core.c revision e5fda26c7ea9430d7d953364f900bafdce2be67b
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/**
33 * struct regulator_dev
34 *
35 * Voltage / Current regulator class device. One for each regulator.
36 */
37struct regulator_dev {
38	struct regulator_desc *desc;
39	int use_count;
40
41	/* lists we belong to */
42	struct list_head list; /* list of all regulators */
43	struct list_head slist; /* list of supplied regulators */
44
45	/* lists we own */
46	struct list_head consumer_list; /* consumers we supply */
47	struct list_head supply_list; /* regulators we supply */
48
49	struct blocking_notifier_head notifier;
50	struct mutex mutex; /* consumer lock */
51	struct module *owner;
52	struct device dev;
53	struct regulation_constraints *constraints;
54	struct regulator_dev *supply;	/* for tree */
55
56	void *reg_data;		/* regulator_dev data */
57};
58
59/**
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	struct device *dev;
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	int enabled; /* client has called enabled */
83	char *supply_name;
84	struct device_attribute dev_attr;
85	struct regulator_dev *rdev;
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
89static int _regulator_disable(struct regulator_dev *rdev);
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94				  unsigned long event, void *data);
95
96/* gets the regulator for a given consumer device */
97static struct regulator *get_device_regulator(struct device *dev)
98{
99	struct regulator *regulator = NULL;
100	struct regulator_dev *rdev;
101
102	mutex_lock(&regulator_list_mutex);
103	list_for_each_entry(rdev, &regulator_list, list) {
104		mutex_lock(&rdev->mutex);
105		list_for_each_entry(regulator, &rdev->consumer_list, list) {
106			if (regulator->dev == dev) {
107				mutex_unlock(&rdev->mutex);
108				mutex_unlock(&regulator_list_mutex);
109				return regulator;
110			}
111		}
112		mutex_unlock(&rdev->mutex);
113	}
114	mutex_unlock(&regulator_list_mutex);
115	return NULL;
116}
117
118/* Platform voltage constraint check */
119static int regulator_check_voltage(struct regulator_dev *rdev,
120				   int *min_uV, int *max_uV)
121{
122	BUG_ON(*min_uV > *max_uV);
123
124	if (!rdev->constraints) {
125		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126		       rdev->desc->name);
127		return -ENODEV;
128	}
129	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130		printk(KERN_ERR "%s: operation not allowed for %s\n",
131		       __func__, rdev->desc->name);
132		return -EPERM;
133	}
134
135	if (*max_uV > rdev->constraints->max_uV)
136		*max_uV = rdev->constraints->max_uV;
137	if (*min_uV < rdev->constraints->min_uV)
138		*min_uV = rdev->constraints->min_uV;
139
140	if (*min_uV > *max_uV)
141		return -EINVAL;
142
143	return 0;
144}
145
146/* current constraint check */
147static int regulator_check_current_limit(struct regulator_dev *rdev,
148					int *min_uA, int *max_uA)
149{
150	BUG_ON(*min_uA > *max_uA);
151
152	if (!rdev->constraints) {
153		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154		       rdev->desc->name);
155		return -ENODEV;
156	}
157	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158		printk(KERN_ERR "%s: operation not allowed for %s\n",
159		       __func__, rdev->desc->name);
160		return -EPERM;
161	}
162
163	if (*max_uA > rdev->constraints->max_uA)
164		*max_uA = rdev->constraints->max_uA;
165	if (*min_uA < rdev->constraints->min_uA)
166		*min_uA = rdev->constraints->min_uA;
167
168	if (*min_uA > *max_uA)
169		return -EINVAL;
170
171	return 0;
172}
173
174/* operating mode constraint check */
175static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176{
177	if (!rdev->constraints) {
178		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
179		       rdev->desc->name);
180		return -ENODEV;
181	}
182	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
183		printk(KERN_ERR "%s: operation not allowed for %s\n",
184		       __func__, rdev->desc->name);
185		return -EPERM;
186	}
187	if (!(rdev->constraints->valid_modes_mask & mode)) {
188		printk(KERN_ERR "%s: invalid mode %x for %s\n",
189		       __func__, mode, rdev->desc->name);
190		return -EINVAL;
191	}
192	return 0;
193}
194
195/* dynamic regulator mode switching constraint check */
196static int regulator_check_drms(struct regulator_dev *rdev)
197{
198	if (!rdev->constraints) {
199		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
200		       rdev->desc->name);
201		return -ENODEV;
202	}
203	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
204		printk(KERN_ERR "%s: operation not allowed for %s\n",
205		       __func__, rdev->desc->name);
206		return -EPERM;
207	}
208	return 0;
209}
210
211static ssize_t device_requested_uA_show(struct device *dev,
212			     struct device_attribute *attr, char *buf)
213{
214	struct regulator *regulator;
215
216	regulator = get_device_regulator(dev);
217	if (regulator == NULL)
218		return 0;
219
220	return sprintf(buf, "%d\n", regulator->uA_load);
221}
222
223static ssize_t regulator_uV_show(struct device *dev,
224				struct device_attribute *attr, char *buf)
225{
226	struct regulator_dev *rdev = dev_get_drvdata(dev);
227	ssize_t ret;
228
229	mutex_lock(&rdev->mutex);
230	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
231	mutex_unlock(&rdev->mutex);
232
233	return ret;
234}
235
236static ssize_t regulator_uA_show(struct device *dev,
237				struct device_attribute *attr, char *buf)
238{
239	struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242}
243
244static ssize_t regulator_opmode_show(struct device *dev,
245				    struct device_attribute *attr, char *buf)
246{
247	struct regulator_dev *rdev = dev_get_drvdata(dev);
248	int mode = _regulator_get_mode(rdev);
249
250	switch (mode) {
251	case REGULATOR_MODE_FAST:
252		return sprintf(buf, "fast\n");
253	case REGULATOR_MODE_NORMAL:
254		return sprintf(buf, "normal\n");
255	case REGULATOR_MODE_IDLE:
256		return sprintf(buf, "idle\n");
257	case REGULATOR_MODE_STANDBY:
258		return sprintf(buf, "standby\n");
259	}
260	return sprintf(buf, "unknown\n");
261}
262
263static ssize_t regulator_state_show(struct device *dev,
264				   struct device_attribute *attr, char *buf)
265{
266	struct regulator_dev *rdev = dev_get_drvdata(dev);
267	int state = _regulator_is_enabled(rdev);
268
269	if (state > 0)
270		return sprintf(buf, "enabled\n");
271	else if (state == 0)
272		return sprintf(buf, "disabled\n");
273	else
274		return sprintf(buf, "unknown\n");
275}
276
277static ssize_t regulator_min_uA_show(struct device *dev,
278				    struct device_attribute *attr, char *buf)
279{
280	struct regulator_dev *rdev = dev_get_drvdata(dev);
281
282	if (!rdev->constraints)
283		return sprintf(buf, "constraint not defined\n");
284
285	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
286}
287
288static ssize_t regulator_max_uA_show(struct device *dev,
289				    struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292
293	if (!rdev->constraints)
294		return sprintf(buf, "constraint not defined\n");
295
296	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
297}
298
299static ssize_t regulator_min_uV_show(struct device *dev,
300				    struct device_attribute *attr, char *buf)
301{
302	struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304	if (!rdev->constraints)
305		return sprintf(buf, "constraint not defined\n");
306
307	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
308}
309
310static ssize_t regulator_max_uV_show(struct device *dev,
311				    struct device_attribute *attr, char *buf)
312{
313	struct regulator_dev *rdev = dev_get_drvdata(dev);
314
315	if (!rdev->constraints)
316		return sprintf(buf, "constraint not defined\n");
317
318	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
319}
320
321static ssize_t regulator_total_uA_show(struct device *dev,
322				      struct device_attribute *attr, char *buf)
323{
324	struct regulator_dev *rdev = dev_get_drvdata(dev);
325	struct regulator *regulator;
326	int uA = 0;
327
328	mutex_lock(&rdev->mutex);
329	list_for_each_entry(regulator, &rdev->consumer_list, list)
330	    uA += regulator->uA_load;
331	mutex_unlock(&rdev->mutex);
332	return sprintf(buf, "%d\n", uA);
333}
334
335static ssize_t regulator_num_users_show(struct device *dev,
336				      struct device_attribute *attr, char *buf)
337{
338	struct regulator_dev *rdev = dev_get_drvdata(dev);
339	return sprintf(buf, "%d\n", rdev->use_count);
340}
341
342static ssize_t regulator_type_show(struct device *dev,
343				  struct device_attribute *attr, char *buf)
344{
345	struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347	switch (rdev->desc->type) {
348	case REGULATOR_VOLTAGE:
349		return sprintf(buf, "voltage\n");
350	case REGULATOR_CURRENT:
351		return sprintf(buf, "current\n");
352	}
353	return sprintf(buf, "unknown\n");
354}
355
356static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
357				struct device_attribute *attr, char *buf)
358{
359	struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361	if (!rdev->constraints)
362		return sprintf(buf, "not defined\n");
363	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
364}
365
366static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
367				struct device_attribute *attr, char *buf)
368{
369	struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371	if (!rdev->constraints)
372		return sprintf(buf, "not defined\n");
373	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
374}
375
376static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
377				struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381	if (!rdev->constraints)
382		return sprintf(buf, "not defined\n");
383	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
384}
385
386static ssize_t suspend_opmode_show(struct regulator_dev *rdev,
387	unsigned int mode, char *buf)
388{
389	switch (mode) {
390	case REGULATOR_MODE_FAST:
391		return sprintf(buf, "fast\n");
392	case REGULATOR_MODE_NORMAL:
393		return sprintf(buf, "normal\n");
394	case REGULATOR_MODE_IDLE:
395		return sprintf(buf, "idle\n");
396	case REGULATOR_MODE_STANDBY:
397		return sprintf(buf, "standby\n");
398	}
399	return sprintf(buf, "unknown\n");
400}
401
402static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
403				struct device_attribute *attr, char *buf)
404{
405	struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407	if (!rdev->constraints)
408		return sprintf(buf, "not defined\n");
409	return suspend_opmode_show(rdev,
410		rdev->constraints->state_mem.mode, buf);
411}
412
413static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	if (!rdev->constraints)
419		return sprintf(buf, "not defined\n");
420	return suspend_opmode_show(rdev,
421		rdev->constraints->state_disk.mode, buf);
422}
423
424static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
425				struct device_attribute *attr, char *buf)
426{
427	struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429	if (!rdev->constraints)
430		return sprintf(buf, "not defined\n");
431	return suspend_opmode_show(rdev,
432		rdev->constraints->state_standby.mode, buf);
433}
434
435static ssize_t regulator_suspend_mem_state_show(struct device *dev,
436				   struct device_attribute *attr, char *buf)
437{
438	struct regulator_dev *rdev = dev_get_drvdata(dev);
439
440	if (!rdev->constraints)
441		return sprintf(buf, "not defined\n");
442
443	if (rdev->constraints->state_mem.enabled)
444		return sprintf(buf, "enabled\n");
445	else
446		return sprintf(buf, "disabled\n");
447}
448
449static ssize_t regulator_suspend_disk_state_show(struct device *dev,
450				   struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454	if (!rdev->constraints)
455		return sprintf(buf, "not defined\n");
456
457	if (rdev->constraints->state_disk.enabled)
458		return sprintf(buf, "enabled\n");
459	else
460		return sprintf(buf, "disabled\n");
461}
462
463static ssize_t regulator_suspend_standby_state_show(struct device *dev,
464				   struct device_attribute *attr, char *buf)
465{
466	struct regulator_dev *rdev = dev_get_drvdata(dev);
467
468	if (!rdev->constraints)
469		return sprintf(buf, "not defined\n");
470
471	if (rdev->constraints->state_standby.enabled)
472		return sprintf(buf, "enabled\n");
473	else
474		return sprintf(buf, "disabled\n");
475}
476static struct device_attribute regulator_dev_attrs[] = {
477	__ATTR(microvolts, 0444, regulator_uV_show, NULL),
478	__ATTR(microamps, 0444, regulator_uA_show, NULL),
479	__ATTR(opmode, 0444, regulator_opmode_show, NULL),
480	__ATTR(state, 0444, regulator_state_show, NULL),
481	__ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL),
482	__ATTR(min_microamps, 0444, regulator_min_uA_show, NULL),
483	__ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL),
484	__ATTR(max_microamps, 0444, regulator_max_uA_show, NULL),
485	__ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL),
486	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
487	__ATTR(type, 0444, regulator_type_show, NULL),
488	__ATTR(suspend_mem_microvolts, 0444,
489		regulator_suspend_mem_uV_show, NULL),
490	__ATTR(suspend_disk_microvolts, 0444,
491		regulator_suspend_disk_uV_show, NULL),
492	__ATTR(suspend_standby_microvolts, 0444,
493		regulator_suspend_standby_uV_show, NULL),
494	__ATTR(suspend_mem_mode, 0444,
495		regulator_suspend_mem_mode_show, NULL),
496	__ATTR(suspend_disk_mode, 0444,
497		regulator_suspend_disk_mode_show, NULL),
498	__ATTR(suspend_standby_mode, 0444,
499		regulator_suspend_standby_mode_show, NULL),
500	__ATTR(suspend_mem_state, 0444,
501		regulator_suspend_mem_state_show, NULL),
502	__ATTR(suspend_disk_state, 0444,
503		regulator_suspend_disk_state_show, NULL),
504	__ATTR(suspend_standby_state, 0444,
505		regulator_suspend_standby_state_show, NULL),
506	__ATTR_NULL,
507};
508
509static void regulator_dev_release(struct device *dev)
510{
511	struct regulator_dev *rdev = dev_get_drvdata(dev);
512	kfree(rdev);
513}
514
515static struct class regulator_class = {
516	.name = "regulator",
517	.dev_release = regulator_dev_release,
518	.dev_attrs = regulator_dev_attrs,
519};
520
521/* Calculate the new optimum regulator operating mode based on the new total
522 * consumer load. All locks held by caller */
523static void drms_uA_update(struct regulator_dev *rdev)
524{
525	struct regulator *sibling;
526	int current_uA = 0, output_uV, input_uV, err;
527	unsigned int mode;
528
529	err = regulator_check_drms(rdev);
530	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
531	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
532	return;
533
534	/* get output voltage */
535	output_uV = rdev->desc->ops->get_voltage(rdev);
536	if (output_uV <= 0)
537		return;
538
539	/* get input voltage */
540	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
541		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
542	else
543		input_uV = rdev->constraints->input_uV;
544	if (input_uV <= 0)
545		return;
546
547	/* calc total requested load */
548	list_for_each_entry(sibling, &rdev->consumer_list, list)
549	    current_uA += sibling->uA_load;
550
551	/* now get the optimum mode for our new total regulator load */
552	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
553						  output_uV, current_uA);
554
555	/* check the new mode is allowed */
556	err = regulator_check_mode(rdev, mode);
557	if (err == 0)
558		rdev->desc->ops->set_mode(rdev, mode);
559}
560
561static int suspend_set_state(struct regulator_dev *rdev,
562	struct regulator_state *rstate)
563{
564	int ret = 0;
565
566	/* enable & disable are mandatory for suspend control */
567	if (!rdev->desc->ops->set_suspend_enable ||
568		!rdev->desc->ops->set_suspend_disable) {
569		printk(KERN_ERR "%s: no way to set suspend state\n",
570			__func__);
571		return -EINVAL;
572	}
573
574	if (rstate->enabled)
575		ret = rdev->desc->ops->set_suspend_enable(rdev);
576	else
577		ret = rdev->desc->ops->set_suspend_disable(rdev);
578	if (ret < 0) {
579		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
580		return ret;
581	}
582
583	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
584		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
585		if (ret < 0) {
586			printk(KERN_ERR "%s: failed to set voltage\n",
587				__func__);
588			return ret;
589		}
590	}
591
592	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
593		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
594		if (ret < 0) {
595			printk(KERN_ERR "%s: failed to set mode\n", __func__);
596			return ret;
597		}
598	}
599	return ret;
600}
601
602/* locks held by caller */
603static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
604{
605	if (!rdev->constraints)
606		return -EINVAL;
607
608	switch (state) {
609	case PM_SUSPEND_STANDBY:
610		return suspend_set_state(rdev,
611			&rdev->constraints->state_standby);
612	case PM_SUSPEND_MEM:
613		return suspend_set_state(rdev,
614			&rdev->constraints->state_mem);
615	case PM_SUSPEND_MAX:
616		return suspend_set_state(rdev,
617			&rdev->constraints->state_disk);
618	default:
619		return -EINVAL;
620	}
621}
622
623static void print_constraints(struct regulator_dev *rdev)
624{
625	struct regulation_constraints *constraints = rdev->constraints;
626	char buf[80];
627	int count;
628
629	if (rdev->desc->type == REGULATOR_VOLTAGE) {
630		if (constraints->min_uV == constraints->max_uV)
631			count = sprintf(buf, "%d mV ",
632					constraints->min_uV / 1000);
633		else
634			count = sprintf(buf, "%d <--> %d mV ",
635					constraints->min_uV / 1000,
636					constraints->max_uV / 1000);
637	} else {
638		if (constraints->min_uA == constraints->max_uA)
639			count = sprintf(buf, "%d mA ",
640					constraints->min_uA / 1000);
641		else
642			count = sprintf(buf, "%d <--> %d mA ",
643					constraints->min_uA / 1000,
644					constraints->max_uA / 1000);
645	}
646	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
647		count += sprintf(buf + count, "fast ");
648	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
649		count += sprintf(buf + count, "normal ");
650	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
651		count += sprintf(buf + count, "idle ");
652	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
653		count += sprintf(buf + count, "standby");
654
655	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
656}
657
658/**
659 * set_machine_constraints - sets regulator constraints
660 * @regulator: regulator source
661 *
662 * Allows platform initialisation code to define and constrain
663 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
664 * Constraints *must* be set by platform code in order for some
665 * regulator operations to proceed i.e. set_voltage, set_current_limit,
666 * set_mode.
667 */
668static int set_machine_constraints(struct regulator_dev *rdev,
669	struct regulation_constraints *constraints)
670{
671	int ret = 0;
672	const char *name;
673	struct regulator_ops *ops = rdev->desc->ops;
674
675	if (constraints->name)
676		name = constraints->name;
677	else if (rdev->desc->name)
678		name = rdev->desc->name;
679	else
680		name = "regulator";
681
682	rdev->constraints = constraints;
683
684	/* do we need to apply the constraint voltage */
685	if (rdev->constraints->apply_uV &&
686		rdev->constraints->min_uV == rdev->constraints->max_uV &&
687		ops->set_voltage) {
688		ret = ops->set_voltage(rdev,
689			rdev->constraints->min_uV, rdev->constraints->max_uV);
690			if (ret < 0) {
691				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
692				       __func__,
693				       rdev->constraints->min_uV, name);
694				rdev->constraints = NULL;
695				goto out;
696			}
697	}
698
699	/* are we enabled at boot time by firmware / bootloader */
700	if (rdev->constraints->boot_on)
701		rdev->use_count = 1;
702
703	/* do we need to setup our suspend state */
704	if (constraints->initial_state) {
705		ret = suspend_prepare(rdev, constraints->initial_state);
706		if (ret < 0) {
707			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
708			       __func__, name);
709			rdev->constraints = NULL;
710			goto out;
711		}
712	}
713
714	/* if always_on is set then turn the regulator on if it's not
715	 * already on. */
716	if (constraints->always_on && ops->enable &&
717	    ((ops->is_enabled && !ops->is_enabled(rdev)) ||
718	     (!ops->is_enabled && !constraints->boot_on))) {
719		ret = ops->enable(rdev);
720		if (ret < 0) {
721			printk(KERN_ERR "%s: failed to enable %s\n",
722			       __func__, name);
723			rdev->constraints = NULL;
724			goto out;
725		}
726	}
727
728	print_constraints(rdev);
729out:
730	return ret;
731}
732
733/**
734 * set_supply - set regulator supply regulator
735 * @regulator: regulator name
736 * @supply: supply regulator name
737 *
738 * Called by platform initialisation code to set the supply regulator for this
739 * regulator. This ensures that a regulators supply will also be enabled by the
740 * core if it's child is enabled.
741 */
742static int set_supply(struct regulator_dev *rdev,
743	struct regulator_dev *supply_rdev)
744{
745	int err;
746
747	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
748				"supply");
749	if (err) {
750		printk(KERN_ERR
751		       "%s: could not add device link %s err %d\n",
752		       __func__, supply_rdev->dev.kobj.name, err);
753		       goto out;
754	}
755	rdev->supply = supply_rdev;
756	list_add(&rdev->slist, &supply_rdev->supply_list);
757out:
758	return err;
759}
760
761/**
762 * set_consumer_device_supply: Bind a regulator to a symbolic supply
763 * @regulator: regulator source
764 * @dev:       device the supply applies to
765 * @supply:    symbolic name for supply
766 *
767 * Allows platform initialisation code to map physical regulator
768 * sources to symbolic names for supplies for use by devices.  Devices
769 * should use these symbolic names to request regulators, avoiding the
770 * need to provide board-specific regulator names as platform data.
771 */
772static int set_consumer_device_supply(struct regulator_dev *rdev,
773	struct device *consumer_dev, const char *supply)
774{
775	struct regulator_map *node;
776
777	if (supply == NULL)
778		return -EINVAL;
779
780	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
781	if (node == NULL)
782		return -ENOMEM;
783
784	node->regulator = rdev;
785	node->dev = consumer_dev;
786	node->supply = supply;
787
788	list_add(&node->list, &regulator_map_list);
789	return 0;
790}
791
792static void unset_consumer_device_supply(struct regulator_dev *rdev,
793	struct device *consumer_dev)
794{
795	struct regulator_map *node, *n;
796
797	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
798		if (rdev == node->regulator &&
799			consumer_dev == node->dev) {
800			list_del(&node->list);
801			kfree(node);
802			return;
803		}
804	}
805}
806
807#define REG_STR_SIZE	32
808
809static struct regulator *create_regulator(struct regulator_dev *rdev,
810					  struct device *dev,
811					  const char *supply_name)
812{
813	struct regulator *regulator;
814	char buf[REG_STR_SIZE];
815	int err, size;
816
817	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
818	if (regulator == NULL)
819		return NULL;
820
821	mutex_lock(&rdev->mutex);
822	regulator->rdev = rdev;
823	list_add(&regulator->list, &rdev->consumer_list);
824
825	if (dev) {
826		/* create a 'requested_microamps_name' sysfs entry */
827		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
828			supply_name);
829		if (size >= REG_STR_SIZE)
830			goto overflow_err;
831
832		regulator->dev = dev;
833		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
834		if (regulator->dev_attr.attr.name == NULL)
835			goto attr_name_err;
836
837		regulator->dev_attr.attr.owner = THIS_MODULE;
838		regulator->dev_attr.attr.mode = 0444;
839		regulator->dev_attr.show = device_requested_uA_show;
840		err = device_create_file(dev, &regulator->dev_attr);
841		if (err < 0) {
842			printk(KERN_WARNING "%s: could not add regulator_dev"
843				" load sysfs\n", __func__);
844			goto attr_name_err;
845		}
846
847		/* also add a link to the device sysfs entry */
848		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
849				 dev->kobj.name, supply_name);
850		if (size >= REG_STR_SIZE)
851			goto attr_err;
852
853		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
854		if (regulator->supply_name == NULL)
855			goto attr_err;
856
857		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
858					buf);
859		if (err) {
860			printk(KERN_WARNING
861			       "%s: could not add device link %s err %d\n",
862			       __func__, dev->kobj.name, err);
863			device_remove_file(dev, &regulator->dev_attr);
864			goto link_name_err;
865		}
866	}
867	mutex_unlock(&rdev->mutex);
868	return regulator;
869link_name_err:
870	kfree(regulator->supply_name);
871attr_err:
872	device_remove_file(regulator->dev, &regulator->dev_attr);
873attr_name_err:
874	kfree(regulator->dev_attr.attr.name);
875overflow_err:
876	list_del(&regulator->list);
877	kfree(regulator);
878	mutex_unlock(&rdev->mutex);
879	return NULL;
880}
881
882/**
883 * regulator_get - lookup and obtain a reference to a regulator.
884 * @dev: device for regulator "consumer"
885 * @id: Supply name or regulator ID.
886 *
887 * Returns a struct regulator corresponding to the regulator producer,
888 * or IS_ERR() condition containing errno.  Use of supply names
889 * configured via regulator_set_device_supply() is strongly
890 * encouraged.
891 */
892struct regulator *regulator_get(struct device *dev, const char *id)
893{
894	struct regulator_dev *rdev;
895	struct regulator_map *map;
896	struct regulator *regulator = ERR_PTR(-ENODEV);
897
898	if (id == NULL) {
899		printk(KERN_ERR "regulator: get() with no identifier\n");
900		return regulator;
901	}
902
903	mutex_lock(&regulator_list_mutex);
904
905	list_for_each_entry(map, &regulator_map_list, list) {
906		if (dev == map->dev &&
907		    strcmp(map->supply, id) == 0) {
908			rdev = map->regulator;
909			goto found;
910		}
911	}
912	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
913	       id);
914	mutex_unlock(&regulator_list_mutex);
915	return regulator;
916
917found:
918	if (!try_module_get(rdev->owner))
919		goto out;
920
921	regulator = create_regulator(rdev, dev, id);
922	if (regulator == NULL) {
923		regulator = ERR_PTR(-ENOMEM);
924		module_put(rdev->owner);
925	}
926
927out:
928	mutex_unlock(&regulator_list_mutex);
929	return regulator;
930}
931EXPORT_SYMBOL_GPL(regulator_get);
932
933/**
934 * regulator_put - "free" the regulator source
935 * @regulator: regulator source
936 *
937 * Note: drivers must ensure that all regulator_enable calls made on this
938 * regulator source are balanced by regulator_disable calls prior to calling
939 * this function.
940 */
941void regulator_put(struct regulator *regulator)
942{
943	struct regulator_dev *rdev;
944
945	if (regulator == NULL || IS_ERR(regulator))
946		return;
947
948	if (regulator->enabled) {
949		printk(KERN_WARNING "Releasing supply %s while enabled\n",
950		       regulator->supply_name);
951		WARN_ON(regulator->enabled);
952		regulator_disable(regulator);
953	}
954
955	mutex_lock(&regulator_list_mutex);
956	rdev = regulator->rdev;
957
958	/* remove any sysfs entries */
959	if (regulator->dev) {
960		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
961		kfree(regulator->supply_name);
962		device_remove_file(regulator->dev, &regulator->dev_attr);
963		kfree(regulator->dev_attr.attr.name);
964	}
965	list_del(&regulator->list);
966	kfree(regulator);
967
968	module_put(rdev->owner);
969	mutex_unlock(&regulator_list_mutex);
970}
971EXPORT_SYMBOL_GPL(regulator_put);
972
973/* locks held by regulator_enable() */
974static int _regulator_enable(struct regulator_dev *rdev)
975{
976	int ret = -EINVAL;
977
978	if (!rdev->constraints) {
979		printk(KERN_ERR "%s: %s has no constraints\n",
980		       __func__, rdev->desc->name);
981		return ret;
982	}
983
984	/* do we need to enable the supply regulator first */
985	if (rdev->supply) {
986		ret = _regulator_enable(rdev->supply);
987		if (ret < 0) {
988			printk(KERN_ERR "%s: failed to enable %s: %d\n",
989			       __func__, rdev->desc->name, ret);
990			return ret;
991		}
992	}
993
994	/* check voltage and requested load before enabling */
995	if (rdev->desc->ops->enable) {
996
997		if (rdev->constraints &&
998			(rdev->constraints->valid_ops_mask &
999			REGULATOR_CHANGE_DRMS))
1000			drms_uA_update(rdev);
1001
1002		ret = rdev->desc->ops->enable(rdev);
1003		if (ret < 0) {
1004			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1005			       __func__, rdev->desc->name, ret);
1006			return ret;
1007		}
1008		rdev->use_count++;
1009		return ret;
1010	}
1011
1012	return ret;
1013}
1014
1015/**
1016 * regulator_enable - enable regulator output
1017 * @regulator: regulator source
1018 *
1019 * Enable the regulator output at the predefined voltage or current value.
1020 * NOTE: the output value can be set by other drivers, boot loader or may be
1021 * hardwired in the regulator.
1022 * NOTE: calls to regulator_enable() must be balanced with calls to
1023 * regulator_disable().
1024 */
1025int regulator_enable(struct regulator *regulator)
1026{
1027	int ret;
1028
1029	if (regulator->enabled) {
1030		printk(KERN_CRIT "Regulator %s already enabled\n",
1031		       regulator->supply_name);
1032		WARN_ON(regulator->enabled);
1033		return 0;
1034	}
1035
1036	mutex_lock(&regulator->rdev->mutex);
1037	regulator->enabled = 1;
1038	ret = _regulator_enable(regulator->rdev);
1039	if (ret != 0)
1040		regulator->enabled = 0;
1041	mutex_unlock(&regulator->rdev->mutex);
1042	return ret;
1043}
1044EXPORT_SYMBOL_GPL(regulator_enable);
1045
1046/* locks held by regulator_disable() */
1047static int _regulator_disable(struct regulator_dev *rdev)
1048{
1049	int ret = 0;
1050
1051	/* are we the last user and permitted to disable ? */
1052	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1053
1054		/* we are last user */
1055		if (rdev->desc->ops->disable) {
1056			ret = rdev->desc->ops->disable(rdev);
1057			if (ret < 0) {
1058				printk(KERN_ERR "%s: failed to disable %s\n",
1059				       __func__, rdev->desc->name);
1060				return ret;
1061			}
1062		}
1063
1064		/* decrease our supplies ref count and disable if required */
1065		if (rdev->supply)
1066			_regulator_disable(rdev->supply);
1067
1068		rdev->use_count = 0;
1069	} else if (rdev->use_count > 1) {
1070
1071		if (rdev->constraints &&
1072			(rdev->constraints->valid_ops_mask &
1073			REGULATOR_CHANGE_DRMS))
1074			drms_uA_update(rdev);
1075
1076		rdev->use_count--;
1077	}
1078	return ret;
1079}
1080
1081/**
1082 * regulator_disable - disable regulator output
1083 * @regulator: regulator source
1084 *
1085 * Disable the regulator output voltage or current.
1086 * NOTE: this will only disable the regulator output if no other consumer
1087 * devices have it enabled.
1088 * NOTE: calls to regulator_enable() must be balanced with calls to
1089 * regulator_disable().
1090 */
1091int regulator_disable(struct regulator *regulator)
1092{
1093	int ret;
1094
1095	if (!regulator->enabled) {
1096		printk(KERN_ERR "%s: not in use by this consumer\n",
1097			__func__);
1098		return 0;
1099	}
1100
1101	mutex_lock(&regulator->rdev->mutex);
1102	regulator->enabled = 0;
1103	regulator->uA_load = 0;
1104	ret = _regulator_disable(regulator->rdev);
1105	mutex_unlock(&regulator->rdev->mutex);
1106	return ret;
1107}
1108EXPORT_SYMBOL_GPL(regulator_disable);
1109
1110/* locks held by regulator_force_disable() */
1111static int _regulator_force_disable(struct regulator_dev *rdev)
1112{
1113	int ret = 0;
1114
1115	/* force disable */
1116	if (rdev->desc->ops->disable) {
1117		/* ah well, who wants to live forever... */
1118		ret = rdev->desc->ops->disable(rdev);
1119		if (ret < 0) {
1120			printk(KERN_ERR "%s: failed to force disable %s\n",
1121			       __func__, rdev->desc->name);
1122			return ret;
1123		}
1124		/* notify other consumers that power has been forced off */
1125		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1126			NULL);
1127	}
1128
1129	/* decrease our supplies ref count and disable if required */
1130	if (rdev->supply)
1131		_regulator_disable(rdev->supply);
1132
1133	rdev->use_count = 0;
1134	return ret;
1135}
1136
1137/**
1138 * regulator_force_disable - force disable regulator output
1139 * @regulator: regulator source
1140 *
1141 * Forcibly disable the regulator output voltage or current.
1142 * NOTE: this *will* disable the regulator output even if other consumer
1143 * devices have it enabled. This should be used for situations when device
1144 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1145 */
1146int regulator_force_disable(struct regulator *regulator)
1147{
1148	int ret;
1149
1150	mutex_lock(&regulator->rdev->mutex);
1151	regulator->enabled = 0;
1152	regulator->uA_load = 0;
1153	ret = _regulator_force_disable(regulator->rdev);
1154	mutex_unlock(&regulator->rdev->mutex);
1155	return ret;
1156}
1157EXPORT_SYMBOL_GPL(regulator_force_disable);
1158
1159static int _regulator_is_enabled(struct regulator_dev *rdev)
1160{
1161	int ret;
1162
1163	mutex_lock(&rdev->mutex);
1164
1165	/* sanity check */
1166	if (!rdev->desc->ops->is_enabled) {
1167		ret = -EINVAL;
1168		goto out;
1169	}
1170
1171	ret = rdev->desc->ops->is_enabled(rdev);
1172out:
1173	mutex_unlock(&rdev->mutex);
1174	return ret;
1175}
1176
1177/**
1178 * regulator_is_enabled - is the regulator output enabled
1179 * @regulator: regulator source
1180 *
1181 * Returns zero for disabled otherwise return number of enable requests.
1182 */
1183int regulator_is_enabled(struct regulator *regulator)
1184{
1185	return _regulator_is_enabled(regulator->rdev);
1186}
1187EXPORT_SYMBOL_GPL(regulator_is_enabled);
1188
1189/**
1190 * regulator_set_voltage - set regulator output voltage
1191 * @regulator: regulator source
1192 * @min_uV: Minimum required voltage in uV
1193 * @max_uV: Maximum acceptable voltage in uV
1194 *
1195 * Sets a voltage regulator to the desired output voltage. This can be set
1196 * during any regulator state. IOW, regulator can be disabled or enabled.
1197 *
1198 * If the regulator is enabled then the voltage will change to the new value
1199 * immediately otherwise if the regulator is disabled the regulator will
1200 * output at the new voltage when enabled.
1201 *
1202 * NOTE: If the regulator is shared between several devices then the lowest
1203 * request voltage that meets the system constraints will be used.
1204 * NOTE: Regulator system constraints must be set for this regulator before
1205 * calling this function otherwise this call will fail.
1206 */
1207int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1208{
1209	struct regulator_dev *rdev = regulator->rdev;
1210	int ret;
1211
1212	mutex_lock(&rdev->mutex);
1213
1214	/* sanity check */
1215	if (!rdev->desc->ops->set_voltage) {
1216		ret = -EINVAL;
1217		goto out;
1218	}
1219
1220	/* constraints check */
1221	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1222	if (ret < 0)
1223		goto out;
1224	regulator->min_uV = min_uV;
1225	regulator->max_uV = max_uV;
1226	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1227
1228out:
1229	mutex_unlock(&rdev->mutex);
1230	return ret;
1231}
1232EXPORT_SYMBOL_GPL(regulator_set_voltage);
1233
1234static int _regulator_get_voltage(struct regulator_dev *rdev)
1235{
1236	/* sanity check */
1237	if (rdev->desc->ops->get_voltage)
1238		return rdev->desc->ops->get_voltage(rdev);
1239	else
1240		return -EINVAL;
1241}
1242
1243/**
1244 * regulator_get_voltage - get regulator output voltage
1245 * @regulator: regulator source
1246 *
1247 * This returns the current regulator voltage in uV.
1248 *
1249 * NOTE: If the regulator is disabled it will return the voltage value. This
1250 * function should not be used to determine regulator state.
1251 */
1252int regulator_get_voltage(struct regulator *regulator)
1253{
1254	int ret;
1255
1256	mutex_lock(&regulator->rdev->mutex);
1257
1258	ret = _regulator_get_voltage(regulator->rdev);
1259
1260	mutex_unlock(&regulator->rdev->mutex);
1261
1262	return ret;
1263}
1264EXPORT_SYMBOL_GPL(regulator_get_voltage);
1265
1266/**
1267 * regulator_set_current_limit - set regulator output current limit
1268 * @regulator: regulator source
1269 * @min_uA: Minimuum supported current in uA
1270 * @max_uA: Maximum supported current in uA
1271 *
1272 * Sets current sink to the desired output current. This can be set during
1273 * any regulator state. IOW, regulator can be disabled or enabled.
1274 *
1275 * If the regulator is enabled then the current will change to the new value
1276 * immediately otherwise if the regulator is disabled the regulator will
1277 * output at the new current when enabled.
1278 *
1279 * NOTE: Regulator system constraints must be set for this regulator before
1280 * calling this function otherwise this call will fail.
1281 */
1282int regulator_set_current_limit(struct regulator *regulator,
1283			       int min_uA, int max_uA)
1284{
1285	struct regulator_dev *rdev = regulator->rdev;
1286	int ret;
1287
1288	mutex_lock(&rdev->mutex);
1289
1290	/* sanity check */
1291	if (!rdev->desc->ops->set_current_limit) {
1292		ret = -EINVAL;
1293		goto out;
1294	}
1295
1296	/* constraints check */
1297	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1298	if (ret < 0)
1299		goto out;
1300
1301	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1302out:
1303	mutex_unlock(&rdev->mutex);
1304	return ret;
1305}
1306EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1307
1308static int _regulator_get_current_limit(struct regulator_dev *rdev)
1309{
1310	int ret;
1311
1312	mutex_lock(&rdev->mutex);
1313
1314	/* sanity check */
1315	if (!rdev->desc->ops->get_current_limit) {
1316		ret = -EINVAL;
1317		goto out;
1318	}
1319
1320	ret = rdev->desc->ops->get_current_limit(rdev);
1321out:
1322	mutex_unlock(&rdev->mutex);
1323	return ret;
1324}
1325
1326/**
1327 * regulator_get_current_limit - get regulator output current
1328 * @regulator: regulator source
1329 *
1330 * This returns the current supplied by the specified current sink in uA.
1331 *
1332 * NOTE: If the regulator is disabled it will return the current value. This
1333 * function should not be used to determine regulator state.
1334 */
1335int regulator_get_current_limit(struct regulator *regulator)
1336{
1337	return _regulator_get_current_limit(regulator->rdev);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1340
1341/**
1342 * regulator_set_mode - set regulator operating mode
1343 * @regulator: regulator source
1344 * @mode: operating mode - one of the REGULATOR_MODE constants
1345 *
1346 * Set regulator operating mode to increase regulator efficiency or improve
1347 * regulation performance.
1348 *
1349 * NOTE: Regulator system constraints must be set for this regulator before
1350 * calling this function otherwise this call will fail.
1351 */
1352int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1353{
1354	struct regulator_dev *rdev = regulator->rdev;
1355	int ret;
1356
1357	mutex_lock(&rdev->mutex);
1358
1359	/* sanity check */
1360	if (!rdev->desc->ops->set_mode) {
1361		ret = -EINVAL;
1362		goto out;
1363	}
1364
1365	/* constraints check */
1366	ret = regulator_check_mode(rdev, mode);
1367	if (ret < 0)
1368		goto out;
1369
1370	ret = rdev->desc->ops->set_mode(rdev, mode);
1371out:
1372	mutex_unlock(&rdev->mutex);
1373	return ret;
1374}
1375EXPORT_SYMBOL_GPL(regulator_set_mode);
1376
1377static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1378{
1379	int ret;
1380
1381	mutex_lock(&rdev->mutex);
1382
1383	/* sanity check */
1384	if (!rdev->desc->ops->get_mode) {
1385		ret = -EINVAL;
1386		goto out;
1387	}
1388
1389	ret = rdev->desc->ops->get_mode(rdev);
1390out:
1391	mutex_unlock(&rdev->mutex);
1392	return ret;
1393}
1394
1395/**
1396 * regulator_get_mode - get regulator operating mode
1397 * @regulator: regulator source
1398 *
1399 * Get the current regulator operating mode.
1400 */
1401unsigned int regulator_get_mode(struct regulator *regulator)
1402{
1403	return _regulator_get_mode(regulator->rdev);
1404}
1405EXPORT_SYMBOL_GPL(regulator_get_mode);
1406
1407/**
1408 * regulator_set_optimum_mode - set regulator optimum operating mode
1409 * @regulator: regulator source
1410 * @uA_load: load current
1411 *
1412 * Notifies the regulator core of a new device load. This is then used by
1413 * DRMS (if enabled by constraints) to set the most efficient regulator
1414 * operating mode for the new regulator loading.
1415 *
1416 * Consumer devices notify their supply regulator of the maximum power
1417 * they will require (can be taken from device datasheet in the power
1418 * consumption tables) when they change operational status and hence power
1419 * state. Examples of operational state changes that can affect power
1420 * consumption are :-
1421 *
1422 *    o Device is opened / closed.
1423 *    o Device I/O is about to begin or has just finished.
1424 *    o Device is idling in between work.
1425 *
1426 * This information is also exported via sysfs to userspace.
1427 *
1428 * DRMS will sum the total requested load on the regulator and change
1429 * to the most efficient operating mode if platform constraints allow.
1430 *
1431 * Returns the new regulator mode or error.
1432 */
1433int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1434{
1435	struct regulator_dev *rdev = regulator->rdev;
1436	struct regulator *consumer;
1437	int ret, output_uV, input_uV, total_uA_load = 0;
1438	unsigned int mode;
1439
1440	mutex_lock(&rdev->mutex);
1441
1442	regulator->uA_load = uA_load;
1443	ret = regulator_check_drms(rdev);
1444	if (ret < 0)
1445		goto out;
1446	ret = -EINVAL;
1447
1448	/* sanity check */
1449	if (!rdev->desc->ops->get_optimum_mode)
1450		goto out;
1451
1452	/* get output voltage */
1453	output_uV = rdev->desc->ops->get_voltage(rdev);
1454	if (output_uV <= 0) {
1455		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1456			__func__, rdev->desc->name);
1457		goto out;
1458	}
1459
1460	/* get input voltage */
1461	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1462		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1463	else
1464		input_uV = rdev->constraints->input_uV;
1465	if (input_uV <= 0) {
1466		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1467			__func__, rdev->desc->name);
1468		goto out;
1469	}
1470
1471	/* calc total requested load for this regulator */
1472	list_for_each_entry(consumer, &rdev->consumer_list, list)
1473	    total_uA_load += consumer->uA_load;
1474
1475	mode = rdev->desc->ops->get_optimum_mode(rdev,
1476						 input_uV, output_uV,
1477						 total_uA_load);
1478	if (ret <= 0) {
1479		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1480			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1481			total_uA_load, input_uV, output_uV);
1482		goto out;
1483	}
1484
1485	ret = rdev->desc->ops->set_mode(rdev, mode);
1486	if (ret <= 0) {
1487		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1488			__func__, mode, rdev->desc->name);
1489		goto out;
1490	}
1491	ret = mode;
1492out:
1493	mutex_unlock(&rdev->mutex);
1494	return ret;
1495}
1496EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1497
1498/**
1499 * regulator_register_notifier - register regulator event notifier
1500 * @regulator: regulator source
1501 * @notifier_block: notifier block
1502 *
1503 * Register notifier block to receive regulator events.
1504 */
1505int regulator_register_notifier(struct regulator *regulator,
1506			      struct notifier_block *nb)
1507{
1508	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1509						nb);
1510}
1511EXPORT_SYMBOL_GPL(regulator_register_notifier);
1512
1513/**
1514 * regulator_unregister_notifier - unregister regulator event notifier
1515 * @regulator: regulator source
1516 * @notifier_block: notifier block
1517 *
1518 * Unregister regulator event notifier block.
1519 */
1520int regulator_unregister_notifier(struct regulator *regulator,
1521				struct notifier_block *nb)
1522{
1523	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1524						  nb);
1525}
1526EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1527
1528/* notify regulator consumers and downstream regulator consumers */
1529static void _notifier_call_chain(struct regulator_dev *rdev,
1530				  unsigned long event, void *data)
1531{
1532	struct regulator_dev *_rdev;
1533
1534	/* call rdev chain first */
1535	mutex_lock(&rdev->mutex);
1536	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1537	mutex_unlock(&rdev->mutex);
1538
1539	/* now notify regulator we supply */
1540	list_for_each_entry(_rdev, &rdev->supply_list, slist)
1541		_notifier_call_chain(_rdev, event, data);
1542}
1543
1544/**
1545 * regulator_bulk_get - get multiple regulator consumers
1546 *
1547 * @dev:           Device to supply
1548 * @num_consumers: Number of consumers to register
1549 * @consumers:     Configuration of consumers; clients are stored here.
1550 *
1551 * @return 0 on success, an errno on failure.
1552 *
1553 * This helper function allows drivers to get several regulator
1554 * consumers in one operation.  If any of the regulators cannot be
1555 * acquired then any regulators that were allocated will be freed
1556 * before returning to the caller.
1557 */
1558int regulator_bulk_get(struct device *dev, int num_consumers,
1559		       struct regulator_bulk_data *consumers)
1560{
1561	int i;
1562	int ret;
1563
1564	for (i = 0; i < num_consumers; i++)
1565		consumers[i].consumer = NULL;
1566
1567	for (i = 0; i < num_consumers; i++) {
1568		consumers[i].consumer = regulator_get(dev,
1569						      consumers[i].supply);
1570		if (IS_ERR(consumers[i].consumer)) {
1571			dev_err(dev, "Failed to get supply '%s'\n",
1572				consumers[i].supply);
1573			ret = PTR_ERR(consumers[i].consumer);
1574			consumers[i].consumer = NULL;
1575			goto err;
1576		}
1577	}
1578
1579	return 0;
1580
1581err:
1582	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1583		regulator_put(consumers[i].consumer);
1584
1585	return ret;
1586}
1587EXPORT_SYMBOL_GPL(regulator_bulk_get);
1588
1589/**
1590 * regulator_bulk_enable - enable multiple regulator consumers
1591 *
1592 * @num_consumers: Number of consumers
1593 * @consumers:     Consumer data; clients are stored here.
1594 * @return         0 on success, an errno on failure
1595 *
1596 * This convenience API allows consumers to enable multiple regulator
1597 * clients in a single API call.  If any consumers cannot be enabled
1598 * then any others that were enabled will be disabled again prior to
1599 * return.
1600 */
1601int regulator_bulk_enable(int num_consumers,
1602			  struct regulator_bulk_data *consumers)
1603{
1604	int i;
1605	int ret;
1606
1607	for (i = 0; i < num_consumers; i++) {
1608		ret = regulator_enable(consumers[i].consumer);
1609		if (ret != 0)
1610			goto err;
1611	}
1612
1613	return 0;
1614
1615err:
1616	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1617	for (i = 0; i < num_consumers; i++)
1618		regulator_disable(consumers[i].consumer);
1619
1620	return ret;
1621}
1622EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1623
1624/**
1625 * regulator_bulk_disable - disable multiple regulator consumers
1626 *
1627 * @num_consumers: Number of consumers
1628 * @consumers:     Consumer data; clients are stored here.
1629 * @return         0 on success, an errno on failure
1630 *
1631 * This convenience API allows consumers to disable multiple regulator
1632 * clients in a single API call.  If any consumers cannot be enabled
1633 * then any others that were disabled will be disabled again prior to
1634 * return.
1635 */
1636int regulator_bulk_disable(int num_consumers,
1637			   struct regulator_bulk_data *consumers)
1638{
1639	int i;
1640	int ret;
1641
1642	for (i = 0; i < num_consumers; i++) {
1643		ret = regulator_disable(consumers[i].consumer);
1644		if (ret != 0)
1645			goto err;
1646	}
1647
1648	return 0;
1649
1650err:
1651	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1652	for (i = 0; i < num_consumers; i++)
1653		regulator_enable(consumers[i].consumer);
1654
1655	return ret;
1656}
1657EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1658
1659/**
1660 * regulator_bulk_free - free multiple regulator consumers
1661 *
1662 * @num_consumers: Number of consumers
1663 * @consumers:     Consumer data; clients are stored here.
1664 *
1665 * This convenience API allows consumers to free multiple regulator
1666 * clients in a single API call.
1667 */
1668void regulator_bulk_free(int num_consumers,
1669			 struct regulator_bulk_data *consumers)
1670{
1671	int i;
1672
1673	for (i = 0; i < num_consumers; i++) {
1674		regulator_put(consumers[i].consumer);
1675		consumers[i].consumer = NULL;
1676	}
1677}
1678EXPORT_SYMBOL_GPL(regulator_bulk_free);
1679
1680/**
1681 * regulator_notifier_call_chain - call regulator event notifier
1682 * @regulator: regulator source
1683 * @event: notifier block
1684 * @data:
1685 *
1686 * Called by regulator drivers to notify clients a regulator event has
1687 * occurred. We also notify regulator clients downstream.
1688 */
1689int regulator_notifier_call_chain(struct regulator_dev *rdev,
1690				  unsigned long event, void *data)
1691{
1692	_notifier_call_chain(rdev, event, data);
1693	return NOTIFY_DONE;
1694
1695}
1696EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1697
1698/**
1699 * regulator_register - register regulator
1700 * @regulator: regulator source
1701 * @reg_data: private regulator data
1702 *
1703 * Called by regulator drivers to register a regulator.
1704 * Returns 0 on success.
1705 */
1706struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1707	struct device *dev, void *driver_data)
1708{
1709	static atomic_t regulator_no = ATOMIC_INIT(0);
1710	struct regulator_dev *rdev;
1711	struct regulator_init_data *init_data = dev->platform_data;
1712	int ret, i;
1713
1714	if (regulator_desc == NULL)
1715		return ERR_PTR(-EINVAL);
1716
1717	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1718		return ERR_PTR(-EINVAL);
1719
1720	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1721	    !regulator_desc->type == REGULATOR_CURRENT)
1722		return ERR_PTR(-EINVAL);
1723
1724	if (!init_data)
1725		return ERR_PTR(-EINVAL);
1726
1727	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1728	if (rdev == NULL)
1729		return ERR_PTR(-ENOMEM);
1730
1731	mutex_lock(&regulator_list_mutex);
1732
1733	mutex_init(&rdev->mutex);
1734	rdev->reg_data = driver_data;
1735	rdev->owner = regulator_desc->owner;
1736	rdev->desc = regulator_desc;
1737	INIT_LIST_HEAD(&rdev->consumer_list);
1738	INIT_LIST_HEAD(&rdev->supply_list);
1739	INIT_LIST_HEAD(&rdev->list);
1740	INIT_LIST_HEAD(&rdev->slist);
1741	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1742
1743	/* preform any regulator specific init */
1744	if (init_data->regulator_init) {
1745		ret = init_data->regulator_init(rdev->reg_data);
1746		if (ret < 0) {
1747			kfree(rdev);
1748			rdev = ERR_PTR(ret);
1749			goto out;
1750		}
1751	}
1752
1753	/* set regulator constraints */
1754	ret = set_machine_constraints(rdev, &init_data->constraints);
1755	if (ret < 0) {
1756		kfree(rdev);
1757		rdev = ERR_PTR(ret);
1758		goto out;
1759	}
1760
1761	/* register with sysfs */
1762	rdev->dev.class = &regulator_class;
1763	rdev->dev.parent = dev;
1764	snprintf(rdev->dev.bus_id, sizeof(rdev->dev.bus_id),
1765		 "regulator.%d", atomic_inc_return(&regulator_no) - 1);
1766	ret = device_register(&rdev->dev);
1767	if (ret != 0) {
1768		kfree(rdev);
1769		rdev = ERR_PTR(ret);
1770		goto out;
1771	}
1772
1773	dev_set_drvdata(&rdev->dev, rdev);
1774
1775	/* set supply regulator if it exists */
1776	if (init_data->supply_regulator_dev) {
1777		ret = set_supply(rdev,
1778			dev_get_drvdata(init_data->supply_regulator_dev));
1779		if (ret < 0) {
1780			device_unregister(&rdev->dev);
1781			kfree(rdev);
1782			rdev = ERR_PTR(ret);
1783			goto out;
1784		}
1785	}
1786
1787	/* add consumers devices */
1788	for (i = 0; i < init_data->num_consumer_supplies; i++) {
1789		ret = set_consumer_device_supply(rdev,
1790			init_data->consumer_supplies[i].dev,
1791			init_data->consumer_supplies[i].supply);
1792		if (ret < 0) {
1793			for (--i; i >= 0; i--)
1794				unset_consumer_device_supply(rdev,
1795					init_data->consumer_supplies[i].dev);
1796			device_unregister(&rdev->dev);
1797			kfree(rdev);
1798			rdev = ERR_PTR(ret);
1799			goto out;
1800		}
1801	}
1802
1803	list_add(&rdev->list, &regulator_list);
1804out:
1805	mutex_unlock(&regulator_list_mutex);
1806	return rdev;
1807}
1808EXPORT_SYMBOL_GPL(regulator_register);
1809
1810/**
1811 * regulator_unregister - unregister regulator
1812 * @regulator: regulator source
1813 *
1814 * Called by regulator drivers to unregister a regulator.
1815 */
1816void regulator_unregister(struct regulator_dev *rdev)
1817{
1818	if (rdev == NULL)
1819		return;
1820
1821	mutex_lock(&regulator_list_mutex);
1822	list_del(&rdev->list);
1823	if (rdev->supply)
1824		sysfs_remove_link(&rdev->dev.kobj, "supply");
1825	device_unregister(&rdev->dev);
1826	mutex_unlock(&regulator_list_mutex);
1827}
1828EXPORT_SYMBOL_GPL(regulator_unregister);
1829
1830/**
1831 * regulator_suspend_prepare: prepare regulators for system wide suspend
1832 * @state: system suspend state
1833 *
1834 * Configure each regulator with it's suspend operating parameters for state.
1835 * This will usually be called by machine suspend code prior to supending.
1836 */
1837int regulator_suspend_prepare(suspend_state_t state)
1838{
1839	struct regulator_dev *rdev;
1840	int ret = 0;
1841
1842	/* ON is handled by regulator active state */
1843	if (state == PM_SUSPEND_ON)
1844		return -EINVAL;
1845
1846	mutex_lock(&regulator_list_mutex);
1847	list_for_each_entry(rdev, &regulator_list, list) {
1848
1849		mutex_lock(&rdev->mutex);
1850		ret = suspend_prepare(rdev, state);
1851		mutex_unlock(&rdev->mutex);
1852
1853		if (ret < 0) {
1854			printk(KERN_ERR "%s: failed to prepare %s\n",
1855				__func__, rdev->desc->name);
1856			goto out;
1857		}
1858	}
1859out:
1860	mutex_unlock(&regulator_list_mutex);
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1864
1865/**
1866 * rdev_get_drvdata - get rdev regulator driver data
1867 * @regulator: regulator
1868 *
1869 * Get rdev regulator driver private data. This call can be used in the
1870 * regulator driver context.
1871 */
1872void *rdev_get_drvdata(struct regulator_dev *rdev)
1873{
1874	return rdev->reg_data;
1875}
1876EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1877
1878/**
1879 * regulator_get_drvdata - get regulator driver data
1880 * @regulator: regulator
1881 *
1882 * Get regulator driver private data. This call can be used in the consumer
1883 * driver context when non API regulator specific functions need to be called.
1884 */
1885void *regulator_get_drvdata(struct regulator *regulator)
1886{
1887	return regulator->rdev->reg_data;
1888}
1889EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1890
1891/**
1892 * regulator_set_drvdata - set regulator driver data
1893 * @regulator: regulator
1894 * @data: data
1895 */
1896void regulator_set_drvdata(struct regulator *regulator, void *data)
1897{
1898	regulator->rdev->reg_data = data;
1899}
1900EXPORT_SYMBOL_GPL(regulator_set_drvdata);
1901
1902/**
1903 * regulator_get_id - get regulator ID
1904 * @regulator: regulator
1905 */
1906int rdev_get_id(struct regulator_dev *rdev)
1907{
1908	return rdev->desc->id;
1909}
1910EXPORT_SYMBOL_GPL(rdev_get_id);
1911
1912struct device *rdev_get_dev(struct regulator_dev *rdev)
1913{
1914	return &rdev->dev;
1915}
1916EXPORT_SYMBOL_GPL(rdev_get_dev);
1917
1918void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
1919{
1920	return reg_init_data->driver_data;
1921}
1922EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
1923
1924static int __init regulator_init(void)
1925{
1926	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
1927	return class_register(&regulator_class);
1928}
1929
1930/* init early to allow our consumers to complete system booting */
1931core_initcall(regulator_init);
1932