core.c revision e0eaedefda8e14ed3f445f382c568c5d69e4223f
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_err(rdev, fmt, ...)					\
38	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_warn(rdev, fmt, ...)					\
40	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_info(rdev, fmt, ...)					\
42	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_dbg(rdev, fmt, ...)					\
44	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45
46static DEFINE_MUTEX(regulator_list_mutex);
47static LIST_HEAD(regulator_list);
48static LIST_HEAD(regulator_map_list);
49static bool has_full_constraints;
50static bool board_wants_dummy_regulator;
51
52#ifdef CONFIG_DEBUG_FS
53static struct dentry *debugfs_root;
54#endif
55
56/*
57 * struct regulator_map
58 *
59 * Used to provide symbolic supply names to devices.
60 */
61struct regulator_map {
62	struct list_head list;
63	const char *dev_name;   /* The dev_name() for the consumer */
64	const char *supply;
65	struct regulator_dev *regulator;
66};
67
68/*
69 * struct regulator
70 *
71 * One for each consumer device.
72 */
73struct regulator {
74	struct device *dev;
75	struct list_head list;
76	int uA_load;
77	int min_uV;
78	int max_uV;
79	char *supply_name;
80	struct device_attribute dev_attr;
81	struct regulator_dev *rdev;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator_dev *rdev,
86		struct regulator_dev **supply_rdev_ptr);
87static int _regulator_get_voltage(struct regulator_dev *rdev);
88static int _regulator_get_current_limit(struct regulator_dev *rdev);
89static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
90static void _notifier_call_chain(struct regulator_dev *rdev,
91				  unsigned long event, void *data);
92static int _regulator_do_set_voltage(struct regulator_dev *rdev,
93				     int min_uV, int max_uV);
94
95static const char *rdev_get_name(struct regulator_dev *rdev)
96{
97	if (rdev->constraints && rdev->constraints->name)
98		return rdev->constraints->name;
99	else if (rdev->desc->name)
100		return rdev->desc->name;
101	else
102		return "";
103}
104
105/* gets the regulator for a given consumer device */
106static struct regulator *get_device_regulator(struct device *dev)
107{
108	struct regulator *regulator = NULL;
109	struct regulator_dev *rdev;
110
111	mutex_lock(&regulator_list_mutex);
112	list_for_each_entry(rdev, &regulator_list, list) {
113		mutex_lock(&rdev->mutex);
114		list_for_each_entry(regulator, &rdev->consumer_list, list) {
115			if (regulator->dev == dev) {
116				mutex_unlock(&rdev->mutex);
117				mutex_unlock(&regulator_list_mutex);
118				return regulator;
119			}
120		}
121		mutex_unlock(&rdev->mutex);
122	}
123	mutex_unlock(&regulator_list_mutex);
124	return NULL;
125}
126
127/* Platform voltage constraint check */
128static int regulator_check_voltage(struct regulator_dev *rdev,
129				   int *min_uV, int *max_uV)
130{
131	BUG_ON(*min_uV > *max_uV);
132
133	if (!rdev->constraints) {
134		rdev_err(rdev, "no constraints\n");
135		return -ENODEV;
136	}
137	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
138		rdev_err(rdev, "operation not allowed\n");
139		return -EPERM;
140	}
141
142	if (*max_uV > rdev->constraints->max_uV)
143		*max_uV = rdev->constraints->max_uV;
144	if (*min_uV < rdev->constraints->min_uV)
145		*min_uV = rdev->constraints->min_uV;
146
147	if (*min_uV > *max_uV)
148		return -EINVAL;
149
150	return 0;
151}
152
153/* Make sure we select a voltage that suits the needs of all
154 * regulator consumers
155 */
156static int regulator_check_consumers(struct regulator_dev *rdev,
157				     int *min_uV, int *max_uV)
158{
159	struct regulator *regulator;
160
161	list_for_each_entry(regulator, &rdev->consumer_list, list) {
162		/*
163		 * Assume consumers that didn't say anything are OK
164		 * with anything in the constraint range.
165		 */
166		if (!regulator->min_uV && !regulator->max_uV)
167			continue;
168
169		if (*max_uV > regulator->max_uV)
170			*max_uV = regulator->max_uV;
171		if (*min_uV < regulator->min_uV)
172			*min_uV = regulator->min_uV;
173	}
174
175	if (*min_uV > *max_uV)
176		return -EINVAL;
177
178	return 0;
179}
180
181/* current constraint check */
182static int regulator_check_current_limit(struct regulator_dev *rdev,
183					int *min_uA, int *max_uA)
184{
185	BUG_ON(*min_uA > *max_uA);
186
187	if (!rdev->constraints) {
188		rdev_err(rdev, "no constraints\n");
189		return -ENODEV;
190	}
191	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
192		rdev_err(rdev, "operation not allowed\n");
193		return -EPERM;
194	}
195
196	if (*max_uA > rdev->constraints->max_uA)
197		*max_uA = rdev->constraints->max_uA;
198	if (*min_uA < rdev->constraints->min_uA)
199		*min_uA = rdev->constraints->min_uA;
200
201	if (*min_uA > *max_uA)
202		return -EINVAL;
203
204	return 0;
205}
206
207/* operating mode constraint check */
208static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
209{
210	switch (*mode) {
211	case REGULATOR_MODE_FAST:
212	case REGULATOR_MODE_NORMAL:
213	case REGULATOR_MODE_IDLE:
214	case REGULATOR_MODE_STANDBY:
215		break;
216	default:
217		return -EINVAL;
218	}
219
220	if (!rdev->constraints) {
221		rdev_err(rdev, "no constraints\n");
222		return -ENODEV;
223	}
224	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
225		rdev_err(rdev, "operation not allowed\n");
226		return -EPERM;
227	}
228
229	/* The modes are bitmasks, the most power hungry modes having
230	 * the lowest values. If the requested mode isn't supported
231	 * try higher modes. */
232	while (*mode) {
233		if (rdev->constraints->valid_modes_mask & *mode)
234			return 0;
235		*mode /= 2;
236	}
237
238	return -EINVAL;
239}
240
241/* dynamic regulator mode switching constraint check */
242static int regulator_check_drms(struct regulator_dev *rdev)
243{
244	if (!rdev->constraints) {
245		rdev_err(rdev, "no constraints\n");
246		return -ENODEV;
247	}
248	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
249		rdev_err(rdev, "operation not allowed\n");
250		return -EPERM;
251	}
252	return 0;
253}
254
255static ssize_t device_requested_uA_show(struct device *dev,
256			     struct device_attribute *attr, char *buf)
257{
258	struct regulator *regulator;
259
260	regulator = get_device_regulator(dev);
261	if (regulator == NULL)
262		return 0;
263
264	return sprintf(buf, "%d\n", regulator->uA_load);
265}
266
267static ssize_t regulator_uV_show(struct device *dev,
268				struct device_attribute *attr, char *buf)
269{
270	struct regulator_dev *rdev = dev_get_drvdata(dev);
271	ssize_t ret;
272
273	mutex_lock(&rdev->mutex);
274	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
275	mutex_unlock(&rdev->mutex);
276
277	return ret;
278}
279static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
280
281static ssize_t regulator_uA_show(struct device *dev,
282				struct device_attribute *attr, char *buf)
283{
284	struct regulator_dev *rdev = dev_get_drvdata(dev);
285
286	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
287}
288static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
289
290static ssize_t regulator_name_show(struct device *dev,
291			     struct device_attribute *attr, char *buf)
292{
293	struct regulator_dev *rdev = dev_get_drvdata(dev);
294
295	return sprintf(buf, "%s\n", rdev_get_name(rdev));
296}
297
298static ssize_t regulator_print_opmode(char *buf, int mode)
299{
300	switch (mode) {
301	case REGULATOR_MODE_FAST:
302		return sprintf(buf, "fast\n");
303	case REGULATOR_MODE_NORMAL:
304		return sprintf(buf, "normal\n");
305	case REGULATOR_MODE_IDLE:
306		return sprintf(buf, "idle\n");
307	case REGULATOR_MODE_STANDBY:
308		return sprintf(buf, "standby\n");
309	}
310	return sprintf(buf, "unknown\n");
311}
312
313static ssize_t regulator_opmode_show(struct device *dev,
314				    struct device_attribute *attr, char *buf)
315{
316	struct regulator_dev *rdev = dev_get_drvdata(dev);
317
318	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
319}
320static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
321
322static ssize_t regulator_print_state(char *buf, int state)
323{
324	if (state > 0)
325		return sprintf(buf, "enabled\n");
326	else if (state == 0)
327		return sprintf(buf, "disabled\n");
328	else
329		return sprintf(buf, "unknown\n");
330}
331
332static ssize_t regulator_state_show(struct device *dev,
333				   struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336	ssize_t ret;
337
338	mutex_lock(&rdev->mutex);
339	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
340	mutex_unlock(&rdev->mutex);
341
342	return ret;
343}
344static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
345
346static ssize_t regulator_status_show(struct device *dev,
347				   struct device_attribute *attr, char *buf)
348{
349	struct regulator_dev *rdev = dev_get_drvdata(dev);
350	int status;
351	char *label;
352
353	status = rdev->desc->ops->get_status(rdev);
354	if (status < 0)
355		return status;
356
357	switch (status) {
358	case REGULATOR_STATUS_OFF:
359		label = "off";
360		break;
361	case REGULATOR_STATUS_ON:
362		label = "on";
363		break;
364	case REGULATOR_STATUS_ERROR:
365		label = "error";
366		break;
367	case REGULATOR_STATUS_FAST:
368		label = "fast";
369		break;
370	case REGULATOR_STATUS_NORMAL:
371		label = "normal";
372		break;
373	case REGULATOR_STATUS_IDLE:
374		label = "idle";
375		break;
376	case REGULATOR_STATUS_STANDBY:
377		label = "standby";
378		break;
379	default:
380		return -ERANGE;
381	}
382
383	return sprintf(buf, "%s\n", label);
384}
385static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
386
387static ssize_t regulator_min_uA_show(struct device *dev,
388				    struct device_attribute *attr, char *buf)
389{
390	struct regulator_dev *rdev = dev_get_drvdata(dev);
391
392	if (!rdev->constraints)
393		return sprintf(buf, "constraint not defined\n");
394
395	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
396}
397static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
398
399static ssize_t regulator_max_uA_show(struct device *dev,
400				    struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	if (!rdev->constraints)
405		return sprintf(buf, "constraint not defined\n");
406
407	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
408}
409static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
410
411static ssize_t regulator_min_uV_show(struct device *dev,
412				    struct device_attribute *attr, char *buf)
413{
414	struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416	if (!rdev->constraints)
417		return sprintf(buf, "constraint not defined\n");
418
419	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
420}
421static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
422
423static ssize_t regulator_max_uV_show(struct device *dev,
424				    struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	if (!rdev->constraints)
429		return sprintf(buf, "constraint not defined\n");
430
431	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
432}
433static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
434
435static ssize_t regulator_total_uA_show(struct device *dev,
436				      struct device_attribute *attr, char *buf)
437{
438	struct regulator_dev *rdev = dev_get_drvdata(dev);
439	struct regulator *regulator;
440	int uA = 0;
441
442	mutex_lock(&rdev->mutex);
443	list_for_each_entry(regulator, &rdev->consumer_list, list)
444		uA += regulator->uA_load;
445	mutex_unlock(&rdev->mutex);
446	return sprintf(buf, "%d\n", uA);
447}
448static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
449
450static ssize_t regulator_num_users_show(struct device *dev,
451				      struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454	return sprintf(buf, "%d\n", rdev->use_count);
455}
456
457static ssize_t regulator_type_show(struct device *dev,
458				  struct device_attribute *attr, char *buf)
459{
460	struct regulator_dev *rdev = dev_get_drvdata(dev);
461
462	switch (rdev->desc->type) {
463	case REGULATOR_VOLTAGE:
464		return sprintf(buf, "voltage\n");
465	case REGULATOR_CURRENT:
466		return sprintf(buf, "current\n");
467	}
468	return sprintf(buf, "unknown\n");
469}
470
471static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
472				struct device_attribute *attr, char *buf)
473{
474	struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
477}
478static DEVICE_ATTR(suspend_mem_microvolts, 0444,
479		regulator_suspend_mem_uV_show, NULL);
480
481static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
482				struct device_attribute *attr, char *buf)
483{
484	struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
487}
488static DEVICE_ATTR(suspend_disk_microvolts, 0444,
489		regulator_suspend_disk_uV_show, NULL);
490
491static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
492				struct device_attribute *attr, char *buf)
493{
494	struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
497}
498static DEVICE_ATTR(suspend_standby_microvolts, 0444,
499		regulator_suspend_standby_uV_show, NULL);
500
501static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
502				struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	return regulator_print_opmode(buf,
507		rdev->constraints->state_mem.mode);
508}
509static DEVICE_ATTR(suspend_mem_mode, 0444,
510		regulator_suspend_mem_mode_show, NULL);
511
512static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
513				struct device_attribute *attr, char *buf)
514{
515	struct regulator_dev *rdev = dev_get_drvdata(dev);
516
517	return regulator_print_opmode(buf,
518		rdev->constraints->state_disk.mode);
519}
520static DEVICE_ATTR(suspend_disk_mode, 0444,
521		regulator_suspend_disk_mode_show, NULL);
522
523static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return regulator_print_opmode(buf,
529		rdev->constraints->state_standby.mode);
530}
531static DEVICE_ATTR(suspend_standby_mode, 0444,
532		regulator_suspend_standby_mode_show, NULL);
533
534static ssize_t regulator_suspend_mem_state_show(struct device *dev,
535				   struct device_attribute *attr, char *buf)
536{
537	struct regulator_dev *rdev = dev_get_drvdata(dev);
538
539	return regulator_print_state(buf,
540			rdev->constraints->state_mem.enabled);
541}
542static DEVICE_ATTR(suspend_mem_state, 0444,
543		regulator_suspend_mem_state_show, NULL);
544
545static ssize_t regulator_suspend_disk_state_show(struct device *dev,
546				   struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_state(buf,
551			rdev->constraints->state_disk.enabled);
552}
553static DEVICE_ATTR(suspend_disk_state, 0444,
554		regulator_suspend_disk_state_show, NULL);
555
556static ssize_t regulator_suspend_standby_state_show(struct device *dev,
557				   struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_state(buf,
562			rdev->constraints->state_standby.enabled);
563}
564static DEVICE_ATTR(suspend_standby_state, 0444,
565		regulator_suspend_standby_state_show, NULL);
566
567
568/*
569 * These are the only attributes are present for all regulators.
570 * Other attributes are a function of regulator functionality.
571 */
572static struct device_attribute regulator_dev_attrs[] = {
573	__ATTR(name, 0444, regulator_name_show, NULL),
574	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
575	__ATTR(type, 0444, regulator_type_show, NULL),
576	__ATTR_NULL,
577};
578
579static void regulator_dev_release(struct device *dev)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582	kfree(rdev);
583}
584
585static struct class regulator_class = {
586	.name = "regulator",
587	.dev_release = regulator_dev_release,
588	.dev_attrs = regulator_dev_attrs,
589};
590
591/* Calculate the new optimum regulator operating mode based on the new total
592 * consumer load. All locks held by caller */
593static void drms_uA_update(struct regulator_dev *rdev)
594{
595	struct regulator *sibling;
596	int current_uA = 0, output_uV, input_uV, err;
597	unsigned int mode;
598
599	err = regulator_check_drms(rdev);
600	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
601	    (!rdev->desc->ops->get_voltage &&
602	     !rdev->desc->ops->get_voltage_sel) ||
603	    !rdev->desc->ops->set_mode)
604		return;
605
606	/* get output voltage */
607	output_uV = _regulator_get_voltage(rdev);
608	if (output_uV <= 0)
609		return;
610
611	/* get input voltage */
612	input_uV = 0;
613	if (rdev->supply)
614		input_uV = _regulator_get_voltage(rdev);
615	if (input_uV <= 0)
616		input_uV = rdev->constraints->input_uV;
617	if (input_uV <= 0)
618		return;
619
620	/* calc total requested load */
621	list_for_each_entry(sibling, &rdev->consumer_list, list)
622		current_uA += sibling->uA_load;
623
624	/* now get the optimum mode for our new total regulator load */
625	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
626						  output_uV, current_uA);
627
628	/* check the new mode is allowed */
629	err = regulator_mode_constrain(rdev, &mode);
630	if (err == 0)
631		rdev->desc->ops->set_mode(rdev, mode);
632}
633
634static int suspend_set_state(struct regulator_dev *rdev,
635	struct regulator_state *rstate)
636{
637	int ret = 0;
638	bool can_set_state;
639
640	can_set_state = rdev->desc->ops->set_suspend_enable &&
641		rdev->desc->ops->set_suspend_disable;
642
643	/* If we have no suspend mode configration don't set anything;
644	 * only warn if the driver actually makes the suspend mode
645	 * configurable.
646	 */
647	if (!rstate->enabled && !rstate->disabled) {
648		if (can_set_state)
649			rdev_warn(rdev, "No configuration\n");
650		return 0;
651	}
652
653	if (rstate->enabled && rstate->disabled) {
654		rdev_err(rdev, "invalid configuration\n");
655		return -EINVAL;
656	}
657
658	if (!can_set_state) {
659		rdev_err(rdev, "no way to set suspend state\n");
660		return -EINVAL;
661	}
662
663	if (rstate->enabled)
664		ret = rdev->desc->ops->set_suspend_enable(rdev);
665	else
666		ret = rdev->desc->ops->set_suspend_disable(rdev);
667	if (ret < 0) {
668		rdev_err(rdev, "failed to enabled/disable\n");
669		return ret;
670	}
671
672	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
673		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
674		if (ret < 0) {
675			rdev_err(rdev, "failed to set voltage\n");
676			return ret;
677		}
678	}
679
680	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
681		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
682		if (ret < 0) {
683			rdev_err(rdev, "failed to set mode\n");
684			return ret;
685		}
686	}
687	return ret;
688}
689
690/* locks held by caller */
691static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
692{
693	if (!rdev->constraints)
694		return -EINVAL;
695
696	switch (state) {
697	case PM_SUSPEND_STANDBY:
698		return suspend_set_state(rdev,
699			&rdev->constraints->state_standby);
700	case PM_SUSPEND_MEM:
701		return suspend_set_state(rdev,
702			&rdev->constraints->state_mem);
703	case PM_SUSPEND_MAX:
704		return suspend_set_state(rdev,
705			&rdev->constraints->state_disk);
706	default:
707		return -EINVAL;
708	}
709}
710
711static void print_constraints(struct regulator_dev *rdev)
712{
713	struct regulation_constraints *constraints = rdev->constraints;
714	char buf[80] = "";
715	int count = 0;
716	int ret;
717
718	if (constraints->min_uV && constraints->max_uV) {
719		if (constraints->min_uV == constraints->max_uV)
720			count += sprintf(buf + count, "%d mV ",
721					 constraints->min_uV / 1000);
722		else
723			count += sprintf(buf + count, "%d <--> %d mV ",
724					 constraints->min_uV / 1000,
725					 constraints->max_uV / 1000);
726	}
727
728	if (!constraints->min_uV ||
729	    constraints->min_uV != constraints->max_uV) {
730		ret = _regulator_get_voltage(rdev);
731		if (ret > 0)
732			count += sprintf(buf + count, "at %d mV ", ret / 1000);
733	}
734
735	if (constraints->uV_offset)
736		count += sprintf(buf, "%dmV offset ",
737				 constraints->uV_offset / 1000);
738
739	if (constraints->min_uA && constraints->max_uA) {
740		if (constraints->min_uA == constraints->max_uA)
741			count += sprintf(buf + count, "%d mA ",
742					 constraints->min_uA / 1000);
743		else
744			count += sprintf(buf + count, "%d <--> %d mA ",
745					 constraints->min_uA / 1000,
746					 constraints->max_uA / 1000);
747	}
748
749	if (!constraints->min_uA ||
750	    constraints->min_uA != constraints->max_uA) {
751		ret = _regulator_get_current_limit(rdev);
752		if (ret > 0)
753			count += sprintf(buf + count, "at %d mA ", ret / 1000);
754	}
755
756	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
757		count += sprintf(buf + count, "fast ");
758	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
759		count += sprintf(buf + count, "normal ");
760	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
761		count += sprintf(buf + count, "idle ");
762	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
763		count += sprintf(buf + count, "standby");
764
765	rdev_info(rdev, "%s\n", buf);
766}
767
768static int machine_constraints_voltage(struct regulator_dev *rdev,
769	struct regulation_constraints *constraints)
770{
771	struct regulator_ops *ops = rdev->desc->ops;
772	int ret;
773
774	/* do we need to apply the constraint voltage */
775	if (rdev->constraints->apply_uV &&
776	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
777		ret = _regulator_do_set_voltage(rdev,
778						rdev->constraints->min_uV,
779						rdev->constraints->max_uV);
780		if (ret < 0) {
781			rdev_err(rdev, "failed to apply %duV constraint\n",
782				 rdev->constraints->min_uV);
783			rdev->constraints = NULL;
784			return ret;
785		}
786	}
787
788	/* constrain machine-level voltage specs to fit
789	 * the actual range supported by this regulator.
790	 */
791	if (ops->list_voltage && rdev->desc->n_voltages) {
792		int	count = rdev->desc->n_voltages;
793		int	i;
794		int	min_uV = INT_MAX;
795		int	max_uV = INT_MIN;
796		int	cmin = constraints->min_uV;
797		int	cmax = constraints->max_uV;
798
799		/* it's safe to autoconfigure fixed-voltage supplies
800		   and the constraints are used by list_voltage. */
801		if (count == 1 && !cmin) {
802			cmin = 1;
803			cmax = INT_MAX;
804			constraints->min_uV = cmin;
805			constraints->max_uV = cmax;
806		}
807
808		/* voltage constraints are optional */
809		if ((cmin == 0) && (cmax == 0))
810			return 0;
811
812		/* else require explicit machine-level constraints */
813		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
814			rdev_err(rdev, "invalid voltage constraints\n");
815			return -EINVAL;
816		}
817
818		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
819		for (i = 0; i < count; i++) {
820			int	value;
821
822			value = ops->list_voltage(rdev, i);
823			if (value <= 0)
824				continue;
825
826			/* maybe adjust [min_uV..max_uV] */
827			if (value >= cmin && value < min_uV)
828				min_uV = value;
829			if (value <= cmax && value > max_uV)
830				max_uV = value;
831		}
832
833		/* final: [min_uV..max_uV] valid iff constraints valid */
834		if (max_uV < min_uV) {
835			rdev_err(rdev, "unsupportable voltage constraints\n");
836			return -EINVAL;
837		}
838
839		/* use regulator's subset of machine constraints */
840		if (constraints->min_uV < min_uV) {
841			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
842				 constraints->min_uV, min_uV);
843			constraints->min_uV = min_uV;
844		}
845		if (constraints->max_uV > max_uV) {
846			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
847				 constraints->max_uV, max_uV);
848			constraints->max_uV = max_uV;
849		}
850	}
851
852	return 0;
853}
854
855/**
856 * set_machine_constraints - sets regulator constraints
857 * @rdev: regulator source
858 * @constraints: constraints to apply
859 *
860 * Allows platform initialisation code to define and constrain
861 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
862 * Constraints *must* be set by platform code in order for some
863 * regulator operations to proceed i.e. set_voltage, set_current_limit,
864 * set_mode.
865 */
866static int set_machine_constraints(struct regulator_dev *rdev,
867	const struct regulation_constraints *constraints)
868{
869	int ret = 0;
870	struct regulator_ops *ops = rdev->desc->ops;
871
872	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
873				    GFP_KERNEL);
874	if (!rdev->constraints)
875		return -ENOMEM;
876
877	ret = machine_constraints_voltage(rdev, rdev->constraints);
878	if (ret != 0)
879		goto out;
880
881	/* do we need to setup our suspend state */
882	if (constraints->initial_state) {
883		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
884		if (ret < 0) {
885			rdev_err(rdev, "failed to set suspend state\n");
886			rdev->constraints = NULL;
887			goto out;
888		}
889	}
890
891	if (constraints->initial_mode) {
892		if (!ops->set_mode) {
893			rdev_err(rdev, "no set_mode operation\n");
894			ret = -EINVAL;
895			goto out;
896		}
897
898		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
899		if (ret < 0) {
900			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
901			goto out;
902		}
903	}
904
905	/* If the constraints say the regulator should be on at this point
906	 * and we have control then make sure it is enabled.
907	 */
908	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
909	    ops->enable) {
910		ret = ops->enable(rdev);
911		if (ret < 0) {
912			rdev_err(rdev, "failed to enable\n");
913			rdev->constraints = NULL;
914			goto out;
915		}
916	}
917
918	print_constraints(rdev);
919out:
920	return ret;
921}
922
923/**
924 * set_supply - set regulator supply regulator
925 * @rdev: regulator name
926 * @supply_rdev: supply regulator name
927 *
928 * Called by platform initialisation code to set the supply regulator for this
929 * regulator. This ensures that a regulators supply will also be enabled by the
930 * core if it's child is enabled.
931 */
932static int set_supply(struct regulator_dev *rdev,
933	struct regulator_dev *supply_rdev)
934{
935	int err;
936
937	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
938				"supply");
939	if (err) {
940		rdev_err(rdev, "could not add device link %s err %d\n",
941			 supply_rdev->dev.kobj.name, err);
942		       goto out;
943	}
944	rdev->supply = supply_rdev;
945	list_add(&rdev->slist, &supply_rdev->supply_list);
946out:
947	return err;
948}
949
950/**
951 * set_consumer_device_supply - Bind a regulator to a symbolic supply
952 * @rdev:         regulator source
953 * @consumer_dev: device the supply applies to
954 * @consumer_dev_name: dev_name() string for device supply applies to
955 * @supply:       symbolic name for supply
956 *
957 * Allows platform initialisation code to map physical regulator
958 * sources to symbolic names for supplies for use by devices.  Devices
959 * should use these symbolic names to request regulators, avoiding the
960 * need to provide board-specific regulator names as platform data.
961 *
962 * Only one of consumer_dev and consumer_dev_name may be specified.
963 */
964static int set_consumer_device_supply(struct regulator_dev *rdev,
965	struct device *consumer_dev, const char *consumer_dev_name,
966	const char *supply)
967{
968	struct regulator_map *node;
969	int has_dev;
970
971	if (consumer_dev && consumer_dev_name)
972		return -EINVAL;
973
974	if (!consumer_dev_name && consumer_dev)
975		consumer_dev_name = dev_name(consumer_dev);
976
977	if (supply == NULL)
978		return -EINVAL;
979
980	if (consumer_dev_name != NULL)
981		has_dev = 1;
982	else
983		has_dev = 0;
984
985	list_for_each_entry(node, &regulator_map_list, list) {
986		if (node->dev_name && consumer_dev_name) {
987			if (strcmp(node->dev_name, consumer_dev_name) != 0)
988				continue;
989		} else if (node->dev_name || consumer_dev_name) {
990			continue;
991		}
992
993		if (strcmp(node->supply, supply) != 0)
994			continue;
995
996		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
997			dev_name(&node->regulator->dev),
998			node->regulator->desc->name,
999			supply,
1000			dev_name(&rdev->dev), rdev_get_name(rdev));
1001		return -EBUSY;
1002	}
1003
1004	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1005	if (node == NULL)
1006		return -ENOMEM;
1007
1008	node->regulator = rdev;
1009	node->supply = supply;
1010
1011	if (has_dev) {
1012		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1013		if (node->dev_name == NULL) {
1014			kfree(node);
1015			return -ENOMEM;
1016		}
1017	}
1018
1019	list_add(&node->list, &regulator_map_list);
1020	return 0;
1021}
1022
1023static void unset_regulator_supplies(struct regulator_dev *rdev)
1024{
1025	struct regulator_map *node, *n;
1026
1027	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1028		if (rdev == node->regulator) {
1029			list_del(&node->list);
1030			kfree(node->dev_name);
1031			kfree(node);
1032		}
1033	}
1034}
1035
1036#define REG_STR_SIZE	64
1037
1038static struct regulator *create_regulator(struct regulator_dev *rdev,
1039					  struct device *dev,
1040					  const char *supply_name)
1041{
1042	struct regulator *regulator;
1043	char buf[REG_STR_SIZE];
1044	int err, size;
1045
1046	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1047	if (regulator == NULL)
1048		return NULL;
1049
1050	mutex_lock(&rdev->mutex);
1051	regulator->rdev = rdev;
1052	list_add(&regulator->list, &rdev->consumer_list);
1053
1054	if (dev) {
1055		/* create a 'requested_microamps_name' sysfs entry */
1056		size = scnprintf(buf, REG_STR_SIZE,
1057				 "microamps_requested_%s-%s",
1058				 dev_name(dev), supply_name);
1059		if (size >= REG_STR_SIZE)
1060			goto overflow_err;
1061
1062		regulator->dev = dev;
1063		sysfs_attr_init(&regulator->dev_attr.attr);
1064		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1065		if (regulator->dev_attr.attr.name == NULL)
1066			goto attr_name_err;
1067
1068		regulator->dev_attr.attr.mode = 0444;
1069		regulator->dev_attr.show = device_requested_uA_show;
1070		err = device_create_file(dev, &regulator->dev_attr);
1071		if (err < 0) {
1072			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1073			goto attr_name_err;
1074		}
1075
1076		/* also add a link to the device sysfs entry */
1077		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1078				 dev->kobj.name, supply_name);
1079		if (size >= REG_STR_SIZE)
1080			goto attr_err;
1081
1082		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1083		if (regulator->supply_name == NULL)
1084			goto attr_err;
1085
1086		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1087					buf);
1088		if (err) {
1089			rdev_warn(rdev, "could not add device link %s err %d\n",
1090				  dev->kobj.name, err);
1091			goto link_name_err;
1092		}
1093	}
1094	mutex_unlock(&rdev->mutex);
1095	return regulator;
1096link_name_err:
1097	kfree(regulator->supply_name);
1098attr_err:
1099	device_remove_file(regulator->dev, &regulator->dev_attr);
1100attr_name_err:
1101	kfree(regulator->dev_attr.attr.name);
1102overflow_err:
1103	list_del(&regulator->list);
1104	kfree(regulator);
1105	mutex_unlock(&rdev->mutex);
1106	return NULL;
1107}
1108
1109static int _regulator_get_enable_time(struct regulator_dev *rdev)
1110{
1111	if (!rdev->desc->ops->enable_time)
1112		return 0;
1113	return rdev->desc->ops->enable_time(rdev);
1114}
1115
1116/* Internal regulator request function */
1117static struct regulator *_regulator_get(struct device *dev, const char *id,
1118					int exclusive)
1119{
1120	struct regulator_dev *rdev;
1121	struct regulator_map *map;
1122	struct regulator *regulator = ERR_PTR(-ENODEV);
1123	const char *devname = NULL;
1124	int ret;
1125
1126	if (id == NULL) {
1127		pr_err("get() with no identifier\n");
1128		return regulator;
1129	}
1130
1131	if (dev)
1132		devname = dev_name(dev);
1133
1134	mutex_lock(&regulator_list_mutex);
1135
1136	list_for_each_entry(map, &regulator_map_list, list) {
1137		/* If the mapping has a device set up it must match */
1138		if (map->dev_name &&
1139		    (!devname || strcmp(map->dev_name, devname)))
1140			continue;
1141
1142		if (strcmp(map->supply, id) == 0) {
1143			rdev = map->regulator;
1144			goto found;
1145		}
1146	}
1147
1148	if (board_wants_dummy_regulator) {
1149		rdev = dummy_regulator_rdev;
1150		goto found;
1151	}
1152
1153#ifdef CONFIG_REGULATOR_DUMMY
1154	if (!devname)
1155		devname = "deviceless";
1156
1157	/* If the board didn't flag that it was fully constrained then
1158	 * substitute in a dummy regulator so consumers can continue.
1159	 */
1160	if (!has_full_constraints) {
1161		pr_warn("%s supply %s not found, using dummy regulator\n",
1162			devname, id);
1163		rdev = dummy_regulator_rdev;
1164		goto found;
1165	}
1166#endif
1167
1168	mutex_unlock(&regulator_list_mutex);
1169	return regulator;
1170
1171found:
1172	if (rdev->exclusive) {
1173		regulator = ERR_PTR(-EPERM);
1174		goto out;
1175	}
1176
1177	if (exclusive && rdev->open_count) {
1178		regulator = ERR_PTR(-EBUSY);
1179		goto out;
1180	}
1181
1182	if (!try_module_get(rdev->owner))
1183		goto out;
1184
1185	regulator = create_regulator(rdev, dev, id);
1186	if (regulator == NULL) {
1187		regulator = ERR_PTR(-ENOMEM);
1188		module_put(rdev->owner);
1189	}
1190
1191	rdev->open_count++;
1192	if (exclusive) {
1193		rdev->exclusive = 1;
1194
1195		ret = _regulator_is_enabled(rdev);
1196		if (ret > 0)
1197			rdev->use_count = 1;
1198		else
1199			rdev->use_count = 0;
1200	}
1201
1202out:
1203	mutex_unlock(&regulator_list_mutex);
1204
1205	return regulator;
1206}
1207
1208/**
1209 * regulator_get - lookup and obtain a reference to a regulator.
1210 * @dev: device for regulator "consumer"
1211 * @id: Supply name or regulator ID.
1212 *
1213 * Returns a struct regulator corresponding to the regulator producer,
1214 * or IS_ERR() condition containing errno.
1215 *
1216 * Use of supply names configured via regulator_set_device_supply() is
1217 * strongly encouraged.  It is recommended that the supply name used
1218 * should match the name used for the supply and/or the relevant
1219 * device pins in the datasheet.
1220 */
1221struct regulator *regulator_get(struct device *dev, const char *id)
1222{
1223	return _regulator_get(dev, id, 0);
1224}
1225EXPORT_SYMBOL_GPL(regulator_get);
1226
1227/**
1228 * regulator_get_exclusive - obtain exclusive access to a regulator.
1229 * @dev: device for regulator "consumer"
1230 * @id: Supply name or regulator ID.
1231 *
1232 * Returns a struct regulator corresponding to the regulator producer,
1233 * or IS_ERR() condition containing errno.  Other consumers will be
1234 * unable to obtain this reference is held and the use count for the
1235 * regulator will be initialised to reflect the current state of the
1236 * regulator.
1237 *
1238 * This is intended for use by consumers which cannot tolerate shared
1239 * use of the regulator such as those which need to force the
1240 * regulator off for correct operation of the hardware they are
1241 * controlling.
1242 *
1243 * Use of supply names configured via regulator_set_device_supply() is
1244 * strongly encouraged.  It is recommended that the supply name used
1245 * should match the name used for the supply and/or the relevant
1246 * device pins in the datasheet.
1247 */
1248struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1249{
1250	return _regulator_get(dev, id, 1);
1251}
1252EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1253
1254/**
1255 * regulator_put - "free" the regulator source
1256 * @regulator: regulator source
1257 *
1258 * Note: drivers must ensure that all regulator_enable calls made on this
1259 * regulator source are balanced by regulator_disable calls prior to calling
1260 * this function.
1261 */
1262void regulator_put(struct regulator *regulator)
1263{
1264	struct regulator_dev *rdev;
1265
1266	if (regulator == NULL || IS_ERR(regulator))
1267		return;
1268
1269	mutex_lock(&regulator_list_mutex);
1270	rdev = regulator->rdev;
1271
1272	/* remove any sysfs entries */
1273	if (regulator->dev) {
1274		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1275		kfree(regulator->supply_name);
1276		device_remove_file(regulator->dev, &regulator->dev_attr);
1277		kfree(regulator->dev_attr.attr.name);
1278	}
1279	list_del(&regulator->list);
1280	kfree(regulator);
1281
1282	rdev->open_count--;
1283	rdev->exclusive = 0;
1284
1285	module_put(rdev->owner);
1286	mutex_unlock(&regulator_list_mutex);
1287}
1288EXPORT_SYMBOL_GPL(regulator_put);
1289
1290static int _regulator_can_change_status(struct regulator_dev *rdev)
1291{
1292	if (!rdev->constraints)
1293		return 0;
1294
1295	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1296		return 1;
1297	else
1298		return 0;
1299}
1300
1301/* locks held by regulator_enable() */
1302static int _regulator_enable(struct regulator_dev *rdev)
1303{
1304	int ret, delay;
1305
1306	if (rdev->use_count == 0) {
1307		/* do we need to enable the supply regulator first */
1308		if (rdev->supply) {
1309			mutex_lock(&rdev->supply->mutex);
1310			ret = _regulator_enable(rdev->supply);
1311			mutex_unlock(&rdev->supply->mutex);
1312			if (ret < 0) {
1313				rdev_err(rdev, "failed to enable: %d\n", ret);
1314				return ret;
1315			}
1316		}
1317	}
1318
1319	/* check voltage and requested load before enabling */
1320	if (rdev->constraints &&
1321	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1322		drms_uA_update(rdev);
1323
1324	if (rdev->use_count == 0) {
1325		/* The regulator may on if it's not switchable or left on */
1326		ret = _regulator_is_enabled(rdev);
1327		if (ret == -EINVAL || ret == 0) {
1328			if (!_regulator_can_change_status(rdev))
1329				return -EPERM;
1330
1331			if (!rdev->desc->ops->enable)
1332				return -EINVAL;
1333
1334			/* Query before enabling in case configuration
1335			 * dependent.  */
1336			ret = _regulator_get_enable_time(rdev);
1337			if (ret >= 0) {
1338				delay = ret;
1339			} else {
1340				rdev_warn(rdev, "enable_time() failed: %d\n",
1341					   ret);
1342				delay = 0;
1343			}
1344
1345			trace_regulator_enable(rdev_get_name(rdev));
1346
1347			/* Allow the regulator to ramp; it would be useful
1348			 * to extend this for bulk operations so that the
1349			 * regulators can ramp together.  */
1350			ret = rdev->desc->ops->enable(rdev);
1351			if (ret < 0)
1352				return ret;
1353
1354			trace_regulator_enable_delay(rdev_get_name(rdev));
1355
1356			if (delay >= 1000) {
1357				mdelay(delay / 1000);
1358				udelay(delay % 1000);
1359			} else if (delay) {
1360				udelay(delay);
1361			}
1362
1363			trace_regulator_enable_complete(rdev_get_name(rdev));
1364
1365		} else if (ret < 0) {
1366			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1367			return ret;
1368		}
1369		/* Fallthrough on positive return values - already enabled */
1370	}
1371
1372	rdev->use_count++;
1373
1374	return 0;
1375}
1376
1377/**
1378 * regulator_enable - enable regulator output
1379 * @regulator: regulator source
1380 *
1381 * Request that the regulator be enabled with the regulator output at
1382 * the predefined voltage or current value.  Calls to regulator_enable()
1383 * must be balanced with calls to regulator_disable().
1384 *
1385 * NOTE: the output value can be set by other drivers, boot loader or may be
1386 * hardwired in the regulator.
1387 */
1388int regulator_enable(struct regulator *regulator)
1389{
1390	struct regulator_dev *rdev = regulator->rdev;
1391	int ret = 0;
1392
1393	mutex_lock(&rdev->mutex);
1394	ret = _regulator_enable(rdev);
1395	mutex_unlock(&rdev->mutex);
1396	return ret;
1397}
1398EXPORT_SYMBOL_GPL(regulator_enable);
1399
1400/* locks held by regulator_disable() */
1401static int _regulator_disable(struct regulator_dev *rdev,
1402		struct regulator_dev **supply_rdev_ptr)
1403{
1404	int ret = 0;
1405	*supply_rdev_ptr = NULL;
1406
1407	if (WARN(rdev->use_count <= 0,
1408		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1409		return -EIO;
1410
1411	/* are we the last user and permitted to disable ? */
1412	if (rdev->use_count == 1 &&
1413	    (rdev->constraints && !rdev->constraints->always_on)) {
1414
1415		/* we are last user */
1416		if (_regulator_can_change_status(rdev) &&
1417		    rdev->desc->ops->disable) {
1418			trace_regulator_disable(rdev_get_name(rdev));
1419
1420			ret = rdev->desc->ops->disable(rdev);
1421			if (ret < 0) {
1422				rdev_err(rdev, "failed to disable\n");
1423				return ret;
1424			}
1425
1426			trace_regulator_disable_complete(rdev_get_name(rdev));
1427
1428			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1429					     NULL);
1430		}
1431
1432		/* decrease our supplies ref count and disable if required */
1433		*supply_rdev_ptr = rdev->supply;
1434
1435		rdev->use_count = 0;
1436	} else if (rdev->use_count > 1) {
1437
1438		if (rdev->constraints &&
1439			(rdev->constraints->valid_ops_mask &
1440			REGULATOR_CHANGE_DRMS))
1441			drms_uA_update(rdev);
1442
1443		rdev->use_count--;
1444	}
1445	return ret;
1446}
1447
1448/**
1449 * regulator_disable - disable regulator output
1450 * @regulator: regulator source
1451 *
1452 * Disable the regulator output voltage or current.  Calls to
1453 * regulator_enable() must be balanced with calls to
1454 * regulator_disable().
1455 *
1456 * NOTE: this will only disable the regulator output if no other consumer
1457 * devices have it enabled, the regulator device supports disabling and
1458 * machine constraints permit this operation.
1459 */
1460int regulator_disable(struct regulator *regulator)
1461{
1462	struct regulator_dev *rdev = regulator->rdev;
1463	struct regulator_dev *supply_rdev = NULL;
1464	int ret = 0;
1465
1466	mutex_lock(&rdev->mutex);
1467	ret = _regulator_disable(rdev, &supply_rdev);
1468	mutex_unlock(&rdev->mutex);
1469
1470	/* decrease our supplies ref count and disable if required */
1471	while (supply_rdev != NULL) {
1472		rdev = supply_rdev;
1473
1474		mutex_lock(&rdev->mutex);
1475		_regulator_disable(rdev, &supply_rdev);
1476		mutex_unlock(&rdev->mutex);
1477	}
1478
1479	return ret;
1480}
1481EXPORT_SYMBOL_GPL(regulator_disable);
1482
1483/* locks held by regulator_force_disable() */
1484static int _regulator_force_disable(struct regulator_dev *rdev,
1485		struct regulator_dev **supply_rdev_ptr)
1486{
1487	int ret = 0;
1488
1489	/* force disable */
1490	if (rdev->desc->ops->disable) {
1491		/* ah well, who wants to live forever... */
1492		ret = rdev->desc->ops->disable(rdev);
1493		if (ret < 0) {
1494			rdev_err(rdev, "failed to force disable\n");
1495			return ret;
1496		}
1497		/* notify other consumers that power has been forced off */
1498		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1499			REGULATOR_EVENT_DISABLE, NULL);
1500	}
1501
1502	/* decrease our supplies ref count and disable if required */
1503	*supply_rdev_ptr = rdev->supply;
1504
1505	rdev->use_count = 0;
1506	return ret;
1507}
1508
1509/**
1510 * regulator_force_disable - force disable regulator output
1511 * @regulator: regulator source
1512 *
1513 * Forcibly disable the regulator output voltage or current.
1514 * NOTE: this *will* disable the regulator output even if other consumer
1515 * devices have it enabled. This should be used for situations when device
1516 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1517 */
1518int regulator_force_disable(struct regulator *regulator)
1519{
1520	struct regulator_dev *rdev = regulator->rdev;
1521	struct regulator_dev *supply_rdev = NULL;
1522	int ret;
1523
1524	mutex_lock(&rdev->mutex);
1525	regulator->uA_load = 0;
1526	ret = _regulator_force_disable(rdev, &supply_rdev);
1527	mutex_unlock(&rdev->mutex);
1528
1529	if (supply_rdev)
1530		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1531
1532	return ret;
1533}
1534EXPORT_SYMBOL_GPL(regulator_force_disable);
1535
1536static int _regulator_is_enabled(struct regulator_dev *rdev)
1537{
1538	/* If we don't know then assume that the regulator is always on */
1539	if (!rdev->desc->ops->is_enabled)
1540		return 1;
1541
1542	return rdev->desc->ops->is_enabled(rdev);
1543}
1544
1545/**
1546 * regulator_is_enabled - is the regulator output enabled
1547 * @regulator: regulator source
1548 *
1549 * Returns positive if the regulator driver backing the source/client
1550 * has requested that the device be enabled, zero if it hasn't, else a
1551 * negative errno code.
1552 *
1553 * Note that the device backing this regulator handle can have multiple
1554 * users, so it might be enabled even if regulator_enable() was never
1555 * called for this particular source.
1556 */
1557int regulator_is_enabled(struct regulator *regulator)
1558{
1559	int ret;
1560
1561	mutex_lock(&regulator->rdev->mutex);
1562	ret = _regulator_is_enabled(regulator->rdev);
1563	mutex_unlock(&regulator->rdev->mutex);
1564
1565	return ret;
1566}
1567EXPORT_SYMBOL_GPL(regulator_is_enabled);
1568
1569/**
1570 * regulator_count_voltages - count regulator_list_voltage() selectors
1571 * @regulator: regulator source
1572 *
1573 * Returns number of selectors, or negative errno.  Selectors are
1574 * numbered starting at zero, and typically correspond to bitfields
1575 * in hardware registers.
1576 */
1577int regulator_count_voltages(struct regulator *regulator)
1578{
1579	struct regulator_dev	*rdev = regulator->rdev;
1580
1581	return rdev->desc->n_voltages ? : -EINVAL;
1582}
1583EXPORT_SYMBOL_GPL(regulator_count_voltages);
1584
1585/**
1586 * regulator_list_voltage - enumerate supported voltages
1587 * @regulator: regulator source
1588 * @selector: identify voltage to list
1589 * Context: can sleep
1590 *
1591 * Returns a voltage that can be passed to @regulator_set_voltage(),
1592 * zero if this selector code can't be used on this system, or a
1593 * negative errno.
1594 */
1595int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1596{
1597	struct regulator_dev	*rdev = regulator->rdev;
1598	struct regulator_ops	*ops = rdev->desc->ops;
1599	int			ret;
1600
1601	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1602		return -EINVAL;
1603
1604	mutex_lock(&rdev->mutex);
1605	ret = ops->list_voltage(rdev, selector);
1606	mutex_unlock(&rdev->mutex);
1607
1608	if (ret > 0) {
1609		if (ret < rdev->constraints->min_uV)
1610			ret = 0;
1611		else if (ret > rdev->constraints->max_uV)
1612			ret = 0;
1613	}
1614
1615	return ret;
1616}
1617EXPORT_SYMBOL_GPL(regulator_list_voltage);
1618
1619/**
1620 * regulator_is_supported_voltage - check if a voltage range can be supported
1621 *
1622 * @regulator: Regulator to check.
1623 * @min_uV: Minimum required voltage in uV.
1624 * @max_uV: Maximum required voltage in uV.
1625 *
1626 * Returns a boolean or a negative error code.
1627 */
1628int regulator_is_supported_voltage(struct regulator *regulator,
1629				   int min_uV, int max_uV)
1630{
1631	int i, voltages, ret;
1632
1633	ret = regulator_count_voltages(regulator);
1634	if (ret < 0)
1635		return ret;
1636	voltages = ret;
1637
1638	for (i = 0; i < voltages; i++) {
1639		ret = regulator_list_voltage(regulator, i);
1640
1641		if (ret >= min_uV && ret <= max_uV)
1642			return 1;
1643	}
1644
1645	return 0;
1646}
1647
1648static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1649				     int min_uV, int max_uV)
1650{
1651	int ret;
1652	int delay = 0;
1653	unsigned int selector;
1654
1655	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1656
1657	min_uV += rdev->constraints->uV_offset;
1658	max_uV += rdev->constraints->uV_offset;
1659
1660	if (rdev->desc->ops->set_voltage) {
1661		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1662						   &selector);
1663
1664		if (rdev->desc->ops->list_voltage)
1665			selector = rdev->desc->ops->list_voltage(rdev,
1666								 selector);
1667		else
1668			selector = -1;
1669	} else if (rdev->desc->ops->set_voltage_sel) {
1670		int best_val = INT_MAX;
1671		int i;
1672
1673		selector = 0;
1674
1675		/* Find the smallest voltage that falls within the specified
1676		 * range.
1677		 */
1678		for (i = 0; i < rdev->desc->n_voltages; i++) {
1679			ret = rdev->desc->ops->list_voltage(rdev, i);
1680			if (ret < 0)
1681				continue;
1682
1683			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1684				best_val = ret;
1685				selector = i;
1686			}
1687		}
1688
1689		/*
1690		 * If we can't obtain the old selector there is not enough
1691		 * info to call set_voltage_time_sel().
1692		 */
1693		if (rdev->desc->ops->set_voltage_time_sel &&
1694		    rdev->desc->ops->get_voltage_sel) {
1695			unsigned int old_selector = 0;
1696
1697			ret = rdev->desc->ops->get_voltage_sel(rdev);
1698			if (ret < 0)
1699				return ret;
1700			old_selector = ret;
1701			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1702						old_selector, selector);
1703		}
1704
1705		if (best_val != INT_MAX) {
1706			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1707			selector = best_val;
1708		} else {
1709			ret = -EINVAL;
1710		}
1711	} else {
1712		ret = -EINVAL;
1713	}
1714
1715	/* Insert any necessary delays */
1716	if (delay >= 1000) {
1717		mdelay(delay / 1000);
1718		udelay(delay % 1000);
1719	} else if (delay) {
1720		udelay(delay);
1721	}
1722
1723	if (ret == 0)
1724		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1725				     NULL);
1726
1727	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1728
1729	return ret;
1730}
1731
1732/**
1733 * regulator_set_voltage - set regulator output voltage
1734 * @regulator: regulator source
1735 * @min_uV: Minimum required voltage in uV
1736 * @max_uV: Maximum acceptable voltage in uV
1737 *
1738 * Sets a voltage regulator to the desired output voltage. This can be set
1739 * during any regulator state. IOW, regulator can be disabled or enabled.
1740 *
1741 * If the regulator is enabled then the voltage will change to the new value
1742 * immediately otherwise if the regulator is disabled the regulator will
1743 * output at the new voltage when enabled.
1744 *
1745 * NOTE: If the regulator is shared between several devices then the lowest
1746 * request voltage that meets the system constraints will be used.
1747 * Regulator system constraints must be set for this regulator before
1748 * calling this function otherwise this call will fail.
1749 */
1750int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1751{
1752	struct regulator_dev *rdev = regulator->rdev;
1753	int ret = 0;
1754
1755	mutex_lock(&rdev->mutex);
1756
1757	/* If we're setting the same range as last time the change
1758	 * should be a noop (some cpufreq implementations use the same
1759	 * voltage for multiple frequencies, for example).
1760	 */
1761	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1762		goto out;
1763
1764	/* sanity check */
1765	if (!rdev->desc->ops->set_voltage &&
1766	    !rdev->desc->ops->set_voltage_sel) {
1767		ret = -EINVAL;
1768		goto out;
1769	}
1770
1771	/* constraints check */
1772	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1773	if (ret < 0)
1774		goto out;
1775	regulator->min_uV = min_uV;
1776	regulator->max_uV = max_uV;
1777
1778	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1779	if (ret < 0)
1780		goto out;
1781
1782	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1783
1784out:
1785	mutex_unlock(&rdev->mutex);
1786	return ret;
1787}
1788EXPORT_SYMBOL_GPL(regulator_set_voltage);
1789
1790/**
1791 * regulator_set_voltage_time - get raise/fall time
1792 * @regulator: regulator source
1793 * @old_uV: starting voltage in microvolts
1794 * @new_uV: target voltage in microvolts
1795 *
1796 * Provided with the starting and ending voltage, this function attempts to
1797 * calculate the time in microseconds required to rise or fall to this new
1798 * voltage.
1799 */
1800int regulator_set_voltage_time(struct regulator *regulator,
1801			       int old_uV, int new_uV)
1802{
1803	struct regulator_dev	*rdev = regulator->rdev;
1804	struct regulator_ops	*ops = rdev->desc->ops;
1805	int old_sel = -1;
1806	int new_sel = -1;
1807	int voltage;
1808	int i;
1809
1810	/* Currently requires operations to do this */
1811	if (!ops->list_voltage || !ops->set_voltage_time_sel
1812	    || !rdev->desc->n_voltages)
1813		return -EINVAL;
1814
1815	for (i = 0; i < rdev->desc->n_voltages; i++) {
1816		/* We only look for exact voltage matches here */
1817		voltage = regulator_list_voltage(regulator, i);
1818		if (voltage < 0)
1819			return -EINVAL;
1820		if (voltage == 0)
1821			continue;
1822		if (voltage == old_uV)
1823			old_sel = i;
1824		if (voltage == new_uV)
1825			new_sel = i;
1826	}
1827
1828	if (old_sel < 0 || new_sel < 0)
1829		return -EINVAL;
1830
1831	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1832}
1833EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1834
1835/**
1836 * regulator_sync_voltage - re-apply last regulator output voltage
1837 * @regulator: regulator source
1838 *
1839 * Re-apply the last configured voltage.  This is intended to be used
1840 * where some external control source the consumer is cooperating with
1841 * has caused the configured voltage to change.
1842 */
1843int regulator_sync_voltage(struct regulator *regulator)
1844{
1845	struct regulator_dev *rdev = regulator->rdev;
1846	int ret, min_uV, max_uV;
1847
1848	mutex_lock(&rdev->mutex);
1849
1850	if (!rdev->desc->ops->set_voltage &&
1851	    !rdev->desc->ops->set_voltage_sel) {
1852		ret = -EINVAL;
1853		goto out;
1854	}
1855
1856	/* This is only going to work if we've had a voltage configured. */
1857	if (!regulator->min_uV && !regulator->max_uV) {
1858		ret = -EINVAL;
1859		goto out;
1860	}
1861
1862	min_uV = regulator->min_uV;
1863	max_uV = regulator->max_uV;
1864
1865	/* This should be a paranoia check... */
1866	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1867	if (ret < 0)
1868		goto out;
1869
1870	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1871	if (ret < 0)
1872		goto out;
1873
1874	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1875
1876out:
1877	mutex_unlock(&rdev->mutex);
1878	return ret;
1879}
1880EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1881
1882static int _regulator_get_voltage(struct regulator_dev *rdev)
1883{
1884	int sel, ret;
1885
1886	if (rdev->desc->ops->get_voltage_sel) {
1887		sel = rdev->desc->ops->get_voltage_sel(rdev);
1888		if (sel < 0)
1889			return sel;
1890		ret = rdev->desc->ops->list_voltage(rdev, sel);
1891	} else if (rdev->desc->ops->get_voltage) {
1892		ret = rdev->desc->ops->get_voltage(rdev);
1893	} else {
1894		return -EINVAL;
1895	}
1896
1897	if (ret < 0)
1898		return ret;
1899	return ret - rdev->constraints->uV_offset;
1900}
1901
1902/**
1903 * regulator_get_voltage - get regulator output voltage
1904 * @regulator: regulator source
1905 *
1906 * This returns the current regulator voltage in uV.
1907 *
1908 * NOTE: If the regulator is disabled it will return the voltage value. This
1909 * function should not be used to determine regulator state.
1910 */
1911int regulator_get_voltage(struct regulator *regulator)
1912{
1913	int ret;
1914
1915	mutex_lock(&regulator->rdev->mutex);
1916
1917	ret = _regulator_get_voltage(regulator->rdev);
1918
1919	mutex_unlock(&regulator->rdev->mutex);
1920
1921	return ret;
1922}
1923EXPORT_SYMBOL_GPL(regulator_get_voltage);
1924
1925/**
1926 * regulator_set_current_limit - set regulator output current limit
1927 * @regulator: regulator source
1928 * @min_uA: Minimuum supported current in uA
1929 * @max_uA: Maximum supported current in uA
1930 *
1931 * Sets current sink to the desired output current. This can be set during
1932 * any regulator state. IOW, regulator can be disabled or enabled.
1933 *
1934 * If the regulator is enabled then the current will change to the new value
1935 * immediately otherwise if the regulator is disabled the regulator will
1936 * output at the new current when enabled.
1937 *
1938 * NOTE: Regulator system constraints must be set for this regulator before
1939 * calling this function otherwise this call will fail.
1940 */
1941int regulator_set_current_limit(struct regulator *regulator,
1942			       int min_uA, int max_uA)
1943{
1944	struct regulator_dev *rdev = regulator->rdev;
1945	int ret;
1946
1947	mutex_lock(&rdev->mutex);
1948
1949	/* sanity check */
1950	if (!rdev->desc->ops->set_current_limit) {
1951		ret = -EINVAL;
1952		goto out;
1953	}
1954
1955	/* constraints check */
1956	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1957	if (ret < 0)
1958		goto out;
1959
1960	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1961out:
1962	mutex_unlock(&rdev->mutex);
1963	return ret;
1964}
1965EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1966
1967static int _regulator_get_current_limit(struct regulator_dev *rdev)
1968{
1969	int ret;
1970
1971	mutex_lock(&rdev->mutex);
1972
1973	/* sanity check */
1974	if (!rdev->desc->ops->get_current_limit) {
1975		ret = -EINVAL;
1976		goto out;
1977	}
1978
1979	ret = rdev->desc->ops->get_current_limit(rdev);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984
1985/**
1986 * regulator_get_current_limit - get regulator output current
1987 * @regulator: regulator source
1988 *
1989 * This returns the current supplied by the specified current sink in uA.
1990 *
1991 * NOTE: If the regulator is disabled it will return the current value. This
1992 * function should not be used to determine regulator state.
1993 */
1994int regulator_get_current_limit(struct regulator *regulator)
1995{
1996	return _regulator_get_current_limit(regulator->rdev);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1999
2000/**
2001 * regulator_set_mode - set regulator operating mode
2002 * @regulator: regulator source
2003 * @mode: operating mode - one of the REGULATOR_MODE constants
2004 *
2005 * Set regulator operating mode to increase regulator efficiency or improve
2006 * regulation performance.
2007 *
2008 * NOTE: Regulator system constraints must be set for this regulator before
2009 * calling this function otherwise this call will fail.
2010 */
2011int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2012{
2013	struct regulator_dev *rdev = regulator->rdev;
2014	int ret;
2015	int regulator_curr_mode;
2016
2017	mutex_lock(&rdev->mutex);
2018
2019	/* sanity check */
2020	if (!rdev->desc->ops->set_mode) {
2021		ret = -EINVAL;
2022		goto out;
2023	}
2024
2025	/* return if the same mode is requested */
2026	if (rdev->desc->ops->get_mode) {
2027		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2028		if (regulator_curr_mode == mode) {
2029			ret = 0;
2030			goto out;
2031		}
2032	}
2033
2034	/* constraints check */
2035	ret = regulator_mode_constrain(rdev, &mode);
2036	if (ret < 0)
2037		goto out;
2038
2039	ret = rdev->desc->ops->set_mode(rdev, mode);
2040out:
2041	mutex_unlock(&rdev->mutex);
2042	return ret;
2043}
2044EXPORT_SYMBOL_GPL(regulator_set_mode);
2045
2046static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2047{
2048	int ret;
2049
2050	mutex_lock(&rdev->mutex);
2051
2052	/* sanity check */
2053	if (!rdev->desc->ops->get_mode) {
2054		ret = -EINVAL;
2055		goto out;
2056	}
2057
2058	ret = rdev->desc->ops->get_mode(rdev);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063
2064/**
2065 * regulator_get_mode - get regulator operating mode
2066 * @regulator: regulator source
2067 *
2068 * Get the current regulator operating mode.
2069 */
2070unsigned int regulator_get_mode(struct regulator *regulator)
2071{
2072	return _regulator_get_mode(regulator->rdev);
2073}
2074EXPORT_SYMBOL_GPL(regulator_get_mode);
2075
2076/**
2077 * regulator_set_optimum_mode - set regulator optimum operating mode
2078 * @regulator: regulator source
2079 * @uA_load: load current
2080 *
2081 * Notifies the regulator core of a new device load. This is then used by
2082 * DRMS (if enabled by constraints) to set the most efficient regulator
2083 * operating mode for the new regulator loading.
2084 *
2085 * Consumer devices notify their supply regulator of the maximum power
2086 * they will require (can be taken from device datasheet in the power
2087 * consumption tables) when they change operational status and hence power
2088 * state. Examples of operational state changes that can affect power
2089 * consumption are :-
2090 *
2091 *    o Device is opened / closed.
2092 *    o Device I/O is about to begin or has just finished.
2093 *    o Device is idling in between work.
2094 *
2095 * This information is also exported via sysfs to userspace.
2096 *
2097 * DRMS will sum the total requested load on the regulator and change
2098 * to the most efficient operating mode if platform constraints allow.
2099 *
2100 * Returns the new regulator mode or error.
2101 */
2102int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2103{
2104	struct regulator_dev *rdev = regulator->rdev;
2105	struct regulator *consumer;
2106	int ret, output_uV, input_uV, total_uA_load = 0;
2107	unsigned int mode;
2108
2109	mutex_lock(&rdev->mutex);
2110
2111	/*
2112	 * first check to see if we can set modes at all, otherwise just
2113	 * tell the consumer everything is OK.
2114	 */
2115	regulator->uA_load = uA_load;
2116	ret = regulator_check_drms(rdev);
2117	if (ret < 0) {
2118		ret = 0;
2119		goto out;
2120	}
2121
2122	if (!rdev->desc->ops->get_optimum_mode)
2123		goto out;
2124
2125	/*
2126	 * we can actually do this so any errors are indicators of
2127	 * potential real failure.
2128	 */
2129	ret = -EINVAL;
2130
2131	/* get output voltage */
2132	output_uV = _regulator_get_voltage(rdev);
2133	if (output_uV <= 0) {
2134		rdev_err(rdev, "invalid output voltage found\n");
2135		goto out;
2136	}
2137
2138	/* get input voltage */
2139	input_uV = 0;
2140	if (rdev->supply)
2141		input_uV = _regulator_get_voltage(rdev->supply);
2142	if (input_uV <= 0)
2143		input_uV = rdev->constraints->input_uV;
2144	if (input_uV <= 0) {
2145		rdev_err(rdev, "invalid input voltage found\n");
2146		goto out;
2147	}
2148
2149	/* calc total requested load for this regulator */
2150	list_for_each_entry(consumer, &rdev->consumer_list, list)
2151		total_uA_load += consumer->uA_load;
2152
2153	mode = rdev->desc->ops->get_optimum_mode(rdev,
2154						 input_uV, output_uV,
2155						 total_uA_load);
2156	ret = regulator_mode_constrain(rdev, &mode);
2157	if (ret < 0) {
2158		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2159			 total_uA_load, input_uV, output_uV);
2160		goto out;
2161	}
2162
2163	ret = rdev->desc->ops->set_mode(rdev, mode);
2164	if (ret < 0) {
2165		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2166		goto out;
2167	}
2168	ret = mode;
2169out:
2170	mutex_unlock(&rdev->mutex);
2171	return ret;
2172}
2173EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2174
2175/**
2176 * regulator_register_notifier - register regulator event notifier
2177 * @regulator: regulator source
2178 * @nb: notifier block
2179 *
2180 * Register notifier block to receive regulator events.
2181 */
2182int regulator_register_notifier(struct regulator *regulator,
2183			      struct notifier_block *nb)
2184{
2185	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2186						nb);
2187}
2188EXPORT_SYMBOL_GPL(regulator_register_notifier);
2189
2190/**
2191 * regulator_unregister_notifier - unregister regulator event notifier
2192 * @regulator: regulator source
2193 * @nb: notifier block
2194 *
2195 * Unregister regulator event notifier block.
2196 */
2197int regulator_unregister_notifier(struct regulator *regulator,
2198				struct notifier_block *nb)
2199{
2200	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2201						  nb);
2202}
2203EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2204
2205/* notify regulator consumers and downstream regulator consumers.
2206 * Note mutex must be held by caller.
2207 */
2208static void _notifier_call_chain(struct regulator_dev *rdev,
2209				  unsigned long event, void *data)
2210{
2211	struct regulator_dev *_rdev;
2212
2213	/* call rdev chain first */
2214	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2215
2216	/* now notify regulator we supply */
2217	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2218		mutex_lock(&_rdev->mutex);
2219		_notifier_call_chain(_rdev, event, data);
2220		mutex_unlock(&_rdev->mutex);
2221	}
2222}
2223
2224/**
2225 * regulator_bulk_get - get multiple regulator consumers
2226 *
2227 * @dev:           Device to supply
2228 * @num_consumers: Number of consumers to register
2229 * @consumers:     Configuration of consumers; clients are stored here.
2230 *
2231 * @return 0 on success, an errno on failure.
2232 *
2233 * This helper function allows drivers to get several regulator
2234 * consumers in one operation.  If any of the regulators cannot be
2235 * acquired then any regulators that were allocated will be freed
2236 * before returning to the caller.
2237 */
2238int regulator_bulk_get(struct device *dev, int num_consumers,
2239		       struct regulator_bulk_data *consumers)
2240{
2241	int i;
2242	int ret;
2243
2244	for (i = 0; i < num_consumers; i++)
2245		consumers[i].consumer = NULL;
2246
2247	for (i = 0; i < num_consumers; i++) {
2248		consumers[i].consumer = regulator_get(dev,
2249						      consumers[i].supply);
2250		if (IS_ERR(consumers[i].consumer)) {
2251			ret = PTR_ERR(consumers[i].consumer);
2252			dev_err(dev, "Failed to get supply '%s': %d\n",
2253				consumers[i].supply, ret);
2254			consumers[i].consumer = NULL;
2255			goto err;
2256		}
2257	}
2258
2259	return 0;
2260
2261err:
2262	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2263		regulator_put(consumers[i].consumer);
2264
2265	return ret;
2266}
2267EXPORT_SYMBOL_GPL(regulator_bulk_get);
2268
2269static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2270{
2271	struct regulator_bulk_data *bulk = data;
2272
2273	bulk->ret = regulator_enable(bulk->consumer);
2274}
2275
2276/**
2277 * regulator_bulk_enable - enable multiple regulator consumers
2278 *
2279 * @num_consumers: Number of consumers
2280 * @consumers:     Consumer data; clients are stored here.
2281 * @return         0 on success, an errno on failure
2282 *
2283 * This convenience API allows consumers to enable multiple regulator
2284 * clients in a single API call.  If any consumers cannot be enabled
2285 * then any others that were enabled will be disabled again prior to
2286 * return.
2287 */
2288int regulator_bulk_enable(int num_consumers,
2289			  struct regulator_bulk_data *consumers)
2290{
2291	LIST_HEAD(async_domain);
2292	int i;
2293	int ret = 0;
2294
2295	for (i = 0; i < num_consumers; i++)
2296		async_schedule_domain(regulator_bulk_enable_async,
2297				      &consumers[i], &async_domain);
2298
2299	async_synchronize_full_domain(&async_domain);
2300
2301	/* If any consumer failed we need to unwind any that succeeded */
2302	for (i = 0; i < num_consumers; i++) {
2303		if (consumers[i].ret != 0) {
2304			ret = consumers[i].ret;
2305			goto err;
2306		}
2307	}
2308
2309	return 0;
2310
2311err:
2312	for (i = 0; i < num_consumers; i++)
2313		if (consumers[i].ret == 0)
2314			regulator_disable(consumers[i].consumer);
2315		else
2316			pr_err("Failed to enable %s: %d\n",
2317			       consumers[i].supply, consumers[i].ret);
2318
2319	return ret;
2320}
2321EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2322
2323/**
2324 * regulator_bulk_disable - disable multiple regulator consumers
2325 *
2326 * @num_consumers: Number of consumers
2327 * @consumers:     Consumer data; clients are stored here.
2328 * @return         0 on success, an errno on failure
2329 *
2330 * This convenience API allows consumers to disable multiple regulator
2331 * clients in a single API call.  If any consumers cannot be enabled
2332 * then any others that were disabled will be disabled again prior to
2333 * return.
2334 */
2335int regulator_bulk_disable(int num_consumers,
2336			   struct regulator_bulk_data *consumers)
2337{
2338	int i;
2339	int ret;
2340
2341	for (i = 0; i < num_consumers; i++) {
2342		ret = regulator_disable(consumers[i].consumer);
2343		if (ret != 0)
2344			goto err;
2345	}
2346
2347	return 0;
2348
2349err:
2350	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2351	for (--i; i >= 0; --i)
2352		regulator_enable(consumers[i].consumer);
2353
2354	return ret;
2355}
2356EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2357
2358/**
2359 * regulator_bulk_free - free multiple regulator consumers
2360 *
2361 * @num_consumers: Number of consumers
2362 * @consumers:     Consumer data; clients are stored here.
2363 *
2364 * This convenience API allows consumers to free multiple regulator
2365 * clients in a single API call.
2366 */
2367void regulator_bulk_free(int num_consumers,
2368			 struct regulator_bulk_data *consumers)
2369{
2370	int i;
2371
2372	for (i = 0; i < num_consumers; i++) {
2373		regulator_put(consumers[i].consumer);
2374		consumers[i].consumer = NULL;
2375	}
2376}
2377EXPORT_SYMBOL_GPL(regulator_bulk_free);
2378
2379/**
2380 * regulator_notifier_call_chain - call regulator event notifier
2381 * @rdev: regulator source
2382 * @event: notifier block
2383 * @data: callback-specific data.
2384 *
2385 * Called by regulator drivers to notify clients a regulator event has
2386 * occurred. We also notify regulator clients downstream.
2387 * Note lock must be held by caller.
2388 */
2389int regulator_notifier_call_chain(struct regulator_dev *rdev,
2390				  unsigned long event, void *data)
2391{
2392	_notifier_call_chain(rdev, event, data);
2393	return NOTIFY_DONE;
2394
2395}
2396EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2397
2398/**
2399 * regulator_mode_to_status - convert a regulator mode into a status
2400 *
2401 * @mode: Mode to convert
2402 *
2403 * Convert a regulator mode into a status.
2404 */
2405int regulator_mode_to_status(unsigned int mode)
2406{
2407	switch (mode) {
2408	case REGULATOR_MODE_FAST:
2409		return REGULATOR_STATUS_FAST;
2410	case REGULATOR_MODE_NORMAL:
2411		return REGULATOR_STATUS_NORMAL;
2412	case REGULATOR_MODE_IDLE:
2413		return REGULATOR_STATUS_IDLE;
2414	case REGULATOR_STATUS_STANDBY:
2415		return REGULATOR_STATUS_STANDBY;
2416	default:
2417		return 0;
2418	}
2419}
2420EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2421
2422/*
2423 * To avoid cluttering sysfs (and memory) with useless state, only
2424 * create attributes that can be meaningfully displayed.
2425 */
2426static int add_regulator_attributes(struct regulator_dev *rdev)
2427{
2428	struct device		*dev = &rdev->dev;
2429	struct regulator_ops	*ops = rdev->desc->ops;
2430	int			status = 0;
2431
2432	/* some attributes need specific methods to be displayed */
2433	if (ops->get_voltage || ops->get_voltage_sel) {
2434		status = device_create_file(dev, &dev_attr_microvolts);
2435		if (status < 0)
2436			return status;
2437	}
2438	if (ops->get_current_limit) {
2439		status = device_create_file(dev, &dev_attr_microamps);
2440		if (status < 0)
2441			return status;
2442	}
2443	if (ops->get_mode) {
2444		status = device_create_file(dev, &dev_attr_opmode);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->is_enabled) {
2449		status = device_create_file(dev, &dev_attr_state);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_status) {
2454		status = device_create_file(dev, &dev_attr_status);
2455		if (status < 0)
2456			return status;
2457	}
2458
2459	/* some attributes are type-specific */
2460	if (rdev->desc->type == REGULATOR_CURRENT) {
2461		status = device_create_file(dev, &dev_attr_requested_microamps);
2462		if (status < 0)
2463			return status;
2464	}
2465
2466	/* all the other attributes exist to support constraints;
2467	 * don't show them if there are no constraints, or if the
2468	 * relevant supporting methods are missing.
2469	 */
2470	if (!rdev->constraints)
2471		return status;
2472
2473	/* constraints need specific supporting methods */
2474	if (ops->set_voltage || ops->set_voltage_sel) {
2475		status = device_create_file(dev, &dev_attr_min_microvolts);
2476		if (status < 0)
2477			return status;
2478		status = device_create_file(dev, &dev_attr_max_microvolts);
2479		if (status < 0)
2480			return status;
2481	}
2482	if (ops->set_current_limit) {
2483		status = device_create_file(dev, &dev_attr_min_microamps);
2484		if (status < 0)
2485			return status;
2486		status = device_create_file(dev, &dev_attr_max_microamps);
2487		if (status < 0)
2488			return status;
2489	}
2490
2491	/* suspend mode constraints need multiple supporting methods */
2492	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2493		return status;
2494
2495	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2496	if (status < 0)
2497		return status;
2498	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2499	if (status < 0)
2500		return status;
2501	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2502	if (status < 0)
2503		return status;
2504
2505	if (ops->set_suspend_voltage) {
2506		status = device_create_file(dev,
2507				&dev_attr_suspend_standby_microvolts);
2508		if (status < 0)
2509			return status;
2510		status = device_create_file(dev,
2511				&dev_attr_suspend_mem_microvolts);
2512		if (status < 0)
2513			return status;
2514		status = device_create_file(dev,
2515				&dev_attr_suspend_disk_microvolts);
2516		if (status < 0)
2517			return status;
2518	}
2519
2520	if (ops->set_suspend_mode) {
2521		status = device_create_file(dev,
2522				&dev_attr_suspend_standby_mode);
2523		if (status < 0)
2524			return status;
2525		status = device_create_file(dev,
2526				&dev_attr_suspend_mem_mode);
2527		if (status < 0)
2528			return status;
2529		status = device_create_file(dev,
2530				&dev_attr_suspend_disk_mode);
2531		if (status < 0)
2532			return status;
2533	}
2534
2535	return status;
2536}
2537
2538static void rdev_init_debugfs(struct regulator_dev *rdev)
2539{
2540#ifdef CONFIG_DEBUG_FS
2541	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2542	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2543		rdev_warn(rdev, "Failed to create debugfs directory\n");
2544		rdev->debugfs = NULL;
2545		return;
2546	}
2547
2548	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2549			   &rdev->use_count);
2550	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2551			   &rdev->open_count);
2552#endif
2553}
2554
2555/**
2556 * regulator_register - register regulator
2557 * @regulator_desc: regulator to register
2558 * @dev: struct device for the regulator
2559 * @init_data: platform provided init data, passed through by driver
2560 * @driver_data: private regulator data
2561 *
2562 * Called by regulator drivers to register a regulator.
2563 * Returns 0 on success.
2564 */
2565struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2566	struct device *dev, const struct regulator_init_data *init_data,
2567	void *driver_data)
2568{
2569	static atomic_t regulator_no = ATOMIC_INIT(0);
2570	struct regulator_dev *rdev;
2571	int ret, i;
2572
2573	if (regulator_desc == NULL)
2574		return ERR_PTR(-EINVAL);
2575
2576	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2577		return ERR_PTR(-EINVAL);
2578
2579	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2580	    regulator_desc->type != REGULATOR_CURRENT)
2581		return ERR_PTR(-EINVAL);
2582
2583	if (!init_data)
2584		return ERR_PTR(-EINVAL);
2585
2586	/* Only one of each should be implemented */
2587	WARN_ON(regulator_desc->ops->get_voltage &&
2588		regulator_desc->ops->get_voltage_sel);
2589	WARN_ON(regulator_desc->ops->set_voltage &&
2590		regulator_desc->ops->set_voltage_sel);
2591
2592	/* If we're using selectors we must implement list_voltage. */
2593	if (regulator_desc->ops->get_voltage_sel &&
2594	    !regulator_desc->ops->list_voltage) {
2595		return ERR_PTR(-EINVAL);
2596	}
2597	if (regulator_desc->ops->set_voltage_sel &&
2598	    !regulator_desc->ops->list_voltage) {
2599		return ERR_PTR(-EINVAL);
2600	}
2601
2602	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2603	if (rdev == NULL)
2604		return ERR_PTR(-ENOMEM);
2605
2606	mutex_lock(&regulator_list_mutex);
2607
2608	mutex_init(&rdev->mutex);
2609	rdev->reg_data = driver_data;
2610	rdev->owner = regulator_desc->owner;
2611	rdev->desc = regulator_desc;
2612	INIT_LIST_HEAD(&rdev->consumer_list);
2613	INIT_LIST_HEAD(&rdev->supply_list);
2614	INIT_LIST_HEAD(&rdev->list);
2615	INIT_LIST_HEAD(&rdev->slist);
2616	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2617
2618	/* preform any regulator specific init */
2619	if (init_data->regulator_init) {
2620		ret = init_data->regulator_init(rdev->reg_data);
2621		if (ret < 0)
2622			goto clean;
2623	}
2624
2625	/* register with sysfs */
2626	rdev->dev.class = &regulator_class;
2627	rdev->dev.parent = dev;
2628	dev_set_name(&rdev->dev, "regulator.%d",
2629		     atomic_inc_return(&regulator_no) - 1);
2630	ret = device_register(&rdev->dev);
2631	if (ret != 0) {
2632		put_device(&rdev->dev);
2633		goto clean;
2634	}
2635
2636	dev_set_drvdata(&rdev->dev, rdev);
2637
2638	/* set regulator constraints */
2639	ret = set_machine_constraints(rdev, &init_data->constraints);
2640	if (ret < 0)
2641		goto scrub;
2642
2643	/* add attributes supported by this regulator */
2644	ret = add_regulator_attributes(rdev);
2645	if (ret < 0)
2646		goto scrub;
2647
2648	if (init_data->supply_regulator) {
2649		struct regulator_dev *r;
2650		int found = 0;
2651
2652		list_for_each_entry(r, &regulator_list, list) {
2653			if (strcmp(rdev_get_name(r),
2654				   init_data->supply_regulator) == 0) {
2655				found = 1;
2656				break;
2657			}
2658		}
2659
2660		if (!found) {
2661			dev_err(dev, "Failed to find supply %s\n",
2662				init_data->supply_regulator);
2663			ret = -ENODEV;
2664			goto scrub;
2665		}
2666
2667		ret = set_supply(rdev, r);
2668		if (ret < 0)
2669			goto scrub;
2670	}
2671
2672	/* add consumers devices */
2673	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2674		ret = set_consumer_device_supply(rdev,
2675			init_data->consumer_supplies[i].dev,
2676			init_data->consumer_supplies[i].dev_name,
2677			init_data->consumer_supplies[i].supply);
2678		if (ret < 0) {
2679			dev_err(dev, "Failed to set supply %s\n",
2680				init_data->consumer_supplies[i].supply);
2681			goto unset_supplies;
2682		}
2683	}
2684
2685	list_add(&rdev->list, &regulator_list);
2686
2687	rdev_init_debugfs(rdev);
2688out:
2689	mutex_unlock(&regulator_list_mutex);
2690	return rdev;
2691
2692unset_supplies:
2693	unset_regulator_supplies(rdev);
2694
2695scrub:
2696	device_unregister(&rdev->dev);
2697	/* device core frees rdev */
2698	rdev = ERR_PTR(ret);
2699	goto out;
2700
2701clean:
2702	kfree(rdev);
2703	rdev = ERR_PTR(ret);
2704	goto out;
2705}
2706EXPORT_SYMBOL_GPL(regulator_register);
2707
2708/**
2709 * regulator_unregister - unregister regulator
2710 * @rdev: regulator to unregister
2711 *
2712 * Called by regulator drivers to unregister a regulator.
2713 */
2714void regulator_unregister(struct regulator_dev *rdev)
2715{
2716	if (rdev == NULL)
2717		return;
2718
2719	mutex_lock(&regulator_list_mutex);
2720#ifdef CONFIG_DEBUG_FS
2721	debugfs_remove_recursive(rdev->debugfs);
2722#endif
2723	WARN_ON(rdev->open_count);
2724	unset_regulator_supplies(rdev);
2725	list_del(&rdev->list);
2726	if (rdev->supply)
2727		sysfs_remove_link(&rdev->dev.kobj, "supply");
2728	device_unregister(&rdev->dev);
2729	kfree(rdev->constraints);
2730	mutex_unlock(&regulator_list_mutex);
2731}
2732EXPORT_SYMBOL_GPL(regulator_unregister);
2733
2734/**
2735 * regulator_suspend_prepare - prepare regulators for system wide suspend
2736 * @state: system suspend state
2737 *
2738 * Configure each regulator with it's suspend operating parameters for state.
2739 * This will usually be called by machine suspend code prior to supending.
2740 */
2741int regulator_suspend_prepare(suspend_state_t state)
2742{
2743	struct regulator_dev *rdev;
2744	int ret = 0;
2745
2746	/* ON is handled by regulator active state */
2747	if (state == PM_SUSPEND_ON)
2748		return -EINVAL;
2749
2750	mutex_lock(&regulator_list_mutex);
2751	list_for_each_entry(rdev, &regulator_list, list) {
2752
2753		mutex_lock(&rdev->mutex);
2754		ret = suspend_prepare(rdev, state);
2755		mutex_unlock(&rdev->mutex);
2756
2757		if (ret < 0) {
2758			rdev_err(rdev, "failed to prepare\n");
2759			goto out;
2760		}
2761	}
2762out:
2763	mutex_unlock(&regulator_list_mutex);
2764	return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2767
2768/**
2769 * regulator_suspend_finish - resume regulators from system wide suspend
2770 *
2771 * Turn on regulators that might be turned off by regulator_suspend_prepare
2772 * and that should be turned on according to the regulators properties.
2773 */
2774int regulator_suspend_finish(void)
2775{
2776	struct regulator_dev *rdev;
2777	int ret = 0, error;
2778
2779	mutex_lock(&regulator_list_mutex);
2780	list_for_each_entry(rdev, &regulator_list, list) {
2781		struct regulator_ops *ops = rdev->desc->ops;
2782
2783		mutex_lock(&rdev->mutex);
2784		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2785				ops->enable) {
2786			error = ops->enable(rdev);
2787			if (error)
2788				ret = error;
2789		} else {
2790			if (!has_full_constraints)
2791				goto unlock;
2792			if (!ops->disable)
2793				goto unlock;
2794			if (ops->is_enabled && !ops->is_enabled(rdev))
2795				goto unlock;
2796
2797			error = ops->disable(rdev);
2798			if (error)
2799				ret = error;
2800		}
2801unlock:
2802		mutex_unlock(&rdev->mutex);
2803	}
2804	mutex_unlock(&regulator_list_mutex);
2805	return ret;
2806}
2807EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2808
2809/**
2810 * regulator_has_full_constraints - the system has fully specified constraints
2811 *
2812 * Calling this function will cause the regulator API to disable all
2813 * regulators which have a zero use count and don't have an always_on
2814 * constraint in a late_initcall.
2815 *
2816 * The intention is that this will become the default behaviour in a
2817 * future kernel release so users are encouraged to use this facility
2818 * now.
2819 */
2820void regulator_has_full_constraints(void)
2821{
2822	has_full_constraints = 1;
2823}
2824EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2825
2826/**
2827 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2828 *
2829 * Calling this function will cause the regulator API to provide a
2830 * dummy regulator to consumers if no physical regulator is found,
2831 * allowing most consumers to proceed as though a regulator were
2832 * configured.  This allows systems such as those with software
2833 * controllable regulators for the CPU core only to be brought up more
2834 * readily.
2835 */
2836void regulator_use_dummy_regulator(void)
2837{
2838	board_wants_dummy_regulator = true;
2839}
2840EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2841
2842/**
2843 * rdev_get_drvdata - get rdev regulator driver data
2844 * @rdev: regulator
2845 *
2846 * Get rdev regulator driver private data. This call can be used in the
2847 * regulator driver context.
2848 */
2849void *rdev_get_drvdata(struct regulator_dev *rdev)
2850{
2851	return rdev->reg_data;
2852}
2853EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2854
2855/**
2856 * regulator_get_drvdata - get regulator driver data
2857 * @regulator: regulator
2858 *
2859 * Get regulator driver private data. This call can be used in the consumer
2860 * driver context when non API regulator specific functions need to be called.
2861 */
2862void *regulator_get_drvdata(struct regulator *regulator)
2863{
2864	return regulator->rdev->reg_data;
2865}
2866EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2867
2868/**
2869 * regulator_set_drvdata - set regulator driver data
2870 * @regulator: regulator
2871 * @data: data
2872 */
2873void regulator_set_drvdata(struct regulator *regulator, void *data)
2874{
2875	regulator->rdev->reg_data = data;
2876}
2877EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2878
2879/**
2880 * regulator_get_id - get regulator ID
2881 * @rdev: regulator
2882 */
2883int rdev_get_id(struct regulator_dev *rdev)
2884{
2885	return rdev->desc->id;
2886}
2887EXPORT_SYMBOL_GPL(rdev_get_id);
2888
2889struct device *rdev_get_dev(struct regulator_dev *rdev)
2890{
2891	return &rdev->dev;
2892}
2893EXPORT_SYMBOL_GPL(rdev_get_dev);
2894
2895void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2896{
2897	return reg_init_data->driver_data;
2898}
2899EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2900
2901static int __init regulator_init(void)
2902{
2903	int ret;
2904
2905	ret = class_register(&regulator_class);
2906
2907#ifdef CONFIG_DEBUG_FS
2908	debugfs_root = debugfs_create_dir("regulator", NULL);
2909	if (IS_ERR(debugfs_root) || !debugfs_root) {
2910		pr_warn("regulator: Failed to create debugfs directory\n");
2911		debugfs_root = NULL;
2912	}
2913#endif
2914
2915	regulator_dummy_init();
2916
2917	return ret;
2918}
2919
2920/* init early to allow our consumers to complete system booting */
2921core_initcall(regulator_init);
2922
2923static int __init regulator_init_complete(void)
2924{
2925	struct regulator_dev *rdev;
2926	struct regulator_ops *ops;
2927	struct regulation_constraints *c;
2928	int enabled, ret;
2929
2930	mutex_lock(&regulator_list_mutex);
2931
2932	/* If we have a full configuration then disable any regulators
2933	 * which are not in use or always_on.  This will become the
2934	 * default behaviour in the future.
2935	 */
2936	list_for_each_entry(rdev, &regulator_list, list) {
2937		ops = rdev->desc->ops;
2938		c = rdev->constraints;
2939
2940		if (!ops->disable || (c && c->always_on))
2941			continue;
2942
2943		mutex_lock(&rdev->mutex);
2944
2945		if (rdev->use_count)
2946			goto unlock;
2947
2948		/* If we can't read the status assume it's on. */
2949		if (ops->is_enabled)
2950			enabled = ops->is_enabled(rdev);
2951		else
2952			enabled = 1;
2953
2954		if (!enabled)
2955			goto unlock;
2956
2957		if (has_full_constraints) {
2958			/* We log since this may kill the system if it
2959			 * goes wrong. */
2960			rdev_info(rdev, "disabling\n");
2961			ret = ops->disable(rdev);
2962			if (ret != 0) {
2963				rdev_err(rdev, "couldn't disable: %d\n", ret);
2964			}
2965		} else {
2966			/* The intention is that in future we will
2967			 * assume that full constraints are provided
2968			 * so warn even if we aren't going to do
2969			 * anything here.
2970			 */
2971			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2972		}
2973
2974unlock:
2975		mutex_unlock(&rdev->mutex);
2976	}
2977
2978	mutex_unlock(&regulator_list_mutex);
2979
2980	return 0;
2981}
2982late_initcall(regulator_init_complete);
2983