2540	mutex_lock(&rdev->mutex);
2541
2542	/* sanity check */
2543	if (!rdev->desc->ops->set_mode) {
2544		ret = -EINVAL;
2545		goto out;
2546	}
2547
2548	/* return if the same mode is requested */
2549	if (rdev->desc->ops->get_mode) {
2550		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2551		if (regulator_curr_mode == mode) {
2552			ret = 0;
2553			goto out;
2554		}
2555	}
2556
2557	/* constraints check */
2558	ret = regulator_mode_constrain(rdev, &mode);
2559	if (ret < 0)
2560		goto out;
2561
2562	ret = rdev->desc->ops->set_mode(rdev, mode);
2563out:
2564	mutex_unlock(&rdev->mutex);
2565	return ret;
2566}
2567EXPORT_SYMBOL_GPL(regulator_set_mode);
2568
2569static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2570{
2571	int ret;
2572
2573	mutex_lock(&rdev->mutex);
2574
2575	/* sanity check */
2576	if (!rdev->desc->ops->get_mode) {
2577		ret = -EINVAL;
2578		goto out;
2579	}
2580
2581	ret = rdev->desc->ops->get_mode(rdev);
2582out:
2583	mutex_unlock(&rdev->mutex);
2584	return ret;
2585}
2586
2587/**
2588 * regulator_get_mode - get regulator operating mode
2589 * @regulator: regulator source
2590 *
2591 * Get the current regulator operating mode.
2592 */
2593unsigned int regulator_get_mode(struct regulator *regulator)
2594{
2595	return _regulator_get_mode(regulator->rdev);
2596}
2597EXPORT_SYMBOL_GPL(regulator_get_mode);
2598
2599/**
2600 * regulator_set_optimum_mode - set regulator optimum operating mode
2601 * @regulator: regulator source
2602 * @uA_load: load current
2603 *
2604 * Notifies the regulator core of a new device load. This is then used by
2605 * DRMS (if enabled by constraints) to set the most efficient regulator
2606 * operating mode for the new regulator loading.
2607 *
2608 * Consumer devices notify their supply regulator of the maximum power
2609 * they will require (can be taken from device datasheet in the power
2610 * consumption tables) when they change operational status and hence power
2611 * state. Examples of operational state changes that can affect power
2612 * consumption are :-
2613 *
2614 *    o Device is opened / closed.
2615 *    o Device I/O is about to begin or has just finished.
2616 *    o Device is idling in between work.
2617 *
2618 * This information is also exported via sysfs to userspace.
2619 *
2620 * DRMS will sum the total requested load on the regulator and change
2621 * to the most efficient operating mode if platform constraints allow.
2622 *
2623 * Returns the new regulator mode or error.
2624 */
2625int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2626{
2627	struct regulator_dev *rdev = regulator->rdev;
2628	struct regulator *consumer;
2629	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2630	unsigned int mode;
2631
2632	if (rdev->supply)
2633		input_uV = regulator_get_voltage(rdev->supply);
2634
2635	mutex_lock(&rdev->mutex);
2636
2637	/*
2638	 * first check to see if we can set modes at all, otherwise just
2639	 * tell the consumer everything is OK.
2640	 */
2641	regulator->uA_load = uA_load;
2642	ret = regulator_check_drms(rdev);
2643	if (ret < 0) {
2644		ret = 0;
2645		goto out;
2646	}
2647
2648	if (!rdev->desc->ops->get_optimum_mode)
2649		goto out;
2650
2651	/*
2652	 * we can actually do this so any errors are indicators of
2653	 * potential real failure.
2654	 */
2655	ret = -EINVAL;
2656
2657	if (!rdev->desc->ops->set_mode)
2658		goto out;
2659
2660	/* get output voltage */
2661	output_uV = _regulator_get_voltage(rdev);
2662	if (output_uV <= 0) {
2663		rdev_err(rdev, "invalid output voltage found\n");
2664		goto out;
2665	}
2666
2667	/* No supply? Use constraint voltage */
2668	if (input_uV <= 0)
2669		input_uV = rdev->constraints->input_uV;
2670	if (input_uV <= 0) {
2671		rdev_err(rdev, "invalid input voltage found\n");
2672		goto out;
2673	}
2674
2675	/* calc total requested load for this regulator */
2676	list_for_each_entry(consumer, &rdev->consumer_list, list)
2677		total_uA_load += consumer->uA_load;
2678
2679	mode = rdev->desc->ops->get_optimum_mode(rdev,
2680						 input_uV, output_uV,
2681						 total_uA_load);
2682	ret = regulator_mode_constrain(rdev, &mode);
2683	if (ret < 0) {
2684		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2685			 total_uA_load, input_uV, output_uV);
2686		goto out;
2687	}
2688
2689	ret = rdev->desc->ops->set_mode(rdev, mode);
2690	if (ret < 0) {
2691		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2692		goto out;
2693	}
2694	ret = mode;
2695out:
2696	mutex_unlock(&rdev->mutex);
2697	return ret;
2698}
2699EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2700
2701/**
2702 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2703 *
2704 * @rdev: device to operate on.
2705 * @enable: state to set.
2706 */
2707int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2708{
2709	unsigned int val;
2710
2711	if (enable)
2712		val = rdev->desc->bypass_mask;
2713	else
2714		val = 0;
2715
2716	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2717				  rdev->desc->bypass_mask, val);
2718}
2719EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2720
2721/**
2722 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2723 *
2724 * @rdev: device to operate on.
2725 * @enable: current state.
2726 */
2727int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2728{
2729	unsigned int val;
2730	int ret;
2731
2732	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2733	if (ret != 0)
2734		return ret;
2735
2736	*enable = val & rdev->desc->bypass_mask;
2737
2738	return 0;
2739}
2740EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2741
2742/**
2743 * regulator_allow_bypass - allow the regulator to go into bypass mode
2744 *
2745 * @regulator: Regulator to configure
2746 * @allow: enable or disable bypass mode
2747 *
2748 * Allow the regulator to go into bypass mode if all other consumers
2749 * for the regulator also enable bypass mode and the machine
2750 * constraints allow this.  Bypass mode means that the regulator is
2751 * simply passing the input directly to the output with no regulation.
2752 */
2753int regulator_allow_bypass(struct regulator *regulator, bool enable)
2754{
2755	struct regulator_dev *rdev = regulator->rdev;
2756	int ret = 0;
2757
2758	if (!rdev->desc->ops->set_bypass)
2759		return 0;
2760
2761	if (rdev->constraints &&
2762	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2763		return 0;
2764
2765	mutex_lock(&rdev->mutex);
2766
2767	if (enable && !regulator->bypass) {
2768		rdev->bypass_count++;
2769
2770		if (rdev->bypass_count == rdev->open_count) {
2771			ret = rdev->desc->ops->set_bypass(rdev, enable);
2772			if (ret != 0)
2773				rdev->bypass_count--;
2774		}
2775
2776	} else if (!enable && regulator->bypass) {
2777		rdev->bypass_count--;
2778
2779		if (rdev->bypass_count != rdev->open_count) {
2780			ret = rdev->desc->ops->set_bypass(rdev, enable);
2781			if (ret != 0)
2782				rdev->bypass_count++;
2783		}
2784	}
2785
2786	if (ret == 0)
2787		regulator->bypass = enable;
2788
2789	mutex_unlock(&rdev->mutex);
2790
2791	return ret;
2792}
2793EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2794
2795/**
2796 * regulator_register_notifier - register regulator event notifier
2797 * @regulator: regulator source
2798 * @nb: notifier block
2799 *
2800 * Register notifier block to receive regulator events.
2801 */
2802int regulator_register_notifier(struct regulator *regulator,
2803			      struct notifier_block *nb)
2804{
2805	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2806						nb);
2807}
2808EXPORT_SYMBOL_GPL(regulator_register_notifier);
2809
2810/**
2811 * regulator_unregister_notifier - unregister regulator event notifier
2812 * @regulator: regulator source
2813 * @nb: notifier block
2814 *
2815 * Unregister regulator event notifier block.
2816 */
2817int regulator_unregister_notifier(struct regulator *regulator,
2818				struct notifier_block *nb)
2819{
2820	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2821						  nb);
2822}
2823EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2824
2825/* notify regulator consumers and downstream regulator consumers.
2826 * Note mutex must be held by caller.
2827 */
2828static void _notifier_call_chain(struct regulator_dev *rdev,
2829				  unsigned long event, void *data)
2830{
2831	/* call rdev chain first */
2832	blocking_notifier_call_chain(&rdev->notifier, event, data);
2833}
2834
2835/**
2836 * regulator_bulk_get - get multiple regulator consumers
2837 *
2838 * @dev:           Device to supply
2839 * @num_consumers: Number of consumers to register
2840 * @consumers:     Configuration of consumers; clients are stored here.
2841 *
2842 * @return 0 on success, an errno on failure.
2843 *
2844 * This helper function allows drivers to get several regulator
2845 * consumers in one operation.  If any of the regulators cannot be
2846 * acquired then any regulators that were allocated will be freed
2847 * before returning to the caller.
2848 */
2849int regulator_bulk_get(struct device *dev, int num_consumers,
2850		       struct regulator_bulk_data *consumers)
2851{
2852	int i;
2853	int ret;
2854
2855	for (i = 0; i < num_consumers; i++)
2856		consumers[i].consumer = NULL;
2857
2858	for (i = 0; i < num_consumers; i++) {
2859		consumers[i].consumer = regulator_get(dev,
2860						      consumers[i].supply);
2861		if (IS_ERR(consumers[i].consumer)) {
2862			ret = PTR_ERR(consumers[i].consumer);
2863			dev_err(dev, "Failed to get supply '%s': %d\n",
2864				consumers[i].supply, ret);
2865			consumers[i].consumer = NULL;
2866			goto err;
2867		}
2868	}
2869
2870	return 0;
2871
2872err:
2873	while (--i >= 0)
2874		regulator_put(consumers[i].consumer);
2875
2876	return ret;
2877}
2878EXPORT_SYMBOL_GPL(regulator_bulk_get);
2879
2880/**
2881 * devm_regulator_bulk_get - managed get multiple regulator consumers
2882 *
2883 * @dev:           Device to supply
2884 * @num_consumers: Number of consumers to register
2885 * @consumers:     Configuration of consumers; clients are stored here.
2886 *
2887 * @return 0 on success, an errno on failure.
2888 *
2889 * This helper function allows drivers to get several regulator
2890 * consumers in one operation with management, the regulators will
2891 * automatically be freed when the device is unbound.  If any of the
2892 * regulators cannot be acquired then any regulators that were
2893 * allocated will be freed before returning to the caller.
2894 */
2895int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2896			    struct regulator_bulk_data *consumers)
2897{
2898	int i;
2899	int ret;
2900
2901	for (i = 0; i < num_consumers; i++)
2902		consumers[i].consumer = NULL;
2903
2904	for (i = 0; i < num_consumers; i++) {
2905		consumers[i].consumer = devm_regulator_get(dev,
2906							   consumers[i].supply);
2907		if (IS_ERR(consumers[i].consumer)) {
2908			ret = PTR_ERR(consumers[i].consumer);
2909			dev_err(dev, "Failed to get supply '%s': %d\n",
2910				consumers[i].supply, ret);
2911			consumers[i].consumer = NULL;
2912			goto err;
2913		}
2914	}
2915
2916	return 0;
2917
2918err:
2919	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2920		devm_regulator_put(consumers[i].consumer);
2921
2922	return ret;
2923}
2924EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2925
2926static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2927{
2928	struct regulator_bulk_data *bulk = data;
2929
2930	bulk->ret = regulator_enable(bulk->consumer);
2931}
2932
2933/**
2934 * regulator_bulk_enable - enable multiple regulator consumers
2935 *
2936 * @num_consumers: Number of consumers
2937 * @consumers:     Consumer data; clients are stored here.
2938 * @return         0 on success, an errno on failure
2939 *
2940 * This convenience API allows consumers to enable multiple regulator
2941 * clients in a single API call.  If any consumers cannot be enabled
2942 * then any others that were enabled will be disabled again prior to
2943 * return.
2944 */
2945int regulator_bulk_enable(int num_consumers,
2946			  struct regulator_bulk_data *consumers)
2947{
2948	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2949	int i;
2950	int ret = 0;
2951
2952	for (i = 0; i < num_consumers; i++) {
2953		if (consumers[i].consumer->always_on)
2954			consumers[i].ret = 0;
2955		else
2956			async_schedule_domain(regulator_bulk_enable_async,
2957					      &consumers[i], &async_domain);
2958	}
2959
2960	async_synchronize_full_domain(&async_domain);
2961
2962	/* If any consumer failed we need to unwind any that succeeded */
2963	for (i = 0; i < num_consumers; i++) {
2964		if (consumers[i].ret != 0) {
2965			ret = consumers[i].ret;
2966			goto err;
2967		}
2968	}
2969
2970	return 0;
2971
2972err:
2973	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2974	while (--i >= 0)
2975		regulator_disable(consumers[i].consumer);
2976
2977	return ret;
2978}
2979EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2980
2981/**
2982 * regulator_bulk_disable - disable multiple regulator consumers
2983 *
2984 * @num_consumers: Number of consumers
2985 * @consumers:     Consumer data; clients are stored here.
2986 * @return         0 on success, an errno on failure
2987 *
2988 * This convenience API allows consumers to disable multiple regulator
2989 * clients in a single API call.  If any consumers cannot be disabled
2990 * then any others that were disabled will be enabled again prior to
2991 * return.
2992 */
2993int regulator_bulk_disable(int num_consumers,
2994			   struct regulator_bulk_data *consumers)
2995{
2996	int i;
2997	int ret, r;
2998
2999	for (i = num_consumers - 1; i >= 0; --i) {
3000		ret = regulator_disable(consumers[i].consumer);
3001		if (ret != 0)
3002			goto err;
3003	}
3004
3005	return 0;
3006
3007err:
3008	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3009	for (++i; i < num_consumers; ++i) {
3010		r = regulator_enable(consumers[i].consumer);
3011		if (r != 0)
3012			pr_err("Failed to reename %s: %d\n",
3013			       consumers[i].supply, r);
3014	}
3015
3016	return ret;
3017}
3018EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3019
3020/**
3021 * regulator_bulk_force_disable - force disable multiple regulator consumers
3022 *
3023 * @num_consumers: Number of consumers
3024 * @consumers:     Consumer data; clients are stored here.
3025 * @return         0 on success, an errno on failure
3026 *
3027 * This convenience API allows consumers to forcibly disable multiple regulator
3028 * clients in a single API call.
3029 * NOTE: This should be used for situations when device damage will
3030 * likely occur if the regulators are not disabled (e.g. over temp).
3031 * Although regulator_force_disable function call for some consumers can
3032 * return error numbers, the function is called for all consumers.
3033 */
3034int regulator_bulk_force_disable(int num_consumers,
3035			   struct regulator_bulk_data *consumers)
3036{
3037	int i;
3038	int ret;
3039
3040	for (i = 0; i < num_consumers; i++)
3041		consumers[i].ret =
3042			    regulator_force_disable(consumers[i].consumer);
3043
3044	for (i = 0; i < num_consumers; i++) {
3045		if (consumers[i].ret != 0) {
3046			ret = consumers[i].ret;
3047			goto out;
3048		}
3049	}
3050
3051	return 0;
3052out:
3053	return ret;
3054}
3055EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3056
3057/**
3058 * regulator_bulk_free - free multiple regulator consumers
3059 *
3060 * @num_consumers: Number of consumers
3061 * @consumers:     Consumer data; clients are stored here.
3062 *
3063 * This convenience API allows consumers to free multiple regulator
3064 * clients in a single API call.
3065 */
3066void regulator_bulk_free(int num_consumers,
3067			 struct regulator_bulk_data *consumers)
3068{
3069	int i;
3070
3071	for (i = 0; i < num_consumers; i++) {
3072		regulator_put(consumers[i].consumer);
3073		consumers[i].consumer = NULL;
3074	}
3075}
3076EXPORT_SYMBOL_GPL(regulator_bulk_free);
3077
3078/**
3079 * regulator_notifier_call_chain - call regulator event notifier
3080 * @rdev: regulator source
3081 * @event: notifier block
3082 * @data: callback-specific data.
3083 *
3084 * Called by regulator drivers to notify clients a regulator event has
3085 * occurred. We also notify regulator clients downstream.
3086 * Note lock must be held by caller.
3087 */
3088int regulator_notifier_call_chain(struct regulator_dev *rdev,
3089				  unsigned long event, void *data)
3090{
3091	_notifier_call_chain(rdev, event, data);
3092	return NOTIFY_DONE;
3093
3094}
3095EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3096
3097/**
3098 * regulator_mode_to_status - convert a regulator mode into a status
3099 *
3100 * @mode: Mode to convert
3101 *
3102 * Convert a regulator mode into a status.
3103 */
3104int regulator_mode_to_status(unsigned int mode)
3105{
3106	switch (mode) {
3107	case REGULATOR_MODE_FAST:
3108		return REGULATOR_STATUS_FAST;
3109	case REGULATOR_MODE_NORMAL:
3110		return REGULATOR_STATUS_NORMAL;
3111	case REGULATOR_MODE_IDLE:
3112		return REGULATOR_STATUS_IDLE;
3113	case REGULATOR_MODE_STANDBY:
3114		return REGULATOR_STATUS_STANDBY;
3115	default:
3116		return REGULATOR_STATUS_UNDEFINED;
3117	}
3118}
3119EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3120
3121/*
3122 * To avoid cluttering sysfs (and memory) with useless state, only
3123 * create attributes that can be meaningfully displayed.
3124 */
3125static int add_regulator_attributes(struct regulator_dev *rdev)
3126{
3127	struct device		*dev = &rdev->dev;
3128	struct regulator_ops	*ops = rdev->desc->ops;
3129	int			status = 0;
3130
3131	/* some attributes need specific methods to be displayed */
3132	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3133	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3134		status = device_create_file(dev, &dev_attr_microvolts);
3135		if (status < 0)
3136			return status;
3137	}
3138	if (ops->get_current_limit) {
3139		status = device_create_file(dev, &dev_attr_microamps);
3140		if (status < 0)
3141			return status;
3142	}
3143	if (ops->get_mode) {
3144		status = device_create_file(dev, &dev_attr_opmode);
3145		if (status < 0)
3146			return status;
3147	}
3148	if (ops->is_enabled) {
3149		status = device_create_file(dev, &dev_attr_state);
3150		if (status < 0)
3151			return status;
3152	}
3153	if (ops->get_status) {
3154		status = device_create_file(dev, &dev_attr_status);
3155		if (status < 0)
3156			return status;
3157	}
3158	if (ops->get_bypass) {
3159		status = device_create_file(dev, &dev_attr_bypass);
3160		if (status < 0)
3161			return status;
3162	}
3163
3164	/* some attributes are type-specific */
3165	if (rdev->desc->type == REGULATOR_CURRENT) {
3166		status = device_create_file(dev, &dev_attr_requested_microamps);
3167		if (status < 0)
3168			return status;
3169	}
3170
3171	/* all the other attributes exist to support constraints;
3172	 * don't show them if there are no constraints, or if the
3173	 * relevant supporting methods are missing.
3174	 */
3175	if (!rdev->constraints)
3176		return status;
3177
3178	/* constraints need specific supporting methods */
3179	if (ops->set_voltage || ops->set_voltage_sel) {
3180		status = device_create_file(dev, &dev_attr_min_microvolts);
3181		if (status < 0)
3182			return status;
3183		status = device_create_file(dev, &dev_attr_max_microvolts);
3184		if (status < 0)
3185			return status;
3186	}
3187	if (ops->set_current_limit) {
3188		status = device_create_file(dev, &dev_attr_min_microamps);
3189		if (status < 0)
3190			return status;
3191		status = device_create_file(dev, &dev_attr_max_microamps);
3192		if (status < 0)
3193			return status;
3194	}
3195
3196	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3197	if (status < 0)
3198		return status;
3199	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3200	if (status < 0)
3201		return status;
3202	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3203	if (status < 0)
3204		return status;
3205
3206	if (ops->set_suspend_voltage) {
3207		status = device_create_file(dev,
3208				&dev_attr_suspend_standby_microvolts);
3209		if (status < 0)
3210			return status;
3211		status = device_create_file(dev,
3212				&dev_attr_suspend_mem_microvolts);
3213		if (status < 0)
3214			return status;
3215		status = device_create_file(dev,
3216				&dev_attr_suspend_disk_microvolts);
3217		if (status < 0)
3218			return status;
3219	}
3220
3221	if (ops->set_suspend_mode) {
3222		status = device_create_file(dev,
3223				&dev_attr_suspend_standby_mode);
3224		if (status < 0)
3225			return status;
3226		status = device_create_file(dev,
3227				&dev_attr_suspend_mem_mode);
3228		if (status < 0)
3229			return status;
3230		status = device_create_file(dev,
3231				&dev_attr_suspend_disk_mode);
3232		if (status < 0)
3233			return status;
3234	}
3235
3236	return status;
3237}
3238
3239static void rdev_init_debugfs(struct regulator_dev *rdev)
3240{
3241	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3242	if (!rdev->debugfs) {
3243		rdev_warn(rdev, "Failed to create debugfs directory\n");
3244		return;
3245	}
3246
3247	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3248			   &rdev->use_count);
3249	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3250			   &rdev->open_count);
3251	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3252			   &rdev->bypass_count);
3253}
3254
3255/**
3256 * regulator_register - register regulator
3257 * @regulator_desc: regulator to register
3258 * @config: runtime configuration for regulator
3259 *
3260 * Called by regulator drivers to register a regulator.
3261 * Returns 0 on success.
3262 */
3263struct regulator_dev *
3264regulator_register(const struct regulator_desc *regulator_desc,
3265		   const struct regulator_config *config)
3266{
3267	const struct regulation_constraints *constraints = NULL;
3268	const struct regulator_init_data *init_data;
3269	static atomic_t regulator_no = ATOMIC_INIT(0);
3270	struct regulator_dev *rdev;
3271	struct device *dev;
3272	int ret, i;
3273	const char *supply = NULL;
3274
3275	if (regulator_desc == NULL || config == NULL)
3276		return ERR_PTR(-EINVAL);
3277
3278	dev = config->dev;
3279	WARN_ON(!dev);
3280
3281	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3282		return ERR_PTR(-EINVAL);
3283
3284	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3285	    regulator_desc->type != REGULATOR_CURRENT)
3286		return ERR_PTR(-EINVAL);
3287
3288	/* Only one of each should be implemented */
3289	WARN_ON(regulator_desc->ops->get_voltage &&
3290		regulator_desc->ops->get_voltage_sel);
3291	WARN_ON(regulator_desc->ops->set_voltage &&
3292		regulator_desc->ops->set_voltage_sel);
3293
3294	/* If we're using selectors we must implement list_voltage. */
3295	if (regulator_desc->ops->get_voltage_sel &&
3296	    !regulator_desc->ops->list_voltage) {
3297		return ERR_PTR(-EINVAL);
3298	}
3299	if (regulator_desc->ops->set_voltage_sel &&
3300	    !regulator_desc->ops->list_voltage) {
3301		return ERR_PTR(-EINVAL);
3302	}
3303
3304	init_data = config->init_data;
3305
3306	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3307	if (rdev == NULL)
3308		return ERR_PTR(-ENOMEM);
3309
3310	mutex_lock(&regulator_list_mutex);
3311
3312	mutex_init(&rdev->mutex);
3313	rdev->reg_data = config->driver_data;
3314	rdev->owner = regulator_desc->owner;
3315	rdev->desc = regulator_desc;
3316	if (config->regmap)
3317		rdev->regmap = config->regmap;
3318	else
3319		rdev->regmap = dev_get_regmap(dev, NULL);
3320	INIT_LIST_HEAD(&rdev->consumer_list);
3321	INIT_LIST_HEAD(&rdev->list);
3322	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3323	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3324
3325	/* preform any regulator specific init */
3326	if (init_data && init_data->regulator_init) {
3327		ret = init_data->regulator_init(rdev->reg_data);
3328		if (ret < 0)
3329			goto clean;
3330	}
3331
3332	/* register with sysfs */
3333	rdev->dev.class = &regulator_class;
3334	rdev->dev.of_node = config->of_node;
3335	rdev->dev.parent = dev;
3336	dev_set_name(&rdev->dev, "regulator.%d",
3337		     atomic_inc_return(&regulator_no) - 1);
3338	ret = device_register(&rdev->dev);
3339	if (ret != 0) {
3340		put_device(&rdev->dev);
3341		goto clean;
3342	}
3343
3344	dev_set_drvdata(&rdev->dev, rdev);
3345
3346	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3347		ret = gpio_request_one(config->ena_gpio,
3348				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3349				       rdev_get_name(rdev));
3350		if (ret != 0) {
3351			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3352				 config->ena_gpio, ret);
3353			goto clean;
3354		}
3355
3356		rdev->ena_gpio = config->ena_gpio;
3357		rdev->ena_gpio_invert = config->ena_gpio_invert;
3358
3359		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3360			rdev->ena_gpio_state = 1;
3361
3362		if (rdev->ena_gpio_invert)
3363			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3364	}
3365
3366	/* set regulator constraints */
3367	if (init_data)
3368		constraints = &init_data->constraints;
3369
3370	ret = set_machine_constraints(rdev, constraints);
3371	if (ret < 0)
3372		goto scrub;
3373
3374	/* add attributes supported by this regulator */
3375	ret = add_regulator_attributes(rdev);
3376	if (ret < 0)
3377		goto scrub;
3378
3379	if (init_data && init_data->supply_regulator)
3380		supply = init_data->supply_regulator;
3381	else if (regulator_desc->supply_name)
3382		supply = regulator_desc->supply_name;
3383
3384	if (supply) {
3385		struct regulator_dev *r;
3386
3387		r = regulator_dev_lookup(dev, supply, &ret);
3388
3389		if (!r) {
3390			dev_err(dev, "Failed to find supply %s\n", supply);
3391			ret = -EPROBE_DEFER;
3392			goto scrub;
3393		}
3394
3395		ret = set_supply(rdev, r);
3396		if (ret < 0)
3397			goto scrub;
3398
3399		/* Enable supply if rail is enabled */
3400		if (_regulator_is_enabled(rdev)) {
3401			ret = regulator_enable(rdev->supply);
3402			if (ret < 0)
3403				goto scrub;
3404		}
3405	}
3406
3407	/* add consumers devices */
3408	if (init_data) {
3409		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3410			ret = set_consumer_device_supply(rdev,
3411				init_data->consumer_supplies[i].dev_name,
3412				init_data->consumer_supplies[i].supply);
3413			if (ret < 0) {
3414				dev_err(dev, "Failed to set supply %s\n",
3415					init_data->consumer_supplies[i].supply);
3416				goto unset_supplies;
3417			}
3418		}
3419	}
3420
3421	list_add(&rdev->list, &regulator_list);
3422
3423	rdev_init_debugfs(rdev);
3424out:
3425	mutex_unlock(&regulator_list_mutex);
3426	return rdev;
3427
3428unset_supplies:
3429	unset_regulator_supplies(rdev);
3430
3431scrub:
3432	if (rdev->supply)
3433		regulator_put(rdev->supply);
3434	if (rdev->ena_gpio)
3435		gpio_free(rdev->ena_gpio);
3436	kfree(rdev->constraints);
3437	device_unregister(&rdev->dev);
3438	/* device core frees rdev */
3439	rdev = ERR_PTR(ret);
3440	goto out;
3441
3442clean:
3443	kfree(rdev);
3444	rdev = ERR_PTR(ret);
3445	goto out;
3446}
3447EXPORT_SYMBOL_GPL(regulator_register);
3448
3449/**
3450 * regulator_unregister - unregister regulator
3451 * @rdev: regulator to unregister
3452 *
3453 * Called by regulator drivers to unregister a regulator.
3454 */
3455void regulator_unregister(struct regulator_dev *rdev)
3456{
3457	if (rdev == NULL)
3458		return;
3459
3460	if (rdev->supply)
3461		regulator_put(rdev->supply);
3462	mutex_lock(&regulator_list_mutex);
3463	debugfs_remove_recursive(rdev->debugfs);
3464	flush_work_sync(&rdev->disable_work.work);
3465	WARN_ON(rdev->open_count);
3466	unset_regulator_supplies(rdev);
3467	list_del(&rdev->list);
3468	kfree(rdev->constraints);
3469	if (rdev->ena_gpio)
3470		gpio_free(rdev->ena_gpio);
3471	device_unregister(&rdev->dev);
3472	mutex_unlock(&regulator_list_mutex);
3473}
3474EXPORT_SYMBOL_GPL(regulator_unregister);
3475
3476/**
3477 * regulator_suspend_prepare - prepare regulators for system wide suspend
3478 * @state: system suspend state
3479 *
3480 * Configure each regulator with it's suspend operating parameters for state.
3481 * This will usually be called by machine suspend code prior to supending.
3482 */
3483int regulator_suspend_prepare(suspend_state_t state)
3484{
3485	struct regulator_dev *rdev;
3486	int ret = 0;
3487
3488	/* ON is handled by regulator active state */
3489	if (state == PM_SUSPEND_ON)
3490		return -EINVAL;
3491
3492	mutex_lock(&regulator_list_mutex);
3493	list_for_each_entry(rdev, &regulator_list, list) {
3494
3495		mutex_lock(&rdev->mutex);
3496		ret = suspend_prepare(rdev, state);
3497		mutex_unlock(&rdev->mutex);
3498
3499		if (ret < 0) {
3500			rdev_err(rdev, "failed to prepare\n");
3501			goto out;
3502		}
3503	}
3504out:
3505	mutex_unlock(&regulator_list_mutex);
3506	return ret;
3507}
3508EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3509
3510/**
3511 * regulator_suspend_finish - resume regulators from system wide suspend
3512 *
3513 * Turn on regulators that might be turned off by regulator_suspend_prepare
3514 * and that should be turned on according to the regulators properties.
3515 */
3516int regulator_suspend_finish(void)
3517{
3518	struct regulator_dev *rdev;
3519	int ret = 0, error;
3520
3521	mutex_lock(&regulator_list_mutex);
3522	list_for_each_entry(rdev, &regulator_list, list) {
3523		struct regulator_ops *ops = rdev->desc->ops;
3524
3525		mutex_lock(&rdev->mutex);
3526		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3527				ops->enable) {
3528			error = ops->enable(rdev);
3529			if (error)
3530				ret = error;
3531		} else {
3532			if (!has_full_constraints)
3533				goto unlock;
3534			if (!ops->disable)
3535				goto unlock;
3536			if (!_regulator_is_enabled(rdev))
3537				goto unlock;
3538
3539			error = ops->disable(rdev);
3540			if (error)
3541				ret = error;
3542		}
3543unlock:
3544		mutex_unlock(&rdev->mutex);
3545	}
3546	mutex_unlock(&regulator_list_mutex);
3547	return ret;
3548}
3549EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3550
3551/**
3552 * regulator_has_full_constraints - the system has fully specified constraints
3553 *
3554 * Calling this function will cause the regulator API to disable all
3555 * regulators which have a zero use count and don't have an always_on
3556 * constraint in a late_initcall.
3557 *
3558 * The intention is that this will become the default behaviour in a
3559 * future kernel release so users are encouraged to use this facility
3560 * now.
3561 */
3562void regulator_has_full_constraints(void)
3563{
3564	has_full_constraints = 1;
3565}
3566EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3567
3568/**
3569 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3570 *
3571 * Calling this function will cause the regulator API to provide a
3572 * dummy regulator to consumers if no physical regulator is found,
3573 * allowing most consumers to proceed as though a regulator were
3574 * configured.  This allows systems such as those with software
3575 * controllable regulators for the CPU core only to be brought up more
3576 * readily.
3577 */
3578void regulator_use_dummy_regulator(void)
3579{
3580	board_wants_dummy_regulator = true;
3581}
3582EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3583
3584/**
3585 * rdev_get_drvdata - get rdev regulator driver data
3586 * @rdev: regulator
3587 *
3588 * Get rdev regulator driver private data. This call can be used in the
3589 * regulator driver context.
3590 */
3591void *rdev_get_drvdata(struct regulator_dev *rdev)
3592{
3593	return rdev->reg_data;
3594}
3595EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3596
3597/**
3598 * regulator_get_drvdata - get regulator driver data
3599 * @regulator: regulator
3600 *
3601 * Get regulator driver private data. This call can be used in the consumer
3602 * driver context when non API regulator specific functions need to be called.
3603 */
3604void *regulator_get_drvdata(struct regulator *regulator)
3605{
3606	return regulator->rdev->reg_data;
3607}
3608EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3609
3610/**
3611 * regulator_set_drvdata - set regulator driver data
3612 * @regulator: regulator
3613 * @data: data
3614 */
3615void regulator_set_drvdata(struct regulator *regulator, void *data)
3616{
3617	regulator->rdev->reg_data = data;
3618}
3619EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3620
3621/**
3622 * regulator_get_id - get regulator ID
3623 * @rdev: regulator
3624 */
3625int rdev_get_id(struct regulator_dev *rdev)
3626{
3627	return rdev->desc->id;
3628}
3629EXPORT_SYMBOL_GPL(rdev_get_id);
3630
3631struct device *rdev_get_dev(struct regulator_dev *rdev)
3632{
3633	return &rdev->dev;
3634}
3635EXPORT_SYMBOL_GPL(rdev_get_dev);
3636
3637void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3638{
3639	return reg_init_data->driver_data;
3640}
3641EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3642
3643#ifdef CONFIG_DEBUG_FS
3644static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3645				    size_t count, loff_t *ppos)
3646{
3647	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3648	ssize_t len, ret = 0;
3649	struct regulator_map *map;
3650
3651	if (!buf)
3652		return -ENOMEM;
3653
3654	list_for_each_entry(map, &regulator_map_list, list) {
3655		len = snprintf(buf + ret, PAGE_SIZE - ret,
3656			       "%s -> %s.%s\n",
3657			       rdev_get_name(map->regulator), map->dev_name,
3658			       map->supply);
3659		if (len >= 0)
3660			ret += len;
3661		if (ret > PAGE_SIZE) {
3662			ret = PAGE_SIZE;
3663			break;
3664		}
3665	}
3666
3667	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3668
3669	kfree(buf);
3670
3671	return ret;
3672}
3673#endif
3674
3675static const struct file_operations supply_map_fops = {
3676#ifdef CONFIG_DEBUG_FS
3677	.read = supply_map_read_file,
3678	.llseek = default_llseek,
3679#endif
3680};
3681
3682static int __init regulator_init(void)
3683{
3684	int ret;
3685
3686	ret = class_register(&regulator_class);
3687
3688	debugfs_root = debugfs_create_dir("regulator", NULL);
3689	if (!debugfs_root)
3690		pr_warn("regulator: Failed to create debugfs directory\n");
3691
3692	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3693			    &supply_map_fops);
3694
3695	regulator_dummy_init();
3696
3697	return ret;
3698}
3699
3700/* init early to allow our consumers to complete system booting */
3701core_initcall(regulator_init);
3702
3703static int __init regulator_init_complete(void)
3704{
3705	struct regulator_dev *rdev;
3706	struct regulator_ops *ops;
3707	struct regulation_constraints *c;
3708	int enabled, ret;
3709
3710	/*
3711	 * Since DT doesn't provide an idiomatic mechanism for
3712	 * enabling full constraints and since it's much more natural
3713	 * with DT to provide them just assume that a DT enabled
3714	 * system has full constraints.
3715	 */
3716	if (of_have_populated_dt())
3717		has_full_constraints = true;
3718
3719	mutex_lock(&regulator_list_mutex);
3720
3721	/* If we have a full configuration then disable any regulators
3722	 * which are not in use or always_on.  This will become the
3723	 * default behaviour in the future.
3724	 */
3725	list_for_each_entry(rdev, &regulator_list, list) {
3726		ops = rdev->desc->ops;
3727		c = rdev->constraints;
3728
3729		if (!ops->disable || (c && c->always_on))
3730			continue;
3731
3732		mutex_lock(&rdev->mutex);
3733
3734		if (rdev->use_count)
3735			goto unlock;
3736
3737		/* If we can't read the status assume it's on. */
3738		if (ops->is_enabled)
3739			enabled = ops->is_enabled(rdev);
3740		else
3741			enabled = 1;
3742
3743		if (!enabled)
3744			goto unlock;
3745
3746		if (has_full_constraints) {
3747			/* We log since this may kill the system if it
3748			 * goes wrong. */
3749			rdev_info(rdev, "disabling\n");
3750			ret = ops->disable(rdev);
3751			if (ret != 0) {
3752				rdev_err(rdev, "couldn't disable: %d\n", ret);
3753			}
3754		} else {
3755			/* The intention is that in future we will
3756			 * assume that full constraints are provided
3757			 * so warn even if we aren't going to do
3758			 * anything here.
3759			 */
3760			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3761		}
3762
3763unlock:
3764		mutex_unlock(&rdev->mutex);
3765	}
3766
3767	mutex_unlock(&regulator_list_mutex);
3768
3769	return 0;
3770}
3771late_initcall(regulator_init_complete);
3772