core.c revision f446043f1aa74c2d699db48ba4a7a075b88dc14d
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...)					\
42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...)					\
44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...)					\
46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...)					\
48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...)					\
50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67	struct list_head list;
68	const char *dev_name;   /* The dev_name() for the consumer */
69	const char *supply;
70	struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79	struct list_head list;
80	int gpio;
81	u32 enable_count;	/* a number of enabled shared GPIO */
82	u32 request_count;	/* a number of requested shared GPIO */
83	unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92	struct list_head list;
93	struct device *src_dev;
94	const char *src_supply;
95	struct device *alias_dev;
96	const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105				  unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107				     int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109					  struct device *dev,
110					  const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114	if (rdev->constraints && rdev->constraints->name)
115		return rdev->constraints->name;
116	else if (rdev->desc->name)
117		return rdev->desc->name;
118	else
119		return "";
120}
121
122/**
123 * of_get_regulator - get a regulator device node based on supply name
124 * @dev: Device pointer for the consumer (of regulator) device
125 * @supply: regulator supply name
126 *
127 * Extract the regulator device node corresponding to the supply name.
128 * returns the device node corresponding to the regulator if found, else
129 * returns NULL.
130 */
131static struct device_node *of_get_regulator(struct device *dev, const char *supply)
132{
133	struct device_node *regnode = NULL;
134	char prop_name[32]; /* 32 is max size of property name */
135
136	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
137
138	snprintf(prop_name, 32, "%s-supply", supply);
139	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
140
141	if (!regnode) {
142		dev_dbg(dev, "Looking up %s property in node %s failed",
143				prop_name, dev->of_node->full_name);
144		return NULL;
145	}
146	return regnode;
147}
148
149static int _regulator_can_change_status(struct regulator_dev *rdev)
150{
151	if (!rdev->constraints)
152		return 0;
153
154	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
155		return 1;
156	else
157		return 0;
158}
159
160/* Platform voltage constraint check */
161static int regulator_check_voltage(struct regulator_dev *rdev,
162				   int *min_uV, int *max_uV)
163{
164	BUG_ON(*min_uV > *max_uV);
165
166	if (!rdev->constraints) {
167		rdev_err(rdev, "no constraints\n");
168		return -ENODEV;
169	}
170	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
171		rdev_err(rdev, "operation not allowed\n");
172		return -EPERM;
173	}
174
175	if (*max_uV > rdev->constraints->max_uV)
176		*max_uV = rdev->constraints->max_uV;
177	if (*min_uV < rdev->constraints->min_uV)
178		*min_uV = rdev->constraints->min_uV;
179
180	if (*min_uV > *max_uV) {
181		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
182			 *min_uV, *max_uV);
183		return -EINVAL;
184	}
185
186	return 0;
187}
188
189/* Make sure we select a voltage that suits the needs of all
190 * regulator consumers
191 */
192static int regulator_check_consumers(struct regulator_dev *rdev,
193				     int *min_uV, int *max_uV)
194{
195	struct regulator *regulator;
196
197	list_for_each_entry(regulator, &rdev->consumer_list, list) {
198		/*
199		 * Assume consumers that didn't say anything are OK
200		 * with anything in the constraint range.
201		 */
202		if (!regulator->min_uV && !regulator->max_uV)
203			continue;
204
205		if (*max_uV > regulator->max_uV)
206			*max_uV = regulator->max_uV;
207		if (*min_uV < regulator->min_uV)
208			*min_uV = regulator->min_uV;
209	}
210
211	if (*min_uV > *max_uV) {
212		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
213			*min_uV, *max_uV);
214		return -EINVAL;
215	}
216
217	return 0;
218}
219
220/* current constraint check */
221static int regulator_check_current_limit(struct regulator_dev *rdev,
222					int *min_uA, int *max_uA)
223{
224	BUG_ON(*min_uA > *max_uA);
225
226	if (!rdev->constraints) {
227		rdev_err(rdev, "no constraints\n");
228		return -ENODEV;
229	}
230	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
231		rdev_err(rdev, "operation not allowed\n");
232		return -EPERM;
233	}
234
235	if (*max_uA > rdev->constraints->max_uA)
236		*max_uA = rdev->constraints->max_uA;
237	if (*min_uA < rdev->constraints->min_uA)
238		*min_uA = rdev->constraints->min_uA;
239
240	if (*min_uA > *max_uA) {
241		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
242			 *min_uA, *max_uA);
243		return -EINVAL;
244	}
245
246	return 0;
247}
248
249/* operating mode constraint check */
250static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
251{
252	switch (*mode) {
253	case REGULATOR_MODE_FAST:
254	case REGULATOR_MODE_NORMAL:
255	case REGULATOR_MODE_IDLE:
256	case REGULATOR_MODE_STANDBY:
257		break;
258	default:
259		rdev_err(rdev, "invalid mode %x specified\n", *mode);
260		return -EINVAL;
261	}
262
263	if (!rdev->constraints) {
264		rdev_err(rdev, "no constraints\n");
265		return -ENODEV;
266	}
267	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
268		rdev_err(rdev, "operation not allowed\n");
269		return -EPERM;
270	}
271
272	/* The modes are bitmasks, the most power hungry modes having
273	 * the lowest values. If the requested mode isn't supported
274	 * try higher modes. */
275	while (*mode) {
276		if (rdev->constraints->valid_modes_mask & *mode)
277			return 0;
278		*mode /= 2;
279	}
280
281	return -EINVAL;
282}
283
284/* dynamic regulator mode switching constraint check */
285static int regulator_check_drms(struct regulator_dev *rdev)
286{
287	if (!rdev->constraints) {
288		rdev_err(rdev, "no constraints\n");
289		return -ENODEV;
290	}
291	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
292		rdev_err(rdev, "operation not allowed\n");
293		return -EPERM;
294	}
295	return 0;
296}
297
298static ssize_t regulator_uV_show(struct device *dev,
299				struct device_attribute *attr, char *buf)
300{
301	struct regulator_dev *rdev = dev_get_drvdata(dev);
302	ssize_t ret;
303
304	mutex_lock(&rdev->mutex);
305	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
306	mutex_unlock(&rdev->mutex);
307
308	return ret;
309}
310static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
311
312static ssize_t regulator_uA_show(struct device *dev,
313				struct device_attribute *attr, char *buf)
314{
315	struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
318}
319static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
320
321static ssize_t name_show(struct device *dev, struct device_attribute *attr,
322			 char *buf)
323{
324	struct regulator_dev *rdev = dev_get_drvdata(dev);
325
326	return sprintf(buf, "%s\n", rdev_get_name(rdev));
327}
328static DEVICE_ATTR_RO(name);
329
330static ssize_t regulator_print_opmode(char *buf, int mode)
331{
332	switch (mode) {
333	case REGULATOR_MODE_FAST:
334		return sprintf(buf, "fast\n");
335	case REGULATOR_MODE_NORMAL:
336		return sprintf(buf, "normal\n");
337	case REGULATOR_MODE_IDLE:
338		return sprintf(buf, "idle\n");
339	case REGULATOR_MODE_STANDBY:
340		return sprintf(buf, "standby\n");
341	}
342	return sprintf(buf, "unknown\n");
343}
344
345static ssize_t regulator_opmode_show(struct device *dev,
346				    struct device_attribute *attr, char *buf)
347{
348	struct regulator_dev *rdev = dev_get_drvdata(dev);
349
350	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
351}
352static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
353
354static ssize_t regulator_print_state(char *buf, int state)
355{
356	if (state > 0)
357		return sprintf(buf, "enabled\n");
358	else if (state == 0)
359		return sprintf(buf, "disabled\n");
360	else
361		return sprintf(buf, "unknown\n");
362}
363
364static ssize_t regulator_state_show(struct device *dev,
365				   struct device_attribute *attr, char *buf)
366{
367	struct regulator_dev *rdev = dev_get_drvdata(dev);
368	ssize_t ret;
369
370	mutex_lock(&rdev->mutex);
371	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
372	mutex_unlock(&rdev->mutex);
373
374	return ret;
375}
376static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
377
378static ssize_t regulator_status_show(struct device *dev,
379				   struct device_attribute *attr, char *buf)
380{
381	struct regulator_dev *rdev = dev_get_drvdata(dev);
382	int status;
383	char *label;
384
385	status = rdev->desc->ops->get_status(rdev);
386	if (status < 0)
387		return status;
388
389	switch (status) {
390	case REGULATOR_STATUS_OFF:
391		label = "off";
392		break;
393	case REGULATOR_STATUS_ON:
394		label = "on";
395		break;
396	case REGULATOR_STATUS_ERROR:
397		label = "error";
398		break;
399	case REGULATOR_STATUS_FAST:
400		label = "fast";
401		break;
402	case REGULATOR_STATUS_NORMAL:
403		label = "normal";
404		break;
405	case REGULATOR_STATUS_IDLE:
406		label = "idle";
407		break;
408	case REGULATOR_STATUS_STANDBY:
409		label = "standby";
410		break;
411	case REGULATOR_STATUS_BYPASS:
412		label = "bypass";
413		break;
414	case REGULATOR_STATUS_UNDEFINED:
415		label = "undefined";
416		break;
417	default:
418		return -ERANGE;
419	}
420
421	return sprintf(buf, "%s\n", label);
422}
423static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424
425static ssize_t regulator_min_uA_show(struct device *dev,
426				    struct device_attribute *attr, char *buf)
427{
428	struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430	if (!rdev->constraints)
431		return sprintf(buf, "constraint not defined\n");
432
433	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434}
435static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436
437static ssize_t regulator_max_uA_show(struct device *dev,
438				    struct device_attribute *attr, char *buf)
439{
440	struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442	if (!rdev->constraints)
443		return sprintf(buf, "constraint not defined\n");
444
445	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446}
447static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448
449static ssize_t regulator_min_uV_show(struct device *dev,
450				    struct device_attribute *attr, char *buf)
451{
452	struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454	if (!rdev->constraints)
455		return sprintf(buf, "constraint not defined\n");
456
457	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458}
459static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460
461static ssize_t regulator_max_uV_show(struct device *dev,
462				    struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	if (!rdev->constraints)
467		return sprintf(buf, "constraint not defined\n");
468
469	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470}
471static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472
473static ssize_t regulator_total_uA_show(struct device *dev,
474				      struct device_attribute *attr, char *buf)
475{
476	struct regulator_dev *rdev = dev_get_drvdata(dev);
477	struct regulator *regulator;
478	int uA = 0;
479
480	mutex_lock(&rdev->mutex);
481	list_for_each_entry(regulator, &rdev->consumer_list, list)
482		uA += regulator->uA_load;
483	mutex_unlock(&rdev->mutex);
484	return sprintf(buf, "%d\n", uA);
485}
486static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487
488static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
489			      char *buf)
490{
491	struct regulator_dev *rdev = dev_get_drvdata(dev);
492	return sprintf(buf, "%d\n", rdev->use_count);
493}
494static DEVICE_ATTR_RO(num_users);
495
496static ssize_t type_show(struct device *dev, struct device_attribute *attr,
497			 char *buf)
498{
499	struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501	switch (rdev->desc->type) {
502	case REGULATOR_VOLTAGE:
503		return sprintf(buf, "voltage\n");
504	case REGULATOR_CURRENT:
505		return sprintf(buf, "current\n");
506	}
507	return sprintf(buf, "unknown\n");
508}
509static DEVICE_ATTR_RO(type);
510
511static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
512				struct device_attribute *attr, char *buf)
513{
514	struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
517}
518static DEVICE_ATTR(suspend_mem_microvolts, 0444,
519		regulator_suspend_mem_uV_show, NULL);
520
521static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
522				struct device_attribute *attr, char *buf)
523{
524	struct regulator_dev *rdev = dev_get_drvdata(dev);
525
526	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
527}
528static DEVICE_ATTR(suspend_disk_microvolts, 0444,
529		regulator_suspend_disk_uV_show, NULL);
530
531static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
532				struct device_attribute *attr, char *buf)
533{
534	struct regulator_dev *rdev = dev_get_drvdata(dev);
535
536	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
537}
538static DEVICE_ATTR(suspend_standby_microvolts, 0444,
539		regulator_suspend_standby_uV_show, NULL);
540
541static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
542				struct device_attribute *attr, char *buf)
543{
544	struct regulator_dev *rdev = dev_get_drvdata(dev);
545
546	return regulator_print_opmode(buf,
547		rdev->constraints->state_mem.mode);
548}
549static DEVICE_ATTR(suspend_mem_mode, 0444,
550		regulator_suspend_mem_mode_show, NULL);
551
552static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
553				struct device_attribute *attr, char *buf)
554{
555	struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557	return regulator_print_opmode(buf,
558		rdev->constraints->state_disk.mode);
559}
560static DEVICE_ATTR(suspend_disk_mode, 0444,
561		regulator_suspend_disk_mode_show, NULL);
562
563static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
564				struct device_attribute *attr, char *buf)
565{
566	struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568	return regulator_print_opmode(buf,
569		rdev->constraints->state_standby.mode);
570}
571static DEVICE_ATTR(suspend_standby_mode, 0444,
572		regulator_suspend_standby_mode_show, NULL);
573
574static ssize_t regulator_suspend_mem_state_show(struct device *dev,
575				   struct device_attribute *attr, char *buf)
576{
577	struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579	return regulator_print_state(buf,
580			rdev->constraints->state_mem.enabled);
581}
582static DEVICE_ATTR(suspend_mem_state, 0444,
583		regulator_suspend_mem_state_show, NULL);
584
585static ssize_t regulator_suspend_disk_state_show(struct device *dev,
586				   struct device_attribute *attr, char *buf)
587{
588	struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590	return regulator_print_state(buf,
591			rdev->constraints->state_disk.enabled);
592}
593static DEVICE_ATTR(suspend_disk_state, 0444,
594		regulator_suspend_disk_state_show, NULL);
595
596static ssize_t regulator_suspend_standby_state_show(struct device *dev,
597				   struct device_attribute *attr, char *buf)
598{
599	struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601	return regulator_print_state(buf,
602			rdev->constraints->state_standby.enabled);
603}
604static DEVICE_ATTR(suspend_standby_state, 0444,
605		regulator_suspend_standby_state_show, NULL);
606
607static ssize_t regulator_bypass_show(struct device *dev,
608				     struct device_attribute *attr, char *buf)
609{
610	struct regulator_dev *rdev = dev_get_drvdata(dev);
611	const char *report;
612	bool bypass;
613	int ret;
614
615	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
616
617	if (ret != 0)
618		report = "unknown";
619	else if (bypass)
620		report = "enabled";
621	else
622		report = "disabled";
623
624	return sprintf(buf, "%s\n", report);
625}
626static DEVICE_ATTR(bypass, 0444,
627		   regulator_bypass_show, NULL);
628
629/*
630 * These are the only attributes are present for all regulators.
631 * Other attributes are a function of regulator functionality.
632 */
633static struct attribute *regulator_dev_attrs[] = {
634	&dev_attr_name.attr,
635	&dev_attr_num_users.attr,
636	&dev_attr_type.attr,
637	NULL,
638};
639ATTRIBUTE_GROUPS(regulator_dev);
640
641static void regulator_dev_release(struct device *dev)
642{
643	struct regulator_dev *rdev = dev_get_drvdata(dev);
644	kfree(rdev);
645}
646
647static struct class regulator_class = {
648	.name = "regulator",
649	.dev_release = regulator_dev_release,
650	.dev_groups = regulator_dev_groups,
651};
652
653/* Calculate the new optimum regulator operating mode based on the new total
654 * consumer load. All locks held by caller */
655static void drms_uA_update(struct regulator_dev *rdev)
656{
657	struct regulator *sibling;
658	int current_uA = 0, output_uV, input_uV, err;
659	unsigned int mode;
660
661	err = regulator_check_drms(rdev);
662	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
663	    (!rdev->desc->ops->get_voltage &&
664	     !rdev->desc->ops->get_voltage_sel) ||
665	    !rdev->desc->ops->set_mode)
666		return;
667
668	/* get output voltage */
669	output_uV = _regulator_get_voltage(rdev);
670	if (output_uV <= 0)
671		return;
672
673	/* get input voltage */
674	input_uV = 0;
675	if (rdev->supply)
676		input_uV = regulator_get_voltage(rdev->supply);
677	if (input_uV <= 0)
678		input_uV = rdev->constraints->input_uV;
679	if (input_uV <= 0)
680		return;
681
682	/* calc total requested load */
683	list_for_each_entry(sibling, &rdev->consumer_list, list)
684		current_uA += sibling->uA_load;
685
686	/* now get the optimum mode for our new total regulator load */
687	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
688						  output_uV, current_uA);
689
690	/* check the new mode is allowed */
691	err = regulator_mode_constrain(rdev, &mode);
692	if (err == 0)
693		rdev->desc->ops->set_mode(rdev, mode);
694}
695
696static int suspend_set_state(struct regulator_dev *rdev,
697	struct regulator_state *rstate)
698{
699	int ret = 0;
700
701	/* If we have no suspend mode configration don't set anything;
702	 * only warn if the driver implements set_suspend_voltage or
703	 * set_suspend_mode callback.
704	 */
705	if (!rstate->enabled && !rstate->disabled) {
706		if (rdev->desc->ops->set_suspend_voltage ||
707		    rdev->desc->ops->set_suspend_mode)
708			rdev_warn(rdev, "No configuration\n");
709		return 0;
710	}
711
712	if (rstate->enabled && rstate->disabled) {
713		rdev_err(rdev, "invalid configuration\n");
714		return -EINVAL;
715	}
716
717	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
718		ret = rdev->desc->ops->set_suspend_enable(rdev);
719	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
720		ret = rdev->desc->ops->set_suspend_disable(rdev);
721	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
722		ret = 0;
723
724	if (ret < 0) {
725		rdev_err(rdev, "failed to enabled/disable\n");
726		return ret;
727	}
728
729	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
730		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
731		if (ret < 0) {
732			rdev_err(rdev, "failed to set voltage\n");
733			return ret;
734		}
735	}
736
737	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
738		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
739		if (ret < 0) {
740			rdev_err(rdev, "failed to set mode\n");
741			return ret;
742		}
743	}
744	return ret;
745}
746
747/* locks held by caller */
748static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
749{
750	if (!rdev->constraints)
751		return -EINVAL;
752
753	switch (state) {
754	case PM_SUSPEND_STANDBY:
755		return suspend_set_state(rdev,
756			&rdev->constraints->state_standby);
757	case PM_SUSPEND_MEM:
758		return suspend_set_state(rdev,
759			&rdev->constraints->state_mem);
760	case PM_SUSPEND_MAX:
761		return suspend_set_state(rdev,
762			&rdev->constraints->state_disk);
763	default:
764		return -EINVAL;
765	}
766}
767
768static void print_constraints(struct regulator_dev *rdev)
769{
770	struct regulation_constraints *constraints = rdev->constraints;
771	char buf[80] = "";
772	int count = 0;
773	int ret;
774
775	if (constraints->min_uV && constraints->max_uV) {
776		if (constraints->min_uV == constraints->max_uV)
777			count += sprintf(buf + count, "%d mV ",
778					 constraints->min_uV / 1000);
779		else
780			count += sprintf(buf + count, "%d <--> %d mV ",
781					 constraints->min_uV / 1000,
782					 constraints->max_uV / 1000);
783	}
784
785	if (!constraints->min_uV ||
786	    constraints->min_uV != constraints->max_uV) {
787		ret = _regulator_get_voltage(rdev);
788		if (ret > 0)
789			count += sprintf(buf + count, "at %d mV ", ret / 1000);
790	}
791
792	if (constraints->uV_offset)
793		count += sprintf(buf, "%dmV offset ",
794				 constraints->uV_offset / 1000);
795
796	if (constraints->min_uA && constraints->max_uA) {
797		if (constraints->min_uA == constraints->max_uA)
798			count += sprintf(buf + count, "%d mA ",
799					 constraints->min_uA / 1000);
800		else
801			count += sprintf(buf + count, "%d <--> %d mA ",
802					 constraints->min_uA / 1000,
803					 constraints->max_uA / 1000);
804	}
805
806	if (!constraints->min_uA ||
807	    constraints->min_uA != constraints->max_uA) {
808		ret = _regulator_get_current_limit(rdev);
809		if (ret > 0)
810			count += sprintf(buf + count, "at %d mA ", ret / 1000);
811	}
812
813	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
814		count += sprintf(buf + count, "fast ");
815	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
816		count += sprintf(buf + count, "normal ");
817	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
818		count += sprintf(buf + count, "idle ");
819	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
820		count += sprintf(buf + count, "standby");
821
822	if (!count)
823		sprintf(buf, "no parameters");
824
825	rdev_info(rdev, "%s\n", buf);
826
827	if ((constraints->min_uV != constraints->max_uV) &&
828	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
829		rdev_warn(rdev,
830			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
831}
832
833static int machine_constraints_voltage(struct regulator_dev *rdev,
834	struct regulation_constraints *constraints)
835{
836	struct regulator_ops *ops = rdev->desc->ops;
837	int ret;
838
839	/* do we need to apply the constraint voltage */
840	if (rdev->constraints->apply_uV &&
841	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
842		ret = _regulator_do_set_voltage(rdev,
843						rdev->constraints->min_uV,
844						rdev->constraints->max_uV);
845		if (ret < 0) {
846			rdev_err(rdev, "failed to apply %duV constraint\n",
847				 rdev->constraints->min_uV);
848			return ret;
849		}
850	}
851
852	/* constrain machine-level voltage specs to fit
853	 * the actual range supported by this regulator.
854	 */
855	if (ops->list_voltage && rdev->desc->n_voltages) {
856		int	count = rdev->desc->n_voltages;
857		int	i;
858		int	min_uV = INT_MAX;
859		int	max_uV = INT_MIN;
860		int	cmin = constraints->min_uV;
861		int	cmax = constraints->max_uV;
862
863		/* it's safe to autoconfigure fixed-voltage supplies
864		   and the constraints are used by list_voltage. */
865		if (count == 1 && !cmin) {
866			cmin = 1;
867			cmax = INT_MAX;
868			constraints->min_uV = cmin;
869			constraints->max_uV = cmax;
870		}
871
872		/* voltage constraints are optional */
873		if ((cmin == 0) && (cmax == 0))
874			return 0;
875
876		/* else require explicit machine-level constraints */
877		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
878			rdev_err(rdev, "invalid voltage constraints\n");
879			return -EINVAL;
880		}
881
882		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
883		for (i = 0; i < count; i++) {
884			int	value;
885
886			value = ops->list_voltage(rdev, i);
887			if (value <= 0)
888				continue;
889
890			/* maybe adjust [min_uV..max_uV] */
891			if (value >= cmin && value < min_uV)
892				min_uV = value;
893			if (value <= cmax && value > max_uV)
894				max_uV = value;
895		}
896
897		/* final: [min_uV..max_uV] valid iff constraints valid */
898		if (max_uV < min_uV) {
899			rdev_err(rdev,
900				 "unsupportable voltage constraints %u-%uuV\n",
901				 min_uV, max_uV);
902			return -EINVAL;
903		}
904
905		/* use regulator's subset of machine constraints */
906		if (constraints->min_uV < min_uV) {
907			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
908				 constraints->min_uV, min_uV);
909			constraints->min_uV = min_uV;
910		}
911		if (constraints->max_uV > max_uV) {
912			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
913				 constraints->max_uV, max_uV);
914			constraints->max_uV = max_uV;
915		}
916	}
917
918	return 0;
919}
920
921static int machine_constraints_current(struct regulator_dev *rdev,
922	struct regulation_constraints *constraints)
923{
924	struct regulator_ops *ops = rdev->desc->ops;
925	int ret;
926
927	if (!constraints->min_uA && !constraints->max_uA)
928		return 0;
929
930	if (constraints->min_uA > constraints->max_uA) {
931		rdev_err(rdev, "Invalid current constraints\n");
932		return -EINVAL;
933	}
934
935	if (!ops->set_current_limit || !ops->get_current_limit) {
936		rdev_warn(rdev, "Operation of current configuration missing\n");
937		return 0;
938	}
939
940	/* Set regulator current in constraints range */
941	ret = ops->set_current_limit(rdev, constraints->min_uA,
942			constraints->max_uA);
943	if (ret < 0) {
944		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
945		return ret;
946	}
947
948	return 0;
949}
950
951/**
952 * set_machine_constraints - sets regulator constraints
953 * @rdev: regulator source
954 * @constraints: constraints to apply
955 *
956 * Allows platform initialisation code to define and constrain
957 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
958 * Constraints *must* be set by platform code in order for some
959 * regulator operations to proceed i.e. set_voltage, set_current_limit,
960 * set_mode.
961 */
962static int set_machine_constraints(struct regulator_dev *rdev,
963	const struct regulation_constraints *constraints)
964{
965	int ret = 0;
966	struct regulator_ops *ops = rdev->desc->ops;
967
968	if (constraints)
969		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
970					    GFP_KERNEL);
971	else
972		rdev->constraints = kzalloc(sizeof(*constraints),
973					    GFP_KERNEL);
974	if (!rdev->constraints)
975		return -ENOMEM;
976
977	ret = machine_constraints_voltage(rdev, rdev->constraints);
978	if (ret != 0)
979		goto out;
980
981	ret = machine_constraints_current(rdev, rdev->constraints);
982	if (ret != 0)
983		goto out;
984
985	/* do we need to setup our suspend state */
986	if (rdev->constraints->initial_state) {
987		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
988		if (ret < 0) {
989			rdev_err(rdev, "failed to set suspend state\n");
990			goto out;
991		}
992	}
993
994	if (rdev->constraints->initial_mode) {
995		if (!ops->set_mode) {
996			rdev_err(rdev, "no set_mode operation\n");
997			ret = -EINVAL;
998			goto out;
999		}
1000
1001		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1002		if (ret < 0) {
1003			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1004			goto out;
1005		}
1006	}
1007
1008	/* If the constraints say the regulator should be on at this point
1009	 * and we have control then make sure it is enabled.
1010	 */
1011	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1012	    ops->enable) {
1013		ret = ops->enable(rdev);
1014		if (ret < 0) {
1015			rdev_err(rdev, "failed to enable\n");
1016			goto out;
1017		}
1018	}
1019
1020	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1021		&& ops->set_ramp_delay) {
1022		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1023		if (ret < 0) {
1024			rdev_err(rdev, "failed to set ramp_delay\n");
1025			goto out;
1026		}
1027	}
1028
1029	print_constraints(rdev);
1030	return 0;
1031out:
1032	kfree(rdev->constraints);
1033	rdev->constraints = NULL;
1034	return ret;
1035}
1036
1037/**
1038 * set_supply - set regulator supply regulator
1039 * @rdev: regulator name
1040 * @supply_rdev: supply regulator name
1041 *
1042 * Called by platform initialisation code to set the supply regulator for this
1043 * regulator. This ensures that a regulators supply will also be enabled by the
1044 * core if it's child is enabled.
1045 */
1046static int set_supply(struct regulator_dev *rdev,
1047		      struct regulator_dev *supply_rdev)
1048{
1049	int err;
1050
1051	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1052
1053	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1054	if (rdev->supply == NULL) {
1055		err = -ENOMEM;
1056		return err;
1057	}
1058	supply_rdev->open_count++;
1059
1060	return 0;
1061}
1062
1063/**
1064 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1065 * @rdev:         regulator source
1066 * @consumer_dev_name: dev_name() string for device supply applies to
1067 * @supply:       symbolic name for supply
1068 *
1069 * Allows platform initialisation code to map physical regulator
1070 * sources to symbolic names for supplies for use by devices.  Devices
1071 * should use these symbolic names to request regulators, avoiding the
1072 * need to provide board-specific regulator names as platform data.
1073 */
1074static int set_consumer_device_supply(struct regulator_dev *rdev,
1075				      const char *consumer_dev_name,
1076				      const char *supply)
1077{
1078	struct regulator_map *node;
1079	int has_dev;
1080
1081	if (supply == NULL)
1082		return -EINVAL;
1083
1084	if (consumer_dev_name != NULL)
1085		has_dev = 1;
1086	else
1087		has_dev = 0;
1088
1089	list_for_each_entry(node, &regulator_map_list, list) {
1090		if (node->dev_name && consumer_dev_name) {
1091			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1092				continue;
1093		} else if (node->dev_name || consumer_dev_name) {
1094			continue;
1095		}
1096
1097		if (strcmp(node->supply, supply) != 0)
1098			continue;
1099
1100		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1101			 consumer_dev_name,
1102			 dev_name(&node->regulator->dev),
1103			 node->regulator->desc->name,
1104			 supply,
1105			 dev_name(&rdev->dev), rdev_get_name(rdev));
1106		return -EBUSY;
1107	}
1108
1109	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1110	if (node == NULL)
1111		return -ENOMEM;
1112
1113	node->regulator = rdev;
1114	node->supply = supply;
1115
1116	if (has_dev) {
1117		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1118		if (node->dev_name == NULL) {
1119			kfree(node);
1120			return -ENOMEM;
1121		}
1122	}
1123
1124	list_add(&node->list, &regulator_map_list);
1125	return 0;
1126}
1127
1128static void unset_regulator_supplies(struct regulator_dev *rdev)
1129{
1130	struct regulator_map *node, *n;
1131
1132	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1133		if (rdev == node->regulator) {
1134			list_del(&node->list);
1135			kfree(node->dev_name);
1136			kfree(node);
1137		}
1138	}
1139}
1140
1141#define REG_STR_SIZE	64
1142
1143static struct regulator *create_regulator(struct regulator_dev *rdev,
1144					  struct device *dev,
1145					  const char *supply_name)
1146{
1147	struct regulator *regulator;
1148	char buf[REG_STR_SIZE];
1149	int err, size;
1150
1151	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1152	if (regulator == NULL)
1153		return NULL;
1154
1155	mutex_lock(&rdev->mutex);
1156	regulator->rdev = rdev;
1157	list_add(&regulator->list, &rdev->consumer_list);
1158
1159	if (dev) {
1160		regulator->dev = dev;
1161
1162		/* Add a link to the device sysfs entry */
1163		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1164				 dev->kobj.name, supply_name);
1165		if (size >= REG_STR_SIZE)
1166			goto overflow_err;
1167
1168		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1169		if (regulator->supply_name == NULL)
1170			goto overflow_err;
1171
1172		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1173					buf);
1174		if (err) {
1175			rdev_warn(rdev, "could not add device link %s err %d\n",
1176				  dev->kobj.name, err);
1177			/* non-fatal */
1178		}
1179	} else {
1180		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1181		if (regulator->supply_name == NULL)
1182			goto overflow_err;
1183	}
1184
1185	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1186						rdev->debugfs);
1187	if (!regulator->debugfs) {
1188		rdev_warn(rdev, "Failed to create debugfs directory\n");
1189	} else {
1190		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1191				   &regulator->uA_load);
1192		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1193				   &regulator->min_uV);
1194		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1195				   &regulator->max_uV);
1196	}
1197
1198	/*
1199	 * Check now if the regulator is an always on regulator - if
1200	 * it is then we don't need to do nearly so much work for
1201	 * enable/disable calls.
1202	 */
1203	if (!_regulator_can_change_status(rdev) &&
1204	    _regulator_is_enabled(rdev))
1205		regulator->always_on = true;
1206
1207	mutex_unlock(&rdev->mutex);
1208	return regulator;
1209overflow_err:
1210	list_del(&regulator->list);
1211	kfree(regulator);
1212	mutex_unlock(&rdev->mutex);
1213	return NULL;
1214}
1215
1216static int _regulator_get_enable_time(struct regulator_dev *rdev)
1217{
1218	if (rdev->constraints && rdev->constraints->enable_time)
1219		return rdev->constraints->enable_time;
1220	if (!rdev->desc->ops->enable_time)
1221		return rdev->desc->enable_time;
1222	return rdev->desc->ops->enable_time(rdev);
1223}
1224
1225static struct regulator_supply_alias *regulator_find_supply_alias(
1226		struct device *dev, const char *supply)
1227{
1228	struct regulator_supply_alias *map;
1229
1230	list_for_each_entry(map, &regulator_supply_alias_list, list)
1231		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1232			return map;
1233
1234	return NULL;
1235}
1236
1237static void regulator_supply_alias(struct device **dev, const char **supply)
1238{
1239	struct regulator_supply_alias *map;
1240
1241	map = regulator_find_supply_alias(*dev, *supply);
1242	if (map) {
1243		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1244				*supply, map->alias_supply,
1245				dev_name(map->alias_dev));
1246		*dev = map->alias_dev;
1247		*supply = map->alias_supply;
1248	}
1249}
1250
1251static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1252						  const char *supply,
1253						  int *ret)
1254{
1255	struct regulator_dev *r;
1256	struct device_node *node;
1257	struct regulator_map *map;
1258	const char *devname = NULL;
1259
1260	regulator_supply_alias(&dev, &supply);
1261
1262	/* first do a dt based lookup */
1263	if (dev && dev->of_node) {
1264		node = of_get_regulator(dev, supply);
1265		if (node) {
1266			list_for_each_entry(r, &regulator_list, list)
1267				if (r->dev.parent &&
1268					node == r->dev.of_node)
1269					return r;
1270		} else {
1271			/*
1272			 * If we couldn't even get the node then it's
1273			 * not just that the device didn't register
1274			 * yet, there's no node and we'll never
1275			 * succeed.
1276			 */
1277			*ret = -ENODEV;
1278		}
1279	}
1280
1281	/* if not found, try doing it non-dt way */
1282	if (dev)
1283		devname = dev_name(dev);
1284
1285	list_for_each_entry(r, &regulator_list, list)
1286		if (strcmp(rdev_get_name(r), supply) == 0)
1287			return r;
1288
1289	list_for_each_entry(map, &regulator_map_list, list) {
1290		/* If the mapping has a device set up it must match */
1291		if (map->dev_name &&
1292		    (!devname || strcmp(map->dev_name, devname)))
1293			continue;
1294
1295		if (strcmp(map->supply, supply) == 0)
1296			return map->regulator;
1297	}
1298
1299
1300	return NULL;
1301}
1302
1303/* Internal regulator request function */
1304static struct regulator *_regulator_get(struct device *dev, const char *id,
1305					bool exclusive, bool allow_dummy)
1306{
1307	struct regulator_dev *rdev;
1308	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1309	const char *devname = NULL;
1310	int ret = -EPROBE_DEFER;
1311
1312	if (id == NULL) {
1313		pr_err("get() with no identifier\n");
1314		return ERR_PTR(-EINVAL);
1315	}
1316
1317	if (dev)
1318		devname = dev_name(dev);
1319
1320	mutex_lock(&regulator_list_mutex);
1321
1322	rdev = regulator_dev_lookup(dev, id, &ret);
1323	if (rdev)
1324		goto found;
1325
1326	regulator = ERR_PTR(ret);
1327
1328	/*
1329	 * If we have return value from dev_lookup fail, we do not expect to
1330	 * succeed, so, quit with appropriate error value
1331	 */
1332	if (ret && ret != -ENODEV) {
1333		goto out;
1334	}
1335
1336	if (!devname)
1337		devname = "deviceless";
1338
1339	/*
1340	 * Assume that a regulator is physically present and enabled
1341	 * even if it isn't hooked up and just provide a dummy.
1342	 */
1343	if (has_full_constraints && allow_dummy) {
1344		pr_warn("%s supply %s not found, using dummy regulator\n",
1345			devname, id);
1346
1347		rdev = dummy_regulator_rdev;
1348		goto found;
1349	} else {
1350		dev_err(dev, "dummy supplies not allowed\n");
1351	}
1352
1353	mutex_unlock(&regulator_list_mutex);
1354	return regulator;
1355
1356found:
1357	if (rdev->exclusive) {
1358		regulator = ERR_PTR(-EPERM);
1359		goto out;
1360	}
1361
1362	if (exclusive && rdev->open_count) {
1363		regulator = ERR_PTR(-EBUSY);
1364		goto out;
1365	}
1366
1367	if (!try_module_get(rdev->owner))
1368		goto out;
1369
1370	regulator = create_regulator(rdev, dev, id);
1371	if (regulator == NULL) {
1372		regulator = ERR_PTR(-ENOMEM);
1373		module_put(rdev->owner);
1374		goto out;
1375	}
1376
1377	rdev->open_count++;
1378	if (exclusive) {
1379		rdev->exclusive = 1;
1380
1381		ret = _regulator_is_enabled(rdev);
1382		if (ret > 0)
1383			rdev->use_count = 1;
1384		else
1385			rdev->use_count = 0;
1386	}
1387
1388out:
1389	mutex_unlock(&regulator_list_mutex);
1390
1391	return regulator;
1392}
1393
1394/**
1395 * regulator_get - lookup and obtain a reference to a regulator.
1396 * @dev: device for regulator "consumer"
1397 * @id: Supply name or regulator ID.
1398 *
1399 * Returns a struct regulator corresponding to the regulator producer,
1400 * or IS_ERR() condition containing errno.
1401 *
1402 * Use of supply names configured via regulator_set_device_supply() is
1403 * strongly encouraged.  It is recommended that the supply name used
1404 * should match the name used for the supply and/or the relevant
1405 * device pins in the datasheet.
1406 */
1407struct regulator *regulator_get(struct device *dev, const char *id)
1408{
1409	return _regulator_get(dev, id, false, true);
1410}
1411EXPORT_SYMBOL_GPL(regulator_get);
1412
1413/**
1414 * regulator_get_exclusive - obtain exclusive access to a regulator.
1415 * @dev: device for regulator "consumer"
1416 * @id: Supply name or regulator ID.
1417 *
1418 * Returns a struct regulator corresponding to the regulator producer,
1419 * or IS_ERR() condition containing errno.  Other consumers will be
1420 * unable to obtain this reference is held and the use count for the
1421 * regulator will be initialised to reflect the current state of the
1422 * regulator.
1423 *
1424 * This is intended for use by consumers which cannot tolerate shared
1425 * use of the regulator such as those which need to force the
1426 * regulator off for correct operation of the hardware they are
1427 * controlling.
1428 *
1429 * Use of supply names configured via regulator_set_device_supply() is
1430 * strongly encouraged.  It is recommended that the supply name used
1431 * should match the name used for the supply and/or the relevant
1432 * device pins in the datasheet.
1433 */
1434struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1435{
1436	return _regulator_get(dev, id, true, false);
1437}
1438EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1439
1440/**
1441 * regulator_get_optional - obtain optional access to a regulator.
1442 * @dev: device for regulator "consumer"
1443 * @id: Supply name or regulator ID.
1444 *
1445 * Returns a struct regulator corresponding to the regulator producer,
1446 * or IS_ERR() condition containing errno.  Other consumers will be
1447 * unable to obtain this reference is held and the use count for the
1448 * regulator will be initialised to reflect the current state of the
1449 * regulator.
1450 *
1451 * This is intended for use by consumers for devices which can have
1452 * some supplies unconnected in normal use, such as some MMC devices.
1453 * It can allow the regulator core to provide stub supplies for other
1454 * supplies requested using normal regulator_get() calls without
1455 * disrupting the operation of drivers that can handle absent
1456 * supplies.
1457 *
1458 * Use of supply names configured via regulator_set_device_supply() is
1459 * strongly encouraged.  It is recommended that the supply name used
1460 * should match the name used for the supply and/or the relevant
1461 * device pins in the datasheet.
1462 */
1463struct regulator *regulator_get_optional(struct device *dev, const char *id)
1464{
1465	return _regulator_get(dev, id, false, false);
1466}
1467EXPORT_SYMBOL_GPL(regulator_get_optional);
1468
1469/* Locks held by regulator_put() */
1470static void _regulator_put(struct regulator *regulator)
1471{
1472	struct regulator_dev *rdev;
1473
1474	if (regulator == NULL || IS_ERR(regulator))
1475		return;
1476
1477	rdev = regulator->rdev;
1478
1479	debugfs_remove_recursive(regulator->debugfs);
1480
1481	/* remove any sysfs entries */
1482	if (regulator->dev)
1483		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1484	kfree(regulator->supply_name);
1485	list_del(&regulator->list);
1486	kfree(regulator);
1487
1488	rdev->open_count--;
1489	rdev->exclusive = 0;
1490
1491	module_put(rdev->owner);
1492}
1493
1494/**
1495 * regulator_put - "free" the regulator source
1496 * @regulator: regulator source
1497 *
1498 * Note: drivers must ensure that all regulator_enable calls made on this
1499 * regulator source are balanced by regulator_disable calls prior to calling
1500 * this function.
1501 */
1502void regulator_put(struct regulator *regulator)
1503{
1504	mutex_lock(&regulator_list_mutex);
1505	_regulator_put(regulator);
1506	mutex_unlock(&regulator_list_mutex);
1507}
1508EXPORT_SYMBOL_GPL(regulator_put);
1509
1510/**
1511 * regulator_register_supply_alias - Provide device alias for supply lookup
1512 *
1513 * @dev: device that will be given as the regulator "consumer"
1514 * @id: Supply name or regulator ID
1515 * @alias_dev: device that should be used to lookup the supply
1516 * @alias_id: Supply name or regulator ID that should be used to lookup the
1517 * supply
1518 *
1519 * All lookups for id on dev will instead be conducted for alias_id on
1520 * alias_dev.
1521 */
1522int regulator_register_supply_alias(struct device *dev, const char *id,
1523				    struct device *alias_dev,
1524				    const char *alias_id)
1525{
1526	struct regulator_supply_alias *map;
1527
1528	map = regulator_find_supply_alias(dev, id);
1529	if (map)
1530		return -EEXIST;
1531
1532	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1533	if (!map)
1534		return -ENOMEM;
1535
1536	map->src_dev = dev;
1537	map->src_supply = id;
1538	map->alias_dev = alias_dev;
1539	map->alias_supply = alias_id;
1540
1541	list_add(&map->list, &regulator_supply_alias_list);
1542
1543	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1544		id, dev_name(dev), alias_id, dev_name(alias_dev));
1545
1546	return 0;
1547}
1548EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1549
1550/**
1551 * regulator_unregister_supply_alias - Remove device alias
1552 *
1553 * @dev: device that will be given as the regulator "consumer"
1554 * @id: Supply name or regulator ID
1555 *
1556 * Remove a lookup alias if one exists for id on dev.
1557 */
1558void regulator_unregister_supply_alias(struct device *dev, const char *id)
1559{
1560	struct regulator_supply_alias *map;
1561
1562	map = regulator_find_supply_alias(dev, id);
1563	if (map) {
1564		list_del(&map->list);
1565		kfree(map);
1566	}
1567}
1568EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1569
1570/**
1571 * regulator_bulk_register_supply_alias - register multiple aliases
1572 *
1573 * @dev: device that will be given as the regulator "consumer"
1574 * @id: List of supply names or regulator IDs
1575 * @alias_dev: device that should be used to lookup the supply
1576 * @alias_id: List of supply names or regulator IDs that should be used to
1577 * lookup the supply
1578 * @num_id: Number of aliases to register
1579 *
1580 * @return 0 on success, an errno on failure.
1581 *
1582 * This helper function allows drivers to register several supply
1583 * aliases in one operation.  If any of the aliases cannot be
1584 * registered any aliases that were registered will be removed
1585 * before returning to the caller.
1586 */
1587int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1588					 struct device *alias_dev,
1589					 const char **alias_id,
1590					 int num_id)
1591{
1592	int i;
1593	int ret;
1594
1595	for (i = 0; i < num_id; ++i) {
1596		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1597						      alias_id[i]);
1598		if (ret < 0)
1599			goto err;
1600	}
1601
1602	return 0;
1603
1604err:
1605	dev_err(dev,
1606		"Failed to create supply alias %s,%s -> %s,%s\n",
1607		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1608
1609	while (--i >= 0)
1610		regulator_unregister_supply_alias(dev, id[i]);
1611
1612	return ret;
1613}
1614EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1615
1616/**
1617 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1618 *
1619 * @dev: device that will be given as the regulator "consumer"
1620 * @id: List of supply names or regulator IDs
1621 * @num_id: Number of aliases to unregister
1622 *
1623 * This helper function allows drivers to unregister several supply
1624 * aliases in one operation.
1625 */
1626void regulator_bulk_unregister_supply_alias(struct device *dev,
1627					    const char **id,
1628					    int num_id)
1629{
1630	int i;
1631
1632	for (i = 0; i < num_id; ++i)
1633		regulator_unregister_supply_alias(dev, id[i]);
1634}
1635EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1636
1637
1638/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1639static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1640				const struct regulator_config *config)
1641{
1642	struct regulator_enable_gpio *pin;
1643	int ret;
1644
1645	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1646		if (pin->gpio == config->ena_gpio) {
1647			rdev_dbg(rdev, "GPIO %d is already used\n",
1648				config->ena_gpio);
1649			goto update_ena_gpio_to_rdev;
1650		}
1651	}
1652
1653	ret = gpio_request_one(config->ena_gpio,
1654				GPIOF_DIR_OUT | config->ena_gpio_flags,
1655				rdev_get_name(rdev));
1656	if (ret)
1657		return ret;
1658
1659	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1660	if (pin == NULL) {
1661		gpio_free(config->ena_gpio);
1662		return -ENOMEM;
1663	}
1664
1665	pin->gpio = config->ena_gpio;
1666	pin->ena_gpio_invert = config->ena_gpio_invert;
1667	list_add(&pin->list, &regulator_ena_gpio_list);
1668
1669update_ena_gpio_to_rdev:
1670	pin->request_count++;
1671	rdev->ena_pin = pin;
1672	return 0;
1673}
1674
1675static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1676{
1677	struct regulator_enable_gpio *pin, *n;
1678
1679	if (!rdev->ena_pin)
1680		return;
1681
1682	/* Free the GPIO only in case of no use */
1683	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1684		if (pin->gpio == rdev->ena_pin->gpio) {
1685			if (pin->request_count <= 1) {
1686				pin->request_count = 0;
1687				gpio_free(pin->gpio);
1688				list_del(&pin->list);
1689				kfree(pin);
1690			} else {
1691				pin->request_count--;
1692			}
1693		}
1694	}
1695}
1696
1697/**
1698 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1699 * @rdev: regulator_dev structure
1700 * @enable: enable GPIO at initial use?
1701 *
1702 * GPIO is enabled in case of initial use. (enable_count is 0)
1703 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1704 */
1705static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1706{
1707	struct regulator_enable_gpio *pin = rdev->ena_pin;
1708
1709	if (!pin)
1710		return -EINVAL;
1711
1712	if (enable) {
1713		/* Enable GPIO at initial use */
1714		if (pin->enable_count == 0)
1715			gpio_set_value_cansleep(pin->gpio,
1716						!pin->ena_gpio_invert);
1717
1718		pin->enable_count++;
1719	} else {
1720		if (pin->enable_count > 1) {
1721			pin->enable_count--;
1722			return 0;
1723		}
1724
1725		/* Disable GPIO if not used */
1726		if (pin->enable_count <= 1) {
1727			gpio_set_value_cansleep(pin->gpio,
1728						pin->ena_gpio_invert);
1729			pin->enable_count = 0;
1730		}
1731	}
1732
1733	return 0;
1734}
1735
1736static int _regulator_do_enable(struct regulator_dev *rdev)
1737{
1738	int ret, delay;
1739
1740	/* Query before enabling in case configuration dependent.  */
1741	ret = _regulator_get_enable_time(rdev);
1742	if (ret >= 0) {
1743		delay = ret;
1744	} else {
1745		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1746		delay = 0;
1747	}
1748
1749	trace_regulator_enable(rdev_get_name(rdev));
1750
1751	if (rdev->ena_pin) {
1752		ret = regulator_ena_gpio_ctrl(rdev, true);
1753		if (ret < 0)
1754			return ret;
1755		rdev->ena_gpio_state = 1;
1756	} else if (rdev->desc->ops->enable) {
1757		ret = rdev->desc->ops->enable(rdev);
1758		if (ret < 0)
1759			return ret;
1760	} else {
1761		return -EINVAL;
1762	}
1763
1764	/* Allow the regulator to ramp; it would be useful to extend
1765	 * this for bulk operations so that the regulators can ramp
1766	 * together.  */
1767	trace_regulator_enable_delay(rdev_get_name(rdev));
1768
1769	/*
1770	 * Delay for the requested amount of time as per the guidelines in:
1771	 *
1772	 *     Documentation/timers/timers-howto.txt
1773	 *
1774	 * The assumption here is that regulators will never be enabled in
1775	 * atomic context and therefore sleeping functions can be used.
1776	 */
1777	if (delay) {
1778		unsigned int ms = delay / 1000;
1779		unsigned int us = delay % 1000;
1780
1781		if (ms > 0) {
1782			/*
1783			 * For small enough values, handle super-millisecond
1784			 * delays in the usleep_range() call below.
1785			 */
1786			if (ms < 20)
1787				us += ms * 1000;
1788			else
1789				msleep(ms);
1790		}
1791
1792		/*
1793		 * Give the scheduler some room to coalesce with any other
1794		 * wakeup sources. For delays shorter than 10 us, don't even
1795		 * bother setting up high-resolution timers and just busy-
1796		 * loop.
1797		 */
1798		if (us >= 10)
1799			usleep_range(us, us + 100);
1800		else
1801			udelay(us);
1802	}
1803
1804	trace_regulator_enable_complete(rdev_get_name(rdev));
1805
1806	return 0;
1807}
1808
1809/* locks held by regulator_enable() */
1810static int _regulator_enable(struct regulator_dev *rdev)
1811{
1812	int ret;
1813
1814	/* check voltage and requested load before enabling */
1815	if (rdev->constraints &&
1816	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1817		drms_uA_update(rdev);
1818
1819	if (rdev->use_count == 0) {
1820		/* The regulator may on if it's not switchable or left on */
1821		ret = _regulator_is_enabled(rdev);
1822		if (ret == -EINVAL || ret == 0) {
1823			if (!_regulator_can_change_status(rdev))
1824				return -EPERM;
1825
1826			ret = _regulator_do_enable(rdev);
1827			if (ret < 0)
1828				return ret;
1829
1830		} else if (ret < 0) {
1831			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1832			return ret;
1833		}
1834		/* Fallthrough on positive return values - already enabled */
1835	}
1836
1837	rdev->use_count++;
1838
1839	return 0;
1840}
1841
1842/**
1843 * regulator_enable - enable regulator output
1844 * @regulator: regulator source
1845 *
1846 * Request that the regulator be enabled with the regulator output at
1847 * the predefined voltage or current value.  Calls to regulator_enable()
1848 * must be balanced with calls to regulator_disable().
1849 *
1850 * NOTE: the output value can be set by other drivers, boot loader or may be
1851 * hardwired in the regulator.
1852 */
1853int regulator_enable(struct regulator *regulator)
1854{
1855	struct regulator_dev *rdev = regulator->rdev;
1856	int ret = 0;
1857
1858	if (regulator->always_on)
1859		return 0;
1860
1861	if (rdev->supply) {
1862		ret = regulator_enable(rdev->supply);
1863		if (ret != 0)
1864			return ret;
1865	}
1866
1867	mutex_lock(&rdev->mutex);
1868	ret = _regulator_enable(rdev);
1869	mutex_unlock(&rdev->mutex);
1870
1871	if (ret != 0 && rdev->supply)
1872		regulator_disable(rdev->supply);
1873
1874	return ret;
1875}
1876EXPORT_SYMBOL_GPL(regulator_enable);
1877
1878static int _regulator_do_disable(struct regulator_dev *rdev)
1879{
1880	int ret;
1881
1882	trace_regulator_disable(rdev_get_name(rdev));
1883
1884	if (rdev->ena_pin) {
1885		ret = regulator_ena_gpio_ctrl(rdev, false);
1886		if (ret < 0)
1887			return ret;
1888		rdev->ena_gpio_state = 0;
1889
1890	} else if (rdev->desc->ops->disable) {
1891		ret = rdev->desc->ops->disable(rdev);
1892		if (ret != 0)
1893			return ret;
1894	}
1895
1896	trace_regulator_disable_complete(rdev_get_name(rdev));
1897
1898	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1899			     NULL);
1900	return 0;
1901}
1902
1903/* locks held by regulator_disable() */
1904static int _regulator_disable(struct regulator_dev *rdev)
1905{
1906	int ret = 0;
1907
1908	if (WARN(rdev->use_count <= 0,
1909		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1910		return -EIO;
1911
1912	/* are we the last user and permitted to disable ? */
1913	if (rdev->use_count == 1 &&
1914	    (rdev->constraints && !rdev->constraints->always_on)) {
1915
1916		/* we are last user */
1917		if (_regulator_can_change_status(rdev)) {
1918			ret = _regulator_do_disable(rdev);
1919			if (ret < 0) {
1920				rdev_err(rdev, "failed to disable\n");
1921				return ret;
1922			}
1923		}
1924
1925		rdev->use_count = 0;
1926	} else if (rdev->use_count > 1) {
1927
1928		if (rdev->constraints &&
1929			(rdev->constraints->valid_ops_mask &
1930			REGULATOR_CHANGE_DRMS))
1931			drms_uA_update(rdev);
1932
1933		rdev->use_count--;
1934	}
1935
1936	return ret;
1937}
1938
1939/**
1940 * regulator_disable - disable regulator output
1941 * @regulator: regulator source
1942 *
1943 * Disable the regulator output voltage or current.  Calls to
1944 * regulator_enable() must be balanced with calls to
1945 * regulator_disable().
1946 *
1947 * NOTE: this will only disable the regulator output if no other consumer
1948 * devices have it enabled, the regulator device supports disabling and
1949 * machine constraints permit this operation.
1950 */
1951int regulator_disable(struct regulator *regulator)
1952{
1953	struct regulator_dev *rdev = regulator->rdev;
1954	int ret = 0;
1955
1956	if (regulator->always_on)
1957		return 0;
1958
1959	mutex_lock(&rdev->mutex);
1960	ret = _regulator_disable(rdev);
1961	mutex_unlock(&rdev->mutex);
1962
1963	if (ret == 0 && rdev->supply)
1964		regulator_disable(rdev->supply);
1965
1966	return ret;
1967}
1968EXPORT_SYMBOL_GPL(regulator_disable);
1969
1970/* locks held by regulator_force_disable() */
1971static int _regulator_force_disable(struct regulator_dev *rdev)
1972{
1973	int ret = 0;
1974
1975	/* force disable */
1976	if (rdev->desc->ops->disable) {
1977		/* ah well, who wants to live forever... */
1978		ret = rdev->desc->ops->disable(rdev);
1979		if (ret < 0) {
1980			rdev_err(rdev, "failed to force disable\n");
1981			return ret;
1982		}
1983		/* notify other consumers that power has been forced off */
1984		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1985			REGULATOR_EVENT_DISABLE, NULL);
1986	}
1987
1988	return ret;
1989}
1990
1991/**
1992 * regulator_force_disable - force disable regulator output
1993 * @regulator: regulator source
1994 *
1995 * Forcibly disable the regulator output voltage or current.
1996 * NOTE: this *will* disable the regulator output even if other consumer
1997 * devices have it enabled. This should be used for situations when device
1998 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1999 */
2000int regulator_force_disable(struct regulator *regulator)
2001{
2002	struct regulator_dev *rdev = regulator->rdev;
2003	int ret;
2004
2005	mutex_lock(&rdev->mutex);
2006	regulator->uA_load = 0;
2007	ret = _regulator_force_disable(regulator->rdev);
2008	mutex_unlock(&rdev->mutex);
2009
2010	if (rdev->supply)
2011		while (rdev->open_count--)
2012			regulator_disable(rdev->supply);
2013
2014	return ret;
2015}
2016EXPORT_SYMBOL_GPL(regulator_force_disable);
2017
2018static void regulator_disable_work(struct work_struct *work)
2019{
2020	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2021						  disable_work.work);
2022	int count, i, ret;
2023
2024	mutex_lock(&rdev->mutex);
2025
2026	BUG_ON(!rdev->deferred_disables);
2027
2028	count = rdev->deferred_disables;
2029	rdev->deferred_disables = 0;
2030
2031	for (i = 0; i < count; i++) {
2032		ret = _regulator_disable(rdev);
2033		if (ret != 0)
2034			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2035	}
2036
2037	mutex_unlock(&rdev->mutex);
2038
2039	if (rdev->supply) {
2040		for (i = 0; i < count; i++) {
2041			ret = regulator_disable(rdev->supply);
2042			if (ret != 0) {
2043				rdev_err(rdev,
2044					 "Supply disable failed: %d\n", ret);
2045			}
2046		}
2047	}
2048}
2049
2050/**
2051 * regulator_disable_deferred - disable regulator output with delay
2052 * @regulator: regulator source
2053 * @ms: miliseconds until the regulator is disabled
2054 *
2055 * Execute regulator_disable() on the regulator after a delay.  This
2056 * is intended for use with devices that require some time to quiesce.
2057 *
2058 * NOTE: this will only disable the regulator output if no other consumer
2059 * devices have it enabled, the regulator device supports disabling and
2060 * machine constraints permit this operation.
2061 */
2062int regulator_disable_deferred(struct regulator *regulator, int ms)
2063{
2064	struct regulator_dev *rdev = regulator->rdev;
2065	int ret;
2066
2067	if (regulator->always_on)
2068		return 0;
2069
2070	if (!ms)
2071		return regulator_disable(regulator);
2072
2073	mutex_lock(&rdev->mutex);
2074	rdev->deferred_disables++;
2075	mutex_unlock(&rdev->mutex);
2076
2077	ret = queue_delayed_work(system_power_efficient_wq,
2078				 &rdev->disable_work,
2079				 msecs_to_jiffies(ms));
2080	if (ret < 0)
2081		return ret;
2082	else
2083		return 0;
2084}
2085EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2086
2087static int _regulator_is_enabled(struct regulator_dev *rdev)
2088{
2089	/* A GPIO control always takes precedence */
2090	if (rdev->ena_pin)
2091		return rdev->ena_gpio_state;
2092
2093	/* If we don't know then assume that the regulator is always on */
2094	if (!rdev->desc->ops->is_enabled)
2095		return 1;
2096
2097	return rdev->desc->ops->is_enabled(rdev);
2098}
2099
2100/**
2101 * regulator_is_enabled - is the regulator output enabled
2102 * @regulator: regulator source
2103 *
2104 * Returns positive if the regulator driver backing the source/client
2105 * has requested that the device be enabled, zero if it hasn't, else a
2106 * negative errno code.
2107 *
2108 * Note that the device backing this regulator handle can have multiple
2109 * users, so it might be enabled even if regulator_enable() was never
2110 * called for this particular source.
2111 */
2112int regulator_is_enabled(struct regulator *regulator)
2113{
2114	int ret;
2115
2116	if (regulator->always_on)
2117		return 1;
2118
2119	mutex_lock(&regulator->rdev->mutex);
2120	ret = _regulator_is_enabled(regulator->rdev);
2121	mutex_unlock(&regulator->rdev->mutex);
2122
2123	return ret;
2124}
2125EXPORT_SYMBOL_GPL(regulator_is_enabled);
2126
2127/**
2128 * regulator_can_change_voltage - check if regulator can change voltage
2129 * @regulator: regulator source
2130 *
2131 * Returns positive if the regulator driver backing the source/client
2132 * can change its voltage, false otherwise. Usefull for detecting fixed
2133 * or dummy regulators and disabling voltage change logic in the client
2134 * driver.
2135 */
2136int regulator_can_change_voltage(struct regulator *regulator)
2137{
2138	struct regulator_dev	*rdev = regulator->rdev;
2139
2140	if (rdev->constraints &&
2141	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2142		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2143			return 1;
2144
2145		if (rdev->desc->continuous_voltage_range &&
2146		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2147		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2148			return 1;
2149	}
2150
2151	return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2154
2155/**
2156 * regulator_count_voltages - count regulator_list_voltage() selectors
2157 * @regulator: regulator source
2158 *
2159 * Returns number of selectors, or negative errno.  Selectors are
2160 * numbered starting at zero, and typically correspond to bitfields
2161 * in hardware registers.
2162 */
2163int regulator_count_voltages(struct regulator *regulator)
2164{
2165	struct regulator_dev	*rdev = regulator->rdev;
2166
2167	return rdev->desc->n_voltages ? : -EINVAL;
2168}
2169EXPORT_SYMBOL_GPL(regulator_count_voltages);
2170
2171/**
2172 * regulator_list_voltage - enumerate supported voltages
2173 * @regulator: regulator source
2174 * @selector: identify voltage to list
2175 * Context: can sleep
2176 *
2177 * Returns a voltage that can be passed to @regulator_set_voltage(),
2178 * zero if this selector code can't be used on this system, or a
2179 * negative errno.
2180 */
2181int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2182{
2183	struct regulator_dev	*rdev = regulator->rdev;
2184	struct regulator_ops	*ops = rdev->desc->ops;
2185	int			ret;
2186
2187	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2188		return rdev->desc->fixed_uV;
2189
2190	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2191		return -EINVAL;
2192
2193	mutex_lock(&rdev->mutex);
2194	ret = ops->list_voltage(rdev, selector);
2195	mutex_unlock(&rdev->mutex);
2196
2197	if (ret > 0) {
2198		if (ret < rdev->constraints->min_uV)
2199			ret = 0;
2200		else if (ret > rdev->constraints->max_uV)
2201			ret = 0;
2202	}
2203
2204	return ret;
2205}
2206EXPORT_SYMBOL_GPL(regulator_list_voltage);
2207
2208/**
2209 * regulator_get_linear_step - return the voltage step size between VSEL values
2210 * @regulator: regulator source
2211 *
2212 * Returns the voltage step size between VSEL values for linear
2213 * regulators, or return 0 if the regulator isn't a linear regulator.
2214 */
2215unsigned int regulator_get_linear_step(struct regulator *regulator)
2216{
2217	struct regulator_dev *rdev = regulator->rdev;
2218
2219	return rdev->desc->uV_step;
2220}
2221EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2222
2223/**
2224 * regulator_is_supported_voltage - check if a voltage range can be supported
2225 *
2226 * @regulator: Regulator to check.
2227 * @min_uV: Minimum required voltage in uV.
2228 * @max_uV: Maximum required voltage in uV.
2229 *
2230 * Returns a boolean or a negative error code.
2231 */
2232int regulator_is_supported_voltage(struct regulator *regulator,
2233				   int min_uV, int max_uV)
2234{
2235	struct regulator_dev *rdev = regulator->rdev;
2236	int i, voltages, ret;
2237
2238	/* If we can't change voltage check the current voltage */
2239	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2240		ret = regulator_get_voltage(regulator);
2241		if (ret >= 0)
2242			return (min_uV <= ret && ret <= max_uV);
2243		else
2244			return ret;
2245	}
2246
2247	/* Any voltage within constrains range is fine? */
2248	if (rdev->desc->continuous_voltage_range)
2249		return min_uV >= rdev->constraints->min_uV &&
2250				max_uV <= rdev->constraints->max_uV;
2251
2252	ret = regulator_count_voltages(regulator);
2253	if (ret < 0)
2254		return ret;
2255	voltages = ret;
2256
2257	for (i = 0; i < voltages; i++) {
2258		ret = regulator_list_voltage(regulator, i);
2259
2260		if (ret >= min_uV && ret <= max_uV)
2261			return 1;
2262	}
2263
2264	return 0;
2265}
2266EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2267
2268static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2269				     int min_uV, int max_uV)
2270{
2271	int ret;
2272	int delay = 0;
2273	int best_val = 0;
2274	unsigned int selector;
2275	int old_selector = -1;
2276
2277	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2278
2279	min_uV += rdev->constraints->uV_offset;
2280	max_uV += rdev->constraints->uV_offset;
2281
2282	/*
2283	 * If we can't obtain the old selector there is not enough
2284	 * info to call set_voltage_time_sel().
2285	 */
2286	if (_regulator_is_enabled(rdev) &&
2287	    rdev->desc->ops->set_voltage_time_sel &&
2288	    rdev->desc->ops->get_voltage_sel) {
2289		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2290		if (old_selector < 0)
2291			return old_selector;
2292	}
2293
2294	if (rdev->desc->ops->set_voltage) {
2295		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2296						   &selector);
2297
2298		if (ret >= 0) {
2299			if (rdev->desc->ops->list_voltage)
2300				best_val = rdev->desc->ops->list_voltage(rdev,
2301									 selector);
2302			else
2303				best_val = _regulator_get_voltage(rdev);
2304		}
2305
2306	} else if (rdev->desc->ops->set_voltage_sel) {
2307		if (rdev->desc->ops->map_voltage) {
2308			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2309							   max_uV);
2310		} else {
2311			if (rdev->desc->ops->list_voltage ==
2312			    regulator_list_voltage_linear)
2313				ret = regulator_map_voltage_linear(rdev,
2314								min_uV, max_uV);
2315			else
2316				ret = regulator_map_voltage_iterate(rdev,
2317								min_uV, max_uV);
2318		}
2319
2320		if (ret >= 0) {
2321			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2322			if (min_uV <= best_val && max_uV >= best_val) {
2323				selector = ret;
2324				if (old_selector == selector)
2325					ret = 0;
2326				else
2327					ret = rdev->desc->ops->set_voltage_sel(
2328								rdev, ret);
2329			} else {
2330				ret = -EINVAL;
2331			}
2332		}
2333	} else {
2334		ret = -EINVAL;
2335	}
2336
2337	/* Call set_voltage_time_sel if successfully obtained old_selector */
2338	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2339		&& old_selector != selector) {
2340
2341		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2342						old_selector, selector);
2343		if (delay < 0) {
2344			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2345				  delay);
2346			delay = 0;
2347		}
2348
2349		/* Insert any necessary delays */
2350		if (delay >= 1000) {
2351			mdelay(delay / 1000);
2352			udelay(delay % 1000);
2353		} else if (delay) {
2354			udelay(delay);
2355		}
2356	}
2357
2358	if (ret == 0 && best_val >= 0) {
2359		unsigned long data = best_val;
2360
2361		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2362				     (void *)data);
2363	}
2364
2365	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2366
2367	return ret;
2368}
2369
2370/**
2371 * regulator_set_voltage - set regulator output voltage
2372 * @regulator: regulator source
2373 * @min_uV: Minimum required voltage in uV
2374 * @max_uV: Maximum acceptable voltage in uV
2375 *
2376 * Sets a voltage regulator to the desired output voltage. This can be set
2377 * during any regulator state. IOW, regulator can be disabled or enabled.
2378 *
2379 * If the regulator is enabled then the voltage will change to the new value
2380 * immediately otherwise if the regulator is disabled the regulator will
2381 * output at the new voltage when enabled.
2382 *
2383 * NOTE: If the regulator is shared between several devices then the lowest
2384 * request voltage that meets the system constraints will be used.
2385 * Regulator system constraints must be set for this regulator before
2386 * calling this function otherwise this call will fail.
2387 */
2388int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2389{
2390	struct regulator_dev *rdev = regulator->rdev;
2391	int ret = 0;
2392	int old_min_uV, old_max_uV;
2393
2394	mutex_lock(&rdev->mutex);
2395
2396	/* If we're setting the same range as last time the change
2397	 * should be a noop (some cpufreq implementations use the same
2398	 * voltage for multiple frequencies, for example).
2399	 */
2400	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2401		goto out;
2402
2403	/* sanity check */
2404	if (!rdev->desc->ops->set_voltage &&
2405	    !rdev->desc->ops->set_voltage_sel) {
2406		ret = -EINVAL;
2407		goto out;
2408	}
2409
2410	/* constraints check */
2411	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2412	if (ret < 0)
2413		goto out;
2414
2415	/* restore original values in case of error */
2416	old_min_uV = regulator->min_uV;
2417	old_max_uV = regulator->max_uV;
2418	regulator->min_uV = min_uV;
2419	regulator->max_uV = max_uV;
2420
2421	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2422	if (ret < 0)
2423		goto out2;
2424
2425	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2426	if (ret < 0)
2427		goto out2;
2428
2429out:
2430	mutex_unlock(&rdev->mutex);
2431	return ret;
2432out2:
2433	regulator->min_uV = old_min_uV;
2434	regulator->max_uV = old_max_uV;
2435	mutex_unlock(&rdev->mutex);
2436	return ret;
2437}
2438EXPORT_SYMBOL_GPL(regulator_set_voltage);
2439
2440/**
2441 * regulator_set_voltage_time - get raise/fall time
2442 * @regulator: regulator source
2443 * @old_uV: starting voltage in microvolts
2444 * @new_uV: target voltage in microvolts
2445 *
2446 * Provided with the starting and ending voltage, this function attempts to
2447 * calculate the time in microseconds required to rise or fall to this new
2448 * voltage.
2449 */
2450int regulator_set_voltage_time(struct regulator *regulator,
2451			       int old_uV, int new_uV)
2452{
2453	struct regulator_dev	*rdev = regulator->rdev;
2454	struct regulator_ops	*ops = rdev->desc->ops;
2455	int old_sel = -1;
2456	int new_sel = -1;
2457	int voltage;
2458	int i;
2459
2460	/* Currently requires operations to do this */
2461	if (!ops->list_voltage || !ops->set_voltage_time_sel
2462	    || !rdev->desc->n_voltages)
2463		return -EINVAL;
2464
2465	for (i = 0; i < rdev->desc->n_voltages; i++) {
2466		/* We only look for exact voltage matches here */
2467		voltage = regulator_list_voltage(regulator, i);
2468		if (voltage < 0)
2469			return -EINVAL;
2470		if (voltage == 0)
2471			continue;
2472		if (voltage == old_uV)
2473			old_sel = i;
2474		if (voltage == new_uV)
2475			new_sel = i;
2476	}
2477
2478	if (old_sel < 0 || new_sel < 0)
2479		return -EINVAL;
2480
2481	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2482}
2483EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2484
2485/**
2486 * regulator_set_voltage_time_sel - get raise/fall time
2487 * @rdev: regulator source device
2488 * @old_selector: selector for starting voltage
2489 * @new_selector: selector for target voltage
2490 *
2491 * Provided with the starting and target voltage selectors, this function
2492 * returns time in microseconds required to rise or fall to this new voltage
2493 *
2494 * Drivers providing ramp_delay in regulation_constraints can use this as their
2495 * set_voltage_time_sel() operation.
2496 */
2497int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2498				   unsigned int old_selector,
2499				   unsigned int new_selector)
2500{
2501	unsigned int ramp_delay = 0;
2502	int old_volt, new_volt;
2503
2504	if (rdev->constraints->ramp_delay)
2505		ramp_delay = rdev->constraints->ramp_delay;
2506	else if (rdev->desc->ramp_delay)
2507		ramp_delay = rdev->desc->ramp_delay;
2508
2509	if (ramp_delay == 0) {
2510		rdev_warn(rdev, "ramp_delay not set\n");
2511		return 0;
2512	}
2513
2514	/* sanity check */
2515	if (!rdev->desc->ops->list_voltage)
2516		return -EINVAL;
2517
2518	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2519	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2520
2521	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2522}
2523EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2524
2525/**
2526 * regulator_sync_voltage - re-apply last regulator output voltage
2527 * @regulator: regulator source
2528 *
2529 * Re-apply the last configured voltage.  This is intended to be used
2530 * where some external control source the consumer is cooperating with
2531 * has caused the configured voltage to change.
2532 */
2533int regulator_sync_voltage(struct regulator *regulator)
2534{
2535	struct regulator_dev *rdev = regulator->rdev;
2536	int ret, min_uV, max_uV;
2537
2538	mutex_lock(&rdev->mutex);
2539
2540	if (!rdev->desc->ops->set_voltage &&
2541	    !rdev->desc->ops->set_voltage_sel) {
2542		ret = -EINVAL;
2543		goto out;
2544	}
2545
2546	/* This is only going to work if we've had a voltage configured. */
2547	if (!regulator->min_uV && !regulator->max_uV) {
2548		ret = -EINVAL;
2549		goto out;
2550	}
2551
2552	min_uV = regulator->min_uV;
2553	max_uV = regulator->max_uV;
2554
2555	/* This should be a paranoia check... */
2556	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2557	if (ret < 0)
2558		goto out;
2559
2560	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2561	if (ret < 0)
2562		goto out;
2563
2564	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2565
2566out:
2567	mutex_unlock(&rdev->mutex);
2568	return ret;
2569}
2570EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2571
2572static int _regulator_get_voltage(struct regulator_dev *rdev)
2573{
2574	int sel, ret;
2575
2576	if (rdev->desc->ops->get_voltage_sel) {
2577		sel = rdev->desc->ops->get_voltage_sel(rdev);
2578		if (sel < 0)
2579			return sel;
2580		ret = rdev->desc->ops->list_voltage(rdev, sel);
2581	} else if (rdev->desc->ops->get_voltage) {
2582		ret = rdev->desc->ops->get_voltage(rdev);
2583	} else if (rdev->desc->ops->list_voltage) {
2584		ret = rdev->desc->ops->list_voltage(rdev, 0);
2585	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2586		ret = rdev->desc->fixed_uV;
2587	} else {
2588		return -EINVAL;
2589	}
2590
2591	if (ret < 0)
2592		return ret;
2593	return ret - rdev->constraints->uV_offset;
2594}
2595
2596/**
2597 * regulator_get_voltage - get regulator output voltage
2598 * @regulator: regulator source
2599 *
2600 * This returns the current regulator voltage in uV.
2601 *
2602 * NOTE: If the regulator is disabled it will return the voltage value. This
2603 * function should not be used to determine regulator state.
2604 */
2605int regulator_get_voltage(struct regulator *regulator)
2606{
2607	int ret;
2608
2609	mutex_lock(&regulator->rdev->mutex);
2610
2611	ret = _regulator_get_voltage(regulator->rdev);
2612
2613	mutex_unlock(&regulator->rdev->mutex);
2614
2615	return ret;
2616}
2617EXPORT_SYMBOL_GPL(regulator_get_voltage);
2618
2619/**
2620 * regulator_set_current_limit - set regulator output current limit
2621 * @regulator: regulator source
2622 * @min_uA: Minimum supported current in uA
2623 * @max_uA: Maximum supported current in uA
2624 *
2625 * Sets current sink to the desired output current. This can be set during
2626 * any regulator state. IOW, regulator can be disabled or enabled.
2627 *
2628 * If the regulator is enabled then the current will change to the new value
2629 * immediately otherwise if the regulator is disabled the regulator will
2630 * output at the new current when enabled.
2631 *
2632 * NOTE: Regulator system constraints must be set for this regulator before
2633 * calling this function otherwise this call will fail.
2634 */
2635int regulator_set_current_limit(struct regulator *regulator,
2636			       int min_uA, int max_uA)
2637{
2638	struct regulator_dev *rdev = regulator->rdev;
2639	int ret;
2640
2641	mutex_lock(&rdev->mutex);
2642
2643	/* sanity check */
2644	if (!rdev->desc->ops->set_current_limit) {
2645		ret = -EINVAL;
2646		goto out;
2647	}
2648
2649	/* constraints check */
2650	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2651	if (ret < 0)
2652		goto out;
2653
2654	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2655out:
2656	mutex_unlock(&rdev->mutex);
2657	return ret;
2658}
2659EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2660
2661static int _regulator_get_current_limit(struct regulator_dev *rdev)
2662{
2663	int ret;
2664
2665	mutex_lock(&rdev->mutex);
2666
2667	/* sanity check */
2668	if (!rdev->desc->ops->get_current_limit) {
2669		ret = -EINVAL;
2670		goto out;
2671	}
2672
2673	ret = rdev->desc->ops->get_current_limit(rdev);
2674out:
2675	mutex_unlock(&rdev->mutex);
2676	return ret;
2677}
2678
2679/**
2680 * regulator_get_current_limit - get regulator output current
2681 * @regulator: regulator source
2682 *
2683 * This returns the current supplied by the specified current sink in uA.
2684 *
2685 * NOTE: If the regulator is disabled it will return the current value. This
2686 * function should not be used to determine regulator state.
2687 */
2688int regulator_get_current_limit(struct regulator *regulator)
2689{
2690	return _regulator_get_current_limit(regulator->rdev);
2691}
2692EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2693
2694/**
2695 * regulator_set_mode - set regulator operating mode
2696 * @regulator: regulator source
2697 * @mode: operating mode - one of the REGULATOR_MODE constants
2698 *
2699 * Set regulator operating mode to increase regulator efficiency or improve
2700 * regulation performance.
2701 *
2702 * NOTE: Regulator system constraints must be set for this regulator before
2703 * calling this function otherwise this call will fail.
2704 */
2705int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2706{
2707	struct regulator_dev *rdev = regulator->rdev;
2708	int ret;
2709	int regulator_curr_mode;
2710
2711	mutex_lock(&rdev->mutex);
2712
2713	/* sanity check */
2714	if (!rdev->desc->ops->set_mode) {
2715		ret = -EINVAL;
2716		goto out;
2717	}
2718
2719	/* return if the same mode is requested */
2720	if (rdev->desc->ops->get_mode) {
2721		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2722		if (regulator_curr_mode == mode) {
2723			ret = 0;
2724			goto out;
2725		}
2726	}
2727
2728	/* constraints check */
2729	ret = regulator_mode_constrain(rdev, &mode);
2730	if (ret < 0)
2731		goto out;
2732
2733	ret = rdev->desc->ops->set_mode(rdev, mode);
2734out:
2735	mutex_unlock(&rdev->mutex);
2736	return ret;
2737}
2738EXPORT_SYMBOL_GPL(regulator_set_mode);
2739
2740static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2741{
2742	int ret;
2743
2744	mutex_lock(&rdev->mutex);
2745
2746	/* sanity check */
2747	if (!rdev->desc->ops->get_mode) {
2748		ret = -EINVAL;
2749		goto out;
2750	}
2751
2752	ret = rdev->desc->ops->get_mode(rdev);
2753out:
2754	mutex_unlock(&rdev->mutex);
2755	return ret;
2756}
2757
2758/**
2759 * regulator_get_mode - get regulator operating mode
2760 * @regulator: regulator source
2761 *
2762 * Get the current regulator operating mode.
2763 */
2764unsigned int regulator_get_mode(struct regulator *regulator)
2765{
2766	return _regulator_get_mode(regulator->rdev);
2767}
2768EXPORT_SYMBOL_GPL(regulator_get_mode);
2769
2770/**
2771 * regulator_set_optimum_mode - set regulator optimum operating mode
2772 * @regulator: regulator source
2773 * @uA_load: load current
2774 *
2775 * Notifies the regulator core of a new device load. This is then used by
2776 * DRMS (if enabled by constraints) to set the most efficient regulator
2777 * operating mode for the new regulator loading.
2778 *
2779 * Consumer devices notify their supply regulator of the maximum power
2780 * they will require (can be taken from device datasheet in the power
2781 * consumption tables) when they change operational status and hence power
2782 * state. Examples of operational state changes that can affect power
2783 * consumption are :-
2784 *
2785 *    o Device is opened / closed.
2786 *    o Device I/O is about to begin or has just finished.
2787 *    o Device is idling in between work.
2788 *
2789 * This information is also exported via sysfs to userspace.
2790 *
2791 * DRMS will sum the total requested load on the regulator and change
2792 * to the most efficient operating mode if platform constraints allow.
2793 *
2794 * Returns the new regulator mode or error.
2795 */
2796int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2797{
2798	struct regulator_dev *rdev = regulator->rdev;
2799	struct regulator *consumer;
2800	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2801	unsigned int mode;
2802
2803	if (rdev->supply)
2804		input_uV = regulator_get_voltage(rdev->supply);
2805
2806	mutex_lock(&rdev->mutex);
2807
2808	/*
2809	 * first check to see if we can set modes at all, otherwise just
2810	 * tell the consumer everything is OK.
2811	 */
2812	regulator->uA_load = uA_load;
2813	ret = regulator_check_drms(rdev);
2814	if (ret < 0) {
2815		ret = 0;
2816		goto out;
2817	}
2818
2819	if (!rdev->desc->ops->get_optimum_mode)
2820		goto out;
2821
2822	/*
2823	 * we can actually do this so any errors are indicators of
2824	 * potential real failure.
2825	 */
2826	ret = -EINVAL;
2827
2828	if (!rdev->desc->ops->set_mode)
2829		goto out;
2830
2831	/* get output voltage */
2832	output_uV = _regulator_get_voltage(rdev);
2833	if (output_uV <= 0) {
2834		rdev_err(rdev, "invalid output voltage found\n");
2835		goto out;
2836	}
2837
2838	/* No supply? Use constraint voltage */
2839	if (input_uV <= 0)
2840		input_uV = rdev->constraints->input_uV;
2841	if (input_uV <= 0) {
2842		rdev_err(rdev, "invalid input voltage found\n");
2843		goto out;
2844	}
2845
2846	/* calc total requested load for this regulator */
2847	list_for_each_entry(consumer, &rdev->consumer_list, list)
2848		total_uA_load += consumer->uA_load;
2849
2850	mode = rdev->desc->ops->get_optimum_mode(rdev,
2851						 input_uV, output_uV,
2852						 total_uA_load);
2853	ret = regulator_mode_constrain(rdev, &mode);
2854	if (ret < 0) {
2855		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2856			 total_uA_load, input_uV, output_uV);
2857		goto out;
2858	}
2859
2860	ret = rdev->desc->ops->set_mode(rdev, mode);
2861	if (ret < 0) {
2862		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2863		goto out;
2864	}
2865	ret = mode;
2866out:
2867	mutex_unlock(&rdev->mutex);
2868	return ret;
2869}
2870EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2871
2872/**
2873 * regulator_allow_bypass - allow the regulator to go into bypass mode
2874 *
2875 * @regulator: Regulator to configure
2876 * @enable: enable or disable bypass mode
2877 *
2878 * Allow the regulator to go into bypass mode if all other consumers
2879 * for the regulator also enable bypass mode and the machine
2880 * constraints allow this.  Bypass mode means that the regulator is
2881 * simply passing the input directly to the output with no regulation.
2882 */
2883int regulator_allow_bypass(struct regulator *regulator, bool enable)
2884{
2885	struct regulator_dev *rdev = regulator->rdev;
2886	int ret = 0;
2887
2888	if (!rdev->desc->ops->set_bypass)
2889		return 0;
2890
2891	if (rdev->constraints &&
2892	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2893		return 0;
2894
2895	mutex_lock(&rdev->mutex);
2896
2897	if (enable && !regulator->bypass) {
2898		rdev->bypass_count++;
2899
2900		if (rdev->bypass_count == rdev->open_count) {
2901			ret = rdev->desc->ops->set_bypass(rdev, enable);
2902			if (ret != 0)
2903				rdev->bypass_count--;
2904		}
2905
2906	} else if (!enable && regulator->bypass) {
2907		rdev->bypass_count--;
2908
2909		if (rdev->bypass_count != rdev->open_count) {
2910			ret = rdev->desc->ops->set_bypass(rdev, enable);
2911			if (ret != 0)
2912				rdev->bypass_count++;
2913		}
2914	}
2915
2916	if (ret == 0)
2917		regulator->bypass = enable;
2918
2919	mutex_unlock(&rdev->mutex);
2920
2921	return ret;
2922}
2923EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2924
2925/**
2926 * regulator_register_notifier - register regulator event notifier
2927 * @regulator: regulator source
2928 * @nb: notifier block
2929 *
2930 * Register notifier block to receive regulator events.
2931 */
2932int regulator_register_notifier(struct regulator *regulator,
2933			      struct notifier_block *nb)
2934{
2935	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2936						nb);
2937}
2938EXPORT_SYMBOL_GPL(regulator_register_notifier);
2939
2940/**
2941 * regulator_unregister_notifier - unregister regulator event notifier
2942 * @regulator: regulator source
2943 * @nb: notifier block
2944 *
2945 * Unregister regulator event notifier block.
2946 */
2947int regulator_unregister_notifier(struct regulator *regulator,
2948				struct notifier_block *nb)
2949{
2950	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2951						  nb);
2952}
2953EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2954
2955/* notify regulator consumers and downstream regulator consumers.
2956 * Note mutex must be held by caller.
2957 */
2958static void _notifier_call_chain(struct regulator_dev *rdev,
2959				  unsigned long event, void *data)
2960{
2961	/* call rdev chain first */
2962	blocking_notifier_call_chain(&rdev->notifier, event, data);
2963}
2964
2965/**
2966 * regulator_bulk_get - get multiple regulator consumers
2967 *
2968 * @dev:           Device to supply
2969 * @num_consumers: Number of consumers to register
2970 * @consumers:     Configuration of consumers; clients are stored here.
2971 *
2972 * @return 0 on success, an errno on failure.
2973 *
2974 * This helper function allows drivers to get several regulator
2975 * consumers in one operation.  If any of the regulators cannot be
2976 * acquired then any regulators that were allocated will be freed
2977 * before returning to the caller.
2978 */
2979int regulator_bulk_get(struct device *dev, int num_consumers,
2980		       struct regulator_bulk_data *consumers)
2981{
2982	int i;
2983	int ret;
2984
2985	for (i = 0; i < num_consumers; i++)
2986		consumers[i].consumer = NULL;
2987
2988	for (i = 0; i < num_consumers; i++) {
2989		consumers[i].consumer = regulator_get(dev,
2990						      consumers[i].supply);
2991		if (IS_ERR(consumers[i].consumer)) {
2992			ret = PTR_ERR(consumers[i].consumer);
2993			dev_err(dev, "Failed to get supply '%s': %d\n",
2994				consumers[i].supply, ret);
2995			consumers[i].consumer = NULL;
2996			goto err;
2997		}
2998	}
2999
3000	return 0;
3001
3002err:
3003	while (--i >= 0)
3004		regulator_put(consumers[i].consumer);
3005
3006	return ret;
3007}
3008EXPORT_SYMBOL_GPL(regulator_bulk_get);
3009
3010static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3011{
3012	struct regulator_bulk_data *bulk = data;
3013
3014	bulk->ret = regulator_enable(bulk->consumer);
3015}
3016
3017/**
3018 * regulator_bulk_enable - enable multiple regulator consumers
3019 *
3020 * @num_consumers: Number of consumers
3021 * @consumers:     Consumer data; clients are stored here.
3022 * @return         0 on success, an errno on failure
3023 *
3024 * This convenience API allows consumers to enable multiple regulator
3025 * clients in a single API call.  If any consumers cannot be enabled
3026 * then any others that were enabled will be disabled again prior to
3027 * return.
3028 */
3029int regulator_bulk_enable(int num_consumers,
3030			  struct regulator_bulk_data *consumers)
3031{
3032	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3033	int i;
3034	int ret = 0;
3035
3036	for (i = 0; i < num_consumers; i++) {
3037		if (consumers[i].consumer->always_on)
3038			consumers[i].ret = 0;
3039		else
3040			async_schedule_domain(regulator_bulk_enable_async,
3041					      &consumers[i], &async_domain);
3042	}
3043
3044	async_synchronize_full_domain(&async_domain);
3045
3046	/* If any consumer failed we need to unwind any that succeeded */
3047	for (i = 0; i < num_consumers; i++) {
3048		if (consumers[i].ret != 0) {
3049			ret = consumers[i].ret;
3050			goto err;
3051		}
3052	}
3053
3054	return 0;
3055
3056err:
3057	for (i = 0; i < num_consumers; i++) {
3058		if (consumers[i].ret < 0)
3059			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3060			       consumers[i].ret);
3061		else
3062			regulator_disable(consumers[i].consumer);
3063	}
3064
3065	return ret;
3066}
3067EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3068
3069/**
3070 * regulator_bulk_disable - disable multiple regulator consumers
3071 *
3072 * @num_consumers: Number of consumers
3073 * @consumers:     Consumer data; clients are stored here.
3074 * @return         0 on success, an errno on failure
3075 *
3076 * This convenience API allows consumers to disable multiple regulator
3077 * clients in a single API call.  If any consumers cannot be disabled
3078 * then any others that were disabled will be enabled again prior to
3079 * return.
3080 */
3081int regulator_bulk_disable(int num_consumers,
3082			   struct regulator_bulk_data *consumers)
3083{
3084	int i;
3085	int ret, r;
3086
3087	for (i = num_consumers - 1; i >= 0; --i) {
3088		ret = regulator_disable(consumers[i].consumer);
3089		if (ret != 0)
3090			goto err;
3091	}
3092
3093	return 0;
3094
3095err:
3096	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3097	for (++i; i < num_consumers; ++i) {
3098		r = regulator_enable(consumers[i].consumer);
3099		if (r != 0)
3100			pr_err("Failed to reename %s: %d\n",
3101			       consumers[i].supply, r);
3102	}
3103
3104	return ret;
3105}
3106EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3107
3108/**
3109 * regulator_bulk_force_disable - force disable multiple regulator consumers
3110 *
3111 * @num_consumers: Number of consumers
3112 * @consumers:     Consumer data; clients are stored here.
3113 * @return         0 on success, an errno on failure
3114 *
3115 * This convenience API allows consumers to forcibly disable multiple regulator
3116 * clients in a single API call.
3117 * NOTE: This should be used for situations when device damage will
3118 * likely occur if the regulators are not disabled (e.g. over temp).
3119 * Although regulator_force_disable function call for some consumers can
3120 * return error numbers, the function is called for all consumers.
3121 */
3122int regulator_bulk_force_disable(int num_consumers,
3123			   struct regulator_bulk_data *consumers)
3124{
3125	int i;
3126	int ret;
3127
3128	for (i = 0; i < num_consumers; i++)
3129		consumers[i].ret =
3130			    regulator_force_disable(consumers[i].consumer);
3131
3132	for (i = 0; i < num_consumers; i++) {
3133		if (consumers[i].ret != 0) {
3134			ret = consumers[i].ret;
3135			goto out;
3136		}
3137	}
3138
3139	return 0;
3140out:
3141	return ret;
3142}
3143EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3144
3145/**
3146 * regulator_bulk_free - free multiple regulator consumers
3147 *
3148 * @num_consumers: Number of consumers
3149 * @consumers:     Consumer data; clients are stored here.
3150 *
3151 * This convenience API allows consumers to free multiple regulator
3152 * clients in a single API call.
3153 */
3154void regulator_bulk_free(int num_consumers,
3155			 struct regulator_bulk_data *consumers)
3156{
3157	int i;
3158
3159	for (i = 0; i < num_consumers; i++) {
3160		regulator_put(consumers[i].consumer);
3161		consumers[i].consumer = NULL;
3162	}
3163}
3164EXPORT_SYMBOL_GPL(regulator_bulk_free);
3165
3166/**
3167 * regulator_notifier_call_chain - call regulator event notifier
3168 * @rdev: regulator source
3169 * @event: notifier block
3170 * @data: callback-specific data.
3171 *
3172 * Called by regulator drivers to notify clients a regulator event has
3173 * occurred. We also notify regulator clients downstream.
3174 * Note lock must be held by caller.
3175 */
3176int regulator_notifier_call_chain(struct regulator_dev *rdev,
3177				  unsigned long event, void *data)
3178{
3179	_notifier_call_chain(rdev, event, data);
3180	return NOTIFY_DONE;
3181
3182}
3183EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3184
3185/**
3186 * regulator_mode_to_status - convert a regulator mode into a status
3187 *
3188 * @mode: Mode to convert
3189 *
3190 * Convert a regulator mode into a status.
3191 */
3192int regulator_mode_to_status(unsigned int mode)
3193{
3194	switch (mode) {
3195	case REGULATOR_MODE_FAST:
3196		return REGULATOR_STATUS_FAST;
3197	case REGULATOR_MODE_NORMAL:
3198		return REGULATOR_STATUS_NORMAL;
3199	case REGULATOR_MODE_IDLE:
3200		return REGULATOR_STATUS_IDLE;
3201	case REGULATOR_MODE_STANDBY:
3202		return REGULATOR_STATUS_STANDBY;
3203	default:
3204		return REGULATOR_STATUS_UNDEFINED;
3205	}
3206}
3207EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3208
3209/*
3210 * To avoid cluttering sysfs (and memory) with useless state, only
3211 * create attributes that can be meaningfully displayed.
3212 */
3213static int add_regulator_attributes(struct regulator_dev *rdev)
3214{
3215	struct device		*dev = &rdev->dev;
3216	struct regulator_ops	*ops = rdev->desc->ops;
3217	int			status = 0;
3218
3219	/* some attributes need specific methods to be displayed */
3220	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3221	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3222	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3223		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3224		status = device_create_file(dev, &dev_attr_microvolts);
3225		if (status < 0)
3226			return status;
3227	}
3228	if (ops->get_current_limit) {
3229		status = device_create_file(dev, &dev_attr_microamps);
3230		if (status < 0)
3231			return status;
3232	}
3233	if (ops->get_mode) {
3234		status = device_create_file(dev, &dev_attr_opmode);
3235		if (status < 0)
3236			return status;
3237	}
3238	if (rdev->ena_pin || ops->is_enabled) {
3239		status = device_create_file(dev, &dev_attr_state);
3240		if (status < 0)
3241			return status;
3242	}
3243	if (ops->get_status) {
3244		status = device_create_file(dev, &dev_attr_status);
3245		if (status < 0)
3246			return status;
3247	}
3248	if (ops->get_bypass) {
3249		status = device_create_file(dev, &dev_attr_bypass);
3250		if (status < 0)
3251			return status;
3252	}
3253
3254	/* some attributes are type-specific */
3255	if (rdev->desc->type == REGULATOR_CURRENT) {
3256		status = device_create_file(dev, &dev_attr_requested_microamps);
3257		if (status < 0)
3258			return status;
3259	}
3260
3261	/* all the other attributes exist to support constraints;
3262	 * don't show them if there are no constraints, or if the
3263	 * relevant supporting methods are missing.
3264	 */
3265	if (!rdev->constraints)
3266		return status;
3267
3268	/* constraints need specific supporting methods */
3269	if (ops->set_voltage || ops->set_voltage_sel) {
3270		status = device_create_file(dev, &dev_attr_min_microvolts);
3271		if (status < 0)
3272			return status;
3273		status = device_create_file(dev, &dev_attr_max_microvolts);
3274		if (status < 0)
3275			return status;
3276	}
3277	if (ops->set_current_limit) {
3278		status = device_create_file(dev, &dev_attr_min_microamps);
3279		if (status < 0)
3280			return status;
3281		status = device_create_file(dev, &dev_attr_max_microamps);
3282		if (status < 0)
3283			return status;
3284	}
3285
3286	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3287	if (status < 0)
3288		return status;
3289	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3290	if (status < 0)
3291		return status;
3292	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3293	if (status < 0)
3294		return status;
3295
3296	if (ops->set_suspend_voltage) {
3297		status = device_create_file(dev,
3298				&dev_attr_suspend_standby_microvolts);
3299		if (status < 0)
3300			return status;
3301		status = device_create_file(dev,
3302				&dev_attr_suspend_mem_microvolts);
3303		if (status < 0)
3304			return status;
3305		status = device_create_file(dev,
3306				&dev_attr_suspend_disk_microvolts);
3307		if (status < 0)
3308			return status;
3309	}
3310
3311	if (ops->set_suspend_mode) {
3312		status = device_create_file(dev,
3313				&dev_attr_suspend_standby_mode);
3314		if (status < 0)
3315			return status;
3316		status = device_create_file(dev,
3317				&dev_attr_suspend_mem_mode);
3318		if (status < 0)
3319			return status;
3320		status = device_create_file(dev,
3321				&dev_attr_suspend_disk_mode);
3322		if (status < 0)
3323			return status;
3324	}
3325
3326	return status;
3327}
3328
3329static void rdev_init_debugfs(struct regulator_dev *rdev)
3330{
3331	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3332	if (!rdev->debugfs) {
3333		rdev_warn(rdev, "Failed to create debugfs directory\n");
3334		return;
3335	}
3336
3337	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3338			   &rdev->use_count);
3339	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3340			   &rdev->open_count);
3341	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3342			   &rdev->bypass_count);
3343}
3344
3345/**
3346 * regulator_register - register regulator
3347 * @regulator_desc: regulator to register
3348 * @config: runtime configuration for regulator
3349 *
3350 * Called by regulator drivers to register a regulator.
3351 * Returns a valid pointer to struct regulator_dev on success
3352 * or an ERR_PTR() on error.
3353 */
3354struct regulator_dev *
3355regulator_register(const struct regulator_desc *regulator_desc,
3356		   const struct regulator_config *config)
3357{
3358	const struct regulation_constraints *constraints = NULL;
3359	const struct regulator_init_data *init_data;
3360	static atomic_t regulator_no = ATOMIC_INIT(0);
3361	struct regulator_dev *rdev;
3362	struct device *dev;
3363	int ret, i;
3364	const char *supply = NULL;
3365
3366	if (regulator_desc == NULL || config == NULL)
3367		return ERR_PTR(-EINVAL);
3368
3369	dev = config->dev;
3370	WARN_ON(!dev);
3371
3372	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3373		return ERR_PTR(-EINVAL);
3374
3375	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3376	    regulator_desc->type != REGULATOR_CURRENT)
3377		return ERR_PTR(-EINVAL);
3378
3379	/* Only one of each should be implemented */
3380	WARN_ON(regulator_desc->ops->get_voltage &&
3381		regulator_desc->ops->get_voltage_sel);
3382	WARN_ON(regulator_desc->ops->set_voltage &&
3383		regulator_desc->ops->set_voltage_sel);
3384
3385	/* If we're using selectors we must implement list_voltage. */
3386	if (regulator_desc->ops->get_voltage_sel &&
3387	    !regulator_desc->ops->list_voltage) {
3388		return ERR_PTR(-EINVAL);
3389	}
3390	if (regulator_desc->ops->set_voltage_sel &&
3391	    !regulator_desc->ops->list_voltage) {
3392		return ERR_PTR(-EINVAL);
3393	}
3394
3395	init_data = config->init_data;
3396
3397	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3398	if (rdev == NULL)
3399		return ERR_PTR(-ENOMEM);
3400
3401	mutex_lock(&regulator_list_mutex);
3402
3403	mutex_init(&rdev->mutex);
3404	rdev->reg_data = config->driver_data;
3405	rdev->owner = regulator_desc->owner;
3406	rdev->desc = regulator_desc;
3407	if (config->regmap)
3408		rdev->regmap = config->regmap;
3409	else if (dev_get_regmap(dev, NULL))
3410		rdev->regmap = dev_get_regmap(dev, NULL);
3411	else if (dev->parent)
3412		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3413	INIT_LIST_HEAD(&rdev->consumer_list);
3414	INIT_LIST_HEAD(&rdev->list);
3415	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3416	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3417
3418	/* preform any regulator specific init */
3419	if (init_data && init_data->regulator_init) {
3420		ret = init_data->regulator_init(rdev->reg_data);
3421		if (ret < 0)
3422			goto clean;
3423	}
3424
3425	/* register with sysfs */
3426	rdev->dev.class = &regulator_class;
3427	rdev->dev.of_node = config->of_node;
3428	rdev->dev.parent = dev;
3429	dev_set_name(&rdev->dev, "regulator.%d",
3430		     atomic_inc_return(&regulator_no) - 1);
3431	ret = device_register(&rdev->dev);
3432	if (ret != 0) {
3433		put_device(&rdev->dev);
3434		goto clean;
3435	}
3436
3437	dev_set_drvdata(&rdev->dev, rdev);
3438
3439	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3440		ret = regulator_ena_gpio_request(rdev, config);
3441		if (ret != 0) {
3442			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3443				 config->ena_gpio, ret);
3444			goto wash;
3445		}
3446
3447		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3448			rdev->ena_gpio_state = 1;
3449
3450		if (config->ena_gpio_invert)
3451			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3452	}
3453
3454	/* set regulator constraints */
3455	if (init_data)
3456		constraints = &init_data->constraints;
3457
3458	ret = set_machine_constraints(rdev, constraints);
3459	if (ret < 0)
3460		goto scrub;
3461
3462	/* add attributes supported by this regulator */
3463	ret = add_regulator_attributes(rdev);
3464	if (ret < 0)
3465		goto scrub;
3466
3467	if (init_data && init_data->supply_regulator)
3468		supply = init_data->supply_regulator;
3469	else if (regulator_desc->supply_name)
3470		supply = regulator_desc->supply_name;
3471
3472	if (supply) {
3473		struct regulator_dev *r;
3474
3475		r = regulator_dev_lookup(dev, supply, &ret);
3476
3477		if (ret == -ENODEV) {
3478			/*
3479			 * No supply was specified for this regulator and
3480			 * there will never be one.
3481			 */
3482			ret = 0;
3483			goto add_dev;
3484		} else if (!r) {
3485			dev_err(dev, "Failed to find supply %s\n", supply);
3486			ret = -EPROBE_DEFER;
3487			goto scrub;
3488		}
3489
3490		ret = set_supply(rdev, r);
3491		if (ret < 0)
3492			goto scrub;
3493
3494		/* Enable supply if rail is enabled */
3495		if (_regulator_is_enabled(rdev)) {
3496			ret = regulator_enable(rdev->supply);
3497			if (ret < 0)
3498				goto scrub;
3499		}
3500	}
3501
3502add_dev:
3503	/* add consumers devices */
3504	if (init_data) {
3505		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3506			ret = set_consumer_device_supply(rdev,
3507				init_data->consumer_supplies[i].dev_name,
3508				init_data->consumer_supplies[i].supply);
3509			if (ret < 0) {
3510				dev_err(dev, "Failed to set supply %s\n",
3511					init_data->consumer_supplies[i].supply);
3512				goto unset_supplies;
3513			}
3514		}
3515	}
3516
3517	list_add(&rdev->list, &regulator_list);
3518
3519	rdev_init_debugfs(rdev);
3520out:
3521	mutex_unlock(&regulator_list_mutex);
3522	return rdev;
3523
3524unset_supplies:
3525	unset_regulator_supplies(rdev);
3526
3527scrub:
3528	if (rdev->supply)
3529		_regulator_put(rdev->supply);
3530	regulator_ena_gpio_free(rdev);
3531	kfree(rdev->constraints);
3532wash:
3533	device_unregister(&rdev->dev);
3534	/* device core frees rdev */
3535	rdev = ERR_PTR(ret);
3536	goto out;
3537
3538clean:
3539	kfree(rdev);
3540	rdev = ERR_PTR(ret);
3541	goto out;
3542}
3543EXPORT_SYMBOL_GPL(regulator_register);
3544
3545/**
3546 * regulator_unregister - unregister regulator
3547 * @rdev: regulator to unregister
3548 *
3549 * Called by regulator drivers to unregister a regulator.
3550 */
3551void regulator_unregister(struct regulator_dev *rdev)
3552{
3553	if (rdev == NULL)
3554		return;
3555
3556	if (rdev->supply) {
3557		while (rdev->use_count--)
3558			regulator_disable(rdev->supply);
3559		regulator_put(rdev->supply);
3560	}
3561	mutex_lock(&regulator_list_mutex);
3562	debugfs_remove_recursive(rdev->debugfs);
3563	flush_work(&rdev->disable_work.work);
3564	WARN_ON(rdev->open_count);
3565	unset_regulator_supplies(rdev);
3566	list_del(&rdev->list);
3567	kfree(rdev->constraints);
3568	regulator_ena_gpio_free(rdev);
3569	device_unregister(&rdev->dev);
3570	mutex_unlock(&regulator_list_mutex);
3571}
3572EXPORT_SYMBOL_GPL(regulator_unregister);
3573
3574/**
3575 * regulator_suspend_prepare - prepare regulators for system wide suspend
3576 * @state: system suspend state
3577 *
3578 * Configure each regulator with it's suspend operating parameters for state.
3579 * This will usually be called by machine suspend code prior to supending.
3580 */
3581int regulator_suspend_prepare(suspend_state_t state)
3582{
3583	struct regulator_dev *rdev;
3584	int ret = 0;
3585
3586	/* ON is handled by regulator active state */
3587	if (state == PM_SUSPEND_ON)
3588		return -EINVAL;
3589
3590	mutex_lock(&regulator_list_mutex);
3591	list_for_each_entry(rdev, &regulator_list, list) {
3592
3593		mutex_lock(&rdev->mutex);
3594		ret = suspend_prepare(rdev, state);
3595		mutex_unlock(&rdev->mutex);
3596
3597		if (ret < 0) {
3598			rdev_err(rdev, "failed to prepare\n");
3599			goto out;
3600		}
3601	}
3602out:
3603	mutex_unlock(&regulator_list_mutex);
3604	return ret;
3605}
3606EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3607
3608/**
3609 * regulator_suspend_finish - resume regulators from system wide suspend
3610 *
3611 * Turn on regulators that might be turned off by regulator_suspend_prepare
3612 * and that should be turned on according to the regulators properties.
3613 */
3614int regulator_suspend_finish(void)
3615{
3616	struct regulator_dev *rdev;
3617	int ret = 0, error;
3618
3619	mutex_lock(&regulator_list_mutex);
3620	list_for_each_entry(rdev, &regulator_list, list) {
3621		struct regulator_ops *ops = rdev->desc->ops;
3622
3623		mutex_lock(&rdev->mutex);
3624		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3625				ops->enable) {
3626			error = ops->enable(rdev);
3627			if (error)
3628				ret = error;
3629		} else {
3630			if (!has_full_constraints)
3631				goto unlock;
3632			if (!ops->disable)
3633				goto unlock;
3634			if (!_regulator_is_enabled(rdev))
3635				goto unlock;
3636
3637			error = ops->disable(rdev);
3638			if (error)
3639				ret = error;
3640		}
3641unlock:
3642		mutex_unlock(&rdev->mutex);
3643	}
3644	mutex_unlock(&regulator_list_mutex);
3645	return ret;
3646}
3647EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3648
3649/**
3650 * regulator_has_full_constraints - the system has fully specified constraints
3651 *
3652 * Calling this function will cause the regulator API to disable all
3653 * regulators which have a zero use count and don't have an always_on
3654 * constraint in a late_initcall.
3655 *
3656 * The intention is that this will become the default behaviour in a
3657 * future kernel release so users are encouraged to use this facility
3658 * now.
3659 */
3660void regulator_has_full_constraints(void)
3661{
3662	has_full_constraints = 1;
3663}
3664EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3665
3666/**
3667 * rdev_get_drvdata - get rdev regulator driver data
3668 * @rdev: regulator
3669 *
3670 * Get rdev regulator driver private data. This call can be used in the
3671 * regulator driver context.
3672 */
3673void *rdev_get_drvdata(struct regulator_dev *rdev)
3674{
3675	return rdev->reg_data;
3676}
3677EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3678
3679/**
3680 * regulator_get_drvdata - get regulator driver data
3681 * @regulator: regulator
3682 *
3683 * Get regulator driver private data. This call can be used in the consumer
3684 * driver context when non API regulator specific functions need to be called.
3685 */
3686void *regulator_get_drvdata(struct regulator *regulator)
3687{
3688	return regulator->rdev->reg_data;
3689}
3690EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3691
3692/**
3693 * regulator_set_drvdata - set regulator driver data
3694 * @regulator: regulator
3695 * @data: data
3696 */
3697void regulator_set_drvdata(struct regulator *regulator, void *data)
3698{
3699	regulator->rdev->reg_data = data;
3700}
3701EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3702
3703/**
3704 * regulator_get_id - get regulator ID
3705 * @rdev: regulator
3706 */
3707int rdev_get_id(struct regulator_dev *rdev)
3708{
3709	return rdev->desc->id;
3710}
3711EXPORT_SYMBOL_GPL(rdev_get_id);
3712
3713struct device *rdev_get_dev(struct regulator_dev *rdev)
3714{
3715	return &rdev->dev;
3716}
3717EXPORT_SYMBOL_GPL(rdev_get_dev);
3718
3719void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3720{
3721	return reg_init_data->driver_data;
3722}
3723EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3724
3725#ifdef CONFIG_DEBUG_FS
3726static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3727				    size_t count, loff_t *ppos)
3728{
3729	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3730	ssize_t len, ret = 0;
3731	struct regulator_map *map;
3732
3733	if (!buf)
3734		return -ENOMEM;
3735
3736	list_for_each_entry(map, &regulator_map_list, list) {
3737		len = snprintf(buf + ret, PAGE_SIZE - ret,
3738			       "%s -> %s.%s\n",
3739			       rdev_get_name(map->regulator), map->dev_name,
3740			       map->supply);
3741		if (len >= 0)
3742			ret += len;
3743		if (ret > PAGE_SIZE) {
3744			ret = PAGE_SIZE;
3745			break;
3746		}
3747	}
3748
3749	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3750
3751	kfree(buf);
3752
3753	return ret;
3754}
3755#endif
3756
3757static const struct file_operations supply_map_fops = {
3758#ifdef CONFIG_DEBUG_FS
3759	.read = supply_map_read_file,
3760	.llseek = default_llseek,
3761#endif
3762};
3763
3764static int __init regulator_init(void)
3765{
3766	int ret;
3767
3768	ret = class_register(&regulator_class);
3769
3770	debugfs_root = debugfs_create_dir("regulator", NULL);
3771	if (!debugfs_root)
3772		pr_warn("regulator: Failed to create debugfs directory\n");
3773
3774	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3775			    &supply_map_fops);
3776
3777	regulator_dummy_init();
3778
3779	return ret;
3780}
3781
3782/* init early to allow our consumers to complete system booting */
3783core_initcall(regulator_init);
3784
3785static int __init regulator_init_complete(void)
3786{
3787	struct regulator_dev *rdev;
3788	struct regulator_ops *ops;
3789	struct regulation_constraints *c;
3790	int enabled, ret;
3791
3792	/*
3793	 * Since DT doesn't provide an idiomatic mechanism for
3794	 * enabling full constraints and since it's much more natural
3795	 * with DT to provide them just assume that a DT enabled
3796	 * system has full constraints.
3797	 */
3798	if (of_have_populated_dt())
3799		has_full_constraints = true;
3800
3801	mutex_lock(&regulator_list_mutex);
3802
3803	/* If we have a full configuration then disable any regulators
3804	 * which are not in use or always_on.  This will become the
3805	 * default behaviour in the future.
3806	 */
3807	list_for_each_entry(rdev, &regulator_list, list) {
3808		ops = rdev->desc->ops;
3809		c = rdev->constraints;
3810
3811		if (!ops->disable || (c && c->always_on))
3812			continue;
3813
3814		mutex_lock(&rdev->mutex);
3815
3816		if (rdev->use_count)
3817			goto unlock;
3818
3819		/* If we can't read the status assume it's on. */
3820		if (ops->is_enabled)
3821			enabled = ops->is_enabled(rdev);
3822		else
3823			enabled = 1;
3824
3825		if (!enabled)
3826			goto unlock;
3827
3828		if (has_full_constraints) {
3829			/* We log since this may kill the system if it
3830			 * goes wrong. */
3831			rdev_info(rdev, "disabling\n");
3832			ret = ops->disable(rdev);
3833			if (ret != 0) {
3834				rdev_err(rdev, "couldn't disable: %d\n", ret);
3835			}
3836		} else {
3837			/* The intention is that in future we will
3838			 * assume that full constraints are provided
3839			 * so warn even if we aren't going to do
3840			 * anything here.
3841			 */
3842			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3843		}
3844
3845unlock:
3846		mutex_unlock(&rdev->mutex);
3847	}
3848
3849	mutex_unlock(&regulator_list_mutex);
3850
3851	return 0;
3852}
3853late_initcall(regulator_init_complete);
3854