core.c revision e032b376551a61662b20a2c8544fbbc568ab2e7f
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regulator/of_regulator.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31#include <linux/module.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/regulator.h>
35
36#include "dummy.h"
37
38#define rdev_crit(rdev, fmt, ...)					\
39	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_err(rdev, fmt, ...)					\
41	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_warn(rdev, fmt, ...)					\
43	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_info(rdev, fmt, ...)					\
45	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_dbg(rdev, fmt, ...)					\
47	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_list);
51static LIST_HEAD(regulator_map_list);
52static bool has_full_constraints;
53static bool board_wants_dummy_regulator;
54
55static struct dentry *debugfs_root;
56
57/*
58 * struct regulator_map
59 *
60 * Used to provide symbolic supply names to devices.
61 */
62struct regulator_map {
63	struct list_head list;
64	const char *dev_name;   /* The dev_name() for the consumer */
65	const char *supply;
66	struct regulator_dev *regulator;
67};
68
69/*
70 * struct regulator
71 *
72 * One for each consumer device.
73 */
74struct regulator {
75	struct device *dev;
76	struct list_head list;
77	int uA_load;
78	int min_uV;
79	int max_uV;
80	char *supply_name;
81	struct device_attribute dev_attr;
82	struct regulator_dev *rdev;
83	struct dentry *debugfs;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator_dev *rdev);
88static int _regulator_get_voltage(struct regulator_dev *rdev);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static void _notifier_call_chain(struct regulator_dev *rdev,
92				  unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94				     int min_uV, int max_uV);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96					  struct device *dev,
97					  const char *supply_name);
98
99static const char *rdev_get_name(struct regulator_dev *rdev)
100{
101	if (rdev->constraints && rdev->constraints->name)
102		return rdev->constraints->name;
103	else if (rdev->desc->name)
104		return rdev->desc->name;
105	else
106		return "";
107}
108
109/* gets the regulator for a given consumer device */
110static struct regulator *get_device_regulator(struct device *dev)
111{
112	struct regulator *regulator = NULL;
113	struct regulator_dev *rdev;
114
115	mutex_lock(&regulator_list_mutex);
116	list_for_each_entry(rdev, &regulator_list, list) {
117		mutex_lock(&rdev->mutex);
118		list_for_each_entry(regulator, &rdev->consumer_list, list) {
119			if (regulator->dev == dev) {
120				mutex_unlock(&rdev->mutex);
121				mutex_unlock(&regulator_list_mutex);
122				return regulator;
123			}
124		}
125		mutex_unlock(&rdev->mutex);
126	}
127	mutex_unlock(&regulator_list_mutex);
128	return NULL;
129}
130
131/**
132 * of_get_regulator - get a regulator device node based on supply name
133 * @dev: Device pointer for the consumer (of regulator) device
134 * @supply: regulator supply name
135 *
136 * Extract the regulator device node corresponding to the supply name.
137 * retruns the device node corresponding to the regulator if found, else
138 * returns NULL.
139 */
140static struct device_node *of_get_regulator(struct device *dev, const char *supply)
141{
142	struct device_node *regnode = NULL;
143	char prop_name[32]; /* 32 is max size of property name */
144
145	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
146
147	snprintf(prop_name, 32, "%s-supply", supply);
148	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
149
150	if (!regnode) {
151		dev_dbg(dev, "Looking up %s property in node %s failed",
152				prop_name, dev->of_node->full_name);
153		return NULL;
154	}
155	return regnode;
156}
157
158/* Platform voltage constraint check */
159static int regulator_check_voltage(struct regulator_dev *rdev,
160				   int *min_uV, int *max_uV)
161{
162	BUG_ON(*min_uV > *max_uV);
163
164	if (!rdev->constraints) {
165		rdev_err(rdev, "no constraints\n");
166		return -ENODEV;
167	}
168	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169		rdev_err(rdev, "operation not allowed\n");
170		return -EPERM;
171	}
172
173	if (*max_uV > rdev->constraints->max_uV)
174		*max_uV = rdev->constraints->max_uV;
175	if (*min_uV < rdev->constraints->min_uV)
176		*min_uV = rdev->constraints->min_uV;
177
178	if (*min_uV > *max_uV) {
179		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180			 *min_uV, *max_uV);
181		return -EINVAL;
182	}
183
184	return 0;
185}
186
187/* Make sure we select a voltage that suits the needs of all
188 * regulator consumers
189 */
190static int regulator_check_consumers(struct regulator_dev *rdev,
191				     int *min_uV, int *max_uV)
192{
193	struct regulator *regulator;
194
195	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196		/*
197		 * Assume consumers that didn't say anything are OK
198		 * with anything in the constraint range.
199		 */
200		if (!regulator->min_uV && !regulator->max_uV)
201			continue;
202
203		if (*max_uV > regulator->max_uV)
204			*max_uV = regulator->max_uV;
205		if (*min_uV < regulator->min_uV)
206			*min_uV = regulator->min_uV;
207	}
208
209	if (*min_uV > *max_uV)
210		return -EINVAL;
211
212	return 0;
213}
214
215/* current constraint check */
216static int regulator_check_current_limit(struct regulator_dev *rdev,
217					int *min_uA, int *max_uA)
218{
219	BUG_ON(*min_uA > *max_uA);
220
221	if (!rdev->constraints) {
222		rdev_err(rdev, "no constraints\n");
223		return -ENODEV;
224	}
225	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226		rdev_err(rdev, "operation not allowed\n");
227		return -EPERM;
228	}
229
230	if (*max_uA > rdev->constraints->max_uA)
231		*max_uA = rdev->constraints->max_uA;
232	if (*min_uA < rdev->constraints->min_uA)
233		*min_uA = rdev->constraints->min_uA;
234
235	if (*min_uA > *max_uA) {
236		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237			 *min_uA, *max_uA);
238		return -EINVAL;
239	}
240
241	return 0;
242}
243
244/* operating mode constraint check */
245static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246{
247	switch (*mode) {
248	case REGULATOR_MODE_FAST:
249	case REGULATOR_MODE_NORMAL:
250	case REGULATOR_MODE_IDLE:
251	case REGULATOR_MODE_STANDBY:
252		break;
253	default:
254		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255		return -EINVAL;
256	}
257
258	if (!rdev->constraints) {
259		rdev_err(rdev, "no constraints\n");
260		return -ENODEV;
261	}
262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263		rdev_err(rdev, "operation not allowed\n");
264		return -EPERM;
265	}
266
267	/* The modes are bitmasks, the most power hungry modes having
268	 * the lowest values. If the requested mode isn't supported
269	 * try higher modes. */
270	while (*mode) {
271		if (rdev->constraints->valid_modes_mask & *mode)
272			return 0;
273		*mode /= 2;
274	}
275
276	return -EINVAL;
277}
278
279/* dynamic regulator mode switching constraint check */
280static int regulator_check_drms(struct regulator_dev *rdev)
281{
282	if (!rdev->constraints) {
283		rdev_err(rdev, "no constraints\n");
284		return -ENODEV;
285	}
286	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287		rdev_err(rdev, "operation not allowed\n");
288		return -EPERM;
289	}
290	return 0;
291}
292
293static ssize_t device_requested_uA_show(struct device *dev,
294			     struct device_attribute *attr, char *buf)
295{
296	struct regulator *regulator;
297
298	regulator = get_device_regulator(dev);
299	if (regulator == NULL)
300		return 0;
301
302	return sprintf(buf, "%d\n", regulator->uA_load);
303}
304
305static ssize_t regulator_uV_show(struct device *dev,
306				struct device_attribute *attr, char *buf)
307{
308	struct regulator_dev *rdev = dev_get_drvdata(dev);
309	ssize_t ret;
310
311	mutex_lock(&rdev->mutex);
312	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313	mutex_unlock(&rdev->mutex);
314
315	return ret;
316}
317static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318
319static ssize_t regulator_uA_show(struct device *dev,
320				struct device_attribute *attr, char *buf)
321{
322	struct regulator_dev *rdev = dev_get_drvdata(dev);
323
324	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325}
326static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327
328static ssize_t regulator_name_show(struct device *dev,
329			     struct device_attribute *attr, char *buf)
330{
331	struct regulator_dev *rdev = dev_get_drvdata(dev);
332
333	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334}
335
336static ssize_t regulator_print_opmode(char *buf, int mode)
337{
338	switch (mode) {
339	case REGULATOR_MODE_FAST:
340		return sprintf(buf, "fast\n");
341	case REGULATOR_MODE_NORMAL:
342		return sprintf(buf, "normal\n");
343	case REGULATOR_MODE_IDLE:
344		return sprintf(buf, "idle\n");
345	case REGULATOR_MODE_STANDBY:
346		return sprintf(buf, "standby\n");
347	}
348	return sprintf(buf, "unknown\n");
349}
350
351static ssize_t regulator_opmode_show(struct device *dev,
352				    struct device_attribute *attr, char *buf)
353{
354	struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357}
358static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360static ssize_t regulator_print_state(char *buf, int state)
361{
362	if (state > 0)
363		return sprintf(buf, "enabled\n");
364	else if (state == 0)
365		return sprintf(buf, "disabled\n");
366	else
367		return sprintf(buf, "unknown\n");
368}
369
370static ssize_t regulator_state_show(struct device *dev,
371				   struct device_attribute *attr, char *buf)
372{
373	struct regulator_dev *rdev = dev_get_drvdata(dev);
374	ssize_t ret;
375
376	mutex_lock(&rdev->mutex);
377	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378	mutex_unlock(&rdev->mutex);
379
380	return ret;
381}
382static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384static ssize_t regulator_status_show(struct device *dev,
385				   struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	int status;
389	char *label;
390
391	status = rdev->desc->ops->get_status(rdev);
392	if (status < 0)
393		return status;
394
395	switch (status) {
396	case REGULATOR_STATUS_OFF:
397		label = "off";
398		break;
399	case REGULATOR_STATUS_ON:
400		label = "on";
401		break;
402	case REGULATOR_STATUS_ERROR:
403		label = "error";
404		break;
405	case REGULATOR_STATUS_FAST:
406		label = "fast";
407		break;
408	case REGULATOR_STATUS_NORMAL:
409		label = "normal";
410		break;
411	case REGULATOR_STATUS_IDLE:
412		label = "idle";
413		break;
414	case REGULATOR_STATUS_STANDBY:
415		label = "standby";
416		break;
417	default:
418		return -ERANGE;
419	}
420
421	return sprintf(buf, "%s\n", label);
422}
423static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424
425static ssize_t regulator_min_uA_show(struct device *dev,
426				    struct device_attribute *attr, char *buf)
427{
428	struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430	if (!rdev->constraints)
431		return sprintf(buf, "constraint not defined\n");
432
433	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434}
435static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436
437static ssize_t regulator_max_uA_show(struct device *dev,
438				    struct device_attribute *attr, char *buf)
439{
440	struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442	if (!rdev->constraints)
443		return sprintf(buf, "constraint not defined\n");
444
445	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446}
447static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448
449static ssize_t regulator_min_uV_show(struct device *dev,
450				    struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454	if (!rdev->constraints)
455		return sprintf(buf, "constraint not defined\n");
456
457	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458}
459static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460
461static ssize_t regulator_max_uV_show(struct device *dev,
462				    struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	if (!rdev->constraints)
467		return sprintf(buf, "constraint not defined\n");
468
469	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470}
471static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472
473static ssize_t regulator_total_uA_show(struct device *dev,
474				      struct device_attribute *attr, char *buf)
475{
476	struct regulator_dev *rdev = dev_get_drvdata(dev);
477	struct regulator *regulator;
478	int uA = 0;
479
480	mutex_lock(&rdev->mutex);
481	list_for_each_entry(regulator, &rdev->consumer_list, list)
482		uA += regulator->uA_load;
483	mutex_unlock(&rdev->mutex);
484	return sprintf(buf, "%d\n", uA);
485}
486static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487
488static ssize_t regulator_num_users_show(struct device *dev,
489				      struct device_attribute *attr, char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492	return sprintf(buf, "%d\n", rdev->use_count);
493}
494
495static ssize_t regulator_type_show(struct device *dev,
496				  struct device_attribute *attr, char *buf)
497{
498	struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500	switch (rdev->desc->type) {
501	case REGULATOR_VOLTAGE:
502		return sprintf(buf, "voltage\n");
503	case REGULATOR_CURRENT:
504		return sprintf(buf, "current\n");
505	}
506	return sprintf(buf, "unknown\n");
507}
508
509static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
515}
516static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517		regulator_suspend_mem_uV_show, NULL);
518
519static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
525}
526static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527		regulator_suspend_disk_uV_show, NULL);
528
529static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
535}
536static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537		regulator_suspend_standby_uV_show, NULL);
538
539static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540				struct device_attribute *attr, char *buf)
541{
542	struct regulator_dev *rdev = dev_get_drvdata(dev);
543
544	return regulator_print_opmode(buf,
545		rdev->constraints->state_mem.mode);
546}
547static DEVICE_ATTR(suspend_mem_mode, 0444,
548		regulator_suspend_mem_mode_show, NULL);
549
550static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551				struct device_attribute *attr, char *buf)
552{
553	struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555	return regulator_print_opmode(buf,
556		rdev->constraints->state_disk.mode);
557}
558static DEVICE_ATTR(suspend_disk_mode, 0444,
559		regulator_suspend_disk_mode_show, NULL);
560
561static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562				struct device_attribute *attr, char *buf)
563{
564	struct regulator_dev *rdev = dev_get_drvdata(dev);
565
566	return regulator_print_opmode(buf,
567		rdev->constraints->state_standby.mode);
568}
569static DEVICE_ATTR(suspend_standby_mode, 0444,
570		regulator_suspend_standby_mode_show, NULL);
571
572static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573				   struct device_attribute *attr, char *buf)
574{
575	struct regulator_dev *rdev = dev_get_drvdata(dev);
576
577	return regulator_print_state(buf,
578			rdev->constraints->state_mem.enabled);
579}
580static DEVICE_ATTR(suspend_mem_state, 0444,
581		regulator_suspend_mem_state_show, NULL);
582
583static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584				   struct device_attribute *attr, char *buf)
585{
586	struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588	return regulator_print_state(buf,
589			rdev->constraints->state_disk.enabled);
590}
591static DEVICE_ATTR(suspend_disk_state, 0444,
592		regulator_suspend_disk_state_show, NULL);
593
594static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595				   struct device_attribute *attr, char *buf)
596{
597	struct regulator_dev *rdev = dev_get_drvdata(dev);
598
599	return regulator_print_state(buf,
600			rdev->constraints->state_standby.enabled);
601}
602static DEVICE_ATTR(suspend_standby_state, 0444,
603		regulator_suspend_standby_state_show, NULL);
604
605
606/*
607 * These are the only attributes are present for all regulators.
608 * Other attributes are a function of regulator functionality.
609 */
610static struct device_attribute regulator_dev_attrs[] = {
611	__ATTR(name, 0444, regulator_name_show, NULL),
612	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
613	__ATTR(type, 0444, regulator_type_show, NULL),
614	__ATTR_NULL,
615};
616
617static void regulator_dev_release(struct device *dev)
618{
619	struct regulator_dev *rdev = dev_get_drvdata(dev);
620	kfree(rdev);
621}
622
623static struct class regulator_class = {
624	.name = "regulator",
625	.dev_release = regulator_dev_release,
626	.dev_attrs = regulator_dev_attrs,
627};
628
629/* Calculate the new optimum regulator operating mode based on the new total
630 * consumer load. All locks held by caller */
631static void drms_uA_update(struct regulator_dev *rdev)
632{
633	struct regulator *sibling;
634	int current_uA = 0, output_uV, input_uV, err;
635	unsigned int mode;
636
637	err = regulator_check_drms(rdev);
638	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639	    (!rdev->desc->ops->get_voltage &&
640	     !rdev->desc->ops->get_voltage_sel) ||
641	    !rdev->desc->ops->set_mode)
642		return;
643
644	/* get output voltage */
645	output_uV = _regulator_get_voltage(rdev);
646	if (output_uV <= 0)
647		return;
648
649	/* get input voltage */
650	input_uV = 0;
651	if (rdev->supply)
652		input_uV = _regulator_get_voltage(rdev);
653	if (input_uV <= 0)
654		input_uV = rdev->constraints->input_uV;
655	if (input_uV <= 0)
656		return;
657
658	/* calc total requested load */
659	list_for_each_entry(sibling, &rdev->consumer_list, list)
660		current_uA += sibling->uA_load;
661
662	/* now get the optimum mode for our new total regulator load */
663	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664						  output_uV, current_uA);
665
666	/* check the new mode is allowed */
667	err = regulator_mode_constrain(rdev, &mode);
668	if (err == 0)
669		rdev->desc->ops->set_mode(rdev, mode);
670}
671
672static int suspend_set_state(struct regulator_dev *rdev,
673	struct regulator_state *rstate)
674{
675	int ret = 0;
676	bool can_set_state;
677
678	can_set_state = rdev->desc->ops->set_suspend_enable &&
679		rdev->desc->ops->set_suspend_disable;
680
681	/* If we have no suspend mode configration don't set anything;
682	 * only warn if the driver actually makes the suspend mode
683	 * configurable.
684	 */
685	if (!rstate->enabled && !rstate->disabled) {
686		if (can_set_state)
687			rdev_warn(rdev, "No configuration\n");
688		return 0;
689	}
690
691	if (rstate->enabled && rstate->disabled) {
692		rdev_err(rdev, "invalid configuration\n");
693		return -EINVAL;
694	}
695
696	if (!can_set_state) {
697		rdev_err(rdev, "no way to set suspend state\n");
698		return -EINVAL;
699	}
700
701	if (rstate->enabled)
702		ret = rdev->desc->ops->set_suspend_enable(rdev);
703	else
704		ret = rdev->desc->ops->set_suspend_disable(rdev);
705	if (ret < 0) {
706		rdev_err(rdev, "failed to enabled/disable\n");
707		return ret;
708	}
709
710	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712		if (ret < 0) {
713			rdev_err(rdev, "failed to set voltage\n");
714			return ret;
715		}
716	}
717
718	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720		if (ret < 0) {
721			rdev_err(rdev, "failed to set mode\n");
722			return ret;
723		}
724	}
725	return ret;
726}
727
728/* locks held by caller */
729static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
730{
731	if (!rdev->constraints)
732		return -EINVAL;
733
734	switch (state) {
735	case PM_SUSPEND_STANDBY:
736		return suspend_set_state(rdev,
737			&rdev->constraints->state_standby);
738	case PM_SUSPEND_MEM:
739		return suspend_set_state(rdev,
740			&rdev->constraints->state_mem);
741	case PM_SUSPEND_MAX:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_disk);
744	default:
745		return -EINVAL;
746	}
747}
748
749static void print_constraints(struct regulator_dev *rdev)
750{
751	struct regulation_constraints *constraints = rdev->constraints;
752	char buf[80] = "";
753	int count = 0;
754	int ret;
755
756	if (constraints->min_uV && constraints->max_uV) {
757		if (constraints->min_uV == constraints->max_uV)
758			count += sprintf(buf + count, "%d mV ",
759					 constraints->min_uV / 1000);
760		else
761			count += sprintf(buf + count, "%d <--> %d mV ",
762					 constraints->min_uV / 1000,
763					 constraints->max_uV / 1000);
764	}
765
766	if (!constraints->min_uV ||
767	    constraints->min_uV != constraints->max_uV) {
768		ret = _regulator_get_voltage(rdev);
769		if (ret > 0)
770			count += sprintf(buf + count, "at %d mV ", ret / 1000);
771	}
772
773	if (constraints->uV_offset)
774		count += sprintf(buf, "%dmV offset ",
775				 constraints->uV_offset / 1000);
776
777	if (constraints->min_uA && constraints->max_uA) {
778		if (constraints->min_uA == constraints->max_uA)
779			count += sprintf(buf + count, "%d mA ",
780					 constraints->min_uA / 1000);
781		else
782			count += sprintf(buf + count, "%d <--> %d mA ",
783					 constraints->min_uA / 1000,
784					 constraints->max_uA / 1000);
785	}
786
787	if (!constraints->min_uA ||
788	    constraints->min_uA != constraints->max_uA) {
789		ret = _regulator_get_current_limit(rdev);
790		if (ret > 0)
791			count += sprintf(buf + count, "at %d mA ", ret / 1000);
792	}
793
794	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795		count += sprintf(buf + count, "fast ");
796	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797		count += sprintf(buf + count, "normal ");
798	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799		count += sprintf(buf + count, "idle ");
800	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801		count += sprintf(buf + count, "standby");
802
803	rdev_info(rdev, "%s\n", buf);
804
805	if ((constraints->min_uV != constraints->max_uV) &&
806	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807		rdev_warn(rdev,
808			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809}
810
811static int machine_constraints_voltage(struct regulator_dev *rdev,
812	struct regulation_constraints *constraints)
813{
814	struct regulator_ops *ops = rdev->desc->ops;
815	int ret;
816
817	/* do we need to apply the constraint voltage */
818	if (rdev->constraints->apply_uV &&
819	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
820		ret = _regulator_do_set_voltage(rdev,
821						rdev->constraints->min_uV,
822						rdev->constraints->max_uV);
823		if (ret < 0) {
824			rdev_err(rdev, "failed to apply %duV constraint\n",
825				 rdev->constraints->min_uV);
826			return ret;
827		}
828	}
829
830	/* constrain machine-level voltage specs to fit
831	 * the actual range supported by this regulator.
832	 */
833	if (ops->list_voltage && rdev->desc->n_voltages) {
834		int	count = rdev->desc->n_voltages;
835		int	i;
836		int	min_uV = INT_MAX;
837		int	max_uV = INT_MIN;
838		int	cmin = constraints->min_uV;
839		int	cmax = constraints->max_uV;
840
841		/* it's safe to autoconfigure fixed-voltage supplies
842		   and the constraints are used by list_voltage. */
843		if (count == 1 && !cmin) {
844			cmin = 1;
845			cmax = INT_MAX;
846			constraints->min_uV = cmin;
847			constraints->max_uV = cmax;
848		}
849
850		/* voltage constraints are optional */
851		if ((cmin == 0) && (cmax == 0))
852			return 0;
853
854		/* else require explicit machine-level constraints */
855		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856			rdev_err(rdev, "invalid voltage constraints\n");
857			return -EINVAL;
858		}
859
860		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861		for (i = 0; i < count; i++) {
862			int	value;
863
864			value = ops->list_voltage(rdev, i);
865			if (value <= 0)
866				continue;
867
868			/* maybe adjust [min_uV..max_uV] */
869			if (value >= cmin && value < min_uV)
870				min_uV = value;
871			if (value <= cmax && value > max_uV)
872				max_uV = value;
873		}
874
875		/* final: [min_uV..max_uV] valid iff constraints valid */
876		if (max_uV < min_uV) {
877			rdev_err(rdev, "unsupportable voltage constraints\n");
878			return -EINVAL;
879		}
880
881		/* use regulator's subset of machine constraints */
882		if (constraints->min_uV < min_uV) {
883			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884				 constraints->min_uV, min_uV);
885			constraints->min_uV = min_uV;
886		}
887		if (constraints->max_uV > max_uV) {
888			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889				 constraints->max_uV, max_uV);
890			constraints->max_uV = max_uV;
891		}
892	}
893
894	return 0;
895}
896
897/**
898 * set_machine_constraints - sets regulator constraints
899 * @rdev: regulator source
900 * @constraints: constraints to apply
901 *
902 * Allows platform initialisation code to define and constrain
903 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
904 * Constraints *must* be set by platform code in order for some
905 * regulator operations to proceed i.e. set_voltage, set_current_limit,
906 * set_mode.
907 */
908static int set_machine_constraints(struct regulator_dev *rdev,
909	const struct regulation_constraints *constraints)
910{
911	int ret = 0;
912	struct regulator_ops *ops = rdev->desc->ops;
913
914	if (constraints)
915		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916					    GFP_KERNEL);
917	else
918		rdev->constraints = kzalloc(sizeof(*constraints),
919					    GFP_KERNEL);
920	if (!rdev->constraints)
921		return -ENOMEM;
922
923	ret = machine_constraints_voltage(rdev, rdev->constraints);
924	if (ret != 0)
925		goto out;
926
927	/* do we need to setup our suspend state */
928	if (rdev->constraints->initial_state) {
929		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930		if (ret < 0) {
931			rdev_err(rdev, "failed to set suspend state\n");
932			goto out;
933		}
934	}
935
936	if (rdev->constraints->initial_mode) {
937		if (!ops->set_mode) {
938			rdev_err(rdev, "no set_mode operation\n");
939			ret = -EINVAL;
940			goto out;
941		}
942
943		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944		if (ret < 0) {
945			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946			goto out;
947		}
948	}
949
950	/* If the constraints say the regulator should be on at this point
951	 * and we have control then make sure it is enabled.
952	 */
953	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954	    ops->enable) {
955		ret = ops->enable(rdev);
956		if (ret < 0) {
957			rdev_err(rdev, "failed to enable\n");
958			goto out;
959		}
960	}
961
962	print_constraints(rdev);
963	return 0;
964out:
965	kfree(rdev->constraints);
966	rdev->constraints = NULL;
967	return ret;
968}
969
970/**
971 * set_supply - set regulator supply regulator
972 * @rdev: regulator name
973 * @supply_rdev: supply regulator name
974 *
975 * Called by platform initialisation code to set the supply regulator for this
976 * regulator. This ensures that a regulators supply will also be enabled by the
977 * core if it's child is enabled.
978 */
979static int set_supply(struct regulator_dev *rdev,
980		      struct regulator_dev *supply_rdev)
981{
982	int err;
983
984	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
985
986	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987	if (rdev->supply == NULL) {
988		err = -ENOMEM;
989		return err;
990	}
991
992	return 0;
993}
994
995/**
996 * set_consumer_device_supply - Bind a regulator to a symbolic supply
997 * @rdev:         regulator source
998 * @consumer_dev_name: dev_name() string for device supply applies to
999 * @supply:       symbolic name for supply
1000 *
1001 * Allows platform initialisation code to map physical regulator
1002 * sources to symbolic names for supplies for use by devices.  Devices
1003 * should use these symbolic names to request regulators, avoiding the
1004 * need to provide board-specific regulator names as platform data.
1005 */
1006static int set_consumer_device_supply(struct regulator_dev *rdev,
1007				      const char *consumer_dev_name,
1008				      const char *supply)
1009{
1010	struct regulator_map *node;
1011	int has_dev;
1012
1013	if (supply == NULL)
1014		return -EINVAL;
1015
1016	if (consumer_dev_name != NULL)
1017		has_dev = 1;
1018	else
1019		has_dev = 0;
1020
1021	list_for_each_entry(node, &regulator_map_list, list) {
1022		if (node->dev_name && consumer_dev_name) {
1023			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1024				continue;
1025		} else if (node->dev_name || consumer_dev_name) {
1026			continue;
1027		}
1028
1029		if (strcmp(node->supply, supply) != 0)
1030			continue;
1031
1032		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1033			 consumer_dev_name,
1034			 dev_name(&node->regulator->dev),
1035			 node->regulator->desc->name,
1036			 supply,
1037			 dev_name(&rdev->dev), rdev_get_name(rdev));
1038		return -EBUSY;
1039	}
1040
1041	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042	if (node == NULL)
1043		return -ENOMEM;
1044
1045	node->regulator = rdev;
1046	node->supply = supply;
1047
1048	if (has_dev) {
1049		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1050		if (node->dev_name == NULL) {
1051			kfree(node);
1052			return -ENOMEM;
1053		}
1054	}
1055
1056	list_add(&node->list, &regulator_map_list);
1057	return 0;
1058}
1059
1060static void unset_regulator_supplies(struct regulator_dev *rdev)
1061{
1062	struct regulator_map *node, *n;
1063
1064	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1065		if (rdev == node->regulator) {
1066			list_del(&node->list);
1067			kfree(node->dev_name);
1068			kfree(node);
1069		}
1070	}
1071}
1072
1073#define REG_STR_SIZE	64
1074
1075static struct regulator *create_regulator(struct regulator_dev *rdev,
1076					  struct device *dev,
1077					  const char *supply_name)
1078{
1079	struct regulator *regulator;
1080	char buf[REG_STR_SIZE];
1081	int err, size;
1082
1083	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1084	if (regulator == NULL)
1085		return NULL;
1086
1087	mutex_lock(&rdev->mutex);
1088	regulator->rdev = rdev;
1089	list_add(&regulator->list, &rdev->consumer_list);
1090
1091	if (dev) {
1092		/* create a 'requested_microamps_name' sysfs entry */
1093		size = scnprintf(buf, REG_STR_SIZE,
1094				 "microamps_requested_%s-%s",
1095				 dev_name(dev), supply_name);
1096		if (size >= REG_STR_SIZE)
1097			goto overflow_err;
1098
1099		regulator->dev = dev;
1100		sysfs_attr_init(&regulator->dev_attr.attr);
1101		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1102		if (regulator->dev_attr.attr.name == NULL)
1103			goto attr_name_err;
1104
1105		regulator->dev_attr.attr.mode = 0444;
1106		regulator->dev_attr.show = device_requested_uA_show;
1107		err = device_create_file(dev, &regulator->dev_attr);
1108		if (err < 0) {
1109			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110			goto attr_name_err;
1111		}
1112
1113		/* also add a link to the device sysfs entry */
1114		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1115				 dev->kobj.name, supply_name);
1116		if (size >= REG_STR_SIZE)
1117			goto attr_err;
1118
1119		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1120		if (regulator->supply_name == NULL)
1121			goto attr_err;
1122
1123		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1124					buf);
1125		if (err) {
1126			rdev_warn(rdev, "could not add device link %s err %d\n",
1127				  dev->kobj.name, err);
1128			goto link_name_err;
1129		}
1130	} else {
1131		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1132		if (regulator->supply_name == NULL)
1133			goto attr_err;
1134	}
1135
1136	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1137						rdev->debugfs);
1138	if (!regulator->debugfs) {
1139		rdev_warn(rdev, "Failed to create debugfs directory\n");
1140	} else {
1141		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1142				   &regulator->uA_load);
1143		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1144				   &regulator->min_uV);
1145		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1146				   &regulator->max_uV);
1147	}
1148
1149	mutex_unlock(&rdev->mutex);
1150	return regulator;
1151link_name_err:
1152	kfree(regulator->supply_name);
1153attr_err:
1154	device_remove_file(regulator->dev, &regulator->dev_attr);
1155attr_name_err:
1156	kfree(regulator->dev_attr.attr.name);
1157overflow_err:
1158	list_del(&regulator->list);
1159	kfree(regulator);
1160	mutex_unlock(&rdev->mutex);
1161	return NULL;
1162}
1163
1164static int _regulator_get_enable_time(struct regulator_dev *rdev)
1165{
1166	if (!rdev->desc->ops->enable_time)
1167		return 0;
1168	return rdev->desc->ops->enable_time(rdev);
1169}
1170
1171static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1172							 const char *supply)
1173{
1174	struct regulator_dev *r;
1175	struct device_node *node;
1176
1177	/* first do a dt based lookup */
1178	if (dev && dev->of_node) {
1179		node = of_get_regulator(dev, supply);
1180		if (node)
1181			list_for_each_entry(r, &regulator_list, list)
1182				if (r->dev.parent &&
1183					node == r->dev.of_node)
1184					return r;
1185	}
1186
1187	/* if not found, try doing it non-dt way */
1188	list_for_each_entry(r, &regulator_list, list)
1189		if (strcmp(rdev_get_name(r), supply) == 0)
1190			return r;
1191
1192	return NULL;
1193}
1194
1195/* Internal regulator request function */
1196static struct regulator *_regulator_get(struct device *dev, const char *id,
1197					int exclusive)
1198{
1199	struct regulator_dev *rdev;
1200	struct regulator_map *map;
1201	struct regulator *regulator = ERR_PTR(-ENODEV);
1202	const char *devname = NULL;
1203	int ret;
1204
1205	if (id == NULL) {
1206		pr_err("get() with no identifier\n");
1207		return regulator;
1208	}
1209
1210	if (dev)
1211		devname = dev_name(dev);
1212
1213	mutex_lock(&regulator_list_mutex);
1214
1215	rdev = regulator_dev_lookup(dev, id);
1216	if (rdev)
1217		goto found;
1218
1219	list_for_each_entry(map, &regulator_map_list, list) {
1220		/* If the mapping has a device set up it must match */
1221		if (map->dev_name &&
1222		    (!devname || strcmp(map->dev_name, devname)))
1223			continue;
1224
1225		if (strcmp(map->supply, id) == 0) {
1226			rdev = map->regulator;
1227			goto found;
1228		}
1229	}
1230
1231	if (board_wants_dummy_regulator) {
1232		rdev = dummy_regulator_rdev;
1233		goto found;
1234	}
1235
1236#ifdef CONFIG_REGULATOR_DUMMY
1237	if (!devname)
1238		devname = "deviceless";
1239
1240	/* If the board didn't flag that it was fully constrained then
1241	 * substitute in a dummy regulator so consumers can continue.
1242	 */
1243	if (!has_full_constraints) {
1244		pr_warn("%s supply %s not found, using dummy regulator\n",
1245			devname, id);
1246		rdev = dummy_regulator_rdev;
1247		goto found;
1248	}
1249#endif
1250
1251	mutex_unlock(&regulator_list_mutex);
1252	return regulator;
1253
1254found:
1255	if (rdev->exclusive) {
1256		regulator = ERR_PTR(-EPERM);
1257		goto out;
1258	}
1259
1260	if (exclusive && rdev->open_count) {
1261		regulator = ERR_PTR(-EBUSY);
1262		goto out;
1263	}
1264
1265	if (!try_module_get(rdev->owner))
1266		goto out;
1267
1268	regulator = create_regulator(rdev, dev, id);
1269	if (regulator == NULL) {
1270		regulator = ERR_PTR(-ENOMEM);
1271		module_put(rdev->owner);
1272		goto out;
1273	}
1274
1275	rdev->open_count++;
1276	if (exclusive) {
1277		rdev->exclusive = 1;
1278
1279		ret = _regulator_is_enabled(rdev);
1280		if (ret > 0)
1281			rdev->use_count = 1;
1282		else
1283			rdev->use_count = 0;
1284	}
1285
1286out:
1287	mutex_unlock(&regulator_list_mutex);
1288
1289	return regulator;
1290}
1291
1292/**
1293 * regulator_get - lookup and obtain a reference to a regulator.
1294 * @dev: device for regulator "consumer"
1295 * @id: Supply name or regulator ID.
1296 *
1297 * Returns a struct regulator corresponding to the regulator producer,
1298 * or IS_ERR() condition containing errno.
1299 *
1300 * Use of supply names configured via regulator_set_device_supply() is
1301 * strongly encouraged.  It is recommended that the supply name used
1302 * should match the name used for the supply and/or the relevant
1303 * device pins in the datasheet.
1304 */
1305struct regulator *regulator_get(struct device *dev, const char *id)
1306{
1307	return _regulator_get(dev, id, 0);
1308}
1309EXPORT_SYMBOL_GPL(regulator_get);
1310
1311static void devm_regulator_release(struct device *dev, void *res)
1312{
1313	regulator_put(*(struct regulator **)res);
1314}
1315
1316/**
1317 * devm_regulator_get - Resource managed regulator_get()
1318 * @dev: device for regulator "consumer"
1319 * @id: Supply name or regulator ID.
1320 *
1321 * Managed regulator_get(). Regulators returned from this function are
1322 * automatically regulator_put() on driver detach. See regulator_get() for more
1323 * information.
1324 */
1325struct regulator *devm_regulator_get(struct device *dev, const char *id)
1326{
1327	struct regulator **ptr, *regulator;
1328
1329	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1330	if (!ptr)
1331		return ERR_PTR(-ENOMEM);
1332
1333	regulator = regulator_get(dev, id);
1334	if (!IS_ERR(regulator)) {
1335		*ptr = regulator;
1336		devres_add(dev, ptr);
1337	} else {
1338		devres_free(ptr);
1339	}
1340
1341	return regulator;
1342}
1343EXPORT_SYMBOL_GPL(devm_regulator_get);
1344
1345/**
1346 * regulator_get_exclusive - obtain exclusive access to a regulator.
1347 * @dev: device for regulator "consumer"
1348 * @id: Supply name or regulator ID.
1349 *
1350 * Returns a struct regulator corresponding to the regulator producer,
1351 * or IS_ERR() condition containing errno.  Other consumers will be
1352 * unable to obtain this reference is held and the use count for the
1353 * regulator will be initialised to reflect the current state of the
1354 * regulator.
1355 *
1356 * This is intended for use by consumers which cannot tolerate shared
1357 * use of the regulator such as those which need to force the
1358 * regulator off for correct operation of the hardware they are
1359 * controlling.
1360 *
1361 * Use of supply names configured via regulator_set_device_supply() is
1362 * strongly encouraged.  It is recommended that the supply name used
1363 * should match the name used for the supply and/or the relevant
1364 * device pins in the datasheet.
1365 */
1366struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1367{
1368	return _regulator_get(dev, id, 1);
1369}
1370EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1371
1372/**
1373 * regulator_put - "free" the regulator source
1374 * @regulator: regulator source
1375 *
1376 * Note: drivers must ensure that all regulator_enable calls made on this
1377 * regulator source are balanced by regulator_disable calls prior to calling
1378 * this function.
1379 */
1380void regulator_put(struct regulator *regulator)
1381{
1382	struct regulator_dev *rdev;
1383
1384	if (regulator == NULL || IS_ERR(regulator))
1385		return;
1386
1387	mutex_lock(&regulator_list_mutex);
1388	rdev = regulator->rdev;
1389
1390	debugfs_remove_recursive(regulator->debugfs);
1391
1392	/* remove any sysfs entries */
1393	if (regulator->dev) {
1394		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1395		device_remove_file(regulator->dev, &regulator->dev_attr);
1396		kfree(regulator->dev_attr.attr.name);
1397	}
1398	kfree(regulator->supply_name);
1399	list_del(&regulator->list);
1400	kfree(regulator);
1401
1402	rdev->open_count--;
1403	rdev->exclusive = 0;
1404
1405	module_put(rdev->owner);
1406	mutex_unlock(&regulator_list_mutex);
1407}
1408EXPORT_SYMBOL_GPL(regulator_put);
1409
1410static int devm_regulator_match(struct device *dev, void *res, void *data)
1411{
1412	struct regulator **r = res;
1413	if (!r || !*r) {
1414		WARN_ON(!r || !*r);
1415		return 0;
1416	}
1417	return *r == data;
1418}
1419
1420/**
1421 * devm_regulator_put - Resource managed regulator_put()
1422 * @regulator: regulator to free
1423 *
1424 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1425 * this function will not need to be called and the resource management
1426 * code will ensure that the resource is freed.
1427 */
1428void devm_regulator_put(struct regulator *regulator)
1429{
1430	int rc;
1431
1432	rc = devres_destroy(regulator->dev, devm_regulator_release,
1433			    devm_regulator_match, regulator);
1434	WARN_ON(rc);
1435}
1436EXPORT_SYMBOL_GPL(devm_regulator_put);
1437
1438static int _regulator_can_change_status(struct regulator_dev *rdev)
1439{
1440	if (!rdev->constraints)
1441		return 0;
1442
1443	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1444		return 1;
1445	else
1446		return 0;
1447}
1448
1449/* locks held by regulator_enable() */
1450static int _regulator_enable(struct regulator_dev *rdev)
1451{
1452	int ret, delay;
1453
1454	/* check voltage and requested load before enabling */
1455	if (rdev->constraints &&
1456	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1457		drms_uA_update(rdev);
1458
1459	if (rdev->use_count == 0) {
1460		/* The regulator may on if it's not switchable or left on */
1461		ret = _regulator_is_enabled(rdev);
1462		if (ret == -EINVAL || ret == 0) {
1463			if (!_regulator_can_change_status(rdev))
1464				return -EPERM;
1465
1466			if (!rdev->desc->ops->enable)
1467				return -EINVAL;
1468
1469			/* Query before enabling in case configuration
1470			 * dependent.  */
1471			ret = _regulator_get_enable_time(rdev);
1472			if (ret >= 0) {
1473				delay = ret;
1474			} else {
1475				rdev_warn(rdev, "enable_time() failed: %d\n",
1476					   ret);
1477				delay = 0;
1478			}
1479
1480			trace_regulator_enable(rdev_get_name(rdev));
1481
1482			/* Allow the regulator to ramp; it would be useful
1483			 * to extend this for bulk operations so that the
1484			 * regulators can ramp together.  */
1485			ret = rdev->desc->ops->enable(rdev);
1486			if (ret < 0)
1487				return ret;
1488
1489			trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491			if (delay >= 1000) {
1492				mdelay(delay / 1000);
1493				udelay(delay % 1000);
1494			} else if (delay) {
1495				udelay(delay);
1496			}
1497
1498			trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500		} else if (ret < 0) {
1501			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1502			return ret;
1503		}
1504		/* Fallthrough on positive return values - already enabled */
1505	}
1506
1507	rdev->use_count++;
1508
1509	return 0;
1510}
1511
1512/**
1513 * regulator_enable - enable regulator output
1514 * @regulator: regulator source
1515 *
1516 * Request that the regulator be enabled with the regulator output at
1517 * the predefined voltage or current value.  Calls to regulator_enable()
1518 * must be balanced with calls to regulator_disable().
1519 *
1520 * NOTE: the output value can be set by other drivers, boot loader or may be
1521 * hardwired in the regulator.
1522 */
1523int regulator_enable(struct regulator *regulator)
1524{
1525	struct regulator_dev *rdev = regulator->rdev;
1526	int ret = 0;
1527
1528	if (rdev->supply) {
1529		ret = regulator_enable(rdev->supply);
1530		if (ret != 0)
1531			return ret;
1532	}
1533
1534	mutex_lock(&rdev->mutex);
1535	ret = _regulator_enable(rdev);
1536	mutex_unlock(&rdev->mutex);
1537
1538	if (ret != 0 && rdev->supply)
1539		regulator_disable(rdev->supply);
1540
1541	return ret;
1542}
1543EXPORT_SYMBOL_GPL(regulator_enable);
1544
1545/* locks held by regulator_disable() */
1546static int _regulator_disable(struct regulator_dev *rdev)
1547{
1548	int ret = 0;
1549
1550	if (WARN(rdev->use_count <= 0,
1551		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1552		return -EIO;
1553
1554	/* are we the last user and permitted to disable ? */
1555	if (rdev->use_count == 1 &&
1556	    (rdev->constraints && !rdev->constraints->always_on)) {
1557
1558		/* we are last user */
1559		if (_regulator_can_change_status(rdev) &&
1560		    rdev->desc->ops->disable) {
1561			trace_regulator_disable(rdev_get_name(rdev));
1562
1563			ret = rdev->desc->ops->disable(rdev);
1564			if (ret < 0) {
1565				rdev_err(rdev, "failed to disable\n");
1566				return ret;
1567			}
1568
1569			trace_regulator_disable_complete(rdev_get_name(rdev));
1570
1571			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1572					     NULL);
1573		}
1574
1575		rdev->use_count = 0;
1576	} else if (rdev->use_count > 1) {
1577
1578		if (rdev->constraints &&
1579			(rdev->constraints->valid_ops_mask &
1580			REGULATOR_CHANGE_DRMS))
1581			drms_uA_update(rdev);
1582
1583		rdev->use_count--;
1584	}
1585
1586	return ret;
1587}
1588
1589/**
1590 * regulator_disable - disable regulator output
1591 * @regulator: regulator source
1592 *
1593 * Disable the regulator output voltage or current.  Calls to
1594 * regulator_enable() must be balanced with calls to
1595 * regulator_disable().
1596 *
1597 * NOTE: this will only disable the regulator output if no other consumer
1598 * devices have it enabled, the regulator device supports disabling and
1599 * machine constraints permit this operation.
1600 */
1601int regulator_disable(struct regulator *regulator)
1602{
1603	struct regulator_dev *rdev = regulator->rdev;
1604	int ret = 0;
1605
1606	mutex_lock(&rdev->mutex);
1607	ret = _regulator_disable(rdev);
1608	mutex_unlock(&rdev->mutex);
1609
1610	if (ret == 0 && rdev->supply)
1611		regulator_disable(rdev->supply);
1612
1613	return ret;
1614}
1615EXPORT_SYMBOL_GPL(regulator_disable);
1616
1617/* locks held by regulator_force_disable() */
1618static int _regulator_force_disable(struct regulator_dev *rdev)
1619{
1620	int ret = 0;
1621
1622	/* force disable */
1623	if (rdev->desc->ops->disable) {
1624		/* ah well, who wants to live forever... */
1625		ret = rdev->desc->ops->disable(rdev);
1626		if (ret < 0) {
1627			rdev_err(rdev, "failed to force disable\n");
1628			return ret;
1629		}
1630		/* notify other consumers that power has been forced off */
1631		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1632			REGULATOR_EVENT_DISABLE, NULL);
1633	}
1634
1635	return ret;
1636}
1637
1638/**
1639 * regulator_force_disable - force disable regulator output
1640 * @regulator: regulator source
1641 *
1642 * Forcibly disable the regulator output voltage or current.
1643 * NOTE: this *will* disable the regulator output even if other consumer
1644 * devices have it enabled. This should be used for situations when device
1645 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1646 */
1647int regulator_force_disable(struct regulator *regulator)
1648{
1649	struct regulator_dev *rdev = regulator->rdev;
1650	int ret;
1651
1652	mutex_lock(&rdev->mutex);
1653	regulator->uA_load = 0;
1654	ret = _regulator_force_disable(regulator->rdev);
1655	mutex_unlock(&rdev->mutex);
1656
1657	if (rdev->supply)
1658		while (rdev->open_count--)
1659			regulator_disable(rdev->supply);
1660
1661	return ret;
1662}
1663EXPORT_SYMBOL_GPL(regulator_force_disable);
1664
1665static void regulator_disable_work(struct work_struct *work)
1666{
1667	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1668						  disable_work.work);
1669	int count, i, ret;
1670
1671	mutex_lock(&rdev->mutex);
1672
1673	BUG_ON(!rdev->deferred_disables);
1674
1675	count = rdev->deferred_disables;
1676	rdev->deferred_disables = 0;
1677
1678	for (i = 0; i < count; i++) {
1679		ret = _regulator_disable(rdev);
1680		if (ret != 0)
1681			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1682	}
1683
1684	mutex_unlock(&rdev->mutex);
1685
1686	if (rdev->supply) {
1687		for (i = 0; i < count; i++) {
1688			ret = regulator_disable(rdev->supply);
1689			if (ret != 0) {
1690				rdev_err(rdev,
1691					 "Supply disable failed: %d\n", ret);
1692			}
1693		}
1694	}
1695}
1696
1697/**
1698 * regulator_disable_deferred - disable regulator output with delay
1699 * @regulator: regulator source
1700 * @ms: miliseconds until the regulator is disabled
1701 *
1702 * Execute regulator_disable() on the regulator after a delay.  This
1703 * is intended for use with devices that require some time to quiesce.
1704 *
1705 * NOTE: this will only disable the regulator output if no other consumer
1706 * devices have it enabled, the regulator device supports disabling and
1707 * machine constraints permit this operation.
1708 */
1709int regulator_disable_deferred(struct regulator *regulator, int ms)
1710{
1711	struct regulator_dev *rdev = regulator->rdev;
1712	int ret;
1713
1714	mutex_lock(&rdev->mutex);
1715	rdev->deferred_disables++;
1716	mutex_unlock(&rdev->mutex);
1717
1718	ret = schedule_delayed_work(&rdev->disable_work,
1719				    msecs_to_jiffies(ms));
1720	if (ret < 0)
1721		return ret;
1722	else
1723		return 0;
1724}
1725EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1726
1727static int _regulator_is_enabled(struct regulator_dev *rdev)
1728{
1729	/* If we don't know then assume that the regulator is always on */
1730	if (!rdev->desc->ops->is_enabled)
1731		return 1;
1732
1733	return rdev->desc->ops->is_enabled(rdev);
1734}
1735
1736/**
1737 * regulator_is_enabled - is the regulator output enabled
1738 * @regulator: regulator source
1739 *
1740 * Returns positive if the regulator driver backing the source/client
1741 * has requested that the device be enabled, zero if it hasn't, else a
1742 * negative errno code.
1743 *
1744 * Note that the device backing this regulator handle can have multiple
1745 * users, so it might be enabled even if regulator_enable() was never
1746 * called for this particular source.
1747 */
1748int regulator_is_enabled(struct regulator *regulator)
1749{
1750	int ret;
1751
1752	mutex_lock(&regulator->rdev->mutex);
1753	ret = _regulator_is_enabled(regulator->rdev);
1754	mutex_unlock(&regulator->rdev->mutex);
1755
1756	return ret;
1757}
1758EXPORT_SYMBOL_GPL(regulator_is_enabled);
1759
1760/**
1761 * regulator_count_voltages - count regulator_list_voltage() selectors
1762 * @regulator: regulator source
1763 *
1764 * Returns number of selectors, or negative errno.  Selectors are
1765 * numbered starting at zero, and typically correspond to bitfields
1766 * in hardware registers.
1767 */
1768int regulator_count_voltages(struct regulator *regulator)
1769{
1770	struct regulator_dev	*rdev = regulator->rdev;
1771
1772	return rdev->desc->n_voltages ? : -EINVAL;
1773}
1774EXPORT_SYMBOL_GPL(regulator_count_voltages);
1775
1776/**
1777 * regulator_list_voltage - enumerate supported voltages
1778 * @regulator: regulator source
1779 * @selector: identify voltage to list
1780 * Context: can sleep
1781 *
1782 * Returns a voltage that can be passed to @regulator_set_voltage(),
1783 * zero if this selector code can't be used on this system, or a
1784 * negative errno.
1785 */
1786int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1787{
1788	struct regulator_dev	*rdev = regulator->rdev;
1789	struct regulator_ops	*ops = rdev->desc->ops;
1790	int			ret;
1791
1792	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1793		return -EINVAL;
1794
1795	mutex_lock(&rdev->mutex);
1796	ret = ops->list_voltage(rdev, selector);
1797	mutex_unlock(&rdev->mutex);
1798
1799	if (ret > 0) {
1800		if (ret < rdev->constraints->min_uV)
1801			ret = 0;
1802		else if (ret > rdev->constraints->max_uV)
1803			ret = 0;
1804	}
1805
1806	return ret;
1807}
1808EXPORT_SYMBOL_GPL(regulator_list_voltage);
1809
1810/**
1811 * regulator_is_supported_voltage - check if a voltage range can be supported
1812 *
1813 * @regulator: Regulator to check.
1814 * @min_uV: Minimum required voltage in uV.
1815 * @max_uV: Maximum required voltage in uV.
1816 *
1817 * Returns a boolean or a negative error code.
1818 */
1819int regulator_is_supported_voltage(struct regulator *regulator,
1820				   int min_uV, int max_uV)
1821{
1822	int i, voltages, ret;
1823
1824	ret = regulator_count_voltages(regulator);
1825	if (ret < 0)
1826		return ret;
1827	voltages = ret;
1828
1829	for (i = 0; i < voltages; i++) {
1830		ret = regulator_list_voltage(regulator, i);
1831
1832		if (ret >= min_uV && ret <= max_uV)
1833			return 1;
1834	}
1835
1836	return 0;
1837}
1838EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1839
1840static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1841				     int min_uV, int max_uV)
1842{
1843	int ret;
1844	int delay = 0;
1845	unsigned int selector;
1846
1847	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1848
1849	min_uV += rdev->constraints->uV_offset;
1850	max_uV += rdev->constraints->uV_offset;
1851
1852	if (rdev->desc->ops->set_voltage) {
1853		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1854						   &selector);
1855
1856		if (rdev->desc->ops->list_voltage)
1857			selector = rdev->desc->ops->list_voltage(rdev,
1858								 selector);
1859		else
1860			selector = -1;
1861	} else if (rdev->desc->ops->set_voltage_sel) {
1862		int best_val = INT_MAX;
1863		int i;
1864
1865		selector = 0;
1866
1867		/* Find the smallest voltage that falls within the specified
1868		 * range.
1869		 */
1870		for (i = 0; i < rdev->desc->n_voltages; i++) {
1871			ret = rdev->desc->ops->list_voltage(rdev, i);
1872			if (ret < 0)
1873				continue;
1874
1875			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1876				best_val = ret;
1877				selector = i;
1878			}
1879		}
1880
1881		/*
1882		 * If we can't obtain the old selector there is not enough
1883		 * info to call set_voltage_time_sel().
1884		 */
1885		if (rdev->desc->ops->set_voltage_time_sel &&
1886		    rdev->desc->ops->get_voltage_sel) {
1887			unsigned int old_selector = 0;
1888
1889			ret = rdev->desc->ops->get_voltage_sel(rdev);
1890			if (ret < 0)
1891				return ret;
1892			old_selector = ret;
1893			ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1894						old_selector, selector);
1895			if (ret < 0)
1896				rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
1897			else
1898				delay = ret;
1899		}
1900
1901		if (best_val != INT_MAX) {
1902			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1903			selector = best_val;
1904		} else {
1905			ret = -EINVAL;
1906		}
1907	} else {
1908		ret = -EINVAL;
1909	}
1910
1911	/* Insert any necessary delays */
1912	if (delay >= 1000) {
1913		mdelay(delay / 1000);
1914		udelay(delay % 1000);
1915	} else if (delay) {
1916		udelay(delay);
1917	}
1918
1919	if (ret == 0)
1920		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1921				     NULL);
1922
1923	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1924
1925	return ret;
1926}
1927
1928/**
1929 * regulator_set_voltage - set regulator output voltage
1930 * @regulator: regulator source
1931 * @min_uV: Minimum required voltage in uV
1932 * @max_uV: Maximum acceptable voltage in uV
1933 *
1934 * Sets a voltage regulator to the desired output voltage. This can be set
1935 * during any regulator state. IOW, regulator can be disabled or enabled.
1936 *
1937 * If the regulator is enabled then the voltage will change to the new value
1938 * immediately otherwise if the regulator is disabled the regulator will
1939 * output at the new voltage when enabled.
1940 *
1941 * NOTE: If the regulator is shared between several devices then the lowest
1942 * request voltage that meets the system constraints will be used.
1943 * Regulator system constraints must be set for this regulator before
1944 * calling this function otherwise this call will fail.
1945 */
1946int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1947{
1948	struct regulator_dev *rdev = regulator->rdev;
1949	int ret = 0;
1950
1951	mutex_lock(&rdev->mutex);
1952
1953	/* If we're setting the same range as last time the change
1954	 * should be a noop (some cpufreq implementations use the same
1955	 * voltage for multiple frequencies, for example).
1956	 */
1957	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1958		goto out;
1959
1960	/* sanity check */
1961	if (!rdev->desc->ops->set_voltage &&
1962	    !rdev->desc->ops->set_voltage_sel) {
1963		ret = -EINVAL;
1964		goto out;
1965	}
1966
1967	/* constraints check */
1968	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1969	if (ret < 0)
1970		goto out;
1971	regulator->min_uV = min_uV;
1972	regulator->max_uV = max_uV;
1973
1974	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1975	if (ret < 0)
1976		goto out;
1977
1978	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1979
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_voltage);
1985
1986/**
1987 * regulator_set_voltage_time - get raise/fall time
1988 * @regulator: regulator source
1989 * @old_uV: starting voltage in microvolts
1990 * @new_uV: target voltage in microvolts
1991 *
1992 * Provided with the starting and ending voltage, this function attempts to
1993 * calculate the time in microseconds required to rise or fall to this new
1994 * voltage.
1995 */
1996int regulator_set_voltage_time(struct regulator *regulator,
1997			       int old_uV, int new_uV)
1998{
1999	struct regulator_dev	*rdev = regulator->rdev;
2000	struct regulator_ops	*ops = rdev->desc->ops;
2001	int old_sel = -1;
2002	int new_sel = -1;
2003	int voltage;
2004	int i;
2005
2006	/* Currently requires operations to do this */
2007	if (!ops->list_voltage || !ops->set_voltage_time_sel
2008	    || !rdev->desc->n_voltages)
2009		return -EINVAL;
2010
2011	for (i = 0; i < rdev->desc->n_voltages; i++) {
2012		/* We only look for exact voltage matches here */
2013		voltage = regulator_list_voltage(regulator, i);
2014		if (voltage < 0)
2015			return -EINVAL;
2016		if (voltage == 0)
2017			continue;
2018		if (voltage == old_uV)
2019			old_sel = i;
2020		if (voltage == new_uV)
2021			new_sel = i;
2022	}
2023
2024	if (old_sel < 0 || new_sel < 0)
2025		return -EINVAL;
2026
2027	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2028}
2029EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2030
2031/**
2032 * regulator_sync_voltage - re-apply last regulator output voltage
2033 * @regulator: regulator source
2034 *
2035 * Re-apply the last configured voltage.  This is intended to be used
2036 * where some external control source the consumer is cooperating with
2037 * has caused the configured voltage to change.
2038 */
2039int regulator_sync_voltage(struct regulator *regulator)
2040{
2041	struct regulator_dev *rdev = regulator->rdev;
2042	int ret, min_uV, max_uV;
2043
2044	mutex_lock(&rdev->mutex);
2045
2046	if (!rdev->desc->ops->set_voltage &&
2047	    !rdev->desc->ops->set_voltage_sel) {
2048		ret = -EINVAL;
2049		goto out;
2050	}
2051
2052	/* This is only going to work if we've had a voltage configured. */
2053	if (!regulator->min_uV && !regulator->max_uV) {
2054		ret = -EINVAL;
2055		goto out;
2056	}
2057
2058	min_uV = regulator->min_uV;
2059	max_uV = regulator->max_uV;
2060
2061	/* This should be a paranoia check... */
2062	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2063	if (ret < 0)
2064		goto out;
2065
2066	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2067	if (ret < 0)
2068		goto out;
2069
2070	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2071
2072out:
2073	mutex_unlock(&rdev->mutex);
2074	return ret;
2075}
2076EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2077
2078static int _regulator_get_voltage(struct regulator_dev *rdev)
2079{
2080	int sel, ret;
2081
2082	if (rdev->desc->ops->get_voltage_sel) {
2083		sel = rdev->desc->ops->get_voltage_sel(rdev);
2084		if (sel < 0)
2085			return sel;
2086		ret = rdev->desc->ops->list_voltage(rdev, sel);
2087	} else if (rdev->desc->ops->get_voltage) {
2088		ret = rdev->desc->ops->get_voltage(rdev);
2089	} else {
2090		return -EINVAL;
2091	}
2092
2093	if (ret < 0)
2094		return ret;
2095	return ret - rdev->constraints->uV_offset;
2096}
2097
2098/**
2099 * regulator_get_voltage - get regulator output voltage
2100 * @regulator: regulator source
2101 *
2102 * This returns the current regulator voltage in uV.
2103 *
2104 * NOTE: If the regulator is disabled it will return the voltage value. This
2105 * function should not be used to determine regulator state.
2106 */
2107int regulator_get_voltage(struct regulator *regulator)
2108{
2109	int ret;
2110
2111	mutex_lock(&regulator->rdev->mutex);
2112
2113	ret = _regulator_get_voltage(regulator->rdev);
2114
2115	mutex_unlock(&regulator->rdev->mutex);
2116
2117	return ret;
2118}
2119EXPORT_SYMBOL_GPL(regulator_get_voltage);
2120
2121/**
2122 * regulator_set_current_limit - set regulator output current limit
2123 * @regulator: regulator source
2124 * @min_uA: Minimuum supported current in uA
2125 * @max_uA: Maximum supported current in uA
2126 *
2127 * Sets current sink to the desired output current. This can be set during
2128 * any regulator state. IOW, regulator can be disabled or enabled.
2129 *
2130 * If the regulator is enabled then the current will change to the new value
2131 * immediately otherwise if the regulator is disabled the regulator will
2132 * output at the new current when enabled.
2133 *
2134 * NOTE: Regulator system constraints must be set for this regulator before
2135 * calling this function otherwise this call will fail.
2136 */
2137int regulator_set_current_limit(struct regulator *regulator,
2138			       int min_uA, int max_uA)
2139{
2140	struct regulator_dev *rdev = regulator->rdev;
2141	int ret;
2142
2143	mutex_lock(&rdev->mutex);
2144
2145	/* sanity check */
2146	if (!rdev->desc->ops->set_current_limit) {
2147		ret = -EINVAL;
2148		goto out;
2149	}
2150
2151	/* constraints check */
2152	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2153	if (ret < 0)
2154		goto out;
2155
2156	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2157out:
2158	mutex_unlock(&rdev->mutex);
2159	return ret;
2160}
2161EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2162
2163static int _regulator_get_current_limit(struct regulator_dev *rdev)
2164{
2165	int ret;
2166
2167	mutex_lock(&rdev->mutex);
2168
2169	/* sanity check */
2170	if (!rdev->desc->ops->get_current_limit) {
2171		ret = -EINVAL;
2172		goto out;
2173	}
2174
2175	ret = rdev->desc->ops->get_current_limit(rdev);
2176out:
2177	mutex_unlock(&rdev->mutex);
2178	return ret;
2179}
2180
2181/**
2182 * regulator_get_current_limit - get regulator output current
2183 * @regulator: regulator source
2184 *
2185 * This returns the current supplied by the specified current sink in uA.
2186 *
2187 * NOTE: If the regulator is disabled it will return the current value. This
2188 * function should not be used to determine regulator state.
2189 */
2190int regulator_get_current_limit(struct regulator *regulator)
2191{
2192	return _regulator_get_current_limit(regulator->rdev);
2193}
2194EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2195
2196/**
2197 * regulator_set_mode - set regulator operating mode
2198 * @regulator: regulator source
2199 * @mode: operating mode - one of the REGULATOR_MODE constants
2200 *
2201 * Set regulator operating mode to increase regulator efficiency or improve
2202 * regulation performance.
2203 *
2204 * NOTE: Regulator system constraints must be set for this regulator before
2205 * calling this function otherwise this call will fail.
2206 */
2207int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2208{
2209	struct regulator_dev *rdev = regulator->rdev;
2210	int ret;
2211	int regulator_curr_mode;
2212
2213	mutex_lock(&rdev->mutex);
2214
2215	/* sanity check */
2216	if (!rdev->desc->ops->set_mode) {
2217		ret = -EINVAL;
2218		goto out;
2219	}
2220
2221	/* return if the same mode is requested */
2222	if (rdev->desc->ops->get_mode) {
2223		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2224		if (regulator_curr_mode == mode) {
2225			ret = 0;
2226			goto out;
2227		}
2228	}
2229
2230	/* constraints check */
2231	ret = regulator_mode_constrain(rdev, &mode);
2232	if (ret < 0)
2233		goto out;
2234
2235	ret = rdev->desc->ops->set_mode(rdev, mode);
2236out:
2237	mutex_unlock(&rdev->mutex);
2238	return ret;
2239}
2240EXPORT_SYMBOL_GPL(regulator_set_mode);
2241
2242static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2243{
2244	int ret;
2245
2246	mutex_lock(&rdev->mutex);
2247
2248	/* sanity check */
2249	if (!rdev->desc->ops->get_mode) {
2250		ret = -EINVAL;
2251		goto out;
2252	}
2253
2254	ret = rdev->desc->ops->get_mode(rdev);
2255out:
2256	mutex_unlock(&rdev->mutex);
2257	return ret;
2258}
2259
2260/**
2261 * regulator_get_mode - get regulator operating mode
2262 * @regulator: regulator source
2263 *
2264 * Get the current regulator operating mode.
2265 */
2266unsigned int regulator_get_mode(struct regulator *regulator)
2267{
2268	return _regulator_get_mode(regulator->rdev);
2269}
2270EXPORT_SYMBOL_GPL(regulator_get_mode);
2271
2272/**
2273 * regulator_set_optimum_mode - set regulator optimum operating mode
2274 * @regulator: regulator source
2275 * @uA_load: load current
2276 *
2277 * Notifies the regulator core of a new device load. This is then used by
2278 * DRMS (if enabled by constraints) to set the most efficient regulator
2279 * operating mode for the new regulator loading.
2280 *
2281 * Consumer devices notify their supply regulator of the maximum power
2282 * they will require (can be taken from device datasheet in the power
2283 * consumption tables) when they change operational status and hence power
2284 * state. Examples of operational state changes that can affect power
2285 * consumption are :-
2286 *
2287 *    o Device is opened / closed.
2288 *    o Device I/O is about to begin or has just finished.
2289 *    o Device is idling in between work.
2290 *
2291 * This information is also exported via sysfs to userspace.
2292 *
2293 * DRMS will sum the total requested load on the regulator and change
2294 * to the most efficient operating mode if platform constraints allow.
2295 *
2296 * Returns the new regulator mode or error.
2297 */
2298int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2299{
2300	struct regulator_dev *rdev = regulator->rdev;
2301	struct regulator *consumer;
2302	int ret, output_uV, input_uV, total_uA_load = 0;
2303	unsigned int mode;
2304
2305	mutex_lock(&rdev->mutex);
2306
2307	/*
2308	 * first check to see if we can set modes at all, otherwise just
2309	 * tell the consumer everything is OK.
2310	 */
2311	regulator->uA_load = uA_load;
2312	ret = regulator_check_drms(rdev);
2313	if (ret < 0) {
2314		ret = 0;
2315		goto out;
2316	}
2317
2318	if (!rdev->desc->ops->get_optimum_mode)
2319		goto out;
2320
2321	/*
2322	 * we can actually do this so any errors are indicators of
2323	 * potential real failure.
2324	 */
2325	ret = -EINVAL;
2326
2327	/* get output voltage */
2328	output_uV = _regulator_get_voltage(rdev);
2329	if (output_uV <= 0) {
2330		rdev_err(rdev, "invalid output voltage found\n");
2331		goto out;
2332	}
2333
2334	/* get input voltage */
2335	input_uV = 0;
2336	if (rdev->supply)
2337		input_uV = regulator_get_voltage(rdev->supply);
2338	if (input_uV <= 0)
2339		input_uV = rdev->constraints->input_uV;
2340	if (input_uV <= 0) {
2341		rdev_err(rdev, "invalid input voltage found\n");
2342		goto out;
2343	}
2344
2345	/* calc total requested load for this regulator */
2346	list_for_each_entry(consumer, &rdev->consumer_list, list)
2347		total_uA_load += consumer->uA_load;
2348
2349	mode = rdev->desc->ops->get_optimum_mode(rdev,
2350						 input_uV, output_uV,
2351						 total_uA_load);
2352	ret = regulator_mode_constrain(rdev, &mode);
2353	if (ret < 0) {
2354		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2355			 total_uA_load, input_uV, output_uV);
2356		goto out;
2357	}
2358
2359	ret = rdev->desc->ops->set_mode(rdev, mode);
2360	if (ret < 0) {
2361		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2362		goto out;
2363	}
2364	ret = mode;
2365out:
2366	mutex_unlock(&rdev->mutex);
2367	return ret;
2368}
2369EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2370
2371/**
2372 * regulator_register_notifier - register regulator event notifier
2373 * @regulator: regulator source
2374 * @nb: notifier block
2375 *
2376 * Register notifier block to receive regulator events.
2377 */
2378int regulator_register_notifier(struct regulator *regulator,
2379			      struct notifier_block *nb)
2380{
2381	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2382						nb);
2383}
2384EXPORT_SYMBOL_GPL(regulator_register_notifier);
2385
2386/**
2387 * regulator_unregister_notifier - unregister regulator event notifier
2388 * @regulator: regulator source
2389 * @nb: notifier block
2390 *
2391 * Unregister regulator event notifier block.
2392 */
2393int regulator_unregister_notifier(struct regulator *regulator,
2394				struct notifier_block *nb)
2395{
2396	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2397						  nb);
2398}
2399EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2400
2401/* notify regulator consumers and downstream regulator consumers.
2402 * Note mutex must be held by caller.
2403 */
2404static void _notifier_call_chain(struct regulator_dev *rdev,
2405				  unsigned long event, void *data)
2406{
2407	/* call rdev chain first */
2408	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2409}
2410
2411/**
2412 * regulator_bulk_get - get multiple regulator consumers
2413 *
2414 * @dev:           Device to supply
2415 * @num_consumers: Number of consumers to register
2416 * @consumers:     Configuration of consumers; clients are stored here.
2417 *
2418 * @return 0 on success, an errno on failure.
2419 *
2420 * This helper function allows drivers to get several regulator
2421 * consumers in one operation.  If any of the regulators cannot be
2422 * acquired then any regulators that were allocated will be freed
2423 * before returning to the caller.
2424 */
2425int regulator_bulk_get(struct device *dev, int num_consumers,
2426		       struct regulator_bulk_data *consumers)
2427{
2428	int i;
2429	int ret;
2430
2431	for (i = 0; i < num_consumers; i++)
2432		consumers[i].consumer = NULL;
2433
2434	for (i = 0; i < num_consumers; i++) {
2435		consumers[i].consumer = regulator_get(dev,
2436						      consumers[i].supply);
2437		if (IS_ERR(consumers[i].consumer)) {
2438			ret = PTR_ERR(consumers[i].consumer);
2439			dev_err(dev, "Failed to get supply '%s': %d\n",
2440				consumers[i].supply, ret);
2441			consumers[i].consumer = NULL;
2442			goto err;
2443		}
2444	}
2445
2446	return 0;
2447
2448err:
2449	while (--i >= 0)
2450		regulator_put(consumers[i].consumer);
2451
2452	return ret;
2453}
2454EXPORT_SYMBOL_GPL(regulator_bulk_get);
2455
2456/**
2457 * devm_regulator_bulk_get - managed get multiple regulator consumers
2458 *
2459 * @dev:           Device to supply
2460 * @num_consumers: Number of consumers to register
2461 * @consumers:     Configuration of consumers; clients are stored here.
2462 *
2463 * @return 0 on success, an errno on failure.
2464 *
2465 * This helper function allows drivers to get several regulator
2466 * consumers in one operation with management, the regulators will
2467 * automatically be freed when the device is unbound.  If any of the
2468 * regulators cannot be acquired then any regulators that were
2469 * allocated will be freed before returning to the caller.
2470 */
2471int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2472			    struct regulator_bulk_data *consumers)
2473{
2474	int i;
2475	int ret;
2476
2477	for (i = 0; i < num_consumers; i++)
2478		consumers[i].consumer = NULL;
2479
2480	for (i = 0; i < num_consumers; i++) {
2481		consumers[i].consumer = devm_regulator_get(dev,
2482							   consumers[i].supply);
2483		if (IS_ERR(consumers[i].consumer)) {
2484			ret = PTR_ERR(consumers[i].consumer);
2485			dev_err(dev, "Failed to get supply '%s': %d\n",
2486				consumers[i].supply, ret);
2487			consumers[i].consumer = NULL;
2488			goto err;
2489		}
2490	}
2491
2492	return 0;
2493
2494err:
2495	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2496		devm_regulator_put(consumers[i].consumer);
2497
2498	return ret;
2499}
2500EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2501
2502static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2503{
2504	struct regulator_bulk_data *bulk = data;
2505
2506	bulk->ret = regulator_enable(bulk->consumer);
2507}
2508
2509/**
2510 * regulator_bulk_enable - enable multiple regulator consumers
2511 *
2512 * @num_consumers: Number of consumers
2513 * @consumers:     Consumer data; clients are stored here.
2514 * @return         0 on success, an errno on failure
2515 *
2516 * This convenience API allows consumers to enable multiple regulator
2517 * clients in a single API call.  If any consumers cannot be enabled
2518 * then any others that were enabled will be disabled again prior to
2519 * return.
2520 */
2521int regulator_bulk_enable(int num_consumers,
2522			  struct regulator_bulk_data *consumers)
2523{
2524	LIST_HEAD(async_domain);
2525	int i;
2526	int ret = 0;
2527
2528	for (i = 0; i < num_consumers; i++)
2529		async_schedule_domain(regulator_bulk_enable_async,
2530				      &consumers[i], &async_domain);
2531
2532	async_synchronize_full_domain(&async_domain);
2533
2534	/* If any consumer failed we need to unwind any that succeeded */
2535	for (i = 0; i < num_consumers; i++) {
2536		if (consumers[i].ret != 0) {
2537			ret = consumers[i].ret;
2538			goto err;
2539		}
2540	}
2541
2542	return 0;
2543
2544err:
2545	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2546	while (--i >= 0)
2547		regulator_disable(consumers[i].consumer);
2548
2549	return ret;
2550}
2551EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2552
2553/**
2554 * regulator_bulk_disable - disable multiple regulator consumers
2555 *
2556 * @num_consumers: Number of consumers
2557 * @consumers:     Consumer data; clients are stored here.
2558 * @return         0 on success, an errno on failure
2559 *
2560 * This convenience API allows consumers to disable multiple regulator
2561 * clients in a single API call.  If any consumers cannot be disabled
2562 * then any others that were disabled will be enabled again prior to
2563 * return.
2564 */
2565int regulator_bulk_disable(int num_consumers,
2566			   struct regulator_bulk_data *consumers)
2567{
2568	int i;
2569	int ret;
2570
2571	for (i = num_consumers - 1; i >= 0; --i) {
2572		ret = regulator_disable(consumers[i].consumer);
2573		if (ret != 0)
2574			goto err;
2575	}
2576
2577	return 0;
2578
2579err:
2580	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2581	for (++i; i < num_consumers; ++i)
2582		regulator_enable(consumers[i].consumer);
2583
2584	return ret;
2585}
2586EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2587
2588/**
2589 * regulator_bulk_force_disable - force disable multiple regulator consumers
2590 *
2591 * @num_consumers: Number of consumers
2592 * @consumers:     Consumer data; clients are stored here.
2593 * @return         0 on success, an errno on failure
2594 *
2595 * This convenience API allows consumers to forcibly disable multiple regulator
2596 * clients in a single API call.
2597 * NOTE: This should be used for situations when device damage will
2598 * likely occur if the regulators are not disabled (e.g. over temp).
2599 * Although regulator_force_disable function call for some consumers can
2600 * return error numbers, the function is called for all consumers.
2601 */
2602int regulator_bulk_force_disable(int num_consumers,
2603			   struct regulator_bulk_data *consumers)
2604{
2605	int i;
2606	int ret;
2607
2608	for (i = 0; i < num_consumers; i++)
2609		consumers[i].ret =
2610			    regulator_force_disable(consumers[i].consumer);
2611
2612	for (i = 0; i < num_consumers; i++) {
2613		if (consumers[i].ret != 0) {
2614			ret = consumers[i].ret;
2615			goto out;
2616		}
2617	}
2618
2619	return 0;
2620out:
2621	return ret;
2622}
2623EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2624
2625/**
2626 * regulator_bulk_free - free multiple regulator consumers
2627 *
2628 * @num_consumers: Number of consumers
2629 * @consumers:     Consumer data; clients are stored here.
2630 *
2631 * This convenience API allows consumers to free multiple regulator
2632 * clients in a single API call.
2633 */
2634void regulator_bulk_free(int num_consumers,
2635			 struct regulator_bulk_data *consumers)
2636{
2637	int i;
2638
2639	for (i = 0; i < num_consumers; i++) {
2640		regulator_put(consumers[i].consumer);
2641		consumers[i].consumer = NULL;
2642	}
2643}
2644EXPORT_SYMBOL_GPL(regulator_bulk_free);
2645
2646/**
2647 * regulator_notifier_call_chain - call regulator event notifier
2648 * @rdev: regulator source
2649 * @event: notifier block
2650 * @data: callback-specific data.
2651 *
2652 * Called by regulator drivers to notify clients a regulator event has
2653 * occurred. We also notify regulator clients downstream.
2654 * Note lock must be held by caller.
2655 */
2656int regulator_notifier_call_chain(struct regulator_dev *rdev,
2657				  unsigned long event, void *data)
2658{
2659	_notifier_call_chain(rdev, event, data);
2660	return NOTIFY_DONE;
2661
2662}
2663EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2664
2665/**
2666 * regulator_mode_to_status - convert a regulator mode into a status
2667 *
2668 * @mode: Mode to convert
2669 *
2670 * Convert a regulator mode into a status.
2671 */
2672int regulator_mode_to_status(unsigned int mode)
2673{
2674	switch (mode) {
2675	case REGULATOR_MODE_FAST:
2676		return REGULATOR_STATUS_FAST;
2677	case REGULATOR_MODE_NORMAL:
2678		return REGULATOR_STATUS_NORMAL;
2679	case REGULATOR_MODE_IDLE:
2680		return REGULATOR_STATUS_IDLE;
2681	case REGULATOR_STATUS_STANDBY:
2682		return REGULATOR_STATUS_STANDBY;
2683	default:
2684		return 0;
2685	}
2686}
2687EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2688
2689/*
2690 * To avoid cluttering sysfs (and memory) with useless state, only
2691 * create attributes that can be meaningfully displayed.
2692 */
2693static int add_regulator_attributes(struct regulator_dev *rdev)
2694{
2695	struct device		*dev = &rdev->dev;
2696	struct regulator_ops	*ops = rdev->desc->ops;
2697	int			status = 0;
2698
2699	/* some attributes need specific methods to be displayed */
2700	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2701	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2702		status = device_create_file(dev, &dev_attr_microvolts);
2703		if (status < 0)
2704			return status;
2705	}
2706	if (ops->get_current_limit) {
2707		status = device_create_file(dev, &dev_attr_microamps);
2708		if (status < 0)
2709			return status;
2710	}
2711	if (ops->get_mode) {
2712		status = device_create_file(dev, &dev_attr_opmode);
2713		if (status < 0)
2714			return status;
2715	}
2716	if (ops->is_enabled) {
2717		status = device_create_file(dev, &dev_attr_state);
2718		if (status < 0)
2719			return status;
2720	}
2721	if (ops->get_status) {
2722		status = device_create_file(dev, &dev_attr_status);
2723		if (status < 0)
2724			return status;
2725	}
2726
2727	/* some attributes are type-specific */
2728	if (rdev->desc->type == REGULATOR_CURRENT) {
2729		status = device_create_file(dev, &dev_attr_requested_microamps);
2730		if (status < 0)
2731			return status;
2732	}
2733
2734	/* all the other attributes exist to support constraints;
2735	 * don't show them if there are no constraints, or if the
2736	 * relevant supporting methods are missing.
2737	 */
2738	if (!rdev->constraints)
2739		return status;
2740
2741	/* constraints need specific supporting methods */
2742	if (ops->set_voltage || ops->set_voltage_sel) {
2743		status = device_create_file(dev, &dev_attr_min_microvolts);
2744		if (status < 0)
2745			return status;
2746		status = device_create_file(dev, &dev_attr_max_microvolts);
2747		if (status < 0)
2748			return status;
2749	}
2750	if (ops->set_current_limit) {
2751		status = device_create_file(dev, &dev_attr_min_microamps);
2752		if (status < 0)
2753			return status;
2754		status = device_create_file(dev, &dev_attr_max_microamps);
2755		if (status < 0)
2756			return status;
2757	}
2758
2759	/* suspend mode constraints need multiple supporting methods */
2760	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2761		return status;
2762
2763	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2764	if (status < 0)
2765		return status;
2766	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2767	if (status < 0)
2768		return status;
2769	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2770	if (status < 0)
2771		return status;
2772
2773	if (ops->set_suspend_voltage) {
2774		status = device_create_file(dev,
2775				&dev_attr_suspend_standby_microvolts);
2776		if (status < 0)
2777			return status;
2778		status = device_create_file(dev,
2779				&dev_attr_suspend_mem_microvolts);
2780		if (status < 0)
2781			return status;
2782		status = device_create_file(dev,
2783				&dev_attr_suspend_disk_microvolts);
2784		if (status < 0)
2785			return status;
2786	}
2787
2788	if (ops->set_suspend_mode) {
2789		status = device_create_file(dev,
2790				&dev_attr_suspend_standby_mode);
2791		if (status < 0)
2792			return status;
2793		status = device_create_file(dev,
2794				&dev_attr_suspend_mem_mode);
2795		if (status < 0)
2796			return status;
2797		status = device_create_file(dev,
2798				&dev_attr_suspend_disk_mode);
2799		if (status < 0)
2800			return status;
2801	}
2802
2803	return status;
2804}
2805
2806static void rdev_init_debugfs(struct regulator_dev *rdev)
2807{
2808	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2809	if (!rdev->debugfs) {
2810		rdev_warn(rdev, "Failed to create debugfs directory\n");
2811		return;
2812	}
2813
2814	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2815			   &rdev->use_count);
2816	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2817			   &rdev->open_count);
2818}
2819
2820/**
2821 * regulator_register - register regulator
2822 * @regulator_desc: regulator to register
2823 * @dev: struct device for the regulator
2824 * @init_data: platform provided init data, passed through by driver
2825 * @driver_data: private regulator data
2826 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2827 *           NULL).
2828 *
2829 * Called by regulator drivers to register a regulator.
2830 * Returns 0 on success.
2831 */
2832struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2833	struct device *dev, const struct regulator_init_data *init_data,
2834	void *driver_data, struct device_node *of_node)
2835{
2836	const struct regulation_constraints *constraints = NULL;
2837	static atomic_t regulator_no = ATOMIC_INIT(0);
2838	struct regulator_dev *rdev;
2839	int ret, i;
2840	const char *supply = NULL;
2841
2842	if (regulator_desc == NULL)
2843		return ERR_PTR(-EINVAL);
2844
2845	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2846		return ERR_PTR(-EINVAL);
2847
2848	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2849	    regulator_desc->type != REGULATOR_CURRENT)
2850		return ERR_PTR(-EINVAL);
2851
2852	/* Only one of each should be implemented */
2853	WARN_ON(regulator_desc->ops->get_voltage &&
2854		regulator_desc->ops->get_voltage_sel);
2855	WARN_ON(regulator_desc->ops->set_voltage &&
2856		regulator_desc->ops->set_voltage_sel);
2857
2858	/* If we're using selectors we must implement list_voltage. */
2859	if (regulator_desc->ops->get_voltage_sel &&
2860	    !regulator_desc->ops->list_voltage) {
2861		return ERR_PTR(-EINVAL);
2862	}
2863	if (regulator_desc->ops->set_voltage_sel &&
2864	    !regulator_desc->ops->list_voltage) {
2865		return ERR_PTR(-EINVAL);
2866	}
2867
2868	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2869	if (rdev == NULL)
2870		return ERR_PTR(-ENOMEM);
2871
2872	mutex_lock(&regulator_list_mutex);
2873
2874	mutex_init(&rdev->mutex);
2875	rdev->reg_data = driver_data;
2876	rdev->owner = regulator_desc->owner;
2877	rdev->desc = regulator_desc;
2878	INIT_LIST_HEAD(&rdev->consumer_list);
2879	INIT_LIST_HEAD(&rdev->list);
2880	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2881	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2882
2883	/* preform any regulator specific init */
2884	if (init_data && init_data->regulator_init) {
2885		ret = init_data->regulator_init(rdev->reg_data);
2886		if (ret < 0)
2887			goto clean;
2888	}
2889
2890	/* register with sysfs */
2891	rdev->dev.class = &regulator_class;
2892	rdev->dev.of_node = of_node;
2893	rdev->dev.parent = dev;
2894	dev_set_name(&rdev->dev, "regulator.%d",
2895		     atomic_inc_return(&regulator_no) - 1);
2896	ret = device_register(&rdev->dev);
2897	if (ret != 0) {
2898		put_device(&rdev->dev);
2899		goto clean;
2900	}
2901
2902	dev_set_drvdata(&rdev->dev, rdev);
2903
2904	/* set regulator constraints */
2905	if (init_data)
2906		constraints = &init_data->constraints;
2907
2908	ret = set_machine_constraints(rdev, constraints);
2909	if (ret < 0)
2910		goto scrub;
2911
2912	/* add attributes supported by this regulator */
2913	ret = add_regulator_attributes(rdev);
2914	if (ret < 0)
2915		goto scrub;
2916
2917	if (init_data && init_data->supply_regulator)
2918		supply = init_data->supply_regulator;
2919	else if (regulator_desc->supply_name)
2920		supply = regulator_desc->supply_name;
2921
2922	if (supply) {
2923		struct regulator_dev *r;
2924
2925		r = regulator_dev_lookup(dev, supply);
2926
2927		if (!r) {
2928			dev_err(dev, "Failed to find supply %s\n", supply);
2929			ret = -ENODEV;
2930			goto scrub;
2931		}
2932
2933		ret = set_supply(rdev, r);
2934		if (ret < 0)
2935			goto scrub;
2936
2937		/* Enable supply if rail is enabled */
2938		if (rdev->desc->ops->is_enabled &&
2939				rdev->desc->ops->is_enabled(rdev)) {
2940			ret = regulator_enable(rdev->supply);
2941			if (ret < 0)
2942				goto scrub;
2943		}
2944	}
2945
2946	/* add consumers devices */
2947	if (init_data) {
2948		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2949			ret = set_consumer_device_supply(rdev,
2950				init_data->consumer_supplies[i].dev_name,
2951				init_data->consumer_supplies[i].supply);
2952			if (ret < 0) {
2953				dev_err(dev, "Failed to set supply %s\n",
2954					init_data->consumer_supplies[i].supply);
2955				goto unset_supplies;
2956			}
2957		}
2958	}
2959
2960	list_add(&rdev->list, &regulator_list);
2961
2962	rdev_init_debugfs(rdev);
2963out:
2964	mutex_unlock(&regulator_list_mutex);
2965	return rdev;
2966
2967unset_supplies:
2968	unset_regulator_supplies(rdev);
2969
2970scrub:
2971	kfree(rdev->constraints);
2972	device_unregister(&rdev->dev);
2973	/* device core frees rdev */
2974	rdev = ERR_PTR(ret);
2975	goto out;
2976
2977clean:
2978	kfree(rdev);
2979	rdev = ERR_PTR(ret);
2980	goto out;
2981}
2982EXPORT_SYMBOL_GPL(regulator_register);
2983
2984/**
2985 * regulator_unregister - unregister regulator
2986 * @rdev: regulator to unregister
2987 *
2988 * Called by regulator drivers to unregister a regulator.
2989 */
2990void regulator_unregister(struct regulator_dev *rdev)
2991{
2992	if (rdev == NULL)
2993		return;
2994
2995	if (rdev->supply)
2996		regulator_put(rdev->supply);
2997	mutex_lock(&regulator_list_mutex);
2998	debugfs_remove_recursive(rdev->debugfs);
2999	flush_work_sync(&rdev->disable_work.work);
3000	WARN_ON(rdev->open_count);
3001	unset_regulator_supplies(rdev);
3002	list_del(&rdev->list);
3003	kfree(rdev->constraints);
3004	device_unregister(&rdev->dev);
3005	mutex_unlock(&regulator_list_mutex);
3006}
3007EXPORT_SYMBOL_GPL(regulator_unregister);
3008
3009/**
3010 * regulator_suspend_prepare - prepare regulators for system wide suspend
3011 * @state: system suspend state
3012 *
3013 * Configure each regulator with it's suspend operating parameters for state.
3014 * This will usually be called by machine suspend code prior to supending.
3015 */
3016int regulator_suspend_prepare(suspend_state_t state)
3017{
3018	struct regulator_dev *rdev;
3019	int ret = 0;
3020
3021	/* ON is handled by regulator active state */
3022	if (state == PM_SUSPEND_ON)
3023		return -EINVAL;
3024
3025	mutex_lock(&regulator_list_mutex);
3026	list_for_each_entry(rdev, &regulator_list, list) {
3027
3028		mutex_lock(&rdev->mutex);
3029		ret = suspend_prepare(rdev, state);
3030		mutex_unlock(&rdev->mutex);
3031
3032		if (ret < 0) {
3033			rdev_err(rdev, "failed to prepare\n");
3034			goto out;
3035		}
3036	}
3037out:
3038	mutex_unlock(&regulator_list_mutex);
3039	return ret;
3040}
3041EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3042
3043/**
3044 * regulator_suspend_finish - resume regulators from system wide suspend
3045 *
3046 * Turn on regulators that might be turned off by regulator_suspend_prepare
3047 * and that should be turned on according to the regulators properties.
3048 */
3049int regulator_suspend_finish(void)
3050{
3051	struct regulator_dev *rdev;
3052	int ret = 0, error;
3053
3054	mutex_lock(&regulator_list_mutex);
3055	list_for_each_entry(rdev, &regulator_list, list) {
3056		struct regulator_ops *ops = rdev->desc->ops;
3057
3058		mutex_lock(&rdev->mutex);
3059		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3060				ops->enable) {
3061			error = ops->enable(rdev);
3062			if (error)
3063				ret = error;
3064		} else {
3065			if (!has_full_constraints)
3066				goto unlock;
3067			if (!ops->disable)
3068				goto unlock;
3069			if (ops->is_enabled && !ops->is_enabled(rdev))
3070				goto unlock;
3071
3072			error = ops->disable(rdev);
3073			if (error)
3074				ret = error;
3075		}
3076unlock:
3077		mutex_unlock(&rdev->mutex);
3078	}
3079	mutex_unlock(&regulator_list_mutex);
3080	return ret;
3081}
3082EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3083
3084/**
3085 * regulator_has_full_constraints - the system has fully specified constraints
3086 *
3087 * Calling this function will cause the regulator API to disable all
3088 * regulators which have a zero use count and don't have an always_on
3089 * constraint in a late_initcall.
3090 *
3091 * The intention is that this will become the default behaviour in a
3092 * future kernel release so users are encouraged to use this facility
3093 * now.
3094 */
3095void regulator_has_full_constraints(void)
3096{
3097	has_full_constraints = 1;
3098}
3099EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3100
3101/**
3102 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3103 *
3104 * Calling this function will cause the regulator API to provide a
3105 * dummy regulator to consumers if no physical regulator is found,
3106 * allowing most consumers to proceed as though a regulator were
3107 * configured.  This allows systems such as those with software
3108 * controllable regulators for the CPU core only to be brought up more
3109 * readily.
3110 */
3111void regulator_use_dummy_regulator(void)
3112{
3113	board_wants_dummy_regulator = true;
3114}
3115EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3116
3117/**
3118 * rdev_get_drvdata - get rdev regulator driver data
3119 * @rdev: regulator
3120 *
3121 * Get rdev regulator driver private data. This call can be used in the
3122 * regulator driver context.
3123 */
3124void *rdev_get_drvdata(struct regulator_dev *rdev)
3125{
3126	return rdev->reg_data;
3127}
3128EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3129
3130/**
3131 * regulator_get_drvdata - get regulator driver data
3132 * @regulator: regulator
3133 *
3134 * Get regulator driver private data. This call can be used in the consumer
3135 * driver context when non API regulator specific functions need to be called.
3136 */
3137void *regulator_get_drvdata(struct regulator *regulator)
3138{
3139	return regulator->rdev->reg_data;
3140}
3141EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3142
3143/**
3144 * regulator_set_drvdata - set regulator driver data
3145 * @regulator: regulator
3146 * @data: data
3147 */
3148void regulator_set_drvdata(struct regulator *regulator, void *data)
3149{
3150	regulator->rdev->reg_data = data;
3151}
3152EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3153
3154/**
3155 * regulator_get_id - get regulator ID
3156 * @rdev: regulator
3157 */
3158int rdev_get_id(struct regulator_dev *rdev)
3159{
3160	return rdev->desc->id;
3161}
3162EXPORT_SYMBOL_GPL(rdev_get_id);
3163
3164struct device *rdev_get_dev(struct regulator_dev *rdev)
3165{
3166	return &rdev->dev;
3167}
3168EXPORT_SYMBOL_GPL(rdev_get_dev);
3169
3170void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3171{
3172	return reg_init_data->driver_data;
3173}
3174EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3175
3176#ifdef CONFIG_DEBUG_FS
3177static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3178				    size_t count, loff_t *ppos)
3179{
3180	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3181	ssize_t len, ret = 0;
3182	struct regulator_map *map;
3183
3184	if (!buf)
3185		return -ENOMEM;
3186
3187	list_for_each_entry(map, &regulator_map_list, list) {
3188		len = snprintf(buf + ret, PAGE_SIZE - ret,
3189			       "%s -> %s.%s\n",
3190			       rdev_get_name(map->regulator), map->dev_name,
3191			       map->supply);
3192		if (len >= 0)
3193			ret += len;
3194		if (ret > PAGE_SIZE) {
3195			ret = PAGE_SIZE;
3196			break;
3197		}
3198	}
3199
3200	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3201
3202	kfree(buf);
3203
3204	return ret;
3205}
3206#endif
3207
3208static const struct file_operations supply_map_fops = {
3209#ifdef CONFIG_DEBUG_FS
3210	.read = supply_map_read_file,
3211	.llseek = default_llseek,
3212#endif
3213};
3214
3215static int __init regulator_init(void)
3216{
3217	int ret;
3218
3219	ret = class_register(&regulator_class);
3220
3221	debugfs_root = debugfs_create_dir("regulator", NULL);
3222	if (!debugfs_root)
3223		pr_warn("regulator: Failed to create debugfs directory\n");
3224
3225	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3226			    &supply_map_fops);
3227
3228	regulator_dummy_init();
3229
3230	return ret;
3231}
3232
3233/* init early to allow our consumers to complete system booting */
3234core_initcall(regulator_init);
3235
3236static int __init regulator_init_complete(void)
3237{
3238	struct regulator_dev *rdev;
3239	struct regulator_ops *ops;
3240	struct regulation_constraints *c;
3241	int enabled, ret;
3242
3243	mutex_lock(&regulator_list_mutex);
3244
3245	/* If we have a full configuration then disable any regulators
3246	 * which are not in use or always_on.  This will become the
3247	 * default behaviour in the future.
3248	 */
3249	list_for_each_entry(rdev, &regulator_list, list) {
3250		ops = rdev->desc->ops;
3251		c = rdev->constraints;
3252
3253		if (!ops->disable || (c && c->always_on))
3254			continue;
3255
3256		mutex_lock(&rdev->mutex);
3257
3258		if (rdev->use_count)
3259			goto unlock;
3260
3261		/* If we can't read the status assume it's on. */
3262		if (ops->is_enabled)
3263			enabled = ops->is_enabled(rdev);
3264		else
3265			enabled = 1;
3266
3267		if (!enabled)
3268			goto unlock;
3269
3270		if (has_full_constraints) {
3271			/* We log since this may kill the system if it
3272			 * goes wrong. */
3273			rdev_info(rdev, "disabling\n");
3274			ret = ops->disable(rdev);
3275			if (ret != 0) {
3276				rdev_err(rdev, "couldn't disable: %d\n", ret);
3277			}
3278		} else {
3279			/* The intention is that in future we will
3280			 * assume that full constraints are provided
3281			 * so warn even if we aren't going to do
3282			 * anything here.
3283			 */
3284			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3285		}
3286
3287unlock:
3288		mutex_unlock(&rdev->mutex);
3289	}
3290
3291	mutex_unlock(&regulator_list_mutex);
3292
3293	return 0;
3294}
3295late_initcall(regulator_init_complete);
3296