core.c revision f19b00da8ed37db4e3891fe534fcf3a605a0e562
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static LIST_HEAD(regulator_ena_gpio_list);
55static bool has_full_constraints;
56static bool board_wants_dummy_regulator;
57
58static struct dentry *debugfs_root;
59
60/*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65struct regulator_map {
66	struct list_head list;
67	const char *dev_name;   /* The dev_name() for the consumer */
68	const char *supply;
69	struct regulator_dev *regulator;
70};
71
72/*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77struct regulator_enable_gpio {
78	struct list_head list;
79	int gpio;
80	u32 enable_count;	/* a number of enabled shared GPIO */
81	u32 request_count;	/* a number of requested shared GPIO */
82	unsigned int ena_gpio_invert:1;
83};
84
85/*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90struct regulator {
91	struct device *dev;
92	struct list_head list;
93	unsigned int always_on:1;
94	unsigned int bypass:1;
95	int uA_load;
96	int min_uV;
97	int max_uV;
98	char *supply_name;
99	struct device_attribute dev_attr;
100	struct regulator_dev *rdev;
101	struct dentry *debugfs;
102};
103
104static int _regulator_is_enabled(struct regulator_dev *rdev);
105static int _regulator_disable(struct regulator_dev *rdev);
106static int _regulator_get_voltage(struct regulator_dev *rdev);
107static int _regulator_get_current_limit(struct regulator_dev *rdev);
108static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109static void _notifier_call_chain(struct regulator_dev *rdev,
110				  unsigned long event, void *data);
111static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112				     int min_uV, int max_uV);
113static struct regulator *create_regulator(struct regulator_dev *rdev,
114					  struct device *dev,
115					  const char *supply_name);
116
117static const char *rdev_get_name(struct regulator_dev *rdev)
118{
119	if (rdev->constraints && rdev->constraints->name)
120		return rdev->constraints->name;
121	else if (rdev->desc->name)
122		return rdev->desc->name;
123	else
124		return "";
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * retruns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138	struct device_node *regnode = NULL;
139	char prop_name[32]; /* 32 is max size of property name */
140
141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143	snprintf(prop_name, 32, "%s-supply", supply);
144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146	if (!regnode) {
147		dev_dbg(dev, "Looking up %s property in node %s failed",
148				prop_name, dev->of_node->full_name);
149		return NULL;
150	}
151	return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156	if (!rdev->constraints)
157		return 0;
158
159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160		return 1;
161	else
162		return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167				   int *min_uV, int *max_uV)
168{
169	BUG_ON(*min_uV > *max_uV);
170
171	if (!rdev->constraints) {
172		rdev_err(rdev, "no constraints\n");
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176		rdev_err(rdev, "operation not allowed\n");
177		return -EPERM;
178	}
179
180	if (*max_uV > rdev->constraints->max_uV)
181		*max_uV = rdev->constraints->max_uV;
182	if (*min_uV < rdev->constraints->min_uV)
183		*min_uV = rdev->constraints->min_uV;
184
185	if (*min_uV > *max_uV) {
186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187			 *min_uV, *max_uV);
188		return -EINVAL;
189	}
190
191	return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198				     int *min_uV, int *max_uV)
199{
200	struct regulator *regulator;
201
202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203		/*
204		 * Assume consumers that didn't say anything are OK
205		 * with anything in the constraint range.
206		 */
207		if (!regulator->min_uV && !regulator->max_uV)
208			continue;
209
210		if (*max_uV > regulator->max_uV)
211			*max_uV = regulator->max_uV;
212		if (*min_uV < regulator->min_uV)
213			*min_uV = regulator->min_uV;
214	}
215
216	if (*min_uV > *max_uV) {
217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218			*min_uV, *max_uV);
219		return -EINVAL;
220	}
221
222	return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227					int *min_uA, int *max_uA)
228{
229	BUG_ON(*min_uA > *max_uA);
230
231	if (!rdev->constraints) {
232		rdev_err(rdev, "no constraints\n");
233		return -ENODEV;
234	}
235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236		rdev_err(rdev, "operation not allowed\n");
237		return -EPERM;
238	}
239
240	if (*max_uA > rdev->constraints->max_uA)
241		*max_uA = rdev->constraints->max_uA;
242	if (*min_uA < rdev->constraints->min_uA)
243		*min_uA = rdev->constraints->min_uA;
244
245	if (*min_uA > *max_uA) {
246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247			 *min_uA, *max_uA);
248		return -EINVAL;
249	}
250
251	return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257	switch (*mode) {
258	case REGULATOR_MODE_FAST:
259	case REGULATOR_MODE_NORMAL:
260	case REGULATOR_MODE_IDLE:
261	case REGULATOR_MODE_STANDBY:
262		break;
263	default:
264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265		return -EINVAL;
266	}
267
268	if (!rdev->constraints) {
269		rdev_err(rdev, "no constraints\n");
270		return -ENODEV;
271	}
272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273		rdev_err(rdev, "operation not allowed\n");
274		return -EPERM;
275	}
276
277	/* The modes are bitmasks, the most power hungry modes having
278	 * the lowest values. If the requested mode isn't supported
279	 * try higher modes. */
280	while (*mode) {
281		if (rdev->constraints->valid_modes_mask & *mode)
282			return 0;
283		*mode /= 2;
284	}
285
286	return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292	if (!rdev->constraints) {
293		rdev_err(rdev, "no constraints\n");
294		return -ENODEV;
295	}
296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297		rdev_err(rdev, "operation not allowed\n");
298		return -EPERM;
299	}
300	return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307	ssize_t ret;
308
309	mutex_lock(&rdev->mutex);
310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311	mutex_unlock(&rdev->mutex);
312
313	return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318				struct device_attribute *attr, char *buf)
319{
320	struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t regulator_name_show(struct device *dev,
327			     struct device_attribute *attr, char *buf)
328{
329	struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333
334static ssize_t regulator_print_opmode(char *buf, int mode)
335{
336	switch (mode) {
337	case REGULATOR_MODE_FAST:
338		return sprintf(buf, "fast\n");
339	case REGULATOR_MODE_NORMAL:
340		return sprintf(buf, "normal\n");
341	case REGULATOR_MODE_IDLE:
342		return sprintf(buf, "idle\n");
343	case REGULATOR_MODE_STANDBY:
344		return sprintf(buf, "standby\n");
345	}
346	return sprintf(buf, "unknown\n");
347}
348
349static ssize_t regulator_opmode_show(struct device *dev,
350				    struct device_attribute *attr, char *buf)
351{
352	struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355}
356static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358static ssize_t regulator_print_state(char *buf, int state)
359{
360	if (state > 0)
361		return sprintf(buf, "enabled\n");
362	else if (state == 0)
363		return sprintf(buf, "disabled\n");
364	else
365		return sprintf(buf, "unknown\n");
366}
367
368static ssize_t regulator_state_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	ssize_t ret;
373
374	mutex_lock(&rdev->mutex);
375	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376	mutex_unlock(&rdev->mutex);
377
378	return ret;
379}
380static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382static ssize_t regulator_status_show(struct device *dev,
383				   struct device_attribute *attr, char *buf)
384{
385	struct regulator_dev *rdev = dev_get_drvdata(dev);
386	int status;
387	char *label;
388
389	status = rdev->desc->ops->get_status(rdev);
390	if (status < 0)
391		return status;
392
393	switch (status) {
394	case REGULATOR_STATUS_OFF:
395		label = "off";
396		break;
397	case REGULATOR_STATUS_ON:
398		label = "on";
399		break;
400	case REGULATOR_STATUS_ERROR:
401		label = "error";
402		break;
403	case REGULATOR_STATUS_FAST:
404		label = "fast";
405		break;
406	case REGULATOR_STATUS_NORMAL:
407		label = "normal";
408		break;
409	case REGULATOR_STATUS_IDLE:
410		label = "idle";
411		break;
412	case REGULATOR_STATUS_STANDBY:
413		label = "standby";
414		break;
415	case REGULATOR_STATUS_BYPASS:
416		label = "bypass";
417		break;
418	case REGULATOR_STATUS_UNDEFINED:
419		label = "undefined";
420		break;
421	default:
422		return -ERANGE;
423	}
424
425	return sprintf(buf, "%s\n", label);
426}
427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429static ssize_t regulator_min_uA_show(struct device *dev,
430				    struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434	if (!rdev->constraints)
435		return sprintf(buf, "constraint not defined\n");
436
437	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438}
439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441static ssize_t regulator_max_uA_show(struct device *dev,
442				    struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	if (!rdev->constraints)
447		return sprintf(buf, "constraint not defined\n");
448
449	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450}
451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453static ssize_t regulator_min_uV_show(struct device *dev,
454				    struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	if (!rdev->constraints)
459		return sprintf(buf, "constraint not defined\n");
460
461	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462}
463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465static ssize_t regulator_max_uV_show(struct device *dev,
466				    struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	if (!rdev->constraints)
471		return sprintf(buf, "constraint not defined\n");
472
473	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474}
475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477static ssize_t regulator_total_uA_show(struct device *dev,
478				      struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481	struct regulator *regulator;
482	int uA = 0;
483
484	mutex_lock(&rdev->mutex);
485	list_for_each_entry(regulator, &rdev->consumer_list, list)
486		uA += regulator->uA_load;
487	mutex_unlock(&rdev->mutex);
488	return sprintf(buf, "%d\n", uA);
489}
490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492static ssize_t regulator_num_users_show(struct device *dev,
493				      struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496	return sprintf(buf, "%d\n", rdev->use_count);
497}
498
499static ssize_t regulator_type_show(struct device *dev,
500				  struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	switch (rdev->desc->type) {
505	case REGULATOR_VOLTAGE:
506		return sprintf(buf, "voltage\n");
507	case REGULATOR_CURRENT:
508		return sprintf(buf, "current\n");
509	}
510	return sprintf(buf, "unknown\n");
511}
512
513static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514				struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519}
520static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521		regulator_suspend_mem_uV_show, NULL);
522
523static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529}
530static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531		regulator_suspend_disk_uV_show, NULL);
532
533static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534				struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539}
540static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541		regulator_suspend_standby_uV_show, NULL);
542
543static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544				struct device_attribute *attr, char *buf)
545{
546	struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548	return regulator_print_opmode(buf,
549		rdev->constraints->state_mem.mode);
550}
551static DEVICE_ATTR(suspend_mem_mode, 0444,
552		regulator_suspend_mem_mode_show, NULL);
553
554static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555				struct device_attribute *attr, char *buf)
556{
557	struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559	return regulator_print_opmode(buf,
560		rdev->constraints->state_disk.mode);
561}
562static DEVICE_ATTR(suspend_disk_mode, 0444,
563		regulator_suspend_disk_mode_show, NULL);
564
565static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566				struct device_attribute *attr, char *buf)
567{
568	struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570	return regulator_print_opmode(buf,
571		rdev->constraints->state_standby.mode);
572}
573static DEVICE_ATTR(suspend_standby_mode, 0444,
574		regulator_suspend_standby_mode_show, NULL);
575
576static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577				   struct device_attribute *attr, char *buf)
578{
579	struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581	return regulator_print_state(buf,
582			rdev->constraints->state_mem.enabled);
583}
584static DEVICE_ATTR(suspend_mem_state, 0444,
585		regulator_suspend_mem_state_show, NULL);
586
587static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588				   struct device_attribute *attr, char *buf)
589{
590	struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592	return regulator_print_state(buf,
593			rdev->constraints->state_disk.enabled);
594}
595static DEVICE_ATTR(suspend_disk_state, 0444,
596		regulator_suspend_disk_state_show, NULL);
597
598static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599				   struct device_attribute *attr, char *buf)
600{
601	struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603	return regulator_print_state(buf,
604			rdev->constraints->state_standby.enabled);
605}
606static DEVICE_ATTR(suspend_standby_state, 0444,
607		regulator_suspend_standby_state_show, NULL);
608
609static ssize_t regulator_bypass_show(struct device *dev,
610				     struct device_attribute *attr, char *buf)
611{
612	struct regulator_dev *rdev = dev_get_drvdata(dev);
613	const char *report;
614	bool bypass;
615	int ret;
616
617	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619	if (ret != 0)
620		report = "unknown";
621	else if (bypass)
622		report = "enabled";
623	else
624		report = "disabled";
625
626	return sprintf(buf, "%s\n", report);
627}
628static DEVICE_ATTR(bypass, 0444,
629		   regulator_bypass_show, NULL);
630
631/*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635static struct device_attribute regulator_dev_attrs[] = {
636	__ATTR(name, 0444, regulator_name_show, NULL),
637	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
638	__ATTR(type, 0444, regulator_type_show, NULL),
639	__ATTR_NULL,
640};
641
642static void regulator_dev_release(struct device *dev)
643{
644	struct regulator_dev *rdev = dev_get_drvdata(dev);
645	kfree(rdev);
646}
647
648static struct class regulator_class = {
649	.name = "regulator",
650	.dev_release = regulator_dev_release,
651	.dev_attrs = regulator_dev_attrs,
652};
653
654/* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656static void drms_uA_update(struct regulator_dev *rdev)
657{
658	struct regulator *sibling;
659	int current_uA = 0, output_uV, input_uV, err;
660	unsigned int mode;
661
662	err = regulator_check_drms(rdev);
663	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664	    (!rdev->desc->ops->get_voltage &&
665	     !rdev->desc->ops->get_voltage_sel) ||
666	    !rdev->desc->ops->set_mode)
667		return;
668
669	/* get output voltage */
670	output_uV = _regulator_get_voltage(rdev);
671	if (output_uV <= 0)
672		return;
673
674	/* get input voltage */
675	input_uV = 0;
676	if (rdev->supply)
677		input_uV = regulator_get_voltage(rdev->supply);
678	if (input_uV <= 0)
679		input_uV = rdev->constraints->input_uV;
680	if (input_uV <= 0)
681		return;
682
683	/* calc total requested load */
684	list_for_each_entry(sibling, &rdev->consumer_list, list)
685		current_uA += sibling->uA_load;
686
687	/* now get the optimum mode for our new total regulator load */
688	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689						  output_uV, current_uA);
690
691	/* check the new mode is allowed */
692	err = regulator_mode_constrain(rdev, &mode);
693	if (err == 0)
694		rdev->desc->ops->set_mode(rdev, mode);
695}
696
697static int suspend_set_state(struct regulator_dev *rdev,
698	struct regulator_state *rstate)
699{
700	int ret = 0;
701
702	/* If we have no suspend mode configration don't set anything;
703	 * only warn if the driver implements set_suspend_voltage or
704	 * set_suspend_mode callback.
705	 */
706	if (!rstate->enabled && !rstate->disabled) {
707		if (rdev->desc->ops->set_suspend_voltage ||
708		    rdev->desc->ops->set_suspend_mode)
709			rdev_warn(rdev, "No configuration\n");
710		return 0;
711	}
712
713	if (rstate->enabled && rstate->disabled) {
714		rdev_err(rdev, "invalid configuration\n");
715		return -EINVAL;
716	}
717
718	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719		ret = rdev->desc->ops->set_suspend_enable(rdev);
720	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721		ret = rdev->desc->ops->set_suspend_disable(rdev);
722	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723		ret = 0;
724
725	if (ret < 0) {
726		rdev_err(rdev, "failed to enabled/disable\n");
727		return ret;
728	}
729
730	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732		if (ret < 0) {
733			rdev_err(rdev, "failed to set voltage\n");
734			return ret;
735		}
736	}
737
738	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740		if (ret < 0) {
741			rdev_err(rdev, "failed to set mode\n");
742			return ret;
743		}
744	}
745	return ret;
746}
747
748/* locks held by caller */
749static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750{
751	if (!rdev->constraints)
752		return -EINVAL;
753
754	switch (state) {
755	case PM_SUSPEND_STANDBY:
756		return suspend_set_state(rdev,
757			&rdev->constraints->state_standby);
758	case PM_SUSPEND_MEM:
759		return suspend_set_state(rdev,
760			&rdev->constraints->state_mem);
761	case PM_SUSPEND_MAX:
762		return suspend_set_state(rdev,
763			&rdev->constraints->state_disk);
764	default:
765		return -EINVAL;
766	}
767}
768
769static void print_constraints(struct regulator_dev *rdev)
770{
771	struct regulation_constraints *constraints = rdev->constraints;
772	char buf[80] = "";
773	int count = 0;
774	int ret;
775
776	if (constraints->min_uV && constraints->max_uV) {
777		if (constraints->min_uV == constraints->max_uV)
778			count += sprintf(buf + count, "%d mV ",
779					 constraints->min_uV / 1000);
780		else
781			count += sprintf(buf + count, "%d <--> %d mV ",
782					 constraints->min_uV / 1000,
783					 constraints->max_uV / 1000);
784	}
785
786	if (!constraints->min_uV ||
787	    constraints->min_uV != constraints->max_uV) {
788		ret = _regulator_get_voltage(rdev);
789		if (ret > 0)
790			count += sprintf(buf + count, "at %d mV ", ret / 1000);
791	}
792
793	if (constraints->uV_offset)
794		count += sprintf(buf, "%dmV offset ",
795				 constraints->uV_offset / 1000);
796
797	if (constraints->min_uA && constraints->max_uA) {
798		if (constraints->min_uA == constraints->max_uA)
799			count += sprintf(buf + count, "%d mA ",
800					 constraints->min_uA / 1000);
801		else
802			count += sprintf(buf + count, "%d <--> %d mA ",
803					 constraints->min_uA / 1000,
804					 constraints->max_uA / 1000);
805	}
806
807	if (!constraints->min_uA ||
808	    constraints->min_uA != constraints->max_uA) {
809		ret = _regulator_get_current_limit(rdev);
810		if (ret > 0)
811			count += sprintf(buf + count, "at %d mA ", ret / 1000);
812	}
813
814	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815		count += sprintf(buf + count, "fast ");
816	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817		count += sprintf(buf + count, "normal ");
818	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819		count += sprintf(buf + count, "idle ");
820	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821		count += sprintf(buf + count, "standby");
822
823	if (!count)
824		sprintf(buf, "no parameters");
825
826	rdev_info(rdev, "%s\n", buf);
827
828	if ((constraints->min_uV != constraints->max_uV) &&
829	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830		rdev_warn(rdev,
831			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832}
833
834static int machine_constraints_voltage(struct regulator_dev *rdev,
835	struct regulation_constraints *constraints)
836{
837	struct regulator_ops *ops = rdev->desc->ops;
838	int ret;
839
840	/* do we need to apply the constraint voltage */
841	if (rdev->constraints->apply_uV &&
842	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
843		ret = _regulator_do_set_voltage(rdev,
844						rdev->constraints->min_uV,
845						rdev->constraints->max_uV);
846		if (ret < 0) {
847			rdev_err(rdev, "failed to apply %duV constraint\n",
848				 rdev->constraints->min_uV);
849			return ret;
850		}
851	}
852
853	/* constrain machine-level voltage specs to fit
854	 * the actual range supported by this regulator.
855	 */
856	if (ops->list_voltage && rdev->desc->n_voltages) {
857		int	count = rdev->desc->n_voltages;
858		int	i;
859		int	min_uV = INT_MAX;
860		int	max_uV = INT_MIN;
861		int	cmin = constraints->min_uV;
862		int	cmax = constraints->max_uV;
863
864		/* it's safe to autoconfigure fixed-voltage supplies
865		   and the constraints are used by list_voltage. */
866		if (count == 1 && !cmin) {
867			cmin = 1;
868			cmax = INT_MAX;
869			constraints->min_uV = cmin;
870			constraints->max_uV = cmax;
871		}
872
873		/* voltage constraints are optional */
874		if ((cmin == 0) && (cmax == 0))
875			return 0;
876
877		/* else require explicit machine-level constraints */
878		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879			rdev_err(rdev, "invalid voltage constraints\n");
880			return -EINVAL;
881		}
882
883		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884		for (i = 0; i < count; i++) {
885			int	value;
886
887			value = ops->list_voltage(rdev, i);
888			if (value <= 0)
889				continue;
890
891			/* maybe adjust [min_uV..max_uV] */
892			if (value >= cmin && value < min_uV)
893				min_uV = value;
894			if (value <= cmax && value > max_uV)
895				max_uV = value;
896		}
897
898		/* final: [min_uV..max_uV] valid iff constraints valid */
899		if (max_uV < min_uV) {
900			rdev_err(rdev,
901				 "unsupportable voltage constraints %u-%uuV\n",
902				 min_uV, max_uV);
903			return -EINVAL;
904		}
905
906		/* use regulator's subset of machine constraints */
907		if (constraints->min_uV < min_uV) {
908			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909				 constraints->min_uV, min_uV);
910			constraints->min_uV = min_uV;
911		}
912		if (constraints->max_uV > max_uV) {
913			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914				 constraints->max_uV, max_uV);
915			constraints->max_uV = max_uV;
916		}
917	}
918
919	return 0;
920}
921
922/**
923 * set_machine_constraints - sets regulator constraints
924 * @rdev: regulator source
925 * @constraints: constraints to apply
926 *
927 * Allows platform initialisation code to define and constrain
928 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
929 * Constraints *must* be set by platform code in order for some
930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
931 * set_mode.
932 */
933static int set_machine_constraints(struct regulator_dev *rdev,
934	const struct regulation_constraints *constraints)
935{
936	int ret = 0;
937	struct regulator_ops *ops = rdev->desc->ops;
938
939	if (constraints)
940		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941					    GFP_KERNEL);
942	else
943		rdev->constraints = kzalloc(sizeof(*constraints),
944					    GFP_KERNEL);
945	if (!rdev->constraints)
946		return -ENOMEM;
947
948	ret = machine_constraints_voltage(rdev, rdev->constraints);
949	if (ret != 0)
950		goto out;
951
952	/* do we need to setup our suspend state */
953	if (rdev->constraints->initial_state) {
954		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to set suspend state\n");
957			goto out;
958		}
959	}
960
961	if (rdev->constraints->initial_mode) {
962		if (!ops->set_mode) {
963			rdev_err(rdev, "no set_mode operation\n");
964			ret = -EINVAL;
965			goto out;
966		}
967
968		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969		if (ret < 0) {
970			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971			goto out;
972		}
973	}
974
975	/* If the constraints say the regulator should be on at this point
976	 * and we have control then make sure it is enabled.
977	 */
978	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979	    ops->enable) {
980		ret = ops->enable(rdev);
981		if (ret < 0) {
982			rdev_err(rdev, "failed to enable\n");
983			goto out;
984		}
985	}
986
987	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989		if (ret < 0) {
990			rdev_err(rdev, "failed to set ramp_delay\n");
991			goto out;
992		}
993	}
994
995	print_constraints(rdev);
996	return 0;
997out:
998	kfree(rdev->constraints);
999	rdev->constraints = NULL;
1000	return ret;
1001}
1002
1003/**
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1007 *
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1011 */
1012static int set_supply(struct regulator_dev *rdev,
1013		      struct regulator_dev *supply_rdev)
1014{
1015	int err;
1016
1017	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020	if (rdev->supply == NULL) {
1021		err = -ENOMEM;
1022		return err;
1023	}
1024	supply_rdev->open_count++;
1025
1026	return 0;
1027}
1028
1029/**
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev:         regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply:       symbolic name for supply
1034 *
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices.  Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1039 */
1040static int set_consumer_device_supply(struct regulator_dev *rdev,
1041				      const char *consumer_dev_name,
1042				      const char *supply)
1043{
1044	struct regulator_map *node;
1045	int has_dev;
1046
1047	if (supply == NULL)
1048		return -EINVAL;
1049
1050	if (consumer_dev_name != NULL)
1051		has_dev = 1;
1052	else
1053		has_dev = 0;
1054
1055	list_for_each_entry(node, &regulator_map_list, list) {
1056		if (node->dev_name && consumer_dev_name) {
1057			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058				continue;
1059		} else if (node->dev_name || consumer_dev_name) {
1060			continue;
1061		}
1062
1063		if (strcmp(node->supply, supply) != 0)
1064			continue;
1065
1066		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067			 consumer_dev_name,
1068			 dev_name(&node->regulator->dev),
1069			 node->regulator->desc->name,
1070			 supply,
1071			 dev_name(&rdev->dev), rdev_get_name(rdev));
1072		return -EBUSY;
1073	}
1074
1075	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076	if (node == NULL)
1077		return -ENOMEM;
1078
1079	node->regulator = rdev;
1080	node->supply = supply;
1081
1082	if (has_dev) {
1083		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084		if (node->dev_name == NULL) {
1085			kfree(node);
1086			return -ENOMEM;
1087		}
1088	}
1089
1090	list_add(&node->list, &regulator_map_list);
1091	return 0;
1092}
1093
1094static void unset_regulator_supplies(struct regulator_dev *rdev)
1095{
1096	struct regulator_map *node, *n;
1097
1098	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099		if (rdev == node->regulator) {
1100			list_del(&node->list);
1101			kfree(node->dev_name);
1102			kfree(node);
1103		}
1104	}
1105}
1106
1107#define REG_STR_SIZE	64
1108
1109static struct regulator *create_regulator(struct regulator_dev *rdev,
1110					  struct device *dev,
1111					  const char *supply_name)
1112{
1113	struct regulator *regulator;
1114	char buf[REG_STR_SIZE];
1115	int err, size;
1116
1117	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118	if (regulator == NULL)
1119		return NULL;
1120
1121	mutex_lock(&rdev->mutex);
1122	regulator->rdev = rdev;
1123	list_add(&regulator->list, &rdev->consumer_list);
1124
1125	if (dev) {
1126		regulator->dev = dev;
1127
1128		/* Add a link to the device sysfs entry */
1129		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130				 dev->kobj.name, supply_name);
1131		if (size >= REG_STR_SIZE)
1132			goto overflow_err;
1133
1134		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135		if (regulator->supply_name == NULL)
1136			goto overflow_err;
1137
1138		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139					buf);
1140		if (err) {
1141			rdev_warn(rdev, "could not add device link %s err %d\n",
1142				  dev->kobj.name, err);
1143			/* non-fatal */
1144		}
1145	} else {
1146		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147		if (regulator->supply_name == NULL)
1148			goto overflow_err;
1149	}
1150
1151	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152						rdev->debugfs);
1153	if (!regulator->debugfs) {
1154		rdev_warn(rdev, "Failed to create debugfs directory\n");
1155	} else {
1156		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157				   &regulator->uA_load);
1158		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159				   &regulator->min_uV);
1160		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161				   &regulator->max_uV);
1162	}
1163
1164	/*
1165	 * Check now if the regulator is an always on regulator - if
1166	 * it is then we don't need to do nearly so much work for
1167	 * enable/disable calls.
1168	 */
1169	if (!_regulator_can_change_status(rdev) &&
1170	    _regulator_is_enabled(rdev))
1171		regulator->always_on = true;
1172
1173	mutex_unlock(&rdev->mutex);
1174	return regulator;
1175overflow_err:
1176	list_del(&regulator->list);
1177	kfree(regulator);
1178	mutex_unlock(&rdev->mutex);
1179	return NULL;
1180}
1181
1182static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183{
1184	if (!rdev->desc->ops->enable_time)
1185		return rdev->desc->enable_time;
1186	return rdev->desc->ops->enable_time(rdev);
1187}
1188
1189static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190						  const char *supply,
1191						  int *ret)
1192{
1193	struct regulator_dev *r;
1194	struct device_node *node;
1195	struct regulator_map *map;
1196	const char *devname = NULL;
1197
1198	/* first do a dt based lookup */
1199	if (dev && dev->of_node) {
1200		node = of_get_regulator(dev, supply);
1201		if (node) {
1202			list_for_each_entry(r, &regulator_list, list)
1203				if (r->dev.parent &&
1204					node == r->dev.of_node)
1205					return r;
1206		} else {
1207			/*
1208			 * If we couldn't even get the node then it's
1209			 * not just that the device didn't register
1210			 * yet, there's no node and we'll never
1211			 * succeed.
1212			 */
1213			*ret = -ENODEV;
1214		}
1215	}
1216
1217	/* if not found, try doing it non-dt way */
1218	if (dev)
1219		devname = dev_name(dev);
1220
1221	list_for_each_entry(r, &regulator_list, list)
1222		if (strcmp(rdev_get_name(r), supply) == 0)
1223			return r;
1224
1225	list_for_each_entry(map, &regulator_map_list, list) {
1226		/* If the mapping has a device set up it must match */
1227		if (map->dev_name &&
1228		    (!devname || strcmp(map->dev_name, devname)))
1229			continue;
1230
1231		if (strcmp(map->supply, supply) == 0)
1232			return map->regulator;
1233	}
1234
1235
1236	return NULL;
1237}
1238
1239/* Internal regulator request function */
1240static struct regulator *_regulator_get(struct device *dev, const char *id,
1241					int exclusive)
1242{
1243	struct regulator_dev *rdev;
1244	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245	const char *devname = NULL;
1246	int ret;
1247
1248	if (id == NULL) {
1249		pr_err("get() with no identifier\n");
1250		return regulator;
1251	}
1252
1253	if (dev)
1254		devname = dev_name(dev);
1255
1256	mutex_lock(&regulator_list_mutex);
1257
1258	rdev = regulator_dev_lookup(dev, id, &ret);
1259	if (rdev)
1260		goto found;
1261
1262	if (board_wants_dummy_regulator) {
1263		rdev = dummy_regulator_rdev;
1264		goto found;
1265	}
1266
1267#ifdef CONFIG_REGULATOR_DUMMY
1268	if (!devname)
1269		devname = "deviceless";
1270
1271	/* If the board didn't flag that it was fully constrained then
1272	 * substitute in a dummy regulator so consumers can continue.
1273	 */
1274	if (!has_full_constraints) {
1275		pr_warn("%s supply %s not found, using dummy regulator\n",
1276			devname, id);
1277		rdev = dummy_regulator_rdev;
1278		goto found;
1279	}
1280#endif
1281
1282	mutex_unlock(&regulator_list_mutex);
1283	return regulator;
1284
1285found:
1286	if (rdev->exclusive) {
1287		regulator = ERR_PTR(-EPERM);
1288		goto out;
1289	}
1290
1291	if (exclusive && rdev->open_count) {
1292		regulator = ERR_PTR(-EBUSY);
1293		goto out;
1294	}
1295
1296	if (!try_module_get(rdev->owner))
1297		goto out;
1298
1299	regulator = create_regulator(rdev, dev, id);
1300	if (regulator == NULL) {
1301		regulator = ERR_PTR(-ENOMEM);
1302		module_put(rdev->owner);
1303		goto out;
1304	}
1305
1306	rdev->open_count++;
1307	if (exclusive) {
1308		rdev->exclusive = 1;
1309
1310		ret = _regulator_is_enabled(rdev);
1311		if (ret > 0)
1312			rdev->use_count = 1;
1313		else
1314			rdev->use_count = 0;
1315	}
1316
1317out:
1318	mutex_unlock(&regulator_list_mutex);
1319
1320	return regulator;
1321}
1322
1323/**
1324 * regulator_get - lookup and obtain a reference to a regulator.
1325 * @dev: device for regulator "consumer"
1326 * @id: Supply name or regulator ID.
1327 *
1328 * Returns a struct regulator corresponding to the regulator producer,
1329 * or IS_ERR() condition containing errno.
1330 *
1331 * Use of supply names configured via regulator_set_device_supply() is
1332 * strongly encouraged.  It is recommended that the supply name used
1333 * should match the name used for the supply and/or the relevant
1334 * device pins in the datasheet.
1335 */
1336struct regulator *regulator_get(struct device *dev, const char *id)
1337{
1338	return _regulator_get(dev, id, 0);
1339}
1340EXPORT_SYMBOL_GPL(regulator_get);
1341
1342static void devm_regulator_release(struct device *dev, void *res)
1343{
1344	regulator_put(*(struct regulator **)res);
1345}
1346
1347/**
1348 * devm_regulator_get - Resource managed regulator_get()
1349 * @dev: device for regulator "consumer"
1350 * @id: Supply name or regulator ID.
1351 *
1352 * Managed regulator_get(). Regulators returned from this function are
1353 * automatically regulator_put() on driver detach. See regulator_get() for more
1354 * information.
1355 */
1356struct regulator *devm_regulator_get(struct device *dev, const char *id)
1357{
1358	struct regulator **ptr, *regulator;
1359
1360	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1361	if (!ptr)
1362		return ERR_PTR(-ENOMEM);
1363
1364	regulator = regulator_get(dev, id);
1365	if (!IS_ERR(regulator)) {
1366		*ptr = regulator;
1367		devres_add(dev, ptr);
1368	} else {
1369		devres_free(ptr);
1370	}
1371
1372	return regulator;
1373}
1374EXPORT_SYMBOL_GPL(devm_regulator_get);
1375
1376/**
1377 * regulator_get_exclusive - obtain exclusive access to a regulator.
1378 * @dev: device for regulator "consumer"
1379 * @id: Supply name or regulator ID.
1380 *
1381 * Returns a struct regulator corresponding to the regulator producer,
1382 * or IS_ERR() condition containing errno.  Other consumers will be
1383 * unable to obtain this reference is held and the use count for the
1384 * regulator will be initialised to reflect the current state of the
1385 * regulator.
1386 *
1387 * This is intended for use by consumers which cannot tolerate shared
1388 * use of the regulator such as those which need to force the
1389 * regulator off for correct operation of the hardware they are
1390 * controlling.
1391 *
1392 * Use of supply names configured via regulator_set_device_supply() is
1393 * strongly encouraged.  It is recommended that the supply name used
1394 * should match the name used for the supply and/or the relevant
1395 * device pins in the datasheet.
1396 */
1397struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1398{
1399	return _regulator_get(dev, id, 1);
1400}
1401EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1402
1403/* Locks held by regulator_put() */
1404static void _regulator_put(struct regulator *regulator)
1405{
1406	struct regulator_dev *rdev;
1407
1408	if (regulator == NULL || IS_ERR(regulator))
1409		return;
1410
1411	rdev = regulator->rdev;
1412
1413	debugfs_remove_recursive(regulator->debugfs);
1414
1415	/* remove any sysfs entries */
1416	if (regulator->dev)
1417		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1418	kfree(regulator->supply_name);
1419	list_del(&regulator->list);
1420	kfree(regulator);
1421
1422	rdev->open_count--;
1423	rdev->exclusive = 0;
1424
1425	module_put(rdev->owner);
1426}
1427
1428/**
1429 * regulator_put - "free" the regulator source
1430 * @regulator: regulator source
1431 *
1432 * Note: drivers must ensure that all regulator_enable calls made on this
1433 * regulator source are balanced by regulator_disable calls prior to calling
1434 * this function.
1435 */
1436void regulator_put(struct regulator *regulator)
1437{
1438	mutex_lock(&regulator_list_mutex);
1439	_regulator_put(regulator);
1440	mutex_unlock(&regulator_list_mutex);
1441}
1442EXPORT_SYMBOL_GPL(regulator_put);
1443
1444static int devm_regulator_match(struct device *dev, void *res, void *data)
1445{
1446	struct regulator **r = res;
1447	if (!r || !*r) {
1448		WARN_ON(!r || !*r);
1449		return 0;
1450	}
1451	return *r == data;
1452}
1453
1454/**
1455 * devm_regulator_put - Resource managed regulator_put()
1456 * @regulator: regulator to free
1457 *
1458 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1459 * this function will not need to be called and the resource management
1460 * code will ensure that the resource is freed.
1461 */
1462void devm_regulator_put(struct regulator *regulator)
1463{
1464	int rc;
1465
1466	rc = devres_release(regulator->dev, devm_regulator_release,
1467			    devm_regulator_match, regulator);
1468	if (rc != 0)
1469		WARN_ON(rc);
1470}
1471EXPORT_SYMBOL_GPL(devm_regulator_put);
1472
1473/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1474static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1475				const struct regulator_config *config)
1476{
1477	struct regulator_enable_gpio *pin;
1478	int ret;
1479
1480	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1481		if (pin->gpio == config->ena_gpio) {
1482			rdev_dbg(rdev, "GPIO %d is already used\n",
1483				config->ena_gpio);
1484			goto update_ena_gpio_to_rdev;
1485		}
1486	}
1487
1488	ret = gpio_request_one(config->ena_gpio,
1489				GPIOF_DIR_OUT | config->ena_gpio_flags,
1490				rdev_get_name(rdev));
1491	if (ret)
1492		return ret;
1493
1494	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1495	if (pin == NULL) {
1496		gpio_free(config->ena_gpio);
1497		return -ENOMEM;
1498	}
1499
1500	pin->gpio = config->ena_gpio;
1501	pin->ena_gpio_invert = config->ena_gpio_invert;
1502	list_add(&pin->list, &regulator_ena_gpio_list);
1503
1504update_ena_gpio_to_rdev:
1505	pin->request_count++;
1506	rdev->ena_pin = pin;
1507	return 0;
1508}
1509
1510static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1511{
1512	struct regulator_enable_gpio *pin, *n;
1513
1514	if (!rdev->ena_pin)
1515		return;
1516
1517	/* Free the GPIO only in case of no use */
1518	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1519		if (pin->gpio == rdev->ena_pin->gpio) {
1520			if (pin->request_count <= 1) {
1521				pin->request_count = 0;
1522				gpio_free(pin->gpio);
1523				list_del(&pin->list);
1524				kfree(pin);
1525			} else {
1526				pin->request_count--;
1527			}
1528		}
1529	}
1530}
1531
1532static int _regulator_do_enable(struct regulator_dev *rdev)
1533{
1534	int ret, delay;
1535
1536	/* Query before enabling in case configuration dependent.  */
1537	ret = _regulator_get_enable_time(rdev);
1538	if (ret >= 0) {
1539		delay = ret;
1540	} else {
1541		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1542		delay = 0;
1543	}
1544
1545	trace_regulator_enable(rdev_get_name(rdev));
1546
1547	if (rdev->ena_gpio) {
1548		gpio_set_value_cansleep(rdev->ena_gpio,
1549					!rdev->ena_gpio_invert);
1550		rdev->ena_gpio_state = 1;
1551	} else if (rdev->desc->ops->enable) {
1552		ret = rdev->desc->ops->enable(rdev);
1553		if (ret < 0)
1554			return ret;
1555	} else {
1556		return -EINVAL;
1557	}
1558
1559	/* Allow the regulator to ramp; it would be useful to extend
1560	 * this for bulk operations so that the regulators can ramp
1561	 * together.  */
1562	trace_regulator_enable_delay(rdev_get_name(rdev));
1563
1564	if (delay >= 1000) {
1565		mdelay(delay / 1000);
1566		udelay(delay % 1000);
1567	} else if (delay) {
1568		udelay(delay);
1569	}
1570
1571	trace_regulator_enable_complete(rdev_get_name(rdev));
1572
1573	return 0;
1574}
1575
1576/* locks held by regulator_enable() */
1577static int _regulator_enable(struct regulator_dev *rdev)
1578{
1579	int ret;
1580
1581	/* check voltage and requested load before enabling */
1582	if (rdev->constraints &&
1583	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1584		drms_uA_update(rdev);
1585
1586	if (rdev->use_count == 0) {
1587		/* The regulator may on if it's not switchable or left on */
1588		ret = _regulator_is_enabled(rdev);
1589		if (ret == -EINVAL || ret == 0) {
1590			if (!_regulator_can_change_status(rdev))
1591				return -EPERM;
1592
1593			ret = _regulator_do_enable(rdev);
1594			if (ret < 0)
1595				return ret;
1596
1597		} else if (ret < 0) {
1598			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1599			return ret;
1600		}
1601		/* Fallthrough on positive return values - already enabled */
1602	}
1603
1604	rdev->use_count++;
1605
1606	return 0;
1607}
1608
1609/**
1610 * regulator_enable - enable regulator output
1611 * @regulator: regulator source
1612 *
1613 * Request that the regulator be enabled with the regulator output at
1614 * the predefined voltage or current value.  Calls to regulator_enable()
1615 * must be balanced with calls to regulator_disable().
1616 *
1617 * NOTE: the output value can be set by other drivers, boot loader or may be
1618 * hardwired in the regulator.
1619 */
1620int regulator_enable(struct regulator *regulator)
1621{
1622	struct regulator_dev *rdev = regulator->rdev;
1623	int ret = 0;
1624
1625	if (regulator->always_on)
1626		return 0;
1627
1628	if (rdev->supply) {
1629		ret = regulator_enable(rdev->supply);
1630		if (ret != 0)
1631			return ret;
1632	}
1633
1634	mutex_lock(&rdev->mutex);
1635	ret = _regulator_enable(rdev);
1636	mutex_unlock(&rdev->mutex);
1637
1638	if (ret != 0 && rdev->supply)
1639		regulator_disable(rdev->supply);
1640
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(regulator_enable);
1644
1645static int _regulator_do_disable(struct regulator_dev *rdev)
1646{
1647	int ret;
1648
1649	trace_regulator_disable(rdev_get_name(rdev));
1650
1651	if (rdev->ena_gpio) {
1652		gpio_set_value_cansleep(rdev->ena_gpio,
1653					rdev->ena_gpio_invert);
1654		rdev->ena_gpio_state = 0;
1655
1656	} else if (rdev->desc->ops->disable) {
1657		ret = rdev->desc->ops->disable(rdev);
1658		if (ret != 0)
1659			return ret;
1660	}
1661
1662	trace_regulator_disable_complete(rdev_get_name(rdev));
1663
1664	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1665			     NULL);
1666	return 0;
1667}
1668
1669/* locks held by regulator_disable() */
1670static int _regulator_disable(struct regulator_dev *rdev)
1671{
1672	int ret = 0;
1673
1674	if (WARN(rdev->use_count <= 0,
1675		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1676		return -EIO;
1677
1678	/* are we the last user and permitted to disable ? */
1679	if (rdev->use_count == 1 &&
1680	    (rdev->constraints && !rdev->constraints->always_on)) {
1681
1682		/* we are last user */
1683		if (_regulator_can_change_status(rdev)) {
1684			ret = _regulator_do_disable(rdev);
1685			if (ret < 0) {
1686				rdev_err(rdev, "failed to disable\n");
1687				return ret;
1688			}
1689		}
1690
1691		rdev->use_count = 0;
1692	} else if (rdev->use_count > 1) {
1693
1694		if (rdev->constraints &&
1695			(rdev->constraints->valid_ops_mask &
1696			REGULATOR_CHANGE_DRMS))
1697			drms_uA_update(rdev);
1698
1699		rdev->use_count--;
1700	}
1701
1702	return ret;
1703}
1704
1705/**
1706 * regulator_disable - disable regulator output
1707 * @regulator: regulator source
1708 *
1709 * Disable the regulator output voltage or current.  Calls to
1710 * regulator_enable() must be balanced with calls to
1711 * regulator_disable().
1712 *
1713 * NOTE: this will only disable the regulator output if no other consumer
1714 * devices have it enabled, the regulator device supports disabling and
1715 * machine constraints permit this operation.
1716 */
1717int regulator_disable(struct regulator *regulator)
1718{
1719	struct regulator_dev *rdev = regulator->rdev;
1720	int ret = 0;
1721
1722	if (regulator->always_on)
1723		return 0;
1724
1725	mutex_lock(&rdev->mutex);
1726	ret = _regulator_disable(rdev);
1727	mutex_unlock(&rdev->mutex);
1728
1729	if (ret == 0 && rdev->supply)
1730		regulator_disable(rdev->supply);
1731
1732	return ret;
1733}
1734EXPORT_SYMBOL_GPL(regulator_disable);
1735
1736/* locks held by regulator_force_disable() */
1737static int _regulator_force_disable(struct regulator_dev *rdev)
1738{
1739	int ret = 0;
1740
1741	/* force disable */
1742	if (rdev->desc->ops->disable) {
1743		/* ah well, who wants to live forever... */
1744		ret = rdev->desc->ops->disable(rdev);
1745		if (ret < 0) {
1746			rdev_err(rdev, "failed to force disable\n");
1747			return ret;
1748		}
1749		/* notify other consumers that power has been forced off */
1750		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1751			REGULATOR_EVENT_DISABLE, NULL);
1752	}
1753
1754	return ret;
1755}
1756
1757/**
1758 * regulator_force_disable - force disable regulator output
1759 * @regulator: regulator source
1760 *
1761 * Forcibly disable the regulator output voltage or current.
1762 * NOTE: this *will* disable the regulator output even if other consumer
1763 * devices have it enabled. This should be used for situations when device
1764 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1765 */
1766int regulator_force_disable(struct regulator *regulator)
1767{
1768	struct regulator_dev *rdev = regulator->rdev;
1769	int ret;
1770
1771	mutex_lock(&rdev->mutex);
1772	regulator->uA_load = 0;
1773	ret = _regulator_force_disable(regulator->rdev);
1774	mutex_unlock(&rdev->mutex);
1775
1776	if (rdev->supply)
1777		while (rdev->open_count--)
1778			regulator_disable(rdev->supply);
1779
1780	return ret;
1781}
1782EXPORT_SYMBOL_GPL(regulator_force_disable);
1783
1784static void regulator_disable_work(struct work_struct *work)
1785{
1786	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1787						  disable_work.work);
1788	int count, i, ret;
1789
1790	mutex_lock(&rdev->mutex);
1791
1792	BUG_ON(!rdev->deferred_disables);
1793
1794	count = rdev->deferred_disables;
1795	rdev->deferred_disables = 0;
1796
1797	for (i = 0; i < count; i++) {
1798		ret = _regulator_disable(rdev);
1799		if (ret != 0)
1800			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1801	}
1802
1803	mutex_unlock(&rdev->mutex);
1804
1805	if (rdev->supply) {
1806		for (i = 0; i < count; i++) {
1807			ret = regulator_disable(rdev->supply);
1808			if (ret != 0) {
1809				rdev_err(rdev,
1810					 "Supply disable failed: %d\n", ret);
1811			}
1812		}
1813	}
1814}
1815
1816/**
1817 * regulator_disable_deferred - disable regulator output with delay
1818 * @regulator: regulator source
1819 * @ms: miliseconds until the regulator is disabled
1820 *
1821 * Execute regulator_disable() on the regulator after a delay.  This
1822 * is intended for use with devices that require some time to quiesce.
1823 *
1824 * NOTE: this will only disable the regulator output if no other consumer
1825 * devices have it enabled, the regulator device supports disabling and
1826 * machine constraints permit this operation.
1827 */
1828int regulator_disable_deferred(struct regulator *regulator, int ms)
1829{
1830	struct regulator_dev *rdev = regulator->rdev;
1831	int ret;
1832
1833	if (regulator->always_on)
1834		return 0;
1835
1836	if (!ms)
1837		return regulator_disable(regulator);
1838
1839	mutex_lock(&rdev->mutex);
1840	rdev->deferred_disables++;
1841	mutex_unlock(&rdev->mutex);
1842
1843	ret = schedule_delayed_work(&rdev->disable_work,
1844				    msecs_to_jiffies(ms));
1845	if (ret < 0)
1846		return ret;
1847	else
1848		return 0;
1849}
1850EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1851
1852/**
1853 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1854 *
1855 * @rdev: regulator to operate on
1856 *
1857 * Regulators that use regmap for their register I/O can set the
1858 * enable_reg and enable_mask fields in their descriptor and then use
1859 * this as their is_enabled operation, saving some code.
1860 */
1861int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1862{
1863	unsigned int val;
1864	int ret;
1865
1866	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1867	if (ret != 0)
1868		return ret;
1869
1870	return (val & rdev->desc->enable_mask) != 0;
1871}
1872EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1873
1874/**
1875 * regulator_enable_regmap - standard enable() for regmap users
1876 *
1877 * @rdev: regulator to operate on
1878 *
1879 * Regulators that use regmap for their register I/O can set the
1880 * enable_reg and enable_mask fields in their descriptor and then use
1881 * this as their enable() operation, saving some code.
1882 */
1883int regulator_enable_regmap(struct regulator_dev *rdev)
1884{
1885	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1886				  rdev->desc->enable_mask,
1887				  rdev->desc->enable_mask);
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1890
1891/**
1892 * regulator_disable_regmap - standard disable() for regmap users
1893 *
1894 * @rdev: regulator to operate on
1895 *
1896 * Regulators that use regmap for their register I/O can set the
1897 * enable_reg and enable_mask fields in their descriptor and then use
1898 * this as their disable() operation, saving some code.
1899 */
1900int regulator_disable_regmap(struct regulator_dev *rdev)
1901{
1902	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1903				  rdev->desc->enable_mask, 0);
1904}
1905EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1906
1907static int _regulator_is_enabled(struct regulator_dev *rdev)
1908{
1909	/* A GPIO control always takes precedence */
1910	if (rdev->ena_gpio)
1911		return rdev->ena_gpio_state;
1912
1913	/* If we don't know then assume that the regulator is always on */
1914	if (!rdev->desc->ops->is_enabled)
1915		return 1;
1916
1917	return rdev->desc->ops->is_enabled(rdev);
1918}
1919
1920/**
1921 * regulator_is_enabled - is the regulator output enabled
1922 * @regulator: regulator source
1923 *
1924 * Returns positive if the regulator driver backing the source/client
1925 * has requested that the device be enabled, zero if it hasn't, else a
1926 * negative errno code.
1927 *
1928 * Note that the device backing this regulator handle can have multiple
1929 * users, so it might be enabled even if regulator_enable() was never
1930 * called for this particular source.
1931 */
1932int regulator_is_enabled(struct regulator *regulator)
1933{
1934	int ret;
1935
1936	if (regulator->always_on)
1937		return 1;
1938
1939	mutex_lock(&regulator->rdev->mutex);
1940	ret = _regulator_is_enabled(regulator->rdev);
1941	mutex_unlock(&regulator->rdev->mutex);
1942
1943	return ret;
1944}
1945EXPORT_SYMBOL_GPL(regulator_is_enabled);
1946
1947/**
1948 * regulator_can_change_voltage - check if regulator can change voltage
1949 * @regulator: regulator source
1950 *
1951 * Returns positive if the regulator driver backing the source/client
1952 * can change its voltage, false otherwise. Usefull for detecting fixed
1953 * or dummy regulators and disabling voltage change logic in the client
1954 * driver.
1955 */
1956int regulator_can_change_voltage(struct regulator *regulator)
1957{
1958	struct regulator_dev	*rdev = regulator->rdev;
1959
1960	if (rdev->constraints &&
1961	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1962		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1963			return 1;
1964
1965		if (rdev->desc->continuous_voltage_range &&
1966		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
1967		    rdev->constraints->min_uV != rdev->constraints->max_uV)
1968			return 1;
1969	}
1970
1971	return 0;
1972}
1973EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1974
1975/**
1976 * regulator_count_voltages - count regulator_list_voltage() selectors
1977 * @regulator: regulator source
1978 *
1979 * Returns number of selectors, or negative errno.  Selectors are
1980 * numbered starting at zero, and typically correspond to bitfields
1981 * in hardware registers.
1982 */
1983int regulator_count_voltages(struct regulator *regulator)
1984{
1985	struct regulator_dev	*rdev = regulator->rdev;
1986
1987	return rdev->desc->n_voltages ? : -EINVAL;
1988}
1989EXPORT_SYMBOL_GPL(regulator_count_voltages);
1990
1991/**
1992 * regulator_list_voltage_linear - List voltages with simple calculation
1993 *
1994 * @rdev: Regulator device
1995 * @selector: Selector to convert into a voltage
1996 *
1997 * Regulators with a simple linear mapping between voltages and
1998 * selectors can set min_uV and uV_step in the regulator descriptor
1999 * and then use this function as their list_voltage() operation,
2000 */
2001int regulator_list_voltage_linear(struct regulator_dev *rdev,
2002				  unsigned int selector)
2003{
2004	if (selector >= rdev->desc->n_voltages)
2005		return -EINVAL;
2006	if (selector < rdev->desc->linear_min_sel)
2007		return 0;
2008
2009	selector -= rdev->desc->linear_min_sel;
2010
2011	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2012}
2013EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2014
2015/**
2016 * regulator_list_voltage_table - List voltages with table based mapping
2017 *
2018 * @rdev: Regulator device
2019 * @selector: Selector to convert into a voltage
2020 *
2021 * Regulators with table based mapping between voltages and
2022 * selectors can set volt_table in the regulator descriptor
2023 * and then use this function as their list_voltage() operation.
2024 */
2025int regulator_list_voltage_table(struct regulator_dev *rdev,
2026				 unsigned int selector)
2027{
2028	if (!rdev->desc->volt_table) {
2029		BUG_ON(!rdev->desc->volt_table);
2030		return -EINVAL;
2031	}
2032
2033	if (selector >= rdev->desc->n_voltages)
2034		return -EINVAL;
2035
2036	return rdev->desc->volt_table[selector];
2037}
2038EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2039
2040/**
2041 * regulator_list_voltage - enumerate supported voltages
2042 * @regulator: regulator source
2043 * @selector: identify voltage to list
2044 * Context: can sleep
2045 *
2046 * Returns a voltage that can be passed to @regulator_set_voltage(),
2047 * zero if this selector code can't be used on this system, or a
2048 * negative errno.
2049 */
2050int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2051{
2052	struct regulator_dev	*rdev = regulator->rdev;
2053	struct regulator_ops	*ops = rdev->desc->ops;
2054	int			ret;
2055
2056	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2057		return -EINVAL;
2058
2059	mutex_lock(&rdev->mutex);
2060	ret = ops->list_voltage(rdev, selector);
2061	mutex_unlock(&rdev->mutex);
2062
2063	if (ret > 0) {
2064		if (ret < rdev->constraints->min_uV)
2065			ret = 0;
2066		else if (ret > rdev->constraints->max_uV)
2067			ret = 0;
2068	}
2069
2070	return ret;
2071}
2072EXPORT_SYMBOL_GPL(regulator_list_voltage);
2073
2074/**
2075 * regulator_is_supported_voltage - check if a voltage range can be supported
2076 *
2077 * @regulator: Regulator to check.
2078 * @min_uV: Minimum required voltage in uV.
2079 * @max_uV: Maximum required voltage in uV.
2080 *
2081 * Returns a boolean or a negative error code.
2082 */
2083int regulator_is_supported_voltage(struct regulator *regulator,
2084				   int min_uV, int max_uV)
2085{
2086	struct regulator_dev *rdev = regulator->rdev;
2087	int i, voltages, ret;
2088
2089	/* If we can't change voltage check the current voltage */
2090	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2091		ret = regulator_get_voltage(regulator);
2092		if (ret >= 0)
2093			return (min_uV <= ret && ret <= max_uV);
2094		else
2095			return ret;
2096	}
2097
2098	/* Any voltage within constrains range is fine? */
2099	if (rdev->desc->continuous_voltage_range)
2100		return min_uV >= rdev->constraints->min_uV &&
2101				max_uV <= rdev->constraints->max_uV;
2102
2103	ret = regulator_count_voltages(regulator);
2104	if (ret < 0)
2105		return ret;
2106	voltages = ret;
2107
2108	for (i = 0; i < voltages; i++) {
2109		ret = regulator_list_voltage(regulator, i);
2110
2111		if (ret >= min_uV && ret <= max_uV)
2112			return 1;
2113	}
2114
2115	return 0;
2116}
2117EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2118
2119/**
2120 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2121 *
2122 * @rdev: regulator to operate on
2123 *
2124 * Regulators that use regmap for their register I/O can set the
2125 * vsel_reg and vsel_mask fields in their descriptor and then use this
2126 * as their get_voltage_vsel operation, saving some code.
2127 */
2128int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2129{
2130	unsigned int val;
2131	int ret;
2132
2133	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2134	if (ret != 0)
2135		return ret;
2136
2137	val &= rdev->desc->vsel_mask;
2138	val >>= ffs(rdev->desc->vsel_mask) - 1;
2139
2140	return val;
2141}
2142EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2143
2144/**
2145 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2146 *
2147 * @rdev: regulator to operate on
2148 * @sel: Selector to set
2149 *
2150 * Regulators that use regmap for their register I/O can set the
2151 * vsel_reg and vsel_mask fields in their descriptor and then use this
2152 * as their set_voltage_vsel operation, saving some code.
2153 */
2154int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2155{
2156	int ret;
2157
2158	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2159
2160	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2161				  rdev->desc->vsel_mask, sel);
2162	if (ret)
2163		return ret;
2164
2165	if (rdev->desc->apply_bit)
2166		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2167					 rdev->desc->apply_bit,
2168					 rdev->desc->apply_bit);
2169	return ret;
2170}
2171EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2172
2173/**
2174 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2175 *
2176 * @rdev: Regulator to operate on
2177 * @min_uV: Lower bound for voltage
2178 * @max_uV: Upper bound for voltage
2179 *
2180 * Drivers implementing set_voltage_sel() and list_voltage() can use
2181 * this as their map_voltage() operation.  It will find a suitable
2182 * voltage by calling list_voltage() until it gets something in bounds
2183 * for the requested voltages.
2184 */
2185int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2186				  int min_uV, int max_uV)
2187{
2188	int best_val = INT_MAX;
2189	int selector = 0;
2190	int i, ret;
2191
2192	/* Find the smallest voltage that falls within the specified
2193	 * range.
2194	 */
2195	for (i = 0; i < rdev->desc->n_voltages; i++) {
2196		ret = rdev->desc->ops->list_voltage(rdev, i);
2197		if (ret < 0)
2198			continue;
2199
2200		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2201			best_val = ret;
2202			selector = i;
2203		}
2204	}
2205
2206	if (best_val != INT_MAX)
2207		return selector;
2208	else
2209		return -EINVAL;
2210}
2211EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2212
2213/**
2214 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2215 *
2216 * @rdev: Regulator to operate on
2217 * @min_uV: Lower bound for voltage
2218 * @max_uV: Upper bound for voltage
2219 *
2220 * Drivers providing min_uV and uV_step in their regulator_desc can
2221 * use this as their map_voltage() operation.
2222 */
2223int regulator_map_voltage_linear(struct regulator_dev *rdev,
2224				 int min_uV, int max_uV)
2225{
2226	int ret, voltage;
2227
2228	/* Allow uV_step to be 0 for fixed voltage */
2229	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2230		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2231			return 0;
2232		else
2233			return -EINVAL;
2234	}
2235
2236	if (!rdev->desc->uV_step) {
2237		BUG_ON(!rdev->desc->uV_step);
2238		return -EINVAL;
2239	}
2240
2241	if (min_uV < rdev->desc->min_uV)
2242		min_uV = rdev->desc->min_uV;
2243
2244	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2245	if (ret < 0)
2246		return ret;
2247
2248	ret += rdev->desc->linear_min_sel;
2249
2250	/* Map back into a voltage to verify we're still in bounds */
2251	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2252	if (voltage < min_uV || voltage > max_uV)
2253		return -EINVAL;
2254
2255	return ret;
2256}
2257EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2258
2259static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2260				     int min_uV, int max_uV)
2261{
2262	int ret;
2263	int delay = 0;
2264	int best_val = 0;
2265	unsigned int selector;
2266	int old_selector = -1;
2267
2268	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2269
2270	min_uV += rdev->constraints->uV_offset;
2271	max_uV += rdev->constraints->uV_offset;
2272
2273	/*
2274	 * If we can't obtain the old selector there is not enough
2275	 * info to call set_voltage_time_sel().
2276	 */
2277	if (_regulator_is_enabled(rdev) &&
2278	    rdev->desc->ops->set_voltage_time_sel &&
2279	    rdev->desc->ops->get_voltage_sel) {
2280		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2281		if (old_selector < 0)
2282			return old_selector;
2283	}
2284
2285	if (rdev->desc->ops->set_voltage) {
2286		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2287						   &selector);
2288
2289		if (ret >= 0) {
2290			if (rdev->desc->ops->list_voltage)
2291				best_val = rdev->desc->ops->list_voltage(rdev,
2292									 selector);
2293			else
2294				best_val = _regulator_get_voltage(rdev);
2295		}
2296
2297	} else if (rdev->desc->ops->set_voltage_sel) {
2298		if (rdev->desc->ops->map_voltage) {
2299			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2300							   max_uV);
2301		} else {
2302			if (rdev->desc->ops->list_voltage ==
2303			    regulator_list_voltage_linear)
2304				ret = regulator_map_voltage_linear(rdev,
2305								min_uV, max_uV);
2306			else
2307				ret = regulator_map_voltage_iterate(rdev,
2308								min_uV, max_uV);
2309		}
2310
2311		if (ret >= 0) {
2312			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2313			if (min_uV <= best_val && max_uV >= best_val) {
2314				selector = ret;
2315				if (old_selector == selector)
2316					ret = 0;
2317				else
2318					ret = rdev->desc->ops->set_voltage_sel(
2319								rdev, ret);
2320			} else {
2321				ret = -EINVAL;
2322			}
2323		}
2324	} else {
2325		ret = -EINVAL;
2326	}
2327
2328	/* Call set_voltage_time_sel if successfully obtained old_selector */
2329	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2330	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2331
2332		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2333						old_selector, selector);
2334		if (delay < 0) {
2335			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2336				  delay);
2337			delay = 0;
2338		}
2339
2340		/* Insert any necessary delays */
2341		if (delay >= 1000) {
2342			mdelay(delay / 1000);
2343			udelay(delay % 1000);
2344		} else if (delay) {
2345			udelay(delay);
2346		}
2347	}
2348
2349	if (ret == 0 && best_val >= 0) {
2350		unsigned long data = best_val;
2351
2352		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2353				     (void *)data);
2354	}
2355
2356	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2357
2358	return ret;
2359}
2360
2361/**
2362 * regulator_set_voltage - set regulator output voltage
2363 * @regulator: regulator source
2364 * @min_uV: Minimum required voltage in uV
2365 * @max_uV: Maximum acceptable voltage in uV
2366 *
2367 * Sets a voltage regulator to the desired output voltage. This can be set
2368 * during any regulator state. IOW, regulator can be disabled or enabled.
2369 *
2370 * If the regulator is enabled then the voltage will change to the new value
2371 * immediately otherwise if the regulator is disabled the regulator will
2372 * output at the new voltage when enabled.
2373 *
2374 * NOTE: If the regulator is shared between several devices then the lowest
2375 * request voltage that meets the system constraints will be used.
2376 * Regulator system constraints must be set for this regulator before
2377 * calling this function otherwise this call will fail.
2378 */
2379int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2380{
2381	struct regulator_dev *rdev = regulator->rdev;
2382	int ret = 0;
2383	int old_min_uV, old_max_uV;
2384
2385	mutex_lock(&rdev->mutex);
2386
2387	/* If we're setting the same range as last time the change
2388	 * should be a noop (some cpufreq implementations use the same
2389	 * voltage for multiple frequencies, for example).
2390	 */
2391	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2392		goto out;
2393
2394	/* sanity check */
2395	if (!rdev->desc->ops->set_voltage &&
2396	    !rdev->desc->ops->set_voltage_sel) {
2397		ret = -EINVAL;
2398		goto out;
2399	}
2400
2401	/* constraints check */
2402	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2403	if (ret < 0)
2404		goto out;
2405
2406	/* restore original values in case of error */
2407	old_min_uV = regulator->min_uV;
2408	old_max_uV = regulator->max_uV;
2409	regulator->min_uV = min_uV;
2410	regulator->max_uV = max_uV;
2411
2412	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2413	if (ret < 0)
2414		goto out2;
2415
2416	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2417	if (ret < 0)
2418		goto out2;
2419
2420out:
2421	mutex_unlock(&rdev->mutex);
2422	return ret;
2423out2:
2424	regulator->min_uV = old_min_uV;
2425	regulator->max_uV = old_max_uV;
2426	mutex_unlock(&rdev->mutex);
2427	return ret;
2428}
2429EXPORT_SYMBOL_GPL(regulator_set_voltage);
2430
2431/**
2432 * regulator_set_voltage_time - get raise/fall time
2433 * @regulator: regulator source
2434 * @old_uV: starting voltage in microvolts
2435 * @new_uV: target voltage in microvolts
2436 *
2437 * Provided with the starting and ending voltage, this function attempts to
2438 * calculate the time in microseconds required to rise or fall to this new
2439 * voltage.
2440 */
2441int regulator_set_voltage_time(struct regulator *regulator,
2442			       int old_uV, int new_uV)
2443{
2444	struct regulator_dev	*rdev = regulator->rdev;
2445	struct regulator_ops	*ops = rdev->desc->ops;
2446	int old_sel = -1;
2447	int new_sel = -1;
2448	int voltage;
2449	int i;
2450
2451	/* Currently requires operations to do this */
2452	if (!ops->list_voltage || !ops->set_voltage_time_sel
2453	    || !rdev->desc->n_voltages)
2454		return -EINVAL;
2455
2456	for (i = 0; i < rdev->desc->n_voltages; i++) {
2457		/* We only look for exact voltage matches here */
2458		voltage = regulator_list_voltage(regulator, i);
2459		if (voltage < 0)
2460			return -EINVAL;
2461		if (voltage == 0)
2462			continue;
2463		if (voltage == old_uV)
2464			old_sel = i;
2465		if (voltage == new_uV)
2466			new_sel = i;
2467	}
2468
2469	if (old_sel < 0 || new_sel < 0)
2470		return -EINVAL;
2471
2472	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2473}
2474EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2475
2476/**
2477 * regulator_set_voltage_time_sel - get raise/fall time
2478 * @rdev: regulator source device
2479 * @old_selector: selector for starting voltage
2480 * @new_selector: selector for target voltage
2481 *
2482 * Provided with the starting and target voltage selectors, this function
2483 * returns time in microseconds required to rise or fall to this new voltage
2484 *
2485 * Drivers providing ramp_delay in regulation_constraints can use this as their
2486 * set_voltage_time_sel() operation.
2487 */
2488int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2489				   unsigned int old_selector,
2490				   unsigned int new_selector)
2491{
2492	unsigned int ramp_delay = 0;
2493	int old_volt, new_volt;
2494
2495	if (rdev->constraints->ramp_delay)
2496		ramp_delay = rdev->constraints->ramp_delay;
2497	else if (rdev->desc->ramp_delay)
2498		ramp_delay = rdev->desc->ramp_delay;
2499
2500	if (ramp_delay == 0) {
2501		rdev_warn(rdev, "ramp_delay not set\n");
2502		return 0;
2503	}
2504
2505	/* sanity check */
2506	if (!rdev->desc->ops->list_voltage)
2507		return -EINVAL;
2508
2509	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2510	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2511
2512	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2513}
2514EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2515
2516/**
2517 * regulator_sync_voltage - re-apply last regulator output voltage
2518 * @regulator: regulator source
2519 *
2520 * Re-apply the last configured voltage.  This is intended to be used
2521 * where some external control source the consumer is cooperating with
2522 * has caused the configured voltage to change.
2523 */
2524int regulator_sync_voltage(struct regulator *regulator)
2525{
2526	struct regulator_dev *rdev = regulator->rdev;
2527	int ret, min_uV, max_uV;
2528
2529	mutex_lock(&rdev->mutex);
2530
2531	if (!rdev->desc->ops->set_voltage &&
2532	    !rdev->desc->ops->set_voltage_sel) {
2533		ret = -EINVAL;
2534		goto out;
2535	}
2536
2537	/* This is only going to work if we've had a voltage configured. */
2538	if (!regulator->min_uV && !regulator->max_uV) {
2539		ret = -EINVAL;
2540		goto out;
2541	}
2542
2543	min_uV = regulator->min_uV;
2544	max_uV = regulator->max_uV;
2545
2546	/* This should be a paranoia check... */
2547	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2548	if (ret < 0)
2549		goto out;
2550
2551	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2552	if (ret < 0)
2553		goto out;
2554
2555	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2556
2557out:
2558	mutex_unlock(&rdev->mutex);
2559	return ret;
2560}
2561EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2562
2563static int _regulator_get_voltage(struct regulator_dev *rdev)
2564{
2565	int sel, ret;
2566
2567	if (rdev->desc->ops->get_voltage_sel) {
2568		sel = rdev->desc->ops->get_voltage_sel(rdev);
2569		if (sel < 0)
2570			return sel;
2571		ret = rdev->desc->ops->list_voltage(rdev, sel);
2572	} else if (rdev->desc->ops->get_voltage) {
2573		ret = rdev->desc->ops->get_voltage(rdev);
2574	} else if (rdev->desc->ops->list_voltage) {
2575		ret = rdev->desc->ops->list_voltage(rdev, 0);
2576	} else {
2577		return -EINVAL;
2578	}
2579
2580	if (ret < 0)
2581		return ret;
2582	return ret - rdev->constraints->uV_offset;
2583}
2584
2585/**
2586 * regulator_get_voltage - get regulator output voltage
2587 * @regulator: regulator source
2588 *
2589 * This returns the current regulator voltage in uV.
2590 *
2591 * NOTE: If the regulator is disabled it will return the voltage value. This
2592 * function should not be used to determine regulator state.
2593 */
2594int regulator_get_voltage(struct regulator *regulator)
2595{
2596	int ret;
2597
2598	mutex_lock(&regulator->rdev->mutex);
2599
2600	ret = _regulator_get_voltage(regulator->rdev);
2601
2602	mutex_unlock(&regulator->rdev->mutex);
2603
2604	return ret;
2605}
2606EXPORT_SYMBOL_GPL(regulator_get_voltage);
2607
2608/**
2609 * regulator_set_current_limit - set regulator output current limit
2610 * @regulator: regulator source
2611 * @min_uA: Minimuum supported current in uA
2612 * @max_uA: Maximum supported current in uA
2613 *
2614 * Sets current sink to the desired output current. This can be set during
2615 * any regulator state. IOW, regulator can be disabled or enabled.
2616 *
2617 * If the regulator is enabled then the current will change to the new value
2618 * immediately otherwise if the regulator is disabled the regulator will
2619 * output at the new current when enabled.
2620 *
2621 * NOTE: Regulator system constraints must be set for this regulator before
2622 * calling this function otherwise this call will fail.
2623 */
2624int regulator_set_current_limit(struct regulator *regulator,
2625			       int min_uA, int max_uA)
2626{
2627	struct regulator_dev *rdev = regulator->rdev;
2628	int ret;
2629
2630	mutex_lock(&rdev->mutex);
2631
2632	/* sanity check */
2633	if (!rdev->desc->ops->set_current_limit) {
2634		ret = -EINVAL;
2635		goto out;
2636	}
2637
2638	/* constraints check */
2639	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2640	if (ret < 0)
2641		goto out;
2642
2643	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2644out:
2645	mutex_unlock(&rdev->mutex);
2646	return ret;
2647}
2648EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2649
2650static int _regulator_get_current_limit(struct regulator_dev *rdev)
2651{
2652	int ret;
2653
2654	mutex_lock(&rdev->mutex);
2655
2656	/* sanity check */
2657	if (!rdev->desc->ops->get_current_limit) {
2658		ret = -EINVAL;
2659		goto out;
2660	}
2661
2662	ret = rdev->desc->ops->get_current_limit(rdev);
2663out:
2664	mutex_unlock(&rdev->mutex);
2665	return ret;
2666}
2667
2668/**
2669 * regulator_get_current_limit - get regulator output current
2670 * @regulator: regulator source
2671 *
2672 * This returns the current supplied by the specified current sink in uA.
2673 *
2674 * NOTE: If the regulator is disabled it will return the current value. This
2675 * function should not be used to determine regulator state.
2676 */
2677int regulator_get_current_limit(struct regulator *regulator)
2678{
2679	return _regulator_get_current_limit(regulator->rdev);
2680}
2681EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2682
2683/**
2684 * regulator_set_mode - set regulator operating mode
2685 * @regulator: regulator source
2686 * @mode: operating mode - one of the REGULATOR_MODE constants
2687 *
2688 * Set regulator operating mode to increase regulator efficiency or improve
2689 * regulation performance.
2690 *
2691 * NOTE: Regulator system constraints must be set for this regulator before
2692 * calling this function otherwise this call will fail.
2693 */
2694int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2695{
2696	struct regulator_dev *rdev = regulator->rdev;
2697	int ret;
2698	int regulator_curr_mode;
2699
2700	mutex_lock(&rdev->mutex);
2701
2702	/* sanity check */
2703	if (!rdev->desc->ops->set_mode) {
2704		ret = -EINVAL;
2705		goto out;
2706	}
2707
2708	/* return if the same mode is requested */
2709	if (rdev->desc->ops->get_mode) {
2710		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2711		if (regulator_curr_mode == mode) {
2712			ret = 0;
2713			goto out;
2714		}
2715	}
2716
2717	/* constraints check */
2718	ret = regulator_mode_constrain(rdev, &mode);
2719	if (ret < 0)
2720		goto out;
2721
2722	ret = rdev->desc->ops->set_mode(rdev, mode);
2723out:
2724	mutex_unlock(&rdev->mutex);
2725	return ret;
2726}
2727EXPORT_SYMBOL_GPL(regulator_set_mode);
2728
2729static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2730{
2731	int ret;
2732
2733	mutex_lock(&rdev->mutex);
2734
2735	/* sanity check */
2736	if (!rdev->desc->ops->get_mode) {
2737		ret = -EINVAL;
2738		goto out;
2739	}
2740
2741	ret = rdev->desc->ops->get_mode(rdev);
2742out:
2743	mutex_unlock(&rdev->mutex);
2744	return ret;
2745}
2746
2747/**
2748 * regulator_get_mode - get regulator operating mode
2749 * @regulator: regulator source
2750 *
2751 * Get the current regulator operating mode.
2752 */
2753unsigned int regulator_get_mode(struct regulator *regulator)
2754{
2755	return _regulator_get_mode(regulator->rdev);
2756}
2757EXPORT_SYMBOL_GPL(regulator_get_mode);
2758
2759/**
2760 * regulator_set_optimum_mode - set regulator optimum operating mode
2761 * @regulator: regulator source
2762 * @uA_load: load current
2763 *
2764 * Notifies the regulator core of a new device load. This is then used by
2765 * DRMS (if enabled by constraints) to set the most efficient regulator
2766 * operating mode for the new regulator loading.
2767 *
2768 * Consumer devices notify their supply regulator of the maximum power
2769 * they will require (can be taken from device datasheet in the power
2770 * consumption tables) when they change operational status and hence power
2771 * state. Examples of operational state changes that can affect power
2772 * consumption are :-
2773 *
2774 *    o Device is opened / closed.
2775 *    o Device I/O is about to begin or has just finished.
2776 *    o Device is idling in between work.
2777 *
2778 * This information is also exported via sysfs to userspace.
2779 *
2780 * DRMS will sum the total requested load on the regulator and change
2781 * to the most efficient operating mode if platform constraints allow.
2782 *
2783 * Returns the new regulator mode or error.
2784 */
2785int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2786{
2787	struct regulator_dev *rdev = regulator->rdev;
2788	struct regulator *consumer;
2789	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2790	unsigned int mode;
2791
2792	if (rdev->supply)
2793		input_uV = regulator_get_voltage(rdev->supply);
2794
2795	mutex_lock(&rdev->mutex);
2796
2797	/*
2798	 * first check to see if we can set modes at all, otherwise just
2799	 * tell the consumer everything is OK.
2800	 */
2801	regulator->uA_load = uA_load;
2802	ret = regulator_check_drms(rdev);
2803	if (ret < 0) {
2804		ret = 0;
2805		goto out;
2806	}
2807
2808	if (!rdev->desc->ops->get_optimum_mode)
2809		goto out;
2810
2811	/*
2812	 * we can actually do this so any errors are indicators of
2813	 * potential real failure.
2814	 */
2815	ret = -EINVAL;
2816
2817	if (!rdev->desc->ops->set_mode)
2818		goto out;
2819
2820	/* get output voltage */
2821	output_uV = _regulator_get_voltage(rdev);
2822	if (output_uV <= 0) {
2823		rdev_err(rdev, "invalid output voltage found\n");
2824		goto out;
2825	}
2826
2827	/* No supply? Use constraint voltage */
2828	if (input_uV <= 0)
2829		input_uV = rdev->constraints->input_uV;
2830	if (input_uV <= 0) {
2831		rdev_err(rdev, "invalid input voltage found\n");
2832		goto out;
2833	}
2834
2835	/* calc total requested load for this regulator */
2836	list_for_each_entry(consumer, &rdev->consumer_list, list)
2837		total_uA_load += consumer->uA_load;
2838
2839	mode = rdev->desc->ops->get_optimum_mode(rdev,
2840						 input_uV, output_uV,
2841						 total_uA_load);
2842	ret = regulator_mode_constrain(rdev, &mode);
2843	if (ret < 0) {
2844		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2845			 total_uA_load, input_uV, output_uV);
2846		goto out;
2847	}
2848
2849	ret = rdev->desc->ops->set_mode(rdev, mode);
2850	if (ret < 0) {
2851		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2852		goto out;
2853	}
2854	ret = mode;
2855out:
2856	mutex_unlock(&rdev->mutex);
2857	return ret;
2858}
2859EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2860
2861/**
2862 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2863 *
2864 * @rdev: device to operate on.
2865 * @enable: state to set.
2866 */
2867int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2868{
2869	unsigned int val;
2870
2871	if (enable)
2872		val = rdev->desc->bypass_mask;
2873	else
2874		val = 0;
2875
2876	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2877				  rdev->desc->bypass_mask, val);
2878}
2879EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2880
2881/**
2882 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2883 *
2884 * @rdev: device to operate on.
2885 * @enable: current state.
2886 */
2887int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2888{
2889	unsigned int val;
2890	int ret;
2891
2892	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2893	if (ret != 0)
2894		return ret;
2895
2896	*enable = val & rdev->desc->bypass_mask;
2897
2898	return 0;
2899}
2900EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2901
2902/**
2903 * regulator_allow_bypass - allow the regulator to go into bypass mode
2904 *
2905 * @regulator: Regulator to configure
2906 * @allow: enable or disable bypass mode
2907 *
2908 * Allow the regulator to go into bypass mode if all other consumers
2909 * for the regulator also enable bypass mode and the machine
2910 * constraints allow this.  Bypass mode means that the regulator is
2911 * simply passing the input directly to the output with no regulation.
2912 */
2913int regulator_allow_bypass(struct regulator *regulator, bool enable)
2914{
2915	struct regulator_dev *rdev = regulator->rdev;
2916	int ret = 0;
2917
2918	if (!rdev->desc->ops->set_bypass)
2919		return 0;
2920
2921	if (rdev->constraints &&
2922	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2923		return 0;
2924
2925	mutex_lock(&rdev->mutex);
2926
2927	if (enable && !regulator->bypass) {
2928		rdev->bypass_count++;
2929
2930		if (rdev->bypass_count == rdev->open_count) {
2931			ret = rdev->desc->ops->set_bypass(rdev, enable);
2932			if (ret != 0)
2933				rdev->bypass_count--;
2934		}
2935
2936	} else if (!enable && regulator->bypass) {
2937		rdev->bypass_count--;
2938
2939		if (rdev->bypass_count != rdev->open_count) {
2940			ret = rdev->desc->ops->set_bypass(rdev, enable);
2941			if (ret != 0)
2942				rdev->bypass_count++;
2943		}
2944	}
2945
2946	if (ret == 0)
2947		regulator->bypass = enable;
2948
2949	mutex_unlock(&rdev->mutex);
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2954
2955/**
2956 * regulator_register_notifier - register regulator event notifier
2957 * @regulator: regulator source
2958 * @nb: notifier block
2959 *
2960 * Register notifier block to receive regulator events.
2961 */
2962int regulator_register_notifier(struct regulator *regulator,
2963			      struct notifier_block *nb)
2964{
2965	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2966						nb);
2967}
2968EXPORT_SYMBOL_GPL(regulator_register_notifier);
2969
2970/**
2971 * regulator_unregister_notifier - unregister regulator event notifier
2972 * @regulator: regulator source
2973 * @nb: notifier block
2974 *
2975 * Unregister regulator event notifier block.
2976 */
2977int regulator_unregister_notifier(struct regulator *regulator,
2978				struct notifier_block *nb)
2979{
2980	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2981						  nb);
2982}
2983EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2984
2985/* notify regulator consumers and downstream regulator consumers.
2986 * Note mutex must be held by caller.
2987 */
2988static void _notifier_call_chain(struct regulator_dev *rdev,
2989				  unsigned long event, void *data)
2990{
2991	/* call rdev chain first */
2992	blocking_notifier_call_chain(&rdev->notifier, event, data);
2993}
2994
2995/**
2996 * regulator_bulk_get - get multiple regulator consumers
2997 *
2998 * @dev:           Device to supply
2999 * @num_consumers: Number of consumers to register
3000 * @consumers:     Configuration of consumers; clients are stored here.
3001 *
3002 * @return 0 on success, an errno on failure.
3003 *
3004 * This helper function allows drivers to get several regulator
3005 * consumers in one operation.  If any of the regulators cannot be
3006 * acquired then any regulators that were allocated will be freed
3007 * before returning to the caller.
3008 */
3009int regulator_bulk_get(struct device *dev, int num_consumers,
3010		       struct regulator_bulk_data *consumers)
3011{
3012	int i;
3013	int ret;
3014
3015	for (i = 0; i < num_consumers; i++)
3016		consumers[i].consumer = NULL;
3017
3018	for (i = 0; i < num_consumers; i++) {
3019		consumers[i].consumer = regulator_get(dev,
3020						      consumers[i].supply);
3021		if (IS_ERR(consumers[i].consumer)) {
3022			ret = PTR_ERR(consumers[i].consumer);
3023			dev_err(dev, "Failed to get supply '%s': %d\n",
3024				consumers[i].supply, ret);
3025			consumers[i].consumer = NULL;
3026			goto err;
3027		}
3028	}
3029
3030	return 0;
3031
3032err:
3033	while (--i >= 0)
3034		regulator_put(consumers[i].consumer);
3035
3036	return ret;
3037}
3038EXPORT_SYMBOL_GPL(regulator_bulk_get);
3039
3040/**
3041 * devm_regulator_bulk_get - managed get multiple regulator consumers
3042 *
3043 * @dev:           Device to supply
3044 * @num_consumers: Number of consumers to register
3045 * @consumers:     Configuration of consumers; clients are stored here.
3046 *
3047 * @return 0 on success, an errno on failure.
3048 *
3049 * This helper function allows drivers to get several regulator
3050 * consumers in one operation with management, the regulators will
3051 * automatically be freed when the device is unbound.  If any of the
3052 * regulators cannot be acquired then any regulators that were
3053 * allocated will be freed before returning to the caller.
3054 */
3055int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3056			    struct regulator_bulk_data *consumers)
3057{
3058	int i;
3059	int ret;
3060
3061	for (i = 0; i < num_consumers; i++)
3062		consumers[i].consumer = NULL;
3063
3064	for (i = 0; i < num_consumers; i++) {
3065		consumers[i].consumer = devm_regulator_get(dev,
3066							   consumers[i].supply);
3067		if (IS_ERR(consumers[i].consumer)) {
3068			ret = PTR_ERR(consumers[i].consumer);
3069			dev_err(dev, "Failed to get supply '%s': %d\n",
3070				consumers[i].supply, ret);
3071			consumers[i].consumer = NULL;
3072			goto err;
3073		}
3074	}
3075
3076	return 0;
3077
3078err:
3079	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3080		devm_regulator_put(consumers[i].consumer);
3081
3082	return ret;
3083}
3084EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3085
3086static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3087{
3088	struct regulator_bulk_data *bulk = data;
3089
3090	bulk->ret = regulator_enable(bulk->consumer);
3091}
3092
3093/**
3094 * regulator_bulk_enable - enable multiple regulator consumers
3095 *
3096 * @num_consumers: Number of consumers
3097 * @consumers:     Consumer data; clients are stored here.
3098 * @return         0 on success, an errno on failure
3099 *
3100 * This convenience API allows consumers to enable multiple regulator
3101 * clients in a single API call.  If any consumers cannot be enabled
3102 * then any others that were enabled will be disabled again prior to
3103 * return.
3104 */
3105int regulator_bulk_enable(int num_consumers,
3106			  struct regulator_bulk_data *consumers)
3107{
3108	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3109	int i;
3110	int ret = 0;
3111
3112	for (i = 0; i < num_consumers; i++) {
3113		if (consumers[i].consumer->always_on)
3114			consumers[i].ret = 0;
3115		else
3116			async_schedule_domain(regulator_bulk_enable_async,
3117					      &consumers[i], &async_domain);
3118	}
3119
3120	async_synchronize_full_domain(&async_domain);
3121
3122	/* If any consumer failed we need to unwind any that succeeded */
3123	for (i = 0; i < num_consumers; i++) {
3124		if (consumers[i].ret != 0) {
3125			ret = consumers[i].ret;
3126			goto err;
3127		}
3128	}
3129
3130	return 0;
3131
3132err:
3133	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3134	while (--i >= 0)
3135		regulator_disable(consumers[i].consumer);
3136
3137	return ret;
3138}
3139EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3140
3141/**
3142 * regulator_bulk_disable - disable multiple regulator consumers
3143 *
3144 * @num_consumers: Number of consumers
3145 * @consumers:     Consumer data; clients are stored here.
3146 * @return         0 on success, an errno on failure
3147 *
3148 * This convenience API allows consumers to disable multiple regulator
3149 * clients in a single API call.  If any consumers cannot be disabled
3150 * then any others that were disabled will be enabled again prior to
3151 * return.
3152 */
3153int regulator_bulk_disable(int num_consumers,
3154			   struct regulator_bulk_data *consumers)
3155{
3156	int i;
3157	int ret, r;
3158
3159	for (i = num_consumers - 1; i >= 0; --i) {
3160		ret = regulator_disable(consumers[i].consumer);
3161		if (ret != 0)
3162			goto err;
3163	}
3164
3165	return 0;
3166
3167err:
3168	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3169	for (++i; i < num_consumers; ++i) {
3170		r = regulator_enable(consumers[i].consumer);
3171		if (r != 0)
3172			pr_err("Failed to reename %s: %d\n",
3173			       consumers[i].supply, r);
3174	}
3175
3176	return ret;
3177}
3178EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3179
3180/**
3181 * regulator_bulk_force_disable - force disable multiple regulator consumers
3182 *
3183 * @num_consumers: Number of consumers
3184 * @consumers:     Consumer data; clients are stored here.
3185 * @return         0 on success, an errno on failure
3186 *
3187 * This convenience API allows consumers to forcibly disable multiple regulator
3188 * clients in a single API call.
3189 * NOTE: This should be used for situations when device damage will
3190 * likely occur if the regulators are not disabled (e.g. over temp).
3191 * Although regulator_force_disable function call for some consumers can
3192 * return error numbers, the function is called for all consumers.
3193 */
3194int regulator_bulk_force_disable(int num_consumers,
3195			   struct regulator_bulk_data *consumers)
3196{
3197	int i;
3198	int ret;
3199
3200	for (i = 0; i < num_consumers; i++)
3201		consumers[i].ret =
3202			    regulator_force_disable(consumers[i].consumer);
3203
3204	for (i = 0; i < num_consumers; i++) {
3205		if (consumers[i].ret != 0) {
3206			ret = consumers[i].ret;
3207			goto out;
3208		}
3209	}
3210
3211	return 0;
3212out:
3213	return ret;
3214}
3215EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3216
3217/**
3218 * regulator_bulk_free - free multiple regulator consumers
3219 *
3220 * @num_consumers: Number of consumers
3221 * @consumers:     Consumer data; clients are stored here.
3222 *
3223 * This convenience API allows consumers to free multiple regulator
3224 * clients in a single API call.
3225 */
3226void regulator_bulk_free(int num_consumers,
3227			 struct regulator_bulk_data *consumers)
3228{
3229	int i;
3230
3231	for (i = 0; i < num_consumers; i++) {
3232		regulator_put(consumers[i].consumer);
3233		consumers[i].consumer = NULL;
3234	}
3235}
3236EXPORT_SYMBOL_GPL(regulator_bulk_free);
3237
3238/**
3239 * regulator_notifier_call_chain - call regulator event notifier
3240 * @rdev: regulator source
3241 * @event: notifier block
3242 * @data: callback-specific data.
3243 *
3244 * Called by regulator drivers to notify clients a regulator event has
3245 * occurred. We also notify regulator clients downstream.
3246 * Note lock must be held by caller.
3247 */
3248int regulator_notifier_call_chain(struct regulator_dev *rdev,
3249				  unsigned long event, void *data)
3250{
3251	_notifier_call_chain(rdev, event, data);
3252	return NOTIFY_DONE;
3253
3254}
3255EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3256
3257/**
3258 * regulator_mode_to_status - convert a regulator mode into a status
3259 *
3260 * @mode: Mode to convert
3261 *
3262 * Convert a regulator mode into a status.
3263 */
3264int regulator_mode_to_status(unsigned int mode)
3265{
3266	switch (mode) {
3267	case REGULATOR_MODE_FAST:
3268		return REGULATOR_STATUS_FAST;
3269	case REGULATOR_MODE_NORMAL:
3270		return REGULATOR_STATUS_NORMAL;
3271	case REGULATOR_MODE_IDLE:
3272		return REGULATOR_STATUS_IDLE;
3273	case REGULATOR_MODE_STANDBY:
3274		return REGULATOR_STATUS_STANDBY;
3275	default:
3276		return REGULATOR_STATUS_UNDEFINED;
3277	}
3278}
3279EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3280
3281/*
3282 * To avoid cluttering sysfs (and memory) with useless state, only
3283 * create attributes that can be meaningfully displayed.
3284 */
3285static int add_regulator_attributes(struct regulator_dev *rdev)
3286{
3287	struct device		*dev = &rdev->dev;
3288	struct regulator_ops	*ops = rdev->desc->ops;
3289	int			status = 0;
3290
3291	/* some attributes need specific methods to be displayed */
3292	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3293	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3294	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3295		status = device_create_file(dev, &dev_attr_microvolts);
3296		if (status < 0)
3297			return status;
3298	}
3299	if (ops->get_current_limit) {
3300		status = device_create_file(dev, &dev_attr_microamps);
3301		if (status < 0)
3302			return status;
3303	}
3304	if (ops->get_mode) {
3305		status = device_create_file(dev, &dev_attr_opmode);
3306		if (status < 0)
3307			return status;
3308	}
3309	if (rdev->ena_gpio || ops->is_enabled) {
3310		status = device_create_file(dev, &dev_attr_state);
3311		if (status < 0)
3312			return status;
3313	}
3314	if (ops->get_status) {
3315		status = device_create_file(dev, &dev_attr_status);
3316		if (status < 0)
3317			return status;
3318	}
3319	if (ops->get_bypass) {
3320		status = device_create_file(dev, &dev_attr_bypass);
3321		if (status < 0)
3322			return status;
3323	}
3324
3325	/* some attributes are type-specific */
3326	if (rdev->desc->type == REGULATOR_CURRENT) {
3327		status = device_create_file(dev, &dev_attr_requested_microamps);
3328		if (status < 0)
3329			return status;
3330	}
3331
3332	/* all the other attributes exist to support constraints;
3333	 * don't show them if there are no constraints, or if the
3334	 * relevant supporting methods are missing.
3335	 */
3336	if (!rdev->constraints)
3337		return status;
3338
3339	/* constraints need specific supporting methods */
3340	if (ops->set_voltage || ops->set_voltage_sel) {
3341		status = device_create_file(dev, &dev_attr_min_microvolts);
3342		if (status < 0)
3343			return status;
3344		status = device_create_file(dev, &dev_attr_max_microvolts);
3345		if (status < 0)
3346			return status;
3347	}
3348	if (ops->set_current_limit) {
3349		status = device_create_file(dev, &dev_attr_min_microamps);
3350		if (status < 0)
3351			return status;
3352		status = device_create_file(dev, &dev_attr_max_microamps);
3353		if (status < 0)
3354			return status;
3355	}
3356
3357	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3358	if (status < 0)
3359		return status;
3360	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3361	if (status < 0)
3362		return status;
3363	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3364	if (status < 0)
3365		return status;
3366
3367	if (ops->set_suspend_voltage) {
3368		status = device_create_file(dev,
3369				&dev_attr_suspend_standby_microvolts);
3370		if (status < 0)
3371			return status;
3372		status = device_create_file(dev,
3373				&dev_attr_suspend_mem_microvolts);
3374		if (status < 0)
3375			return status;
3376		status = device_create_file(dev,
3377				&dev_attr_suspend_disk_microvolts);
3378		if (status < 0)
3379			return status;
3380	}
3381
3382	if (ops->set_suspend_mode) {
3383		status = device_create_file(dev,
3384				&dev_attr_suspend_standby_mode);
3385		if (status < 0)
3386			return status;
3387		status = device_create_file(dev,
3388				&dev_attr_suspend_mem_mode);
3389		if (status < 0)
3390			return status;
3391		status = device_create_file(dev,
3392				&dev_attr_suspend_disk_mode);
3393		if (status < 0)
3394			return status;
3395	}
3396
3397	return status;
3398}
3399
3400static void rdev_init_debugfs(struct regulator_dev *rdev)
3401{
3402	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3403	if (!rdev->debugfs) {
3404		rdev_warn(rdev, "Failed to create debugfs directory\n");
3405		return;
3406	}
3407
3408	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3409			   &rdev->use_count);
3410	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3411			   &rdev->open_count);
3412	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3413			   &rdev->bypass_count);
3414}
3415
3416/**
3417 * regulator_register - register regulator
3418 * @regulator_desc: regulator to register
3419 * @config: runtime configuration for regulator
3420 *
3421 * Called by regulator drivers to register a regulator.
3422 * Returns a valid pointer to struct regulator_dev on success
3423 * or an ERR_PTR() on error.
3424 */
3425struct regulator_dev *
3426regulator_register(const struct regulator_desc *regulator_desc,
3427		   const struct regulator_config *config)
3428{
3429	const struct regulation_constraints *constraints = NULL;
3430	const struct regulator_init_data *init_data;
3431	static atomic_t regulator_no = ATOMIC_INIT(0);
3432	struct regulator_dev *rdev;
3433	struct device *dev;
3434	int ret, i;
3435	const char *supply = NULL;
3436
3437	if (regulator_desc == NULL || config == NULL)
3438		return ERR_PTR(-EINVAL);
3439
3440	dev = config->dev;
3441	WARN_ON(!dev);
3442
3443	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3444		return ERR_PTR(-EINVAL);
3445
3446	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3447	    regulator_desc->type != REGULATOR_CURRENT)
3448		return ERR_PTR(-EINVAL);
3449
3450	/* Only one of each should be implemented */
3451	WARN_ON(regulator_desc->ops->get_voltage &&
3452		regulator_desc->ops->get_voltage_sel);
3453	WARN_ON(regulator_desc->ops->set_voltage &&
3454		regulator_desc->ops->set_voltage_sel);
3455
3456	/* If we're using selectors we must implement list_voltage. */
3457	if (regulator_desc->ops->get_voltage_sel &&
3458	    !regulator_desc->ops->list_voltage) {
3459		return ERR_PTR(-EINVAL);
3460	}
3461	if (regulator_desc->ops->set_voltage_sel &&
3462	    !regulator_desc->ops->list_voltage) {
3463		return ERR_PTR(-EINVAL);
3464	}
3465
3466	init_data = config->init_data;
3467
3468	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3469	if (rdev == NULL)
3470		return ERR_PTR(-ENOMEM);
3471
3472	mutex_lock(&regulator_list_mutex);
3473
3474	mutex_init(&rdev->mutex);
3475	rdev->reg_data = config->driver_data;
3476	rdev->owner = regulator_desc->owner;
3477	rdev->desc = regulator_desc;
3478	if (config->regmap)
3479		rdev->regmap = config->regmap;
3480	else if (dev_get_regmap(dev, NULL))
3481		rdev->regmap = dev_get_regmap(dev, NULL);
3482	else if (dev->parent)
3483		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3484	INIT_LIST_HEAD(&rdev->consumer_list);
3485	INIT_LIST_HEAD(&rdev->list);
3486	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3487	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3488
3489	/* preform any regulator specific init */
3490	if (init_data && init_data->regulator_init) {
3491		ret = init_data->regulator_init(rdev->reg_data);
3492		if (ret < 0)
3493			goto clean;
3494	}
3495
3496	/* register with sysfs */
3497	rdev->dev.class = &regulator_class;
3498	rdev->dev.of_node = config->of_node;
3499	rdev->dev.parent = dev;
3500	dev_set_name(&rdev->dev, "regulator.%d",
3501		     atomic_inc_return(&regulator_no) - 1);
3502	ret = device_register(&rdev->dev);
3503	if (ret != 0) {
3504		put_device(&rdev->dev);
3505		goto clean;
3506	}
3507
3508	dev_set_drvdata(&rdev->dev, rdev);
3509
3510	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3511		ret = regulator_ena_gpio_request(rdev, config);
3512		if (ret != 0) {
3513			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3514				 config->ena_gpio, ret);
3515			goto wash;
3516		}
3517
3518		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3519			rdev->ena_gpio_state = 1;
3520
3521		if (rdev->ena_gpio_invert)
3522			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3523	}
3524
3525	/* set regulator constraints */
3526	if (init_data)
3527		constraints = &init_data->constraints;
3528
3529	ret = set_machine_constraints(rdev, constraints);
3530	if (ret < 0)
3531		goto scrub;
3532
3533	/* add attributes supported by this regulator */
3534	ret = add_regulator_attributes(rdev);
3535	if (ret < 0)
3536		goto scrub;
3537
3538	if (init_data && init_data->supply_regulator)
3539		supply = init_data->supply_regulator;
3540	else if (regulator_desc->supply_name)
3541		supply = regulator_desc->supply_name;
3542
3543	if (supply) {
3544		struct regulator_dev *r;
3545
3546		r = regulator_dev_lookup(dev, supply, &ret);
3547
3548		if (!r) {
3549			dev_err(dev, "Failed to find supply %s\n", supply);
3550			ret = -EPROBE_DEFER;
3551			goto scrub;
3552		}
3553
3554		ret = set_supply(rdev, r);
3555		if (ret < 0)
3556			goto scrub;
3557
3558		/* Enable supply if rail is enabled */
3559		if (_regulator_is_enabled(rdev)) {
3560			ret = regulator_enable(rdev->supply);
3561			if (ret < 0)
3562				goto scrub;
3563		}
3564	}
3565
3566	/* add consumers devices */
3567	if (init_data) {
3568		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3569			ret = set_consumer_device_supply(rdev,
3570				init_data->consumer_supplies[i].dev_name,
3571				init_data->consumer_supplies[i].supply);
3572			if (ret < 0) {
3573				dev_err(dev, "Failed to set supply %s\n",
3574					init_data->consumer_supplies[i].supply);
3575				goto unset_supplies;
3576			}
3577		}
3578	}
3579
3580	list_add(&rdev->list, &regulator_list);
3581
3582	rdev_init_debugfs(rdev);
3583out:
3584	mutex_unlock(&regulator_list_mutex);
3585	return rdev;
3586
3587unset_supplies:
3588	unset_regulator_supplies(rdev);
3589
3590scrub:
3591	if (rdev->supply)
3592		_regulator_put(rdev->supply);
3593	regulator_ena_gpio_free(rdev);
3594	kfree(rdev->constraints);
3595wash:
3596	device_unregister(&rdev->dev);
3597	/* device core frees rdev */
3598	rdev = ERR_PTR(ret);
3599	goto out;
3600
3601clean:
3602	kfree(rdev);
3603	rdev = ERR_PTR(ret);
3604	goto out;
3605}
3606EXPORT_SYMBOL_GPL(regulator_register);
3607
3608/**
3609 * regulator_unregister - unregister regulator
3610 * @rdev: regulator to unregister
3611 *
3612 * Called by regulator drivers to unregister a regulator.
3613 */
3614void regulator_unregister(struct regulator_dev *rdev)
3615{
3616	if (rdev == NULL)
3617		return;
3618
3619	if (rdev->supply)
3620		regulator_put(rdev->supply);
3621	mutex_lock(&regulator_list_mutex);
3622	debugfs_remove_recursive(rdev->debugfs);
3623	flush_work(&rdev->disable_work.work);
3624	WARN_ON(rdev->open_count);
3625	unset_regulator_supplies(rdev);
3626	list_del(&rdev->list);
3627	kfree(rdev->constraints);
3628	regulator_ena_gpio_free(rdev);
3629	device_unregister(&rdev->dev);
3630	mutex_unlock(&regulator_list_mutex);
3631}
3632EXPORT_SYMBOL_GPL(regulator_unregister);
3633
3634/**
3635 * regulator_suspend_prepare - prepare regulators for system wide suspend
3636 * @state: system suspend state
3637 *
3638 * Configure each regulator with it's suspend operating parameters for state.
3639 * This will usually be called by machine suspend code prior to supending.
3640 */
3641int regulator_suspend_prepare(suspend_state_t state)
3642{
3643	struct regulator_dev *rdev;
3644	int ret = 0;
3645
3646	/* ON is handled by regulator active state */
3647	if (state == PM_SUSPEND_ON)
3648		return -EINVAL;
3649
3650	mutex_lock(&regulator_list_mutex);
3651	list_for_each_entry(rdev, &regulator_list, list) {
3652
3653		mutex_lock(&rdev->mutex);
3654		ret = suspend_prepare(rdev, state);
3655		mutex_unlock(&rdev->mutex);
3656
3657		if (ret < 0) {
3658			rdev_err(rdev, "failed to prepare\n");
3659			goto out;
3660		}
3661	}
3662out:
3663	mutex_unlock(&regulator_list_mutex);
3664	return ret;
3665}
3666EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3667
3668/**
3669 * regulator_suspend_finish - resume regulators from system wide suspend
3670 *
3671 * Turn on regulators that might be turned off by regulator_suspend_prepare
3672 * and that should be turned on according to the regulators properties.
3673 */
3674int regulator_suspend_finish(void)
3675{
3676	struct regulator_dev *rdev;
3677	int ret = 0, error;
3678
3679	mutex_lock(&regulator_list_mutex);
3680	list_for_each_entry(rdev, &regulator_list, list) {
3681		struct regulator_ops *ops = rdev->desc->ops;
3682
3683		mutex_lock(&rdev->mutex);
3684		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3685				ops->enable) {
3686			error = ops->enable(rdev);
3687			if (error)
3688				ret = error;
3689		} else {
3690			if (!has_full_constraints)
3691				goto unlock;
3692			if (!ops->disable)
3693				goto unlock;
3694			if (!_regulator_is_enabled(rdev))
3695				goto unlock;
3696
3697			error = ops->disable(rdev);
3698			if (error)
3699				ret = error;
3700		}
3701unlock:
3702		mutex_unlock(&rdev->mutex);
3703	}
3704	mutex_unlock(&regulator_list_mutex);
3705	return ret;
3706}
3707EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3708
3709/**
3710 * regulator_has_full_constraints - the system has fully specified constraints
3711 *
3712 * Calling this function will cause the regulator API to disable all
3713 * regulators which have a zero use count and don't have an always_on
3714 * constraint in a late_initcall.
3715 *
3716 * The intention is that this will become the default behaviour in a
3717 * future kernel release so users are encouraged to use this facility
3718 * now.
3719 */
3720void regulator_has_full_constraints(void)
3721{
3722	has_full_constraints = 1;
3723}
3724EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3725
3726/**
3727 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3728 *
3729 * Calling this function will cause the regulator API to provide a
3730 * dummy regulator to consumers if no physical regulator is found,
3731 * allowing most consumers to proceed as though a regulator were
3732 * configured.  This allows systems such as those with software
3733 * controllable regulators for the CPU core only to be brought up more
3734 * readily.
3735 */
3736void regulator_use_dummy_regulator(void)
3737{
3738	board_wants_dummy_regulator = true;
3739}
3740EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3741
3742/**
3743 * rdev_get_drvdata - get rdev regulator driver data
3744 * @rdev: regulator
3745 *
3746 * Get rdev regulator driver private data. This call can be used in the
3747 * regulator driver context.
3748 */
3749void *rdev_get_drvdata(struct regulator_dev *rdev)
3750{
3751	return rdev->reg_data;
3752}
3753EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3754
3755/**
3756 * regulator_get_drvdata - get regulator driver data
3757 * @regulator: regulator
3758 *
3759 * Get regulator driver private data. This call can be used in the consumer
3760 * driver context when non API regulator specific functions need to be called.
3761 */
3762void *regulator_get_drvdata(struct regulator *regulator)
3763{
3764	return regulator->rdev->reg_data;
3765}
3766EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3767
3768/**
3769 * regulator_set_drvdata - set regulator driver data
3770 * @regulator: regulator
3771 * @data: data
3772 */
3773void regulator_set_drvdata(struct regulator *regulator, void *data)
3774{
3775	regulator->rdev->reg_data = data;
3776}
3777EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3778
3779/**
3780 * regulator_get_id - get regulator ID
3781 * @rdev: regulator
3782 */
3783int rdev_get_id(struct regulator_dev *rdev)
3784{
3785	return rdev->desc->id;
3786}
3787EXPORT_SYMBOL_GPL(rdev_get_id);
3788
3789struct device *rdev_get_dev(struct regulator_dev *rdev)
3790{
3791	return &rdev->dev;
3792}
3793EXPORT_SYMBOL_GPL(rdev_get_dev);
3794
3795void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3796{
3797	return reg_init_data->driver_data;
3798}
3799EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3800
3801#ifdef CONFIG_DEBUG_FS
3802static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3803				    size_t count, loff_t *ppos)
3804{
3805	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3806	ssize_t len, ret = 0;
3807	struct regulator_map *map;
3808
3809	if (!buf)
3810		return -ENOMEM;
3811
3812	list_for_each_entry(map, &regulator_map_list, list) {
3813		len = snprintf(buf + ret, PAGE_SIZE - ret,
3814			       "%s -> %s.%s\n",
3815			       rdev_get_name(map->regulator), map->dev_name,
3816			       map->supply);
3817		if (len >= 0)
3818			ret += len;
3819		if (ret > PAGE_SIZE) {
3820			ret = PAGE_SIZE;
3821			break;
3822		}
3823	}
3824
3825	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3826
3827	kfree(buf);
3828
3829	return ret;
3830}
3831#endif
3832
3833static const struct file_operations supply_map_fops = {
3834#ifdef CONFIG_DEBUG_FS
3835	.read = supply_map_read_file,
3836	.llseek = default_llseek,
3837#endif
3838};
3839
3840static int __init regulator_init(void)
3841{
3842	int ret;
3843
3844	ret = class_register(&regulator_class);
3845
3846	debugfs_root = debugfs_create_dir("regulator", NULL);
3847	if (!debugfs_root)
3848		pr_warn("regulator: Failed to create debugfs directory\n");
3849
3850	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3851			    &supply_map_fops);
3852
3853	regulator_dummy_init();
3854
3855	return ret;
3856}
3857
3858/* init early to allow our consumers to complete system booting */
3859core_initcall(regulator_init);
3860
3861static int __init regulator_init_complete(void)
3862{
3863	struct regulator_dev *rdev;
3864	struct regulator_ops *ops;
3865	struct regulation_constraints *c;
3866	int enabled, ret;
3867
3868	/*
3869	 * Since DT doesn't provide an idiomatic mechanism for
3870	 * enabling full constraints and since it's much more natural
3871	 * with DT to provide them just assume that a DT enabled
3872	 * system has full constraints.
3873	 */
3874	if (of_have_populated_dt())
3875		has_full_constraints = true;
3876
3877	mutex_lock(&regulator_list_mutex);
3878
3879	/* If we have a full configuration then disable any regulators
3880	 * which are not in use or always_on.  This will become the
3881	 * default behaviour in the future.
3882	 */
3883	list_for_each_entry(rdev, &regulator_list, list) {
3884		ops = rdev->desc->ops;
3885		c = rdev->constraints;
3886
3887		if (!ops->disable || (c && c->always_on))
3888			continue;
3889
3890		mutex_lock(&rdev->mutex);
3891
3892		if (rdev->use_count)
3893			goto unlock;
3894
3895		/* If we can't read the status assume it's on. */
3896		if (ops->is_enabled)
3897			enabled = ops->is_enabled(rdev);
3898		else
3899			enabled = 1;
3900
3901		if (!enabled)
3902			goto unlock;
3903
3904		if (has_full_constraints) {
3905			/* We log since this may kill the system if it
3906			 * goes wrong. */
3907			rdev_info(rdev, "disabling\n");
3908			ret = ops->disable(rdev);
3909			if (ret != 0) {
3910				rdev_err(rdev, "couldn't disable: %d\n", ret);
3911			}
3912		} else {
3913			/* The intention is that in future we will
3914			 * assume that full constraints are provided
3915			 * so warn even if we aren't going to do
3916			 * anything here.
3917			 */
3918			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3919		}
3920
3921unlock:
3922		mutex_unlock(&rdev->mutex);
3923	}
3924
3925	mutex_unlock(&regulator_list_mutex);
3926
3927	return 0;
3928}
3929late_initcall(regulator_init_complete);
3930