core.c revision e6e740304aa2a49ef09497e6c0bb906ed7987f6b
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/of.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57#ifdef CONFIG_DEBUG_FS
58static struct dentry *debugfs_root;
59#endif
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78struct regulator {
79	struct device *dev;
80	struct list_head list;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87#ifdef CONFIG_DEBUG_FS
88	struct dentry *debugfs;
89#endif
90};
91
92static int _regulator_is_enabled(struct regulator_dev *rdev);
93static int _regulator_disable(struct regulator_dev *rdev);
94static int _regulator_get_voltage(struct regulator_dev *rdev);
95static int _regulator_get_current_limit(struct regulator_dev *rdev);
96static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97static void _notifier_call_chain(struct regulator_dev *rdev,
98				  unsigned long event, void *data);
99static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100				     int min_uV, int max_uV);
101static struct regulator *create_regulator(struct regulator_dev *rdev,
102					  struct device *dev,
103					  const char *supply_name);
104
105static const char *rdev_get_name(struct regulator_dev *rdev)
106{
107	if (rdev->constraints && rdev->constraints->name)
108		return rdev->constraints->name;
109	else if (rdev->desc->name)
110		return rdev->desc->name;
111	else
112		return "";
113}
114
115/* gets the regulator for a given consumer device */
116static struct regulator *get_device_regulator(struct device *dev)
117{
118	struct regulator *regulator = NULL;
119	struct regulator_dev *rdev;
120
121	mutex_lock(&regulator_list_mutex);
122	list_for_each_entry(rdev, &regulator_list, list) {
123		mutex_lock(&rdev->mutex);
124		list_for_each_entry(regulator, &rdev->consumer_list, list) {
125			if (regulator->dev == dev) {
126				mutex_unlock(&rdev->mutex);
127				mutex_unlock(&regulator_list_mutex);
128				return regulator;
129			}
130		}
131		mutex_unlock(&rdev->mutex);
132	}
133	mutex_unlock(&regulator_list_mutex);
134	return NULL;
135}
136
137/**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147{
148	struct device_node *regnode = NULL;
149	char prop_name[32]; /* 32 is max size of property name */
150
151	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153	snprintf(prop_name, 32, "%s-supply", supply);
154	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156	if (!regnode) {
157		dev_warn(dev, "%s property in node %s references invalid phandle",
158				prop_name, dev->of_node->full_name);
159		return NULL;
160	}
161	return regnode;
162}
163
164/* Platform voltage constraint check */
165static int regulator_check_voltage(struct regulator_dev *rdev,
166				   int *min_uV, int *max_uV)
167{
168	BUG_ON(*min_uV > *max_uV);
169
170	if (!rdev->constraints) {
171		rdev_err(rdev, "no constraints\n");
172		return -ENODEV;
173	}
174	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175		rdev_err(rdev, "operation not allowed\n");
176		return -EPERM;
177	}
178
179	if (*max_uV > rdev->constraints->max_uV)
180		*max_uV = rdev->constraints->max_uV;
181	if (*min_uV < rdev->constraints->min_uV)
182		*min_uV = rdev->constraints->min_uV;
183
184	if (*min_uV > *max_uV) {
185		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186			 *min_uV, *max_uV);
187		return -EINVAL;
188	}
189
190	return 0;
191}
192
193/* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196static int regulator_check_consumers(struct regulator_dev *rdev,
197				     int *min_uV, int *max_uV)
198{
199	struct regulator *regulator;
200
201	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202		/*
203		 * Assume consumers that didn't say anything are OK
204		 * with anything in the constraint range.
205		 */
206		if (!regulator->min_uV && !regulator->max_uV)
207			continue;
208
209		if (*max_uV > regulator->max_uV)
210			*max_uV = regulator->max_uV;
211		if (*min_uV < regulator->min_uV)
212			*min_uV = regulator->min_uV;
213	}
214
215	if (*min_uV > *max_uV)
216		return -EINVAL;
217
218	return 0;
219}
220
221/* current constraint check */
222static int regulator_check_current_limit(struct regulator_dev *rdev,
223					int *min_uA, int *max_uA)
224{
225	BUG_ON(*min_uA > *max_uA);
226
227	if (!rdev->constraints) {
228		rdev_err(rdev, "no constraints\n");
229		return -ENODEV;
230	}
231	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232		rdev_err(rdev, "operation not allowed\n");
233		return -EPERM;
234	}
235
236	if (*max_uA > rdev->constraints->max_uA)
237		*max_uA = rdev->constraints->max_uA;
238	if (*min_uA < rdev->constraints->min_uA)
239		*min_uA = rdev->constraints->min_uA;
240
241	if (*min_uA > *max_uA) {
242		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243			 *min_uA, *max_uA);
244		return -EINVAL;
245	}
246
247	return 0;
248}
249
250/* operating mode constraint check */
251static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252{
253	switch (*mode) {
254	case REGULATOR_MODE_FAST:
255	case REGULATOR_MODE_NORMAL:
256	case REGULATOR_MODE_IDLE:
257	case REGULATOR_MODE_STANDBY:
258		break;
259	default:
260		rdev_err(rdev, "invalid mode %x specified\n", *mode);
261		return -EINVAL;
262	}
263
264	if (!rdev->constraints) {
265		rdev_err(rdev, "no constraints\n");
266		return -ENODEV;
267	}
268	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269		rdev_err(rdev, "operation not allowed\n");
270		return -EPERM;
271	}
272
273	/* The modes are bitmasks, the most power hungry modes having
274	 * the lowest values. If the requested mode isn't supported
275	 * try higher modes. */
276	while (*mode) {
277		if (rdev->constraints->valid_modes_mask & *mode)
278			return 0;
279		*mode /= 2;
280	}
281
282	return -EINVAL;
283}
284
285/* dynamic regulator mode switching constraint check */
286static int regulator_check_drms(struct regulator_dev *rdev)
287{
288	if (!rdev->constraints) {
289		rdev_err(rdev, "no constraints\n");
290		return -ENODEV;
291	}
292	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293		rdev_err(rdev, "operation not allowed\n");
294		return -EPERM;
295	}
296	return 0;
297}
298
299static ssize_t device_requested_uA_show(struct device *dev,
300			     struct device_attribute *attr, char *buf)
301{
302	struct regulator *regulator;
303
304	regulator = get_device_regulator(dev);
305	if (regulator == NULL)
306		return 0;
307
308	return sprintf(buf, "%d\n", regulator->uA_load);
309}
310
311static ssize_t regulator_uV_show(struct device *dev,
312				struct device_attribute *attr, char *buf)
313{
314	struct regulator_dev *rdev = dev_get_drvdata(dev);
315	ssize_t ret;
316
317	mutex_lock(&rdev->mutex);
318	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319	mutex_unlock(&rdev->mutex);
320
321	return ret;
322}
323static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325static ssize_t regulator_uA_show(struct device *dev,
326				struct device_attribute *attr, char *buf)
327{
328	struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331}
332static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334static ssize_t regulator_name_show(struct device *dev,
335			     struct device_attribute *attr, char *buf)
336{
337	struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339	return sprintf(buf, "%s\n", rdev_get_name(rdev));
340}
341
342static ssize_t regulator_print_opmode(char *buf, int mode)
343{
344	switch (mode) {
345	case REGULATOR_MODE_FAST:
346		return sprintf(buf, "fast\n");
347	case REGULATOR_MODE_NORMAL:
348		return sprintf(buf, "normal\n");
349	case REGULATOR_MODE_IDLE:
350		return sprintf(buf, "idle\n");
351	case REGULATOR_MODE_STANDBY:
352		return sprintf(buf, "standby\n");
353	}
354	return sprintf(buf, "unknown\n");
355}
356
357static ssize_t regulator_opmode_show(struct device *dev,
358				    struct device_attribute *attr, char *buf)
359{
360	struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363}
364static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366static ssize_t regulator_print_state(char *buf, int state)
367{
368	if (state > 0)
369		return sprintf(buf, "enabled\n");
370	else if (state == 0)
371		return sprintf(buf, "disabled\n");
372	else
373		return sprintf(buf, "unknown\n");
374}
375
376static ssize_t regulator_state_show(struct device *dev,
377				   struct device_attribute *attr, char *buf)
378{
379	struct regulator_dev *rdev = dev_get_drvdata(dev);
380	ssize_t ret;
381
382	mutex_lock(&rdev->mutex);
383	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384	mutex_unlock(&rdev->mutex);
385
386	return ret;
387}
388static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390static ssize_t regulator_status_show(struct device *dev,
391				   struct device_attribute *attr, char *buf)
392{
393	struct regulator_dev *rdev = dev_get_drvdata(dev);
394	int status;
395	char *label;
396
397	status = rdev->desc->ops->get_status(rdev);
398	if (status < 0)
399		return status;
400
401	switch (status) {
402	case REGULATOR_STATUS_OFF:
403		label = "off";
404		break;
405	case REGULATOR_STATUS_ON:
406		label = "on";
407		break;
408	case REGULATOR_STATUS_ERROR:
409		label = "error";
410		break;
411	case REGULATOR_STATUS_FAST:
412		label = "fast";
413		break;
414	case REGULATOR_STATUS_NORMAL:
415		label = "normal";
416		break;
417	case REGULATOR_STATUS_IDLE:
418		label = "idle";
419		break;
420	case REGULATOR_STATUS_STANDBY:
421		label = "standby";
422		break;
423	default:
424		return -ERANGE;
425	}
426
427	return sprintf(buf, "%s\n", label);
428}
429static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431static ssize_t regulator_min_uA_show(struct device *dev,
432				    struct device_attribute *attr, char *buf)
433{
434	struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436	if (!rdev->constraints)
437		return sprintf(buf, "constraint not defined\n");
438
439	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440}
441static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443static ssize_t regulator_max_uA_show(struct device *dev,
444				    struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	if (!rdev->constraints)
449		return sprintf(buf, "constraint not defined\n");
450
451	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452}
453static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455static ssize_t regulator_min_uV_show(struct device *dev,
456				    struct device_attribute *attr, char *buf)
457{
458	struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460	if (!rdev->constraints)
461		return sprintf(buf, "constraint not defined\n");
462
463	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464}
465static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467static ssize_t regulator_max_uV_show(struct device *dev,
468				    struct device_attribute *attr, char *buf)
469{
470	struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472	if (!rdev->constraints)
473		return sprintf(buf, "constraint not defined\n");
474
475	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476}
477static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479static ssize_t regulator_total_uA_show(struct device *dev,
480				      struct device_attribute *attr, char *buf)
481{
482	struct regulator_dev *rdev = dev_get_drvdata(dev);
483	struct regulator *regulator;
484	int uA = 0;
485
486	mutex_lock(&rdev->mutex);
487	list_for_each_entry(regulator, &rdev->consumer_list, list)
488		uA += regulator->uA_load;
489	mutex_unlock(&rdev->mutex);
490	return sprintf(buf, "%d\n", uA);
491}
492static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494static ssize_t regulator_num_users_show(struct device *dev,
495				      struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498	return sprintf(buf, "%d\n", rdev->use_count);
499}
500
501static ssize_t regulator_type_show(struct device *dev,
502				  struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	switch (rdev->desc->type) {
507	case REGULATOR_VOLTAGE:
508		return sprintf(buf, "voltage\n");
509	case REGULATOR_CURRENT:
510		return sprintf(buf, "current\n");
511	}
512	return sprintf(buf, "unknown\n");
513}
514
515static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516				struct device_attribute *attr, char *buf)
517{
518	struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521}
522static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523		regulator_suspend_mem_uV_show, NULL);
524
525static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526				struct device_attribute *attr, char *buf)
527{
528	struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531}
532static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533		regulator_suspend_disk_uV_show, NULL);
534
535static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536				struct device_attribute *attr, char *buf)
537{
538	struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541}
542static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543		regulator_suspend_standby_uV_show, NULL);
544
545static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546				struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_opmode(buf,
551		rdev->constraints->state_mem.mode);
552}
553static DEVICE_ATTR(suspend_mem_mode, 0444,
554		regulator_suspend_mem_mode_show, NULL);
555
556static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557				struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_opmode(buf,
562		rdev->constraints->state_disk.mode);
563}
564static DEVICE_ATTR(suspend_disk_mode, 0444,
565		regulator_suspend_disk_mode_show, NULL);
566
567static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568				struct device_attribute *attr, char *buf)
569{
570	struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572	return regulator_print_opmode(buf,
573		rdev->constraints->state_standby.mode);
574}
575static DEVICE_ATTR(suspend_standby_mode, 0444,
576		regulator_suspend_standby_mode_show, NULL);
577
578static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579				   struct device_attribute *attr, char *buf)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583	return regulator_print_state(buf,
584			rdev->constraints->state_mem.enabled);
585}
586static DEVICE_ATTR(suspend_mem_state, 0444,
587		regulator_suspend_mem_state_show, NULL);
588
589static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590				   struct device_attribute *attr, char *buf)
591{
592	struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594	return regulator_print_state(buf,
595			rdev->constraints->state_disk.enabled);
596}
597static DEVICE_ATTR(suspend_disk_state, 0444,
598		regulator_suspend_disk_state_show, NULL);
599
600static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601				   struct device_attribute *attr, char *buf)
602{
603	struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605	return regulator_print_state(buf,
606			rdev->constraints->state_standby.enabled);
607}
608static DEVICE_ATTR(suspend_standby_state, 0444,
609		regulator_suspend_standby_state_show, NULL);
610
611
612/*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616static struct device_attribute regulator_dev_attrs[] = {
617	__ATTR(name, 0444, regulator_name_show, NULL),
618	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
619	__ATTR(type, 0444, regulator_type_show, NULL),
620	__ATTR_NULL,
621};
622
623static void regulator_dev_release(struct device *dev)
624{
625	struct regulator_dev *rdev = dev_get_drvdata(dev);
626	kfree(rdev);
627}
628
629static struct class regulator_class = {
630	.name = "regulator",
631	.dev_release = regulator_dev_release,
632	.dev_attrs = regulator_dev_attrs,
633};
634
635/* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637static void drms_uA_update(struct regulator_dev *rdev)
638{
639	struct regulator *sibling;
640	int current_uA = 0, output_uV, input_uV, err;
641	unsigned int mode;
642
643	err = regulator_check_drms(rdev);
644	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645	    (!rdev->desc->ops->get_voltage &&
646	     !rdev->desc->ops->get_voltage_sel) ||
647	    !rdev->desc->ops->set_mode)
648		return;
649
650	/* get output voltage */
651	output_uV = _regulator_get_voltage(rdev);
652	if (output_uV <= 0)
653		return;
654
655	/* get input voltage */
656	input_uV = 0;
657	if (rdev->supply)
658		input_uV = _regulator_get_voltage(rdev);
659	if (input_uV <= 0)
660		input_uV = rdev->constraints->input_uV;
661	if (input_uV <= 0)
662		return;
663
664	/* calc total requested load */
665	list_for_each_entry(sibling, &rdev->consumer_list, list)
666		current_uA += sibling->uA_load;
667
668	/* now get the optimum mode for our new total regulator load */
669	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670						  output_uV, current_uA);
671
672	/* check the new mode is allowed */
673	err = regulator_mode_constrain(rdev, &mode);
674	if (err == 0)
675		rdev->desc->ops->set_mode(rdev, mode);
676}
677
678static int suspend_set_state(struct regulator_dev *rdev,
679	struct regulator_state *rstate)
680{
681	int ret = 0;
682	bool can_set_state;
683
684	can_set_state = rdev->desc->ops->set_suspend_enable &&
685		rdev->desc->ops->set_suspend_disable;
686
687	/* If we have no suspend mode configration don't set anything;
688	 * only warn if the driver actually makes the suspend mode
689	 * configurable.
690	 */
691	if (!rstate->enabled && !rstate->disabled) {
692		if (can_set_state)
693			rdev_warn(rdev, "No configuration\n");
694		return 0;
695	}
696
697	if (rstate->enabled && rstate->disabled) {
698		rdev_err(rdev, "invalid configuration\n");
699		return -EINVAL;
700	}
701
702	if (!can_set_state) {
703		rdev_err(rdev, "no way to set suspend state\n");
704		return -EINVAL;
705	}
706
707	if (rstate->enabled)
708		ret = rdev->desc->ops->set_suspend_enable(rdev);
709	else
710		ret = rdev->desc->ops->set_suspend_disable(rdev);
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	rdev_info(rdev, "%s\n", buf);
810}
811
812static int machine_constraints_voltage(struct regulator_dev *rdev,
813	struct regulation_constraints *constraints)
814{
815	struct regulator_ops *ops = rdev->desc->ops;
816	int ret;
817
818	/* do we need to apply the constraint voltage */
819	if (rdev->constraints->apply_uV &&
820	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
821		ret = _regulator_do_set_voltage(rdev,
822						rdev->constraints->min_uV,
823						rdev->constraints->max_uV);
824		if (ret < 0) {
825			rdev_err(rdev, "failed to apply %duV constraint\n",
826				 rdev->constraints->min_uV);
827			return ret;
828		}
829	}
830
831	/* constrain machine-level voltage specs to fit
832	 * the actual range supported by this regulator.
833	 */
834	if (ops->list_voltage && rdev->desc->n_voltages) {
835		int	count = rdev->desc->n_voltages;
836		int	i;
837		int	min_uV = INT_MAX;
838		int	max_uV = INT_MIN;
839		int	cmin = constraints->min_uV;
840		int	cmax = constraints->max_uV;
841
842		/* it's safe to autoconfigure fixed-voltage supplies
843		   and the constraints are used by list_voltage. */
844		if (count == 1 && !cmin) {
845			cmin = 1;
846			cmax = INT_MAX;
847			constraints->min_uV = cmin;
848			constraints->max_uV = cmax;
849		}
850
851		/* voltage constraints are optional */
852		if ((cmin == 0) && (cmax == 0))
853			return 0;
854
855		/* else require explicit machine-level constraints */
856		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857			rdev_err(rdev, "invalid voltage constraints\n");
858			return -EINVAL;
859		}
860
861		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862		for (i = 0; i < count; i++) {
863			int	value;
864
865			value = ops->list_voltage(rdev, i);
866			if (value <= 0)
867				continue;
868
869			/* maybe adjust [min_uV..max_uV] */
870			if (value >= cmin && value < min_uV)
871				min_uV = value;
872			if (value <= cmax && value > max_uV)
873				max_uV = value;
874		}
875
876		/* final: [min_uV..max_uV] valid iff constraints valid */
877		if (max_uV < min_uV) {
878			rdev_err(rdev, "unsupportable voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* use regulator's subset of machine constraints */
883		if (constraints->min_uV < min_uV) {
884			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885				 constraints->min_uV, min_uV);
886			constraints->min_uV = min_uV;
887		}
888		if (constraints->max_uV > max_uV) {
889			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890				 constraints->max_uV, max_uV);
891			constraints->max_uV = max_uV;
892		}
893	}
894
895	return 0;
896}
897
898/**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909static int set_machine_constraints(struct regulator_dev *rdev,
910	const struct regulation_constraints *constraints)
911{
912	int ret = 0;
913	struct regulator_ops *ops = rdev->desc->ops;
914
915	if (constraints)
916		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917					    GFP_KERNEL);
918	else
919		rdev->constraints = kzalloc(sizeof(*constraints),
920					    GFP_KERNEL);
921	if (!rdev->constraints)
922		return -ENOMEM;
923
924	ret = machine_constraints_voltage(rdev, rdev->constraints);
925	if (ret != 0)
926		goto out;
927
928	/* do we need to setup our suspend state */
929	if (rdev->constraints->initial_state) {
930		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931		if (ret < 0) {
932			rdev_err(rdev, "failed to set suspend state\n");
933			goto out;
934		}
935	}
936
937	if (rdev->constraints->initial_mode) {
938		if (!ops->set_mode) {
939			rdev_err(rdev, "no set_mode operation\n");
940			ret = -EINVAL;
941			goto out;
942		}
943
944		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945		if (ret < 0) {
946			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947			goto out;
948		}
949	}
950
951	/* If the constraints say the regulator should be on at this point
952	 * and we have control then make sure it is enabled.
953	 */
954	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955	    ops->enable) {
956		ret = ops->enable(rdev);
957		if (ret < 0) {
958			rdev_err(rdev, "failed to enable\n");
959			goto out;
960		}
961	}
962
963	print_constraints(rdev);
964	return 0;
965out:
966	kfree(rdev->constraints);
967	rdev->constraints = NULL;
968	return ret;
969}
970
971/**
972 * set_supply - set regulator supply regulator
973 * @rdev: regulator name
974 * @supply_rdev: supply regulator name
975 *
976 * Called by platform initialisation code to set the supply regulator for this
977 * regulator. This ensures that a regulators supply will also be enabled by the
978 * core if it's child is enabled.
979 */
980static int set_supply(struct regulator_dev *rdev,
981		      struct regulator_dev *supply_rdev)
982{
983	int err;
984
985	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988	if (rdev->supply == NULL) {
989		err = -ENOMEM;
990		return err;
991	}
992
993	return 0;
994}
995
996/**
997 * set_consumer_device_supply - Bind a regulator to a symbolic supply
998 * @rdev:         regulator source
999 * @consumer_dev: device the supply applies to
1000 * @consumer_dev_name: dev_name() string for device supply applies to
1001 * @supply:       symbolic name for supply
1002 *
1003 * Allows platform initialisation code to map physical regulator
1004 * sources to symbolic names for supplies for use by devices.  Devices
1005 * should use these symbolic names to request regulators, avoiding the
1006 * need to provide board-specific regulator names as platform data.
1007 *
1008 * Only one of consumer_dev and consumer_dev_name may be specified.
1009 */
1010static int set_consumer_device_supply(struct regulator_dev *rdev,
1011	struct device *consumer_dev, const char *consumer_dev_name,
1012	const char *supply)
1013{
1014	struct regulator_map *node;
1015	int has_dev;
1016
1017	if (consumer_dev && consumer_dev_name)
1018		return -EINVAL;
1019
1020	if (!consumer_dev_name && consumer_dev)
1021		consumer_dev_name = dev_name(consumer_dev);
1022
1023	if (supply == NULL)
1024		return -EINVAL;
1025
1026	if (consumer_dev_name != NULL)
1027		has_dev = 1;
1028	else
1029		has_dev = 0;
1030
1031	list_for_each_entry(node, &regulator_map_list, list) {
1032		if (node->dev_name && consumer_dev_name) {
1033			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034				continue;
1035		} else if (node->dev_name || consumer_dev_name) {
1036			continue;
1037		}
1038
1039		if (strcmp(node->supply, supply) != 0)
1040			continue;
1041
1042		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043			dev_name(&node->regulator->dev),
1044			node->regulator->desc->name,
1045			supply,
1046			dev_name(&rdev->dev), rdev_get_name(rdev));
1047		return -EBUSY;
1048	}
1049
1050	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051	if (node == NULL)
1052		return -ENOMEM;
1053
1054	node->regulator = rdev;
1055	node->supply = supply;
1056
1057	if (has_dev) {
1058		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059		if (node->dev_name == NULL) {
1060			kfree(node);
1061			return -ENOMEM;
1062		}
1063	}
1064
1065	list_add(&node->list, &regulator_map_list);
1066	return 0;
1067}
1068
1069static void unset_regulator_supplies(struct regulator_dev *rdev)
1070{
1071	struct regulator_map *node, *n;
1072
1073	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074		if (rdev == node->regulator) {
1075			list_del(&node->list);
1076			kfree(node->dev_name);
1077			kfree(node);
1078		}
1079	}
1080}
1081
1082#define REG_STR_SIZE	64
1083
1084static struct regulator *create_regulator(struct regulator_dev *rdev,
1085					  struct device *dev,
1086					  const char *supply_name)
1087{
1088	struct regulator *regulator;
1089	char buf[REG_STR_SIZE];
1090	int err, size;
1091
1092	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093	if (regulator == NULL)
1094		return NULL;
1095
1096	mutex_lock(&rdev->mutex);
1097	regulator->rdev = rdev;
1098	list_add(&regulator->list, &rdev->consumer_list);
1099
1100	if (dev) {
1101		/* create a 'requested_microamps_name' sysfs entry */
1102		size = scnprintf(buf, REG_STR_SIZE,
1103				 "microamps_requested_%s-%s",
1104				 dev_name(dev), supply_name);
1105		if (size >= REG_STR_SIZE)
1106			goto overflow_err;
1107
1108		regulator->dev = dev;
1109		sysfs_attr_init(&regulator->dev_attr.attr);
1110		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111		if (regulator->dev_attr.attr.name == NULL)
1112			goto attr_name_err;
1113
1114		regulator->dev_attr.attr.mode = 0444;
1115		regulator->dev_attr.show = device_requested_uA_show;
1116		err = device_create_file(dev, &regulator->dev_attr);
1117		if (err < 0) {
1118			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119			goto attr_name_err;
1120		}
1121
1122		/* also add a link to the device sysfs entry */
1123		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124				 dev->kobj.name, supply_name);
1125		if (size >= REG_STR_SIZE)
1126			goto attr_err;
1127
1128		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129		if (regulator->supply_name == NULL)
1130			goto attr_err;
1131
1132		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133					buf);
1134		if (err) {
1135			rdev_warn(rdev, "could not add device link %s err %d\n",
1136				  dev->kobj.name, err);
1137			goto link_name_err;
1138		}
1139	} else {
1140		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141		if (regulator->supply_name == NULL)
1142			goto attr_err;
1143	}
1144
1145#ifdef CONFIG_DEBUG_FS
1146	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147						rdev->debugfs);
1148	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149		rdev_warn(rdev, "Failed to create debugfs directory\n");
1150		regulator->debugfs = NULL;
1151	} else {
1152		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153				   &regulator->uA_load);
1154		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155				   &regulator->min_uV);
1156		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157				   &regulator->max_uV);
1158	}
1159#endif
1160
1161	mutex_unlock(&rdev->mutex);
1162	return regulator;
1163link_name_err:
1164	kfree(regulator->supply_name);
1165attr_err:
1166	device_remove_file(regulator->dev, &regulator->dev_attr);
1167attr_name_err:
1168	kfree(regulator->dev_attr.attr.name);
1169overflow_err:
1170	list_del(&regulator->list);
1171	kfree(regulator);
1172	mutex_unlock(&rdev->mutex);
1173	return NULL;
1174}
1175
1176static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177{
1178	if (!rdev->desc->ops->enable_time)
1179		return 0;
1180	return rdev->desc->ops->enable_time(rdev);
1181}
1182
1183static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184							 const char *supply)
1185{
1186	struct regulator_dev *r;
1187	struct device_node *node;
1188
1189	/* first do a dt based lookup */
1190	if (dev && dev->of_node) {
1191		node = of_get_regulator(dev, supply);
1192		if (node)
1193			list_for_each_entry(r, &regulator_list, list)
1194				if (r->dev.parent &&
1195					node == r->dev.of_node)
1196					return r;
1197	}
1198
1199	/* if not found, try doing it non-dt way */
1200	list_for_each_entry(r, &regulator_list, list)
1201		if (strcmp(rdev_get_name(r), supply) == 0)
1202			return r;
1203
1204	return NULL;
1205}
1206
1207/* Internal regulator request function */
1208static struct regulator *_regulator_get(struct device *dev, const char *id,
1209					int exclusive)
1210{
1211	struct regulator_dev *rdev;
1212	struct regulator_map *map;
1213	struct regulator *regulator = ERR_PTR(-ENODEV);
1214	const char *devname = NULL;
1215	int ret;
1216
1217	if (id == NULL) {
1218		pr_err("get() with no identifier\n");
1219		return regulator;
1220	}
1221
1222	if (dev)
1223		devname = dev_name(dev);
1224
1225	mutex_lock(&regulator_list_mutex);
1226
1227	rdev = regulator_dev_lookup(dev, id);
1228	if (rdev)
1229		goto found;
1230
1231	list_for_each_entry(map, &regulator_map_list, list) {
1232		/* If the mapping has a device set up it must match */
1233		if (map->dev_name &&
1234		    (!devname || strcmp(map->dev_name, devname)))
1235			continue;
1236
1237		if (strcmp(map->supply, id) == 0) {
1238			rdev = map->regulator;
1239			goto found;
1240		}
1241	}
1242
1243	if (board_wants_dummy_regulator) {
1244		rdev = dummy_regulator_rdev;
1245		goto found;
1246	}
1247
1248#ifdef CONFIG_REGULATOR_DUMMY
1249	if (!devname)
1250		devname = "deviceless";
1251
1252	/* If the board didn't flag that it was fully constrained then
1253	 * substitute in a dummy regulator so consumers can continue.
1254	 */
1255	if (!has_full_constraints) {
1256		pr_warn("%s supply %s not found, using dummy regulator\n",
1257			devname, id);
1258		rdev = dummy_regulator_rdev;
1259		goto found;
1260	}
1261#endif
1262
1263	mutex_unlock(&regulator_list_mutex);
1264	return regulator;
1265
1266found:
1267	if (rdev->exclusive) {
1268		regulator = ERR_PTR(-EPERM);
1269		goto out;
1270	}
1271
1272	if (exclusive && rdev->open_count) {
1273		regulator = ERR_PTR(-EBUSY);
1274		goto out;
1275	}
1276
1277	if (!try_module_get(rdev->owner))
1278		goto out;
1279
1280	regulator = create_regulator(rdev, dev, id);
1281	if (regulator == NULL) {
1282		regulator = ERR_PTR(-ENOMEM);
1283		module_put(rdev->owner);
1284		goto out;
1285	}
1286
1287	rdev->open_count++;
1288	if (exclusive) {
1289		rdev->exclusive = 1;
1290
1291		ret = _regulator_is_enabled(rdev);
1292		if (ret > 0)
1293			rdev->use_count = 1;
1294		else
1295			rdev->use_count = 0;
1296	}
1297
1298out:
1299	mutex_unlock(&regulator_list_mutex);
1300
1301	return regulator;
1302}
1303
1304/**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged.  It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317struct regulator *regulator_get(struct device *dev, const char *id)
1318{
1319	return _regulator_get(dev, id, 0);
1320}
1321EXPORT_SYMBOL_GPL(regulator_get);
1322
1323static void devm_regulator_release(struct device *dev, void *res)
1324{
1325	regulator_put(*(struct regulator **)res);
1326}
1327
1328/**
1329 * devm_regulator_get - Resource managed regulator_get()
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Managed regulator_get(). Regulators returned from this function are
1334 * automatically regulator_put() on driver detach. See regulator_get() for more
1335 * information.
1336 */
1337struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338{
1339	struct regulator **ptr, *regulator;
1340
1341	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342	if (!ptr)
1343		return ERR_PTR(-ENOMEM);
1344
1345	regulator = regulator_get(dev, id);
1346	if (!IS_ERR(regulator)) {
1347		*ptr = regulator;
1348		devres_add(dev, ptr);
1349	} else {
1350		devres_free(ptr);
1351	}
1352
1353	return regulator;
1354}
1355EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357/**
1358 * regulator_get_exclusive - obtain exclusive access to a regulator.
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Returns a struct regulator corresponding to the regulator producer,
1363 * or IS_ERR() condition containing errno.  Other consumers will be
1364 * unable to obtain this reference is held and the use count for the
1365 * regulator will be initialised to reflect the current state of the
1366 * regulator.
1367 *
1368 * This is intended for use by consumers which cannot tolerate shared
1369 * use of the regulator such as those which need to force the
1370 * regulator off for correct operation of the hardware they are
1371 * controlling.
1372 *
1373 * Use of supply names configured via regulator_set_device_supply() is
1374 * strongly encouraged.  It is recommended that the supply name used
1375 * should match the name used for the supply and/or the relevant
1376 * device pins in the datasheet.
1377 */
1378struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379{
1380	return _regulator_get(dev, id, 1);
1381}
1382EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384/**
1385 * regulator_put - "free" the regulator source
1386 * @regulator: regulator source
1387 *
1388 * Note: drivers must ensure that all regulator_enable calls made on this
1389 * regulator source are balanced by regulator_disable calls prior to calling
1390 * this function.
1391 */
1392void regulator_put(struct regulator *regulator)
1393{
1394	struct regulator_dev *rdev;
1395
1396	if (regulator == NULL || IS_ERR(regulator))
1397		return;
1398
1399	mutex_lock(&regulator_list_mutex);
1400	rdev = regulator->rdev;
1401
1402#ifdef CONFIG_DEBUG_FS
1403	debugfs_remove_recursive(regulator->debugfs);
1404#endif
1405
1406	/* remove any sysfs entries */
1407	if (regulator->dev) {
1408		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1409		device_remove_file(regulator->dev, &regulator->dev_attr);
1410		kfree(regulator->dev_attr.attr.name);
1411	}
1412	kfree(regulator->supply_name);
1413	list_del(&regulator->list);
1414	kfree(regulator);
1415
1416	rdev->open_count--;
1417	rdev->exclusive = 0;
1418
1419	module_put(rdev->owner);
1420	mutex_unlock(&regulator_list_mutex);
1421}
1422EXPORT_SYMBOL_GPL(regulator_put);
1423
1424static int devm_regulator_match(struct device *dev, void *res, void *data)
1425{
1426	struct regulator **r = res;
1427	if (!r || !*r) {
1428		WARN_ON(!r || !*r);
1429		return 0;
1430	}
1431	return *r == data;
1432}
1433
1434/**
1435 * devm_regulator_put - Resource managed regulator_put()
1436 * @regulator: regulator to free
1437 *
1438 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1439 * this function will not need to be called and the resource management
1440 * code will ensure that the resource is freed.
1441 */
1442void devm_regulator_put(struct regulator *regulator)
1443{
1444	int rc;
1445
1446	rc = devres_destroy(regulator->dev, devm_regulator_release,
1447			    devm_regulator_match, regulator);
1448	WARN_ON(rc);
1449}
1450EXPORT_SYMBOL_GPL(devm_regulator_put);
1451
1452static int _regulator_can_change_status(struct regulator_dev *rdev)
1453{
1454	if (!rdev->constraints)
1455		return 0;
1456
1457	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1458		return 1;
1459	else
1460		return 0;
1461}
1462
1463/* locks held by regulator_enable() */
1464static int _regulator_enable(struct regulator_dev *rdev)
1465{
1466	int ret, delay;
1467
1468	/* check voltage and requested load before enabling */
1469	if (rdev->constraints &&
1470	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471		drms_uA_update(rdev);
1472
1473	if (rdev->use_count == 0) {
1474		/* The regulator may on if it's not switchable or left on */
1475		ret = _regulator_is_enabled(rdev);
1476		if (ret == -EINVAL || ret == 0) {
1477			if (!_regulator_can_change_status(rdev))
1478				return -EPERM;
1479
1480			if (!rdev->desc->ops->enable)
1481				return -EINVAL;
1482
1483			/* Query before enabling in case configuration
1484			 * dependent.  */
1485			ret = _regulator_get_enable_time(rdev);
1486			if (ret >= 0) {
1487				delay = ret;
1488			} else {
1489				rdev_warn(rdev, "enable_time() failed: %d\n",
1490					   ret);
1491				delay = 0;
1492			}
1493
1494			trace_regulator_enable(rdev_get_name(rdev));
1495
1496			/* Allow the regulator to ramp; it would be useful
1497			 * to extend this for bulk operations so that the
1498			 * regulators can ramp together.  */
1499			ret = rdev->desc->ops->enable(rdev);
1500			if (ret < 0)
1501				return ret;
1502
1503			trace_regulator_enable_delay(rdev_get_name(rdev));
1504
1505			if (delay >= 1000) {
1506				mdelay(delay / 1000);
1507				udelay(delay % 1000);
1508			} else if (delay) {
1509				udelay(delay);
1510			}
1511
1512			trace_regulator_enable_complete(rdev_get_name(rdev));
1513
1514		} else if (ret < 0) {
1515			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1516			return ret;
1517		}
1518		/* Fallthrough on positive return values - already enabled */
1519	}
1520
1521	rdev->use_count++;
1522
1523	return 0;
1524}
1525
1526/**
1527 * regulator_enable - enable regulator output
1528 * @regulator: regulator source
1529 *
1530 * Request that the regulator be enabled with the regulator output at
1531 * the predefined voltage or current value.  Calls to regulator_enable()
1532 * must be balanced with calls to regulator_disable().
1533 *
1534 * NOTE: the output value can be set by other drivers, boot loader or may be
1535 * hardwired in the regulator.
1536 */
1537int regulator_enable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
1540	int ret = 0;
1541
1542	if (rdev->supply) {
1543		ret = regulator_enable(rdev->supply);
1544		if (ret != 0)
1545			return ret;
1546	}
1547
1548	mutex_lock(&rdev->mutex);
1549	ret = _regulator_enable(rdev);
1550	mutex_unlock(&rdev->mutex);
1551
1552	if (ret != 0 && rdev->supply)
1553		regulator_disable(rdev->supply);
1554
1555	return ret;
1556}
1557EXPORT_SYMBOL_GPL(regulator_enable);
1558
1559/* locks held by regulator_disable() */
1560static int _regulator_disable(struct regulator_dev *rdev)
1561{
1562	int ret = 0;
1563
1564	if (WARN(rdev->use_count <= 0,
1565		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1566		return -EIO;
1567
1568	/* are we the last user and permitted to disable ? */
1569	if (rdev->use_count == 1 &&
1570	    (rdev->constraints && !rdev->constraints->always_on)) {
1571
1572		/* we are last user */
1573		if (_regulator_can_change_status(rdev) &&
1574		    rdev->desc->ops->disable) {
1575			trace_regulator_disable(rdev_get_name(rdev));
1576
1577			ret = rdev->desc->ops->disable(rdev);
1578			if (ret < 0) {
1579				rdev_err(rdev, "failed to disable\n");
1580				return ret;
1581			}
1582
1583			trace_regulator_disable_complete(rdev_get_name(rdev));
1584
1585			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1586					     NULL);
1587		}
1588
1589		rdev->use_count = 0;
1590	} else if (rdev->use_count > 1) {
1591
1592		if (rdev->constraints &&
1593			(rdev->constraints->valid_ops_mask &
1594			REGULATOR_CHANGE_DRMS))
1595			drms_uA_update(rdev);
1596
1597		rdev->use_count--;
1598	}
1599
1600	return ret;
1601}
1602
1603/**
1604 * regulator_disable - disable regulator output
1605 * @regulator: regulator source
1606 *
1607 * Disable the regulator output voltage or current.  Calls to
1608 * regulator_enable() must be balanced with calls to
1609 * regulator_disable().
1610 *
1611 * NOTE: this will only disable the regulator output if no other consumer
1612 * devices have it enabled, the regulator device supports disabling and
1613 * machine constraints permit this operation.
1614 */
1615int regulator_disable(struct regulator *regulator)
1616{
1617	struct regulator_dev *rdev = regulator->rdev;
1618	int ret = 0;
1619
1620	mutex_lock(&rdev->mutex);
1621	ret = _regulator_disable(rdev);
1622	mutex_unlock(&rdev->mutex);
1623
1624	if (ret == 0 && rdev->supply)
1625		regulator_disable(rdev->supply);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL_GPL(regulator_disable);
1630
1631/* locks held by regulator_force_disable() */
1632static int _regulator_force_disable(struct regulator_dev *rdev)
1633{
1634	int ret = 0;
1635
1636	/* force disable */
1637	if (rdev->desc->ops->disable) {
1638		/* ah well, who wants to live forever... */
1639		ret = rdev->desc->ops->disable(rdev);
1640		if (ret < 0) {
1641			rdev_err(rdev, "failed to force disable\n");
1642			return ret;
1643		}
1644		/* notify other consumers that power has been forced off */
1645		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1646			REGULATOR_EVENT_DISABLE, NULL);
1647	}
1648
1649	return ret;
1650}
1651
1652/**
1653 * regulator_force_disable - force disable regulator output
1654 * @regulator: regulator source
1655 *
1656 * Forcibly disable the regulator output voltage or current.
1657 * NOTE: this *will* disable the regulator output even if other consumer
1658 * devices have it enabled. This should be used for situations when device
1659 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1660 */
1661int regulator_force_disable(struct regulator *regulator)
1662{
1663	struct regulator_dev *rdev = regulator->rdev;
1664	int ret;
1665
1666	mutex_lock(&rdev->mutex);
1667	regulator->uA_load = 0;
1668	ret = _regulator_force_disable(regulator->rdev);
1669	mutex_unlock(&rdev->mutex);
1670
1671	if (rdev->supply)
1672		while (rdev->open_count--)
1673			regulator_disable(rdev->supply);
1674
1675	return ret;
1676}
1677EXPORT_SYMBOL_GPL(regulator_force_disable);
1678
1679static void regulator_disable_work(struct work_struct *work)
1680{
1681	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1682						  disable_work.work);
1683	int count, i, ret;
1684
1685	mutex_lock(&rdev->mutex);
1686
1687	BUG_ON(!rdev->deferred_disables);
1688
1689	count = rdev->deferred_disables;
1690	rdev->deferred_disables = 0;
1691
1692	for (i = 0; i < count; i++) {
1693		ret = _regulator_disable(rdev);
1694		if (ret != 0)
1695			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1696	}
1697
1698	mutex_unlock(&rdev->mutex);
1699
1700	if (rdev->supply) {
1701		for (i = 0; i < count; i++) {
1702			ret = regulator_disable(rdev->supply);
1703			if (ret != 0) {
1704				rdev_err(rdev,
1705					 "Supply disable failed: %d\n", ret);
1706			}
1707		}
1708	}
1709}
1710
1711/**
1712 * regulator_disable_deferred - disable regulator output with delay
1713 * @regulator: regulator source
1714 * @ms: miliseconds until the regulator is disabled
1715 *
1716 * Execute regulator_disable() on the regulator after a delay.  This
1717 * is intended for use with devices that require some time to quiesce.
1718 *
1719 * NOTE: this will only disable the regulator output if no other consumer
1720 * devices have it enabled, the regulator device supports disabling and
1721 * machine constraints permit this operation.
1722 */
1723int regulator_disable_deferred(struct regulator *regulator, int ms)
1724{
1725	struct regulator_dev *rdev = regulator->rdev;
1726	int ret;
1727
1728	mutex_lock(&rdev->mutex);
1729	rdev->deferred_disables++;
1730	mutex_unlock(&rdev->mutex);
1731
1732	ret = schedule_delayed_work(&rdev->disable_work,
1733				    msecs_to_jiffies(ms));
1734	if (ret < 0)
1735		return ret;
1736	else
1737		return 0;
1738}
1739EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1740
1741static int _regulator_is_enabled(struct regulator_dev *rdev)
1742{
1743	/* If we don't know then assume that the regulator is always on */
1744	if (!rdev->desc->ops->is_enabled)
1745		return 1;
1746
1747	return rdev->desc->ops->is_enabled(rdev);
1748}
1749
1750/**
1751 * regulator_is_enabled - is the regulator output enabled
1752 * @regulator: regulator source
1753 *
1754 * Returns positive if the regulator driver backing the source/client
1755 * has requested that the device be enabled, zero if it hasn't, else a
1756 * negative errno code.
1757 *
1758 * Note that the device backing this regulator handle can have multiple
1759 * users, so it might be enabled even if regulator_enable() was never
1760 * called for this particular source.
1761 */
1762int regulator_is_enabled(struct regulator *regulator)
1763{
1764	int ret;
1765
1766	mutex_lock(&regulator->rdev->mutex);
1767	ret = _regulator_is_enabled(regulator->rdev);
1768	mutex_unlock(&regulator->rdev->mutex);
1769
1770	return ret;
1771}
1772EXPORT_SYMBOL_GPL(regulator_is_enabled);
1773
1774/**
1775 * regulator_count_voltages - count regulator_list_voltage() selectors
1776 * @regulator: regulator source
1777 *
1778 * Returns number of selectors, or negative errno.  Selectors are
1779 * numbered starting at zero, and typically correspond to bitfields
1780 * in hardware registers.
1781 */
1782int regulator_count_voltages(struct regulator *regulator)
1783{
1784	struct regulator_dev	*rdev = regulator->rdev;
1785
1786	return rdev->desc->n_voltages ? : -EINVAL;
1787}
1788EXPORT_SYMBOL_GPL(regulator_count_voltages);
1789
1790/**
1791 * regulator_list_voltage - enumerate supported voltages
1792 * @regulator: regulator source
1793 * @selector: identify voltage to list
1794 * Context: can sleep
1795 *
1796 * Returns a voltage that can be passed to @regulator_set_voltage(),
1797 * zero if this selector code can't be used on this system, or a
1798 * negative errno.
1799 */
1800int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1801{
1802	struct regulator_dev	*rdev = regulator->rdev;
1803	struct regulator_ops	*ops = rdev->desc->ops;
1804	int			ret;
1805
1806	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1807		return -EINVAL;
1808
1809	mutex_lock(&rdev->mutex);
1810	ret = ops->list_voltage(rdev, selector);
1811	mutex_unlock(&rdev->mutex);
1812
1813	if (ret > 0) {
1814		if (ret < rdev->constraints->min_uV)
1815			ret = 0;
1816		else if (ret > rdev->constraints->max_uV)
1817			ret = 0;
1818	}
1819
1820	return ret;
1821}
1822EXPORT_SYMBOL_GPL(regulator_list_voltage);
1823
1824/**
1825 * regulator_is_supported_voltage - check if a voltage range can be supported
1826 *
1827 * @regulator: Regulator to check.
1828 * @min_uV: Minimum required voltage in uV.
1829 * @max_uV: Maximum required voltage in uV.
1830 *
1831 * Returns a boolean or a negative error code.
1832 */
1833int regulator_is_supported_voltage(struct regulator *regulator,
1834				   int min_uV, int max_uV)
1835{
1836	int i, voltages, ret;
1837
1838	ret = regulator_count_voltages(regulator);
1839	if (ret < 0)
1840		return ret;
1841	voltages = ret;
1842
1843	for (i = 0; i < voltages; i++) {
1844		ret = regulator_list_voltage(regulator, i);
1845
1846		if (ret >= min_uV && ret <= max_uV)
1847			return 1;
1848	}
1849
1850	return 0;
1851}
1852EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1853
1854static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1855				     int min_uV, int max_uV)
1856{
1857	int ret;
1858	int delay = 0;
1859	unsigned int selector;
1860
1861	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1862
1863	min_uV += rdev->constraints->uV_offset;
1864	max_uV += rdev->constraints->uV_offset;
1865
1866	if (rdev->desc->ops->set_voltage) {
1867		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1868						   &selector);
1869
1870		if (rdev->desc->ops->list_voltage)
1871			selector = rdev->desc->ops->list_voltage(rdev,
1872								 selector);
1873		else
1874			selector = -1;
1875	} else if (rdev->desc->ops->set_voltage_sel) {
1876		int best_val = INT_MAX;
1877		int i;
1878
1879		selector = 0;
1880
1881		/* Find the smallest voltage that falls within the specified
1882		 * range.
1883		 */
1884		for (i = 0; i < rdev->desc->n_voltages; i++) {
1885			ret = rdev->desc->ops->list_voltage(rdev, i);
1886			if (ret < 0)
1887				continue;
1888
1889			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1890				best_val = ret;
1891				selector = i;
1892			}
1893		}
1894
1895		/*
1896		 * If we can't obtain the old selector there is not enough
1897		 * info to call set_voltage_time_sel().
1898		 */
1899		if (rdev->desc->ops->set_voltage_time_sel &&
1900		    rdev->desc->ops->get_voltage_sel) {
1901			unsigned int old_selector = 0;
1902
1903			ret = rdev->desc->ops->get_voltage_sel(rdev);
1904			if (ret < 0)
1905				return ret;
1906			old_selector = ret;
1907			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1908						old_selector, selector);
1909		}
1910
1911		if (best_val != INT_MAX) {
1912			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1913			selector = best_val;
1914		} else {
1915			ret = -EINVAL;
1916		}
1917	} else {
1918		ret = -EINVAL;
1919	}
1920
1921	/* Insert any necessary delays */
1922	if (delay >= 1000) {
1923		mdelay(delay / 1000);
1924		udelay(delay % 1000);
1925	} else if (delay) {
1926		udelay(delay);
1927	}
1928
1929	if (ret == 0)
1930		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1931				     NULL);
1932
1933	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1934
1935	return ret;
1936}
1937
1938/**
1939 * regulator_set_voltage - set regulator output voltage
1940 * @regulator: regulator source
1941 * @min_uV: Minimum required voltage in uV
1942 * @max_uV: Maximum acceptable voltage in uV
1943 *
1944 * Sets a voltage regulator to the desired output voltage. This can be set
1945 * during any regulator state. IOW, regulator can be disabled or enabled.
1946 *
1947 * If the regulator is enabled then the voltage will change to the new value
1948 * immediately otherwise if the regulator is disabled the regulator will
1949 * output at the new voltage when enabled.
1950 *
1951 * NOTE: If the regulator is shared between several devices then the lowest
1952 * request voltage that meets the system constraints will be used.
1953 * Regulator system constraints must be set for this regulator before
1954 * calling this function otherwise this call will fail.
1955 */
1956int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1957{
1958	struct regulator_dev *rdev = regulator->rdev;
1959	int ret = 0;
1960
1961	mutex_lock(&rdev->mutex);
1962
1963	/* If we're setting the same range as last time the change
1964	 * should be a noop (some cpufreq implementations use the same
1965	 * voltage for multiple frequencies, for example).
1966	 */
1967	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1968		goto out;
1969
1970	/* sanity check */
1971	if (!rdev->desc->ops->set_voltage &&
1972	    !rdev->desc->ops->set_voltage_sel) {
1973		ret = -EINVAL;
1974		goto out;
1975	}
1976
1977	/* constraints check */
1978	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1979	if (ret < 0)
1980		goto out;
1981	regulator->min_uV = min_uV;
1982	regulator->max_uV = max_uV;
1983
1984	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1985	if (ret < 0)
1986		goto out;
1987
1988	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1989
1990out:
1991	mutex_unlock(&rdev->mutex);
1992	return ret;
1993}
1994EXPORT_SYMBOL_GPL(regulator_set_voltage);
1995
1996/**
1997 * regulator_set_voltage_time - get raise/fall time
1998 * @regulator: regulator source
1999 * @old_uV: starting voltage in microvolts
2000 * @new_uV: target voltage in microvolts
2001 *
2002 * Provided with the starting and ending voltage, this function attempts to
2003 * calculate the time in microseconds required to rise or fall to this new
2004 * voltage.
2005 */
2006int regulator_set_voltage_time(struct regulator *regulator,
2007			       int old_uV, int new_uV)
2008{
2009	struct regulator_dev	*rdev = regulator->rdev;
2010	struct regulator_ops	*ops = rdev->desc->ops;
2011	int old_sel = -1;
2012	int new_sel = -1;
2013	int voltage;
2014	int i;
2015
2016	/* Currently requires operations to do this */
2017	if (!ops->list_voltage || !ops->set_voltage_time_sel
2018	    || !rdev->desc->n_voltages)
2019		return -EINVAL;
2020
2021	for (i = 0; i < rdev->desc->n_voltages; i++) {
2022		/* We only look for exact voltage matches here */
2023		voltage = regulator_list_voltage(regulator, i);
2024		if (voltage < 0)
2025			return -EINVAL;
2026		if (voltage == 0)
2027			continue;
2028		if (voltage == old_uV)
2029			old_sel = i;
2030		if (voltage == new_uV)
2031			new_sel = i;
2032	}
2033
2034	if (old_sel < 0 || new_sel < 0)
2035		return -EINVAL;
2036
2037	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2038}
2039EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2040
2041/**
2042 * regulator_sync_voltage - re-apply last regulator output voltage
2043 * @regulator: regulator source
2044 *
2045 * Re-apply the last configured voltage.  This is intended to be used
2046 * where some external control source the consumer is cooperating with
2047 * has caused the configured voltage to change.
2048 */
2049int regulator_sync_voltage(struct regulator *regulator)
2050{
2051	struct regulator_dev *rdev = regulator->rdev;
2052	int ret, min_uV, max_uV;
2053
2054	mutex_lock(&rdev->mutex);
2055
2056	if (!rdev->desc->ops->set_voltage &&
2057	    !rdev->desc->ops->set_voltage_sel) {
2058		ret = -EINVAL;
2059		goto out;
2060	}
2061
2062	/* This is only going to work if we've had a voltage configured. */
2063	if (!regulator->min_uV && !regulator->max_uV) {
2064		ret = -EINVAL;
2065		goto out;
2066	}
2067
2068	min_uV = regulator->min_uV;
2069	max_uV = regulator->max_uV;
2070
2071	/* This should be a paranoia check... */
2072	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2073	if (ret < 0)
2074		goto out;
2075
2076	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2077	if (ret < 0)
2078		goto out;
2079
2080	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2081
2082out:
2083	mutex_unlock(&rdev->mutex);
2084	return ret;
2085}
2086EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2087
2088static int _regulator_get_voltage(struct regulator_dev *rdev)
2089{
2090	int sel, ret;
2091
2092	if (rdev->desc->ops->get_voltage_sel) {
2093		sel = rdev->desc->ops->get_voltage_sel(rdev);
2094		if (sel < 0)
2095			return sel;
2096		ret = rdev->desc->ops->list_voltage(rdev, sel);
2097	} else if (rdev->desc->ops->get_voltage) {
2098		ret = rdev->desc->ops->get_voltage(rdev);
2099	} else {
2100		return -EINVAL;
2101	}
2102
2103	if (ret < 0)
2104		return ret;
2105	return ret - rdev->constraints->uV_offset;
2106}
2107
2108/**
2109 * regulator_get_voltage - get regulator output voltage
2110 * @regulator: regulator source
2111 *
2112 * This returns the current regulator voltage in uV.
2113 *
2114 * NOTE: If the regulator is disabled it will return the voltage value. This
2115 * function should not be used to determine regulator state.
2116 */
2117int regulator_get_voltage(struct regulator *regulator)
2118{
2119	int ret;
2120
2121	mutex_lock(&regulator->rdev->mutex);
2122
2123	ret = _regulator_get_voltage(regulator->rdev);
2124
2125	mutex_unlock(&regulator->rdev->mutex);
2126
2127	return ret;
2128}
2129EXPORT_SYMBOL_GPL(regulator_get_voltage);
2130
2131/**
2132 * regulator_set_current_limit - set regulator output current limit
2133 * @regulator: regulator source
2134 * @min_uA: Minimuum supported current in uA
2135 * @max_uA: Maximum supported current in uA
2136 *
2137 * Sets current sink to the desired output current. This can be set during
2138 * any regulator state. IOW, regulator can be disabled or enabled.
2139 *
2140 * If the regulator is enabled then the current will change to the new value
2141 * immediately otherwise if the regulator is disabled the regulator will
2142 * output at the new current when enabled.
2143 *
2144 * NOTE: Regulator system constraints must be set for this regulator before
2145 * calling this function otherwise this call will fail.
2146 */
2147int regulator_set_current_limit(struct regulator *regulator,
2148			       int min_uA, int max_uA)
2149{
2150	struct regulator_dev *rdev = regulator->rdev;
2151	int ret;
2152
2153	mutex_lock(&rdev->mutex);
2154
2155	/* sanity check */
2156	if (!rdev->desc->ops->set_current_limit) {
2157		ret = -EINVAL;
2158		goto out;
2159	}
2160
2161	/* constraints check */
2162	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2163	if (ret < 0)
2164		goto out;
2165
2166	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2167out:
2168	mutex_unlock(&rdev->mutex);
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2172
2173static int _regulator_get_current_limit(struct regulator_dev *rdev)
2174{
2175	int ret;
2176
2177	mutex_lock(&rdev->mutex);
2178
2179	/* sanity check */
2180	if (!rdev->desc->ops->get_current_limit) {
2181		ret = -EINVAL;
2182		goto out;
2183	}
2184
2185	ret = rdev->desc->ops->get_current_limit(rdev);
2186out:
2187	mutex_unlock(&rdev->mutex);
2188	return ret;
2189}
2190
2191/**
2192 * regulator_get_current_limit - get regulator output current
2193 * @regulator: regulator source
2194 *
2195 * This returns the current supplied by the specified current sink in uA.
2196 *
2197 * NOTE: If the regulator is disabled it will return the current value. This
2198 * function should not be used to determine regulator state.
2199 */
2200int regulator_get_current_limit(struct regulator *regulator)
2201{
2202	return _regulator_get_current_limit(regulator->rdev);
2203}
2204EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2205
2206/**
2207 * regulator_set_mode - set regulator operating mode
2208 * @regulator: regulator source
2209 * @mode: operating mode - one of the REGULATOR_MODE constants
2210 *
2211 * Set regulator operating mode to increase regulator efficiency or improve
2212 * regulation performance.
2213 *
2214 * NOTE: Regulator system constraints must be set for this regulator before
2215 * calling this function otherwise this call will fail.
2216 */
2217int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2218{
2219	struct regulator_dev *rdev = regulator->rdev;
2220	int ret;
2221	int regulator_curr_mode;
2222
2223	mutex_lock(&rdev->mutex);
2224
2225	/* sanity check */
2226	if (!rdev->desc->ops->set_mode) {
2227		ret = -EINVAL;
2228		goto out;
2229	}
2230
2231	/* return if the same mode is requested */
2232	if (rdev->desc->ops->get_mode) {
2233		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2234		if (regulator_curr_mode == mode) {
2235			ret = 0;
2236			goto out;
2237		}
2238	}
2239
2240	/* constraints check */
2241	ret = regulator_mode_constrain(rdev, &mode);
2242	if (ret < 0)
2243		goto out;
2244
2245	ret = rdev->desc->ops->set_mode(rdev, mode);
2246out:
2247	mutex_unlock(&rdev->mutex);
2248	return ret;
2249}
2250EXPORT_SYMBOL_GPL(regulator_set_mode);
2251
2252static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2253{
2254	int ret;
2255
2256	mutex_lock(&rdev->mutex);
2257
2258	/* sanity check */
2259	if (!rdev->desc->ops->get_mode) {
2260		ret = -EINVAL;
2261		goto out;
2262	}
2263
2264	ret = rdev->desc->ops->get_mode(rdev);
2265out:
2266	mutex_unlock(&rdev->mutex);
2267	return ret;
2268}
2269
2270/**
2271 * regulator_get_mode - get regulator operating mode
2272 * @regulator: regulator source
2273 *
2274 * Get the current regulator operating mode.
2275 */
2276unsigned int regulator_get_mode(struct regulator *regulator)
2277{
2278	return _regulator_get_mode(regulator->rdev);
2279}
2280EXPORT_SYMBOL_GPL(regulator_get_mode);
2281
2282/**
2283 * regulator_set_optimum_mode - set regulator optimum operating mode
2284 * @regulator: regulator source
2285 * @uA_load: load current
2286 *
2287 * Notifies the regulator core of a new device load. This is then used by
2288 * DRMS (if enabled by constraints) to set the most efficient regulator
2289 * operating mode for the new regulator loading.
2290 *
2291 * Consumer devices notify their supply regulator of the maximum power
2292 * they will require (can be taken from device datasheet in the power
2293 * consumption tables) when they change operational status and hence power
2294 * state. Examples of operational state changes that can affect power
2295 * consumption are :-
2296 *
2297 *    o Device is opened / closed.
2298 *    o Device I/O is about to begin or has just finished.
2299 *    o Device is idling in between work.
2300 *
2301 * This information is also exported via sysfs to userspace.
2302 *
2303 * DRMS will sum the total requested load on the regulator and change
2304 * to the most efficient operating mode if platform constraints allow.
2305 *
2306 * Returns the new regulator mode or error.
2307 */
2308int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2309{
2310	struct regulator_dev *rdev = regulator->rdev;
2311	struct regulator *consumer;
2312	int ret, output_uV, input_uV, total_uA_load = 0;
2313	unsigned int mode;
2314
2315	mutex_lock(&rdev->mutex);
2316
2317	/*
2318	 * first check to see if we can set modes at all, otherwise just
2319	 * tell the consumer everything is OK.
2320	 */
2321	regulator->uA_load = uA_load;
2322	ret = regulator_check_drms(rdev);
2323	if (ret < 0) {
2324		ret = 0;
2325		goto out;
2326	}
2327
2328	if (!rdev->desc->ops->get_optimum_mode)
2329		goto out;
2330
2331	/*
2332	 * we can actually do this so any errors are indicators of
2333	 * potential real failure.
2334	 */
2335	ret = -EINVAL;
2336
2337	/* get output voltage */
2338	output_uV = _regulator_get_voltage(rdev);
2339	if (output_uV <= 0) {
2340		rdev_err(rdev, "invalid output voltage found\n");
2341		goto out;
2342	}
2343
2344	/* get input voltage */
2345	input_uV = 0;
2346	if (rdev->supply)
2347		input_uV = regulator_get_voltage(rdev->supply);
2348	if (input_uV <= 0)
2349		input_uV = rdev->constraints->input_uV;
2350	if (input_uV <= 0) {
2351		rdev_err(rdev, "invalid input voltage found\n");
2352		goto out;
2353	}
2354
2355	/* calc total requested load for this regulator */
2356	list_for_each_entry(consumer, &rdev->consumer_list, list)
2357		total_uA_load += consumer->uA_load;
2358
2359	mode = rdev->desc->ops->get_optimum_mode(rdev,
2360						 input_uV, output_uV,
2361						 total_uA_load);
2362	ret = regulator_mode_constrain(rdev, &mode);
2363	if (ret < 0) {
2364		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2365			 total_uA_load, input_uV, output_uV);
2366		goto out;
2367	}
2368
2369	ret = rdev->desc->ops->set_mode(rdev, mode);
2370	if (ret < 0) {
2371		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2372		goto out;
2373	}
2374	ret = mode;
2375out:
2376	mutex_unlock(&rdev->mutex);
2377	return ret;
2378}
2379EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2380
2381/**
2382 * regulator_register_notifier - register regulator event notifier
2383 * @regulator: regulator source
2384 * @nb: notifier block
2385 *
2386 * Register notifier block to receive regulator events.
2387 */
2388int regulator_register_notifier(struct regulator *regulator,
2389			      struct notifier_block *nb)
2390{
2391	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2392						nb);
2393}
2394EXPORT_SYMBOL_GPL(regulator_register_notifier);
2395
2396/**
2397 * regulator_unregister_notifier - unregister regulator event notifier
2398 * @regulator: regulator source
2399 * @nb: notifier block
2400 *
2401 * Unregister regulator event notifier block.
2402 */
2403int regulator_unregister_notifier(struct regulator *regulator,
2404				struct notifier_block *nb)
2405{
2406	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2407						  nb);
2408}
2409EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2410
2411/* notify regulator consumers and downstream regulator consumers.
2412 * Note mutex must be held by caller.
2413 */
2414static void _notifier_call_chain(struct regulator_dev *rdev,
2415				  unsigned long event, void *data)
2416{
2417	/* call rdev chain first */
2418	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2419}
2420
2421/**
2422 * regulator_bulk_get - get multiple regulator consumers
2423 *
2424 * @dev:           Device to supply
2425 * @num_consumers: Number of consumers to register
2426 * @consumers:     Configuration of consumers; clients are stored here.
2427 *
2428 * @return 0 on success, an errno on failure.
2429 *
2430 * This helper function allows drivers to get several regulator
2431 * consumers in one operation.  If any of the regulators cannot be
2432 * acquired then any regulators that were allocated will be freed
2433 * before returning to the caller.
2434 */
2435int regulator_bulk_get(struct device *dev, int num_consumers,
2436		       struct regulator_bulk_data *consumers)
2437{
2438	int i;
2439	int ret;
2440
2441	for (i = 0; i < num_consumers; i++)
2442		consumers[i].consumer = NULL;
2443
2444	for (i = 0; i < num_consumers; i++) {
2445		consumers[i].consumer = regulator_get(dev,
2446						      consumers[i].supply);
2447		if (IS_ERR(consumers[i].consumer)) {
2448			ret = PTR_ERR(consumers[i].consumer);
2449			dev_err(dev, "Failed to get supply '%s': %d\n",
2450				consumers[i].supply, ret);
2451			consumers[i].consumer = NULL;
2452			goto err;
2453		}
2454	}
2455
2456	return 0;
2457
2458err:
2459	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2460		regulator_put(consumers[i].consumer);
2461
2462	return ret;
2463}
2464EXPORT_SYMBOL_GPL(regulator_bulk_get);
2465
2466/**
2467 * devm_regulator_bulk_get - managed get multiple regulator consumers
2468 *
2469 * @dev:           Device to supply
2470 * @num_consumers: Number of consumers to register
2471 * @consumers:     Configuration of consumers; clients are stored here.
2472 *
2473 * @return 0 on success, an errno on failure.
2474 *
2475 * This helper function allows drivers to get several regulator
2476 * consumers in one operation with management, the regulators will
2477 * automatically be freed when the device is unbound.  If any of the
2478 * regulators cannot be acquired then any regulators that were
2479 * allocated will be freed before returning to the caller.
2480 */
2481int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2482			    struct regulator_bulk_data *consumers)
2483{
2484	int i;
2485	int ret;
2486
2487	for (i = 0; i < num_consumers; i++)
2488		consumers[i].consumer = NULL;
2489
2490	for (i = 0; i < num_consumers; i++) {
2491		consumers[i].consumer = devm_regulator_get(dev,
2492							   consumers[i].supply);
2493		if (IS_ERR(consumers[i].consumer)) {
2494			ret = PTR_ERR(consumers[i].consumer);
2495			dev_err(dev, "Failed to get supply '%s': %d\n",
2496				consumers[i].supply, ret);
2497			consumers[i].consumer = NULL;
2498			goto err;
2499		}
2500	}
2501
2502	return 0;
2503
2504err:
2505	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2506		devm_regulator_put(consumers[i].consumer);
2507
2508	return ret;
2509}
2510EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2511
2512static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2513{
2514	struct regulator_bulk_data *bulk = data;
2515
2516	bulk->ret = regulator_enable(bulk->consumer);
2517}
2518
2519/**
2520 * regulator_bulk_enable - enable multiple regulator consumers
2521 *
2522 * @num_consumers: Number of consumers
2523 * @consumers:     Consumer data; clients are stored here.
2524 * @return         0 on success, an errno on failure
2525 *
2526 * This convenience API allows consumers to enable multiple regulator
2527 * clients in a single API call.  If any consumers cannot be enabled
2528 * then any others that were enabled will be disabled again prior to
2529 * return.
2530 */
2531int regulator_bulk_enable(int num_consumers,
2532			  struct regulator_bulk_data *consumers)
2533{
2534	LIST_HEAD(async_domain);
2535	int i;
2536	int ret = 0;
2537
2538	for (i = 0; i < num_consumers; i++)
2539		async_schedule_domain(regulator_bulk_enable_async,
2540				      &consumers[i], &async_domain);
2541
2542	async_synchronize_full_domain(&async_domain);
2543
2544	/* If any consumer failed we need to unwind any that succeeded */
2545	for (i = 0; i < num_consumers; i++) {
2546		if (consumers[i].ret != 0) {
2547			ret = consumers[i].ret;
2548			goto err;
2549		}
2550	}
2551
2552	return 0;
2553
2554err:
2555	for (i = 0; i < num_consumers; i++)
2556		if (consumers[i].ret == 0)
2557			regulator_disable(consumers[i].consumer);
2558		else
2559			pr_err("Failed to enable %s: %d\n",
2560			       consumers[i].supply, consumers[i].ret);
2561
2562	return ret;
2563}
2564EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2565
2566/**
2567 * regulator_bulk_disable - disable multiple regulator consumers
2568 *
2569 * @num_consumers: Number of consumers
2570 * @consumers:     Consumer data; clients are stored here.
2571 * @return         0 on success, an errno on failure
2572 *
2573 * This convenience API allows consumers to disable multiple regulator
2574 * clients in a single API call.  If any consumers cannot be enabled
2575 * then any others that were disabled will be disabled again prior to
2576 * return.
2577 */
2578int regulator_bulk_disable(int num_consumers,
2579			   struct regulator_bulk_data *consumers)
2580{
2581	int i;
2582	int ret;
2583
2584	for (i = 0; i < num_consumers; i++) {
2585		ret = regulator_disable(consumers[i].consumer);
2586		if (ret != 0)
2587			goto err;
2588	}
2589
2590	return 0;
2591
2592err:
2593	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2594	for (--i; i >= 0; --i)
2595		regulator_enable(consumers[i].consumer);
2596
2597	return ret;
2598}
2599EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2600
2601/**
2602 * regulator_bulk_force_disable - force disable multiple regulator consumers
2603 *
2604 * @num_consumers: Number of consumers
2605 * @consumers:     Consumer data; clients are stored here.
2606 * @return         0 on success, an errno on failure
2607 *
2608 * This convenience API allows consumers to forcibly disable multiple regulator
2609 * clients in a single API call.
2610 * NOTE: This should be used for situations when device damage will
2611 * likely occur if the regulators are not disabled (e.g. over temp).
2612 * Although regulator_force_disable function call for some consumers can
2613 * return error numbers, the function is called for all consumers.
2614 */
2615int regulator_bulk_force_disable(int num_consumers,
2616			   struct regulator_bulk_data *consumers)
2617{
2618	int i;
2619	int ret;
2620
2621	for (i = 0; i < num_consumers; i++)
2622		consumers[i].ret =
2623			    regulator_force_disable(consumers[i].consumer);
2624
2625	for (i = 0; i < num_consumers; i++) {
2626		if (consumers[i].ret != 0) {
2627			ret = consumers[i].ret;
2628			goto out;
2629		}
2630	}
2631
2632	return 0;
2633out:
2634	return ret;
2635}
2636EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2637
2638/**
2639 * regulator_bulk_free - free multiple regulator consumers
2640 *
2641 * @num_consumers: Number of consumers
2642 * @consumers:     Consumer data; clients are stored here.
2643 *
2644 * This convenience API allows consumers to free multiple regulator
2645 * clients in a single API call.
2646 */
2647void regulator_bulk_free(int num_consumers,
2648			 struct regulator_bulk_data *consumers)
2649{
2650	int i;
2651
2652	for (i = 0; i < num_consumers; i++) {
2653		regulator_put(consumers[i].consumer);
2654		consumers[i].consumer = NULL;
2655	}
2656}
2657EXPORT_SYMBOL_GPL(regulator_bulk_free);
2658
2659/**
2660 * regulator_notifier_call_chain - call regulator event notifier
2661 * @rdev: regulator source
2662 * @event: notifier block
2663 * @data: callback-specific data.
2664 *
2665 * Called by regulator drivers to notify clients a regulator event has
2666 * occurred. We also notify regulator clients downstream.
2667 * Note lock must be held by caller.
2668 */
2669int regulator_notifier_call_chain(struct regulator_dev *rdev,
2670				  unsigned long event, void *data)
2671{
2672	_notifier_call_chain(rdev, event, data);
2673	return NOTIFY_DONE;
2674
2675}
2676EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2677
2678/**
2679 * regulator_mode_to_status - convert a regulator mode into a status
2680 *
2681 * @mode: Mode to convert
2682 *
2683 * Convert a regulator mode into a status.
2684 */
2685int regulator_mode_to_status(unsigned int mode)
2686{
2687	switch (mode) {
2688	case REGULATOR_MODE_FAST:
2689		return REGULATOR_STATUS_FAST;
2690	case REGULATOR_MODE_NORMAL:
2691		return REGULATOR_STATUS_NORMAL;
2692	case REGULATOR_MODE_IDLE:
2693		return REGULATOR_STATUS_IDLE;
2694	case REGULATOR_STATUS_STANDBY:
2695		return REGULATOR_STATUS_STANDBY;
2696	default:
2697		return 0;
2698	}
2699}
2700EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2701
2702/*
2703 * To avoid cluttering sysfs (and memory) with useless state, only
2704 * create attributes that can be meaningfully displayed.
2705 */
2706static int add_regulator_attributes(struct regulator_dev *rdev)
2707{
2708	struct device		*dev = &rdev->dev;
2709	struct regulator_ops	*ops = rdev->desc->ops;
2710	int			status = 0;
2711
2712	/* some attributes need specific methods to be displayed */
2713	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2714	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2715		status = device_create_file(dev, &dev_attr_microvolts);
2716		if (status < 0)
2717			return status;
2718	}
2719	if (ops->get_current_limit) {
2720		status = device_create_file(dev, &dev_attr_microamps);
2721		if (status < 0)
2722			return status;
2723	}
2724	if (ops->get_mode) {
2725		status = device_create_file(dev, &dev_attr_opmode);
2726		if (status < 0)
2727			return status;
2728	}
2729	if (ops->is_enabled) {
2730		status = device_create_file(dev, &dev_attr_state);
2731		if (status < 0)
2732			return status;
2733	}
2734	if (ops->get_status) {
2735		status = device_create_file(dev, &dev_attr_status);
2736		if (status < 0)
2737			return status;
2738	}
2739
2740	/* some attributes are type-specific */
2741	if (rdev->desc->type == REGULATOR_CURRENT) {
2742		status = device_create_file(dev, &dev_attr_requested_microamps);
2743		if (status < 0)
2744			return status;
2745	}
2746
2747	/* all the other attributes exist to support constraints;
2748	 * don't show them if there are no constraints, or if the
2749	 * relevant supporting methods are missing.
2750	 */
2751	if (!rdev->constraints)
2752		return status;
2753
2754	/* constraints need specific supporting methods */
2755	if (ops->set_voltage || ops->set_voltage_sel) {
2756		status = device_create_file(dev, &dev_attr_min_microvolts);
2757		if (status < 0)
2758			return status;
2759		status = device_create_file(dev, &dev_attr_max_microvolts);
2760		if (status < 0)
2761			return status;
2762	}
2763	if (ops->set_current_limit) {
2764		status = device_create_file(dev, &dev_attr_min_microamps);
2765		if (status < 0)
2766			return status;
2767		status = device_create_file(dev, &dev_attr_max_microamps);
2768		if (status < 0)
2769			return status;
2770	}
2771
2772	/* suspend mode constraints need multiple supporting methods */
2773	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2774		return status;
2775
2776	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2777	if (status < 0)
2778		return status;
2779	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2780	if (status < 0)
2781		return status;
2782	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2783	if (status < 0)
2784		return status;
2785
2786	if (ops->set_suspend_voltage) {
2787		status = device_create_file(dev,
2788				&dev_attr_suspend_standby_microvolts);
2789		if (status < 0)
2790			return status;
2791		status = device_create_file(dev,
2792				&dev_attr_suspend_mem_microvolts);
2793		if (status < 0)
2794			return status;
2795		status = device_create_file(dev,
2796				&dev_attr_suspend_disk_microvolts);
2797		if (status < 0)
2798			return status;
2799	}
2800
2801	if (ops->set_suspend_mode) {
2802		status = device_create_file(dev,
2803				&dev_attr_suspend_standby_mode);
2804		if (status < 0)
2805			return status;
2806		status = device_create_file(dev,
2807				&dev_attr_suspend_mem_mode);
2808		if (status < 0)
2809			return status;
2810		status = device_create_file(dev,
2811				&dev_attr_suspend_disk_mode);
2812		if (status < 0)
2813			return status;
2814	}
2815
2816	return status;
2817}
2818
2819static void rdev_init_debugfs(struct regulator_dev *rdev)
2820{
2821#ifdef CONFIG_DEBUG_FS
2822	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2823	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2824		rdev_warn(rdev, "Failed to create debugfs directory\n");
2825		rdev->debugfs = NULL;
2826		return;
2827	}
2828
2829	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2830			   &rdev->use_count);
2831	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2832			   &rdev->open_count);
2833#endif
2834}
2835
2836/**
2837 * regulator_register - register regulator
2838 * @regulator_desc: regulator to register
2839 * @dev: struct device for the regulator
2840 * @init_data: platform provided init data, passed through by driver
2841 * @driver_data: private regulator data
2842 *
2843 * Called by regulator drivers to register a regulator.
2844 * Returns 0 on success.
2845 */
2846struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2847	struct device *dev, const struct regulator_init_data *init_data,
2848	void *driver_data, struct device_node *of_node)
2849{
2850	const struct regulation_constraints *constraints = NULL;
2851	static atomic_t regulator_no = ATOMIC_INIT(0);
2852	struct regulator_dev *rdev;
2853	int ret, i;
2854	const char *supply = NULL;
2855
2856	if (regulator_desc == NULL)
2857		return ERR_PTR(-EINVAL);
2858
2859	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2860		return ERR_PTR(-EINVAL);
2861
2862	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2863	    regulator_desc->type != REGULATOR_CURRENT)
2864		return ERR_PTR(-EINVAL);
2865
2866	/* Only one of each should be implemented */
2867	WARN_ON(regulator_desc->ops->get_voltage &&
2868		regulator_desc->ops->get_voltage_sel);
2869	WARN_ON(regulator_desc->ops->set_voltage &&
2870		regulator_desc->ops->set_voltage_sel);
2871
2872	/* If we're using selectors we must implement list_voltage. */
2873	if (regulator_desc->ops->get_voltage_sel &&
2874	    !regulator_desc->ops->list_voltage) {
2875		return ERR_PTR(-EINVAL);
2876	}
2877	if (regulator_desc->ops->set_voltage_sel &&
2878	    !regulator_desc->ops->list_voltage) {
2879		return ERR_PTR(-EINVAL);
2880	}
2881
2882	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2883	if (rdev == NULL)
2884		return ERR_PTR(-ENOMEM);
2885
2886	mutex_lock(&regulator_list_mutex);
2887
2888	mutex_init(&rdev->mutex);
2889	rdev->reg_data = driver_data;
2890	rdev->owner = regulator_desc->owner;
2891	rdev->desc = regulator_desc;
2892	INIT_LIST_HEAD(&rdev->consumer_list);
2893	INIT_LIST_HEAD(&rdev->list);
2894	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2895	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2896
2897	/* preform any regulator specific init */
2898	if (init_data && init_data->regulator_init) {
2899		ret = init_data->regulator_init(rdev->reg_data);
2900		if (ret < 0)
2901			goto clean;
2902	}
2903
2904	/* register with sysfs */
2905	rdev->dev.class = &regulator_class;
2906	rdev->dev.of_node = of_node;
2907	rdev->dev.parent = dev;
2908	dev_set_name(&rdev->dev, "regulator.%d",
2909		     atomic_inc_return(&regulator_no) - 1);
2910	ret = device_register(&rdev->dev);
2911	if (ret != 0) {
2912		put_device(&rdev->dev);
2913		goto clean;
2914	}
2915
2916	dev_set_drvdata(&rdev->dev, rdev);
2917
2918	/* set regulator constraints */
2919	if (init_data)
2920		constraints = &init_data->constraints;
2921
2922	ret = set_machine_constraints(rdev, constraints);
2923	if (ret < 0)
2924		goto scrub;
2925
2926	/* add attributes supported by this regulator */
2927	ret = add_regulator_attributes(rdev);
2928	if (ret < 0)
2929		goto scrub;
2930
2931	if (init_data && init_data->supply_regulator)
2932		supply = init_data->supply_regulator;
2933	else if (regulator_desc->supply_name)
2934		supply = regulator_desc->supply_name;
2935
2936	if (supply) {
2937		struct regulator_dev *r;
2938
2939		r = regulator_dev_lookup(dev, supply);
2940
2941		if (!r) {
2942			dev_err(dev, "Failed to find supply %s\n", supply);
2943			ret = -ENODEV;
2944			goto scrub;
2945		}
2946
2947		ret = set_supply(rdev, r);
2948		if (ret < 0)
2949			goto scrub;
2950
2951		/* Enable supply if rail is enabled */
2952		if (rdev->desc->ops->is_enabled &&
2953				rdev->desc->ops->is_enabled(rdev)) {
2954			ret = regulator_enable(rdev->supply);
2955			if (ret < 0)
2956				goto scrub;
2957		}
2958	}
2959
2960	/* add consumers devices */
2961	if (init_data) {
2962		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2963			ret = set_consumer_device_supply(rdev,
2964				init_data->consumer_supplies[i].dev,
2965				init_data->consumer_supplies[i].dev_name,
2966				init_data->consumer_supplies[i].supply);
2967			if (ret < 0) {
2968				dev_err(dev, "Failed to set supply %s\n",
2969					init_data->consumer_supplies[i].supply);
2970				goto unset_supplies;
2971			}
2972		}
2973	}
2974
2975	list_add(&rdev->list, &regulator_list);
2976
2977	rdev_init_debugfs(rdev);
2978out:
2979	mutex_unlock(&regulator_list_mutex);
2980	return rdev;
2981
2982unset_supplies:
2983	unset_regulator_supplies(rdev);
2984
2985scrub:
2986	kfree(rdev->constraints);
2987	device_unregister(&rdev->dev);
2988	/* device core frees rdev */
2989	rdev = ERR_PTR(ret);
2990	goto out;
2991
2992clean:
2993	kfree(rdev);
2994	rdev = ERR_PTR(ret);
2995	goto out;
2996}
2997EXPORT_SYMBOL_GPL(regulator_register);
2998
2999/**
3000 * regulator_unregister - unregister regulator
3001 * @rdev: regulator to unregister
3002 *
3003 * Called by regulator drivers to unregister a regulator.
3004 */
3005void regulator_unregister(struct regulator_dev *rdev)
3006{
3007	if (rdev == NULL)
3008		return;
3009
3010	mutex_lock(&regulator_list_mutex);
3011#ifdef CONFIG_DEBUG_FS
3012	debugfs_remove_recursive(rdev->debugfs);
3013#endif
3014	flush_work_sync(&rdev->disable_work.work);
3015	WARN_ON(rdev->open_count);
3016	unset_regulator_supplies(rdev);
3017	list_del(&rdev->list);
3018	if (rdev->supply)
3019		regulator_put(rdev->supply);
3020	kfree(rdev->constraints);
3021	device_unregister(&rdev->dev);
3022	mutex_unlock(&regulator_list_mutex);
3023}
3024EXPORT_SYMBOL_GPL(regulator_unregister);
3025
3026/**
3027 * regulator_suspend_prepare - prepare regulators for system wide suspend
3028 * @state: system suspend state
3029 *
3030 * Configure each regulator with it's suspend operating parameters for state.
3031 * This will usually be called by machine suspend code prior to supending.
3032 */
3033int regulator_suspend_prepare(suspend_state_t state)
3034{
3035	struct regulator_dev *rdev;
3036	int ret = 0;
3037
3038	/* ON is handled by regulator active state */
3039	if (state == PM_SUSPEND_ON)
3040		return -EINVAL;
3041
3042	mutex_lock(&regulator_list_mutex);
3043	list_for_each_entry(rdev, &regulator_list, list) {
3044
3045		mutex_lock(&rdev->mutex);
3046		ret = suspend_prepare(rdev, state);
3047		mutex_unlock(&rdev->mutex);
3048
3049		if (ret < 0) {
3050			rdev_err(rdev, "failed to prepare\n");
3051			goto out;
3052		}
3053	}
3054out:
3055	mutex_unlock(&regulator_list_mutex);
3056	return ret;
3057}
3058EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3059
3060/**
3061 * regulator_suspend_finish - resume regulators from system wide suspend
3062 *
3063 * Turn on regulators that might be turned off by regulator_suspend_prepare
3064 * and that should be turned on according to the regulators properties.
3065 */
3066int regulator_suspend_finish(void)
3067{
3068	struct regulator_dev *rdev;
3069	int ret = 0, error;
3070
3071	mutex_lock(&regulator_list_mutex);
3072	list_for_each_entry(rdev, &regulator_list, list) {
3073		struct regulator_ops *ops = rdev->desc->ops;
3074
3075		mutex_lock(&rdev->mutex);
3076		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3077				ops->enable) {
3078			error = ops->enable(rdev);
3079			if (error)
3080				ret = error;
3081		} else {
3082			if (!has_full_constraints)
3083				goto unlock;
3084			if (!ops->disable)
3085				goto unlock;
3086			if (ops->is_enabled && !ops->is_enabled(rdev))
3087				goto unlock;
3088
3089			error = ops->disable(rdev);
3090			if (error)
3091				ret = error;
3092		}
3093unlock:
3094		mutex_unlock(&rdev->mutex);
3095	}
3096	mutex_unlock(&regulator_list_mutex);
3097	return ret;
3098}
3099EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3100
3101/**
3102 * regulator_has_full_constraints - the system has fully specified constraints
3103 *
3104 * Calling this function will cause the regulator API to disable all
3105 * regulators which have a zero use count and don't have an always_on
3106 * constraint in a late_initcall.
3107 *
3108 * The intention is that this will become the default behaviour in a
3109 * future kernel release so users are encouraged to use this facility
3110 * now.
3111 */
3112void regulator_has_full_constraints(void)
3113{
3114	has_full_constraints = 1;
3115}
3116EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3117
3118/**
3119 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3120 *
3121 * Calling this function will cause the regulator API to provide a
3122 * dummy regulator to consumers if no physical regulator is found,
3123 * allowing most consumers to proceed as though a regulator were
3124 * configured.  This allows systems such as those with software
3125 * controllable regulators for the CPU core only to be brought up more
3126 * readily.
3127 */
3128void regulator_use_dummy_regulator(void)
3129{
3130	board_wants_dummy_regulator = true;
3131}
3132EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3133
3134/**
3135 * rdev_get_drvdata - get rdev regulator driver data
3136 * @rdev: regulator
3137 *
3138 * Get rdev regulator driver private data. This call can be used in the
3139 * regulator driver context.
3140 */
3141void *rdev_get_drvdata(struct regulator_dev *rdev)
3142{
3143	return rdev->reg_data;
3144}
3145EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3146
3147/**
3148 * regulator_get_drvdata - get regulator driver data
3149 * @regulator: regulator
3150 *
3151 * Get regulator driver private data. This call can be used in the consumer
3152 * driver context when non API regulator specific functions need to be called.
3153 */
3154void *regulator_get_drvdata(struct regulator *regulator)
3155{
3156	return regulator->rdev->reg_data;
3157}
3158EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3159
3160/**
3161 * regulator_set_drvdata - set regulator driver data
3162 * @regulator: regulator
3163 * @data: data
3164 */
3165void regulator_set_drvdata(struct regulator *regulator, void *data)
3166{
3167	regulator->rdev->reg_data = data;
3168}
3169EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3170
3171/**
3172 * regulator_get_id - get regulator ID
3173 * @rdev: regulator
3174 */
3175int rdev_get_id(struct regulator_dev *rdev)
3176{
3177	return rdev->desc->id;
3178}
3179EXPORT_SYMBOL_GPL(rdev_get_id);
3180
3181struct device *rdev_get_dev(struct regulator_dev *rdev)
3182{
3183	return &rdev->dev;
3184}
3185EXPORT_SYMBOL_GPL(rdev_get_dev);
3186
3187void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3188{
3189	return reg_init_data->driver_data;
3190}
3191EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3192
3193#ifdef CONFIG_DEBUG_FS
3194static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3195				    size_t count, loff_t *ppos)
3196{
3197	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3198	ssize_t len, ret = 0;
3199	struct regulator_map *map;
3200
3201	if (!buf)
3202		return -ENOMEM;
3203
3204	list_for_each_entry(map, &regulator_map_list, list) {
3205		len = snprintf(buf + ret, PAGE_SIZE - ret,
3206			       "%s -> %s.%s\n",
3207			       rdev_get_name(map->regulator), map->dev_name,
3208			       map->supply);
3209		if (len >= 0)
3210			ret += len;
3211		if (ret > PAGE_SIZE) {
3212			ret = PAGE_SIZE;
3213			break;
3214		}
3215	}
3216
3217	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3218
3219	kfree(buf);
3220
3221	return ret;
3222}
3223
3224static const struct file_operations supply_map_fops = {
3225	.read = supply_map_read_file,
3226	.llseek = default_llseek,
3227};
3228#endif
3229
3230static int __init regulator_init(void)
3231{
3232	int ret;
3233
3234	ret = class_register(&regulator_class);
3235
3236#ifdef CONFIG_DEBUG_FS
3237	debugfs_root = debugfs_create_dir("regulator", NULL);
3238	if (IS_ERR(debugfs_root) || !debugfs_root) {
3239		pr_warn("regulator: Failed to create debugfs directory\n");
3240		debugfs_root = NULL;
3241	}
3242
3243	if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3244				       NULL, &supply_map_fops)))
3245		pr_warn("regulator: Failed to create supplies debugfs\n");
3246#endif
3247
3248	regulator_dummy_init();
3249
3250	return ret;
3251}
3252
3253/* init early to allow our consumers to complete system booting */
3254core_initcall(regulator_init);
3255
3256static int __init regulator_init_complete(void)
3257{
3258	struct regulator_dev *rdev;
3259	struct regulator_ops *ops;
3260	struct regulation_constraints *c;
3261	int enabled, ret;
3262
3263	mutex_lock(&regulator_list_mutex);
3264
3265	/* If we have a full configuration then disable any regulators
3266	 * which are not in use or always_on.  This will become the
3267	 * default behaviour in the future.
3268	 */
3269	list_for_each_entry(rdev, &regulator_list, list) {
3270		ops = rdev->desc->ops;
3271		c = rdev->constraints;
3272
3273		if (!ops->disable || (c && c->always_on))
3274			continue;
3275
3276		mutex_lock(&rdev->mutex);
3277
3278		if (rdev->use_count)
3279			goto unlock;
3280
3281		/* If we can't read the status assume it's on. */
3282		if (ops->is_enabled)
3283			enabled = ops->is_enabled(rdev);
3284		else
3285			enabled = 1;
3286
3287		if (!enabled)
3288			goto unlock;
3289
3290		if (has_full_constraints) {
3291			/* We log since this may kill the system if it
3292			 * goes wrong. */
3293			rdev_info(rdev, "disabling\n");
3294			ret = ops->disable(rdev);
3295			if (ret != 0) {
3296				rdev_err(rdev, "couldn't disable: %d\n", ret);
3297			}
3298		} else {
3299			/* The intention is that in future we will
3300			 * assume that full constraints are provided
3301			 * so warn even if we aren't going to do
3302			 * anything here.
3303			 */
3304			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3305		}
3306
3307unlock:
3308		mutex_unlock(&rdev->mutex);
3309	}
3310
3311	mutex_unlock(&regulator_list_mutex);
3312
3313	return 0;
3314}
3315late_initcall(regulator_init_complete);
3316