core.c revision f4d562c6e616bb686f43d38752b2e5b83359e1fc
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/of.h>
27#include <linux/regulator/of_regulator.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31#include <linux/module.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/regulator.h>
35
36#include "dummy.h"
37
38#define rdev_crit(rdev, fmt, ...)					\
39	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_err(rdev, fmt, ...)					\
41	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_warn(rdev, fmt, ...)					\
43	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_info(rdev, fmt, ...)					\
45	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_dbg(rdev, fmt, ...)					\
47	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_list);
51static LIST_HEAD(regulator_map_list);
52static bool has_full_constraints;
53static bool board_wants_dummy_regulator;
54
55#ifdef CONFIG_DEBUG_FS
56static struct dentry *debugfs_root;
57#endif
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	int uA_load;
80	int min_uV;
81	int max_uV;
82	char *supply_name;
83	struct device_attribute dev_attr;
84	struct regulator_dev *rdev;
85#ifdef CONFIG_DEBUG_FS
86	struct dentry *debugfs;
87#endif
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/* gets the regulator for a given consumer device */
114static struct regulator *get_device_regulator(struct device *dev)
115{
116	struct regulator *regulator = NULL;
117	struct regulator_dev *rdev;
118
119	mutex_lock(&regulator_list_mutex);
120	list_for_each_entry(rdev, &regulator_list, list) {
121		mutex_lock(&rdev->mutex);
122		list_for_each_entry(regulator, &rdev->consumer_list, list) {
123			if (regulator->dev == dev) {
124				mutex_unlock(&rdev->mutex);
125				mutex_unlock(&regulator_list_mutex);
126				return regulator;
127			}
128		}
129		mutex_unlock(&rdev->mutex);
130	}
131	mutex_unlock(&regulator_list_mutex);
132	return NULL;
133}
134
135/**
136 * of_get_regulator - get a regulator device node based on supply name
137 * @dev: Device pointer for the consumer (of regulator) device
138 * @supply: regulator supply name
139 *
140 * Extract the regulator device node corresponding to the supply name.
141 * retruns the device node corresponding to the regulator if found, else
142 * returns NULL.
143 */
144static struct device_node *of_get_regulator(struct device *dev, const char *supply)
145{
146	struct device_node *regnode = NULL;
147	char prop_name[32]; /* 32 is max size of property name */
148
149	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
150
151	snprintf(prop_name, 32, "%s-supply", supply);
152	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
153
154	if (!regnode) {
155		dev_warn(dev, "%s property in node %s references invalid phandle",
156				prop_name, dev->of_node->full_name);
157		return NULL;
158	}
159	return regnode;
160}
161
162/* Platform voltage constraint check */
163static int regulator_check_voltage(struct regulator_dev *rdev,
164				   int *min_uV, int *max_uV)
165{
166	BUG_ON(*min_uV > *max_uV);
167
168	if (!rdev->constraints) {
169		rdev_err(rdev, "no constraints\n");
170		return -ENODEV;
171	}
172	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
173		rdev_err(rdev, "operation not allowed\n");
174		return -EPERM;
175	}
176
177	if (*max_uV > rdev->constraints->max_uV)
178		*max_uV = rdev->constraints->max_uV;
179	if (*min_uV < rdev->constraints->min_uV)
180		*min_uV = rdev->constraints->min_uV;
181
182	if (*min_uV > *max_uV) {
183		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
184			 *min_uV, *max_uV);
185		return -EINVAL;
186	}
187
188	return 0;
189}
190
191/* Make sure we select a voltage that suits the needs of all
192 * regulator consumers
193 */
194static int regulator_check_consumers(struct regulator_dev *rdev,
195				     int *min_uV, int *max_uV)
196{
197	struct regulator *regulator;
198
199	list_for_each_entry(regulator, &rdev->consumer_list, list) {
200		/*
201		 * Assume consumers that didn't say anything are OK
202		 * with anything in the constraint range.
203		 */
204		if (!regulator->min_uV && !regulator->max_uV)
205			continue;
206
207		if (*max_uV > regulator->max_uV)
208			*max_uV = regulator->max_uV;
209		if (*min_uV < regulator->min_uV)
210			*min_uV = regulator->min_uV;
211	}
212
213	if (*min_uV > *max_uV)
214		return -EINVAL;
215
216	return 0;
217}
218
219/* current constraint check */
220static int regulator_check_current_limit(struct regulator_dev *rdev,
221					int *min_uA, int *max_uA)
222{
223	BUG_ON(*min_uA > *max_uA);
224
225	if (!rdev->constraints) {
226		rdev_err(rdev, "no constraints\n");
227		return -ENODEV;
228	}
229	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
230		rdev_err(rdev, "operation not allowed\n");
231		return -EPERM;
232	}
233
234	if (*max_uA > rdev->constraints->max_uA)
235		*max_uA = rdev->constraints->max_uA;
236	if (*min_uA < rdev->constraints->min_uA)
237		*min_uA = rdev->constraints->min_uA;
238
239	if (*min_uA > *max_uA) {
240		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
241			 *min_uA, *max_uA);
242		return -EINVAL;
243	}
244
245	return 0;
246}
247
248/* operating mode constraint check */
249static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
250{
251	switch (*mode) {
252	case REGULATOR_MODE_FAST:
253	case REGULATOR_MODE_NORMAL:
254	case REGULATOR_MODE_IDLE:
255	case REGULATOR_MODE_STANDBY:
256		break;
257	default:
258		rdev_err(rdev, "invalid mode %x specified\n", *mode);
259		return -EINVAL;
260	}
261
262	if (!rdev->constraints) {
263		rdev_err(rdev, "no constraints\n");
264		return -ENODEV;
265	}
266	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
267		rdev_err(rdev, "operation not allowed\n");
268		return -EPERM;
269	}
270
271	/* The modes are bitmasks, the most power hungry modes having
272	 * the lowest values. If the requested mode isn't supported
273	 * try higher modes. */
274	while (*mode) {
275		if (rdev->constraints->valid_modes_mask & *mode)
276			return 0;
277		*mode /= 2;
278	}
279
280	return -EINVAL;
281}
282
283/* dynamic regulator mode switching constraint check */
284static int regulator_check_drms(struct regulator_dev *rdev)
285{
286	if (!rdev->constraints) {
287		rdev_err(rdev, "no constraints\n");
288		return -ENODEV;
289	}
290	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
291		rdev_err(rdev, "operation not allowed\n");
292		return -EPERM;
293	}
294	return 0;
295}
296
297static ssize_t device_requested_uA_show(struct device *dev,
298			     struct device_attribute *attr, char *buf)
299{
300	struct regulator *regulator;
301
302	regulator = get_device_regulator(dev);
303	if (regulator == NULL)
304		return 0;
305
306	return sprintf(buf, "%d\n", regulator->uA_load);
307}
308
309static ssize_t regulator_uV_show(struct device *dev,
310				struct device_attribute *attr, char *buf)
311{
312	struct regulator_dev *rdev = dev_get_drvdata(dev);
313	ssize_t ret;
314
315	mutex_lock(&rdev->mutex);
316	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317	mutex_unlock(&rdev->mutex);
318
319	return ret;
320}
321static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322
323static ssize_t regulator_uA_show(struct device *dev,
324				struct device_attribute *attr, char *buf)
325{
326	struct regulator_dev *rdev = dev_get_drvdata(dev);
327
328	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329}
330static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331
332static ssize_t regulator_name_show(struct device *dev,
333			     struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337	return sprintf(buf, "%s\n", rdev_get_name(rdev));
338}
339
340static ssize_t regulator_print_opmode(char *buf, int mode)
341{
342	switch (mode) {
343	case REGULATOR_MODE_FAST:
344		return sprintf(buf, "fast\n");
345	case REGULATOR_MODE_NORMAL:
346		return sprintf(buf, "normal\n");
347	case REGULATOR_MODE_IDLE:
348		return sprintf(buf, "idle\n");
349	case REGULATOR_MODE_STANDBY:
350		return sprintf(buf, "standby\n");
351	}
352	return sprintf(buf, "unknown\n");
353}
354
355static ssize_t regulator_opmode_show(struct device *dev,
356				    struct device_attribute *attr, char *buf)
357{
358	struct regulator_dev *rdev = dev_get_drvdata(dev);
359
360	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
361}
362static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
363
364static ssize_t regulator_print_state(char *buf, int state)
365{
366	if (state > 0)
367		return sprintf(buf, "enabled\n");
368	else if (state == 0)
369		return sprintf(buf, "disabled\n");
370	else
371		return sprintf(buf, "unknown\n");
372}
373
374static ssize_t regulator_state_show(struct device *dev,
375				   struct device_attribute *attr, char *buf)
376{
377	struct regulator_dev *rdev = dev_get_drvdata(dev);
378	ssize_t ret;
379
380	mutex_lock(&rdev->mutex);
381	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
382	mutex_unlock(&rdev->mutex);
383
384	return ret;
385}
386static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
387
388static ssize_t regulator_status_show(struct device *dev,
389				   struct device_attribute *attr, char *buf)
390{
391	struct regulator_dev *rdev = dev_get_drvdata(dev);
392	int status;
393	char *label;
394
395	status = rdev->desc->ops->get_status(rdev);
396	if (status < 0)
397		return status;
398
399	switch (status) {
400	case REGULATOR_STATUS_OFF:
401		label = "off";
402		break;
403	case REGULATOR_STATUS_ON:
404		label = "on";
405		break;
406	case REGULATOR_STATUS_ERROR:
407		label = "error";
408		break;
409	case REGULATOR_STATUS_FAST:
410		label = "fast";
411		break;
412	case REGULATOR_STATUS_NORMAL:
413		label = "normal";
414		break;
415	case REGULATOR_STATUS_IDLE:
416		label = "idle";
417		break;
418	case REGULATOR_STATUS_STANDBY:
419		label = "standby";
420		break;
421	default:
422		return -ERANGE;
423	}
424
425	return sprintf(buf, "%s\n", label);
426}
427static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429static ssize_t regulator_min_uA_show(struct device *dev,
430				    struct device_attribute *attr, char *buf)
431{
432	struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434	if (!rdev->constraints)
435		return sprintf(buf, "constraint not defined\n");
436
437	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438}
439static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441static ssize_t regulator_max_uA_show(struct device *dev,
442				    struct device_attribute *attr, char *buf)
443{
444	struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446	if (!rdev->constraints)
447		return sprintf(buf, "constraint not defined\n");
448
449	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450}
451static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453static ssize_t regulator_min_uV_show(struct device *dev,
454				    struct device_attribute *attr, char *buf)
455{
456	struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458	if (!rdev->constraints)
459		return sprintf(buf, "constraint not defined\n");
460
461	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462}
463static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465static ssize_t regulator_max_uV_show(struct device *dev,
466				    struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	if (!rdev->constraints)
471		return sprintf(buf, "constraint not defined\n");
472
473	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474}
475static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477static ssize_t regulator_total_uA_show(struct device *dev,
478				      struct device_attribute *attr, char *buf)
479{
480	struct regulator_dev *rdev = dev_get_drvdata(dev);
481	struct regulator *regulator;
482	int uA = 0;
483
484	mutex_lock(&rdev->mutex);
485	list_for_each_entry(regulator, &rdev->consumer_list, list)
486		uA += regulator->uA_load;
487	mutex_unlock(&rdev->mutex);
488	return sprintf(buf, "%d\n", uA);
489}
490static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492static ssize_t regulator_num_users_show(struct device *dev,
493				      struct device_attribute *attr, char *buf)
494{
495	struct regulator_dev *rdev = dev_get_drvdata(dev);
496	return sprintf(buf, "%d\n", rdev->use_count);
497}
498
499static ssize_t regulator_type_show(struct device *dev,
500				  struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	switch (rdev->desc->type) {
505	case REGULATOR_VOLTAGE:
506		return sprintf(buf, "voltage\n");
507	case REGULATOR_CURRENT:
508		return sprintf(buf, "current\n");
509	}
510	return sprintf(buf, "unknown\n");
511}
512
513static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514				struct device_attribute *attr, char *buf)
515{
516	struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519}
520static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521		regulator_suspend_mem_uV_show, NULL);
522
523static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529}
530static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531		regulator_suspend_disk_uV_show, NULL);
532
533static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534				struct device_attribute *attr, char *buf)
535{
536	struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539}
540static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541		regulator_suspend_standby_uV_show, NULL);
542
543static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544				struct device_attribute *attr, char *buf)
545{
546	struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548	return regulator_print_opmode(buf,
549		rdev->constraints->state_mem.mode);
550}
551static DEVICE_ATTR(suspend_mem_mode, 0444,
552		regulator_suspend_mem_mode_show, NULL);
553
554static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555				struct device_attribute *attr, char *buf)
556{
557	struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559	return regulator_print_opmode(buf,
560		rdev->constraints->state_disk.mode);
561}
562static DEVICE_ATTR(suspend_disk_mode, 0444,
563		regulator_suspend_disk_mode_show, NULL);
564
565static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566				struct device_attribute *attr, char *buf)
567{
568	struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570	return regulator_print_opmode(buf,
571		rdev->constraints->state_standby.mode);
572}
573static DEVICE_ATTR(suspend_standby_mode, 0444,
574		regulator_suspend_standby_mode_show, NULL);
575
576static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577				   struct device_attribute *attr, char *buf)
578{
579	struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581	return regulator_print_state(buf,
582			rdev->constraints->state_mem.enabled);
583}
584static DEVICE_ATTR(suspend_mem_state, 0444,
585		regulator_suspend_mem_state_show, NULL);
586
587static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588				   struct device_attribute *attr, char *buf)
589{
590	struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592	return regulator_print_state(buf,
593			rdev->constraints->state_disk.enabled);
594}
595static DEVICE_ATTR(suspend_disk_state, 0444,
596		regulator_suspend_disk_state_show, NULL);
597
598static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599				   struct device_attribute *attr, char *buf)
600{
601	struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603	return regulator_print_state(buf,
604			rdev->constraints->state_standby.enabled);
605}
606static DEVICE_ATTR(suspend_standby_state, 0444,
607		regulator_suspend_standby_state_show, NULL);
608
609
610/*
611 * These are the only attributes are present for all regulators.
612 * Other attributes are a function of regulator functionality.
613 */
614static struct device_attribute regulator_dev_attrs[] = {
615	__ATTR(name, 0444, regulator_name_show, NULL),
616	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
617	__ATTR(type, 0444, regulator_type_show, NULL),
618	__ATTR_NULL,
619};
620
621static void regulator_dev_release(struct device *dev)
622{
623	struct regulator_dev *rdev = dev_get_drvdata(dev);
624	kfree(rdev);
625}
626
627static struct class regulator_class = {
628	.name = "regulator",
629	.dev_release = regulator_dev_release,
630	.dev_attrs = regulator_dev_attrs,
631};
632
633/* Calculate the new optimum regulator operating mode based on the new total
634 * consumer load. All locks held by caller */
635static void drms_uA_update(struct regulator_dev *rdev)
636{
637	struct regulator *sibling;
638	int current_uA = 0, output_uV, input_uV, err;
639	unsigned int mode;
640
641	err = regulator_check_drms(rdev);
642	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
643	    (!rdev->desc->ops->get_voltage &&
644	     !rdev->desc->ops->get_voltage_sel) ||
645	    !rdev->desc->ops->set_mode)
646		return;
647
648	/* get output voltage */
649	output_uV = _regulator_get_voltage(rdev);
650	if (output_uV <= 0)
651		return;
652
653	/* get input voltage */
654	input_uV = 0;
655	if (rdev->supply)
656		input_uV = _regulator_get_voltage(rdev);
657	if (input_uV <= 0)
658		input_uV = rdev->constraints->input_uV;
659	if (input_uV <= 0)
660		return;
661
662	/* calc total requested load */
663	list_for_each_entry(sibling, &rdev->consumer_list, list)
664		current_uA += sibling->uA_load;
665
666	/* now get the optimum mode for our new total regulator load */
667	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
668						  output_uV, current_uA);
669
670	/* check the new mode is allowed */
671	err = regulator_mode_constrain(rdev, &mode);
672	if (err == 0)
673		rdev->desc->ops->set_mode(rdev, mode);
674}
675
676static int suspend_set_state(struct regulator_dev *rdev,
677	struct regulator_state *rstate)
678{
679	int ret = 0;
680	bool can_set_state;
681
682	can_set_state = rdev->desc->ops->set_suspend_enable &&
683		rdev->desc->ops->set_suspend_disable;
684
685	/* If we have no suspend mode configration don't set anything;
686	 * only warn if the driver actually makes the suspend mode
687	 * configurable.
688	 */
689	if (!rstate->enabled && !rstate->disabled) {
690		if (can_set_state)
691			rdev_warn(rdev, "No configuration\n");
692		return 0;
693	}
694
695	if (rstate->enabled && rstate->disabled) {
696		rdev_err(rdev, "invalid configuration\n");
697		return -EINVAL;
698	}
699
700	if (!can_set_state) {
701		rdev_err(rdev, "no way to set suspend state\n");
702		return -EINVAL;
703	}
704
705	if (rstate->enabled)
706		ret = rdev->desc->ops->set_suspend_enable(rdev);
707	else
708		ret = rdev->desc->ops->set_suspend_disable(rdev);
709	if (ret < 0) {
710		rdev_err(rdev, "failed to enabled/disable\n");
711		return ret;
712	}
713
714	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
715		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
716		if (ret < 0) {
717			rdev_err(rdev, "failed to set voltage\n");
718			return ret;
719		}
720	}
721
722	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
723		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
724		if (ret < 0) {
725			rdev_err(rdev, "failed to set mode\n");
726			return ret;
727		}
728	}
729	return ret;
730}
731
732/* locks held by caller */
733static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
734{
735	if (!rdev->constraints)
736		return -EINVAL;
737
738	switch (state) {
739	case PM_SUSPEND_STANDBY:
740		return suspend_set_state(rdev,
741			&rdev->constraints->state_standby);
742	case PM_SUSPEND_MEM:
743		return suspend_set_state(rdev,
744			&rdev->constraints->state_mem);
745	case PM_SUSPEND_MAX:
746		return suspend_set_state(rdev,
747			&rdev->constraints->state_disk);
748	default:
749		return -EINVAL;
750	}
751}
752
753static void print_constraints(struct regulator_dev *rdev)
754{
755	struct regulation_constraints *constraints = rdev->constraints;
756	char buf[80] = "";
757	int count = 0;
758	int ret;
759
760	if (constraints->min_uV && constraints->max_uV) {
761		if (constraints->min_uV == constraints->max_uV)
762			count += sprintf(buf + count, "%d mV ",
763					 constraints->min_uV / 1000);
764		else
765			count += sprintf(buf + count, "%d <--> %d mV ",
766					 constraints->min_uV / 1000,
767					 constraints->max_uV / 1000);
768	}
769
770	if (!constraints->min_uV ||
771	    constraints->min_uV != constraints->max_uV) {
772		ret = _regulator_get_voltage(rdev);
773		if (ret > 0)
774			count += sprintf(buf + count, "at %d mV ", ret / 1000);
775	}
776
777	if (constraints->uV_offset)
778		count += sprintf(buf, "%dmV offset ",
779				 constraints->uV_offset / 1000);
780
781	if (constraints->min_uA && constraints->max_uA) {
782		if (constraints->min_uA == constraints->max_uA)
783			count += sprintf(buf + count, "%d mA ",
784					 constraints->min_uA / 1000);
785		else
786			count += sprintf(buf + count, "%d <--> %d mA ",
787					 constraints->min_uA / 1000,
788					 constraints->max_uA / 1000);
789	}
790
791	if (!constraints->min_uA ||
792	    constraints->min_uA != constraints->max_uA) {
793		ret = _regulator_get_current_limit(rdev);
794		if (ret > 0)
795			count += sprintf(buf + count, "at %d mA ", ret / 1000);
796	}
797
798	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
799		count += sprintf(buf + count, "fast ");
800	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
801		count += sprintf(buf + count, "normal ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
803		count += sprintf(buf + count, "idle ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
805		count += sprintf(buf + count, "standby");
806
807	rdev_info(rdev, "%s\n", buf);
808
809	if ((constraints->min_uV != constraints->max_uV) &&
810	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
811		rdev_warn(rdev,
812			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
813}
814
815static int machine_constraints_voltage(struct regulator_dev *rdev,
816	struct regulation_constraints *constraints)
817{
818	struct regulator_ops *ops = rdev->desc->ops;
819	int ret;
820
821	/* do we need to apply the constraint voltage */
822	if (rdev->constraints->apply_uV &&
823	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
824		ret = _regulator_do_set_voltage(rdev,
825						rdev->constraints->min_uV,
826						rdev->constraints->max_uV);
827		if (ret < 0) {
828			rdev_err(rdev, "failed to apply %duV constraint\n",
829				 rdev->constraints->min_uV);
830			return ret;
831		}
832	}
833
834	/* constrain machine-level voltage specs to fit
835	 * the actual range supported by this regulator.
836	 */
837	if (ops->list_voltage && rdev->desc->n_voltages) {
838		int	count = rdev->desc->n_voltages;
839		int	i;
840		int	min_uV = INT_MAX;
841		int	max_uV = INT_MIN;
842		int	cmin = constraints->min_uV;
843		int	cmax = constraints->max_uV;
844
845		/* it's safe to autoconfigure fixed-voltage supplies
846		   and the constraints are used by list_voltage. */
847		if (count == 1 && !cmin) {
848			cmin = 1;
849			cmax = INT_MAX;
850			constraints->min_uV = cmin;
851			constraints->max_uV = cmax;
852		}
853
854		/* voltage constraints are optional */
855		if ((cmin == 0) && (cmax == 0))
856			return 0;
857
858		/* else require explicit machine-level constraints */
859		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
860			rdev_err(rdev, "invalid voltage constraints\n");
861			return -EINVAL;
862		}
863
864		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
865		for (i = 0; i < count; i++) {
866			int	value;
867
868			value = ops->list_voltage(rdev, i);
869			if (value <= 0)
870				continue;
871
872			/* maybe adjust [min_uV..max_uV] */
873			if (value >= cmin && value < min_uV)
874				min_uV = value;
875			if (value <= cmax && value > max_uV)
876				max_uV = value;
877		}
878
879		/* final: [min_uV..max_uV] valid iff constraints valid */
880		if (max_uV < min_uV) {
881			rdev_err(rdev, "unsupportable voltage constraints\n");
882			return -EINVAL;
883		}
884
885		/* use regulator's subset of machine constraints */
886		if (constraints->min_uV < min_uV) {
887			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
888				 constraints->min_uV, min_uV);
889			constraints->min_uV = min_uV;
890		}
891		if (constraints->max_uV > max_uV) {
892			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
893				 constraints->max_uV, max_uV);
894			constraints->max_uV = max_uV;
895		}
896	}
897
898	return 0;
899}
900
901/**
902 * set_machine_constraints - sets regulator constraints
903 * @rdev: regulator source
904 * @constraints: constraints to apply
905 *
906 * Allows platform initialisation code to define and constrain
907 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
908 * Constraints *must* be set by platform code in order for some
909 * regulator operations to proceed i.e. set_voltage, set_current_limit,
910 * set_mode.
911 */
912static int set_machine_constraints(struct regulator_dev *rdev,
913	const struct regulation_constraints *constraints)
914{
915	int ret = 0;
916	struct regulator_ops *ops = rdev->desc->ops;
917
918	if (constraints)
919		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
920					    GFP_KERNEL);
921	else
922		rdev->constraints = kzalloc(sizeof(*constraints),
923					    GFP_KERNEL);
924	if (!rdev->constraints)
925		return -ENOMEM;
926
927	ret = machine_constraints_voltage(rdev, rdev->constraints);
928	if (ret != 0)
929		goto out;
930
931	/* do we need to setup our suspend state */
932	if (rdev->constraints->initial_state) {
933		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
934		if (ret < 0) {
935			rdev_err(rdev, "failed to set suspend state\n");
936			goto out;
937		}
938	}
939
940	if (rdev->constraints->initial_mode) {
941		if (!ops->set_mode) {
942			rdev_err(rdev, "no set_mode operation\n");
943			ret = -EINVAL;
944			goto out;
945		}
946
947		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
948		if (ret < 0) {
949			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
950			goto out;
951		}
952	}
953
954	/* If the constraints say the regulator should be on at this point
955	 * and we have control then make sure it is enabled.
956	 */
957	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
958	    ops->enable) {
959		ret = ops->enable(rdev);
960		if (ret < 0) {
961			rdev_err(rdev, "failed to enable\n");
962			goto out;
963		}
964	}
965
966	print_constraints(rdev);
967	return 0;
968out:
969	kfree(rdev->constraints);
970	rdev->constraints = NULL;
971	return ret;
972}
973
974/**
975 * set_supply - set regulator supply regulator
976 * @rdev: regulator name
977 * @supply_rdev: supply regulator name
978 *
979 * Called by platform initialisation code to set the supply regulator for this
980 * regulator. This ensures that a regulators supply will also be enabled by the
981 * core if it's child is enabled.
982 */
983static int set_supply(struct regulator_dev *rdev,
984		      struct regulator_dev *supply_rdev)
985{
986	int err;
987
988	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
989
990	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
991	if (rdev->supply == NULL) {
992		err = -ENOMEM;
993		return err;
994	}
995
996	return 0;
997}
998
999/**
1000 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1001 * @rdev:         regulator source
1002 * @consumer_dev: device the supply applies to
1003 * @consumer_dev_name: dev_name() string for device supply applies to
1004 * @supply:       symbolic name for supply
1005 *
1006 * Allows platform initialisation code to map physical regulator
1007 * sources to symbolic names for supplies for use by devices.  Devices
1008 * should use these symbolic names to request regulators, avoiding the
1009 * need to provide board-specific regulator names as platform data.
1010 *
1011 * Only one of consumer_dev and consumer_dev_name may be specified.
1012 */
1013static int set_consumer_device_supply(struct regulator_dev *rdev,
1014	struct device *consumer_dev, const char *consumer_dev_name,
1015	const char *supply)
1016{
1017	struct regulator_map *node;
1018	int has_dev;
1019
1020	if (consumer_dev && consumer_dev_name)
1021		return -EINVAL;
1022
1023	if (!consumer_dev_name && consumer_dev)
1024		consumer_dev_name = dev_name(consumer_dev);
1025
1026	if (supply == NULL)
1027		return -EINVAL;
1028
1029	if (consumer_dev_name != NULL)
1030		has_dev = 1;
1031	else
1032		has_dev = 0;
1033
1034	list_for_each_entry(node, &regulator_map_list, list) {
1035		if (node->dev_name && consumer_dev_name) {
1036			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1037				continue;
1038		} else if (node->dev_name || consumer_dev_name) {
1039			continue;
1040		}
1041
1042		if (strcmp(node->supply, supply) != 0)
1043			continue;
1044
1045		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1046			dev_name(&node->regulator->dev),
1047			node->regulator->desc->name,
1048			supply,
1049			dev_name(&rdev->dev), rdev_get_name(rdev));
1050		return -EBUSY;
1051	}
1052
1053	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1054	if (node == NULL)
1055		return -ENOMEM;
1056
1057	node->regulator = rdev;
1058	node->supply = supply;
1059
1060	if (has_dev) {
1061		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1062		if (node->dev_name == NULL) {
1063			kfree(node);
1064			return -ENOMEM;
1065		}
1066	}
1067
1068	list_add(&node->list, &regulator_map_list);
1069	return 0;
1070}
1071
1072static void unset_regulator_supplies(struct regulator_dev *rdev)
1073{
1074	struct regulator_map *node, *n;
1075
1076	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1077		if (rdev == node->regulator) {
1078			list_del(&node->list);
1079			kfree(node->dev_name);
1080			kfree(node);
1081		}
1082	}
1083}
1084
1085#define REG_STR_SIZE	64
1086
1087static struct regulator *create_regulator(struct regulator_dev *rdev,
1088					  struct device *dev,
1089					  const char *supply_name)
1090{
1091	struct regulator *regulator;
1092	char buf[REG_STR_SIZE];
1093	int err, size;
1094
1095	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1096	if (regulator == NULL)
1097		return NULL;
1098
1099	mutex_lock(&rdev->mutex);
1100	regulator->rdev = rdev;
1101	list_add(&regulator->list, &rdev->consumer_list);
1102
1103	if (dev) {
1104		/* create a 'requested_microamps_name' sysfs entry */
1105		size = scnprintf(buf, REG_STR_SIZE,
1106				 "microamps_requested_%s-%s",
1107				 dev_name(dev), supply_name);
1108		if (size >= REG_STR_SIZE)
1109			goto overflow_err;
1110
1111		regulator->dev = dev;
1112		sysfs_attr_init(&regulator->dev_attr.attr);
1113		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1114		if (regulator->dev_attr.attr.name == NULL)
1115			goto attr_name_err;
1116
1117		regulator->dev_attr.attr.mode = 0444;
1118		regulator->dev_attr.show = device_requested_uA_show;
1119		err = device_create_file(dev, &regulator->dev_attr);
1120		if (err < 0) {
1121			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1122			goto attr_name_err;
1123		}
1124
1125		/* also add a link to the device sysfs entry */
1126		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1127				 dev->kobj.name, supply_name);
1128		if (size >= REG_STR_SIZE)
1129			goto attr_err;
1130
1131		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1132		if (regulator->supply_name == NULL)
1133			goto attr_err;
1134
1135		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1136					buf);
1137		if (err) {
1138			rdev_warn(rdev, "could not add device link %s err %d\n",
1139				  dev->kobj.name, err);
1140			goto link_name_err;
1141		}
1142	} else {
1143		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1144		if (regulator->supply_name == NULL)
1145			goto attr_err;
1146	}
1147
1148#ifdef CONFIG_DEBUG_FS
1149	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1150						rdev->debugfs);
1151	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1152		rdev_warn(rdev, "Failed to create debugfs directory\n");
1153		regulator->debugfs = NULL;
1154	} else {
1155		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1156				   &regulator->uA_load);
1157		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1158				   &regulator->min_uV);
1159		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1160				   &regulator->max_uV);
1161	}
1162#endif
1163
1164	mutex_unlock(&rdev->mutex);
1165	return regulator;
1166link_name_err:
1167	kfree(regulator->supply_name);
1168attr_err:
1169	device_remove_file(regulator->dev, &regulator->dev_attr);
1170attr_name_err:
1171	kfree(regulator->dev_attr.attr.name);
1172overflow_err:
1173	list_del(&regulator->list);
1174	kfree(regulator);
1175	mutex_unlock(&rdev->mutex);
1176	return NULL;
1177}
1178
1179static int _regulator_get_enable_time(struct regulator_dev *rdev)
1180{
1181	if (!rdev->desc->ops->enable_time)
1182		return 0;
1183	return rdev->desc->ops->enable_time(rdev);
1184}
1185
1186static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1187							 const char *supply)
1188{
1189	struct regulator_dev *r;
1190	struct device_node *node;
1191
1192	/* first do a dt based lookup */
1193	if (dev && dev->of_node) {
1194		node = of_get_regulator(dev, supply);
1195		if (node)
1196			list_for_each_entry(r, &regulator_list, list)
1197				if (r->dev.parent &&
1198					node == r->dev.of_node)
1199					return r;
1200	}
1201
1202	/* if not found, try doing it non-dt way */
1203	list_for_each_entry(r, &regulator_list, list)
1204		if (strcmp(rdev_get_name(r), supply) == 0)
1205			return r;
1206
1207	return NULL;
1208}
1209
1210/* Internal regulator request function */
1211static struct regulator *_regulator_get(struct device *dev, const char *id,
1212					int exclusive)
1213{
1214	struct regulator_dev *rdev;
1215	struct regulator_map *map;
1216	struct regulator *regulator = ERR_PTR(-ENODEV);
1217	const char *devname = NULL;
1218	int ret;
1219
1220	if (id == NULL) {
1221		pr_err("get() with no identifier\n");
1222		return regulator;
1223	}
1224
1225	if (dev)
1226		devname = dev_name(dev);
1227
1228	mutex_lock(&regulator_list_mutex);
1229
1230	rdev = regulator_dev_lookup(dev, id);
1231	if (rdev)
1232		goto found;
1233
1234	list_for_each_entry(map, &regulator_map_list, list) {
1235		/* If the mapping has a device set up it must match */
1236		if (map->dev_name &&
1237		    (!devname || strcmp(map->dev_name, devname)))
1238			continue;
1239
1240		if (strcmp(map->supply, id) == 0) {
1241			rdev = map->regulator;
1242			goto found;
1243		}
1244	}
1245
1246	if (board_wants_dummy_regulator) {
1247		rdev = dummy_regulator_rdev;
1248		goto found;
1249	}
1250
1251#ifdef CONFIG_REGULATOR_DUMMY
1252	if (!devname)
1253		devname = "deviceless";
1254
1255	/* If the board didn't flag that it was fully constrained then
1256	 * substitute in a dummy regulator so consumers can continue.
1257	 */
1258	if (!has_full_constraints) {
1259		pr_warn("%s supply %s not found, using dummy regulator\n",
1260			devname, id);
1261		rdev = dummy_regulator_rdev;
1262		goto found;
1263	}
1264#endif
1265
1266	mutex_unlock(&regulator_list_mutex);
1267	return regulator;
1268
1269found:
1270	if (rdev->exclusive) {
1271		regulator = ERR_PTR(-EPERM);
1272		goto out;
1273	}
1274
1275	if (exclusive && rdev->open_count) {
1276		regulator = ERR_PTR(-EBUSY);
1277		goto out;
1278	}
1279
1280	if (!try_module_get(rdev->owner))
1281		goto out;
1282
1283	regulator = create_regulator(rdev, dev, id);
1284	if (regulator == NULL) {
1285		regulator = ERR_PTR(-ENOMEM);
1286		module_put(rdev->owner);
1287		goto out;
1288	}
1289
1290	rdev->open_count++;
1291	if (exclusive) {
1292		rdev->exclusive = 1;
1293
1294		ret = _regulator_is_enabled(rdev);
1295		if (ret > 0)
1296			rdev->use_count = 1;
1297		else
1298			rdev->use_count = 0;
1299	}
1300
1301out:
1302	mutex_unlock(&regulator_list_mutex);
1303
1304	return regulator;
1305}
1306
1307/**
1308 * regulator_get - lookup and obtain a reference to a regulator.
1309 * @dev: device for regulator "consumer"
1310 * @id: Supply name or regulator ID.
1311 *
1312 * Returns a struct regulator corresponding to the regulator producer,
1313 * or IS_ERR() condition containing errno.
1314 *
1315 * Use of supply names configured via regulator_set_device_supply() is
1316 * strongly encouraged.  It is recommended that the supply name used
1317 * should match the name used for the supply and/or the relevant
1318 * device pins in the datasheet.
1319 */
1320struct regulator *regulator_get(struct device *dev, const char *id)
1321{
1322	return _regulator_get(dev, id, 0);
1323}
1324EXPORT_SYMBOL_GPL(regulator_get);
1325
1326/**
1327 * regulator_get_exclusive - obtain exclusive access to a regulator.
1328 * @dev: device for regulator "consumer"
1329 * @id: Supply name or regulator ID.
1330 *
1331 * Returns a struct regulator corresponding to the regulator producer,
1332 * or IS_ERR() condition containing errno.  Other consumers will be
1333 * unable to obtain this reference is held and the use count for the
1334 * regulator will be initialised to reflect the current state of the
1335 * regulator.
1336 *
1337 * This is intended for use by consumers which cannot tolerate shared
1338 * use of the regulator such as those which need to force the
1339 * regulator off for correct operation of the hardware they are
1340 * controlling.
1341 *
1342 * Use of supply names configured via regulator_set_device_supply() is
1343 * strongly encouraged.  It is recommended that the supply name used
1344 * should match the name used for the supply and/or the relevant
1345 * device pins in the datasheet.
1346 */
1347struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1348{
1349	return _regulator_get(dev, id, 1);
1350}
1351EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1352
1353/**
1354 * regulator_put - "free" the regulator source
1355 * @regulator: regulator source
1356 *
1357 * Note: drivers must ensure that all regulator_enable calls made on this
1358 * regulator source are balanced by regulator_disable calls prior to calling
1359 * this function.
1360 */
1361void regulator_put(struct regulator *regulator)
1362{
1363	struct regulator_dev *rdev;
1364
1365	if (regulator == NULL || IS_ERR(regulator))
1366		return;
1367
1368	mutex_lock(&regulator_list_mutex);
1369	rdev = regulator->rdev;
1370
1371#ifdef CONFIG_DEBUG_FS
1372	debugfs_remove_recursive(regulator->debugfs);
1373#endif
1374
1375	/* remove any sysfs entries */
1376	if (regulator->dev) {
1377		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1378		device_remove_file(regulator->dev, &regulator->dev_attr);
1379		kfree(regulator->dev_attr.attr.name);
1380	}
1381	kfree(regulator->supply_name);
1382	list_del(&regulator->list);
1383	kfree(regulator);
1384
1385	rdev->open_count--;
1386	rdev->exclusive = 0;
1387
1388	module_put(rdev->owner);
1389	mutex_unlock(&regulator_list_mutex);
1390}
1391EXPORT_SYMBOL_GPL(regulator_put);
1392
1393static int _regulator_can_change_status(struct regulator_dev *rdev)
1394{
1395	if (!rdev->constraints)
1396		return 0;
1397
1398	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1399		return 1;
1400	else
1401		return 0;
1402}
1403
1404/* locks held by regulator_enable() */
1405static int _regulator_enable(struct regulator_dev *rdev)
1406{
1407	int ret, delay;
1408
1409	/* check voltage and requested load before enabling */
1410	if (rdev->constraints &&
1411	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1412		drms_uA_update(rdev);
1413
1414	if (rdev->use_count == 0) {
1415		/* The regulator may on if it's not switchable or left on */
1416		ret = _regulator_is_enabled(rdev);
1417		if (ret == -EINVAL || ret == 0) {
1418			if (!_regulator_can_change_status(rdev))
1419				return -EPERM;
1420
1421			if (!rdev->desc->ops->enable)
1422				return -EINVAL;
1423
1424			/* Query before enabling in case configuration
1425			 * dependent.  */
1426			ret = _regulator_get_enable_time(rdev);
1427			if (ret >= 0) {
1428				delay = ret;
1429			} else {
1430				rdev_warn(rdev, "enable_time() failed: %d\n",
1431					   ret);
1432				delay = 0;
1433			}
1434
1435			trace_regulator_enable(rdev_get_name(rdev));
1436
1437			/* Allow the regulator to ramp; it would be useful
1438			 * to extend this for bulk operations so that the
1439			 * regulators can ramp together.  */
1440			ret = rdev->desc->ops->enable(rdev);
1441			if (ret < 0)
1442				return ret;
1443
1444			trace_regulator_enable_delay(rdev_get_name(rdev));
1445
1446			if (delay >= 1000) {
1447				mdelay(delay / 1000);
1448				udelay(delay % 1000);
1449			} else if (delay) {
1450				udelay(delay);
1451			}
1452
1453			trace_regulator_enable_complete(rdev_get_name(rdev));
1454
1455		} else if (ret < 0) {
1456			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1457			return ret;
1458		}
1459		/* Fallthrough on positive return values - already enabled */
1460	}
1461
1462	rdev->use_count++;
1463
1464	return 0;
1465}
1466
1467/**
1468 * regulator_enable - enable regulator output
1469 * @regulator: regulator source
1470 *
1471 * Request that the regulator be enabled with the regulator output at
1472 * the predefined voltage or current value.  Calls to regulator_enable()
1473 * must be balanced with calls to regulator_disable().
1474 *
1475 * NOTE: the output value can be set by other drivers, boot loader or may be
1476 * hardwired in the regulator.
1477 */
1478int regulator_enable(struct regulator *regulator)
1479{
1480	struct regulator_dev *rdev = regulator->rdev;
1481	int ret = 0;
1482
1483	if (rdev->supply) {
1484		ret = regulator_enable(rdev->supply);
1485		if (ret != 0)
1486			return ret;
1487	}
1488
1489	mutex_lock(&rdev->mutex);
1490	ret = _regulator_enable(rdev);
1491	mutex_unlock(&rdev->mutex);
1492
1493	if (ret != 0 && rdev->supply)
1494		regulator_disable(rdev->supply);
1495
1496	return ret;
1497}
1498EXPORT_SYMBOL_GPL(regulator_enable);
1499
1500/* locks held by regulator_disable() */
1501static int _regulator_disable(struct regulator_dev *rdev)
1502{
1503	int ret = 0;
1504
1505	if (WARN(rdev->use_count <= 0,
1506		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1507		return -EIO;
1508
1509	/* are we the last user and permitted to disable ? */
1510	if (rdev->use_count == 1 &&
1511	    (rdev->constraints && !rdev->constraints->always_on)) {
1512
1513		/* we are last user */
1514		if (_regulator_can_change_status(rdev) &&
1515		    rdev->desc->ops->disable) {
1516			trace_regulator_disable(rdev_get_name(rdev));
1517
1518			ret = rdev->desc->ops->disable(rdev);
1519			if (ret < 0) {
1520				rdev_err(rdev, "failed to disable\n");
1521				return ret;
1522			}
1523
1524			trace_regulator_disable_complete(rdev_get_name(rdev));
1525
1526			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1527					     NULL);
1528		}
1529
1530		rdev->use_count = 0;
1531	} else if (rdev->use_count > 1) {
1532
1533		if (rdev->constraints &&
1534			(rdev->constraints->valid_ops_mask &
1535			REGULATOR_CHANGE_DRMS))
1536			drms_uA_update(rdev);
1537
1538		rdev->use_count--;
1539	}
1540
1541	return ret;
1542}
1543
1544/**
1545 * regulator_disable - disable regulator output
1546 * @regulator: regulator source
1547 *
1548 * Disable the regulator output voltage or current.  Calls to
1549 * regulator_enable() must be balanced with calls to
1550 * regulator_disable().
1551 *
1552 * NOTE: this will only disable the regulator output if no other consumer
1553 * devices have it enabled, the regulator device supports disabling and
1554 * machine constraints permit this operation.
1555 */
1556int regulator_disable(struct regulator *regulator)
1557{
1558	struct regulator_dev *rdev = regulator->rdev;
1559	int ret = 0;
1560
1561	mutex_lock(&rdev->mutex);
1562	ret = _regulator_disable(rdev);
1563	mutex_unlock(&rdev->mutex);
1564
1565	if (ret == 0 && rdev->supply)
1566		regulator_disable(rdev->supply);
1567
1568	return ret;
1569}
1570EXPORT_SYMBOL_GPL(regulator_disable);
1571
1572/* locks held by regulator_force_disable() */
1573static int _regulator_force_disable(struct regulator_dev *rdev)
1574{
1575	int ret = 0;
1576
1577	/* force disable */
1578	if (rdev->desc->ops->disable) {
1579		/* ah well, who wants to live forever... */
1580		ret = rdev->desc->ops->disable(rdev);
1581		if (ret < 0) {
1582			rdev_err(rdev, "failed to force disable\n");
1583			return ret;
1584		}
1585		/* notify other consumers that power has been forced off */
1586		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1587			REGULATOR_EVENT_DISABLE, NULL);
1588	}
1589
1590	return ret;
1591}
1592
1593/**
1594 * regulator_force_disable - force disable regulator output
1595 * @regulator: regulator source
1596 *
1597 * Forcibly disable the regulator output voltage or current.
1598 * NOTE: this *will* disable the regulator output even if other consumer
1599 * devices have it enabled. This should be used for situations when device
1600 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1601 */
1602int regulator_force_disable(struct regulator *regulator)
1603{
1604	struct regulator_dev *rdev = regulator->rdev;
1605	int ret;
1606
1607	mutex_lock(&rdev->mutex);
1608	regulator->uA_load = 0;
1609	ret = _regulator_force_disable(regulator->rdev);
1610	mutex_unlock(&rdev->mutex);
1611
1612	if (rdev->supply)
1613		while (rdev->open_count--)
1614			regulator_disable(rdev->supply);
1615
1616	return ret;
1617}
1618EXPORT_SYMBOL_GPL(regulator_force_disable);
1619
1620static void regulator_disable_work(struct work_struct *work)
1621{
1622	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1623						  disable_work.work);
1624	int count, i, ret;
1625
1626	mutex_lock(&rdev->mutex);
1627
1628	BUG_ON(!rdev->deferred_disables);
1629
1630	count = rdev->deferred_disables;
1631	rdev->deferred_disables = 0;
1632
1633	for (i = 0; i < count; i++) {
1634		ret = _regulator_disable(rdev);
1635		if (ret != 0)
1636			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1637	}
1638
1639	mutex_unlock(&rdev->mutex);
1640
1641	if (rdev->supply) {
1642		for (i = 0; i < count; i++) {
1643			ret = regulator_disable(rdev->supply);
1644			if (ret != 0) {
1645				rdev_err(rdev,
1646					 "Supply disable failed: %d\n", ret);
1647			}
1648		}
1649	}
1650}
1651
1652/**
1653 * regulator_disable_deferred - disable regulator output with delay
1654 * @regulator: regulator source
1655 * @ms: miliseconds until the regulator is disabled
1656 *
1657 * Execute regulator_disable() on the regulator after a delay.  This
1658 * is intended for use with devices that require some time to quiesce.
1659 *
1660 * NOTE: this will only disable the regulator output if no other consumer
1661 * devices have it enabled, the regulator device supports disabling and
1662 * machine constraints permit this operation.
1663 */
1664int regulator_disable_deferred(struct regulator *regulator, int ms)
1665{
1666	struct regulator_dev *rdev = regulator->rdev;
1667	int ret;
1668
1669	mutex_lock(&rdev->mutex);
1670	rdev->deferred_disables++;
1671	mutex_unlock(&rdev->mutex);
1672
1673	ret = schedule_delayed_work(&rdev->disable_work,
1674				    msecs_to_jiffies(ms));
1675	if (ret < 0)
1676		return ret;
1677	else
1678		return 0;
1679}
1680EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1681
1682static int _regulator_is_enabled(struct regulator_dev *rdev)
1683{
1684	/* If we don't know then assume that the regulator is always on */
1685	if (!rdev->desc->ops->is_enabled)
1686		return 1;
1687
1688	return rdev->desc->ops->is_enabled(rdev);
1689}
1690
1691/**
1692 * regulator_is_enabled - is the regulator output enabled
1693 * @regulator: regulator source
1694 *
1695 * Returns positive if the regulator driver backing the source/client
1696 * has requested that the device be enabled, zero if it hasn't, else a
1697 * negative errno code.
1698 *
1699 * Note that the device backing this regulator handle can have multiple
1700 * users, so it might be enabled even if regulator_enable() was never
1701 * called for this particular source.
1702 */
1703int regulator_is_enabled(struct regulator *regulator)
1704{
1705	int ret;
1706
1707	mutex_lock(&regulator->rdev->mutex);
1708	ret = _regulator_is_enabled(regulator->rdev);
1709	mutex_unlock(&regulator->rdev->mutex);
1710
1711	return ret;
1712}
1713EXPORT_SYMBOL_GPL(regulator_is_enabled);
1714
1715/**
1716 * regulator_count_voltages - count regulator_list_voltage() selectors
1717 * @regulator: regulator source
1718 *
1719 * Returns number of selectors, or negative errno.  Selectors are
1720 * numbered starting at zero, and typically correspond to bitfields
1721 * in hardware registers.
1722 */
1723int regulator_count_voltages(struct regulator *regulator)
1724{
1725	struct regulator_dev	*rdev = regulator->rdev;
1726
1727	return rdev->desc->n_voltages ? : -EINVAL;
1728}
1729EXPORT_SYMBOL_GPL(regulator_count_voltages);
1730
1731/**
1732 * regulator_list_voltage - enumerate supported voltages
1733 * @regulator: regulator source
1734 * @selector: identify voltage to list
1735 * Context: can sleep
1736 *
1737 * Returns a voltage that can be passed to @regulator_set_voltage(),
1738 * zero if this selector code can't be used on this system, or a
1739 * negative errno.
1740 */
1741int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1742{
1743	struct regulator_dev	*rdev = regulator->rdev;
1744	struct regulator_ops	*ops = rdev->desc->ops;
1745	int			ret;
1746
1747	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1748		return -EINVAL;
1749
1750	mutex_lock(&rdev->mutex);
1751	ret = ops->list_voltage(rdev, selector);
1752	mutex_unlock(&rdev->mutex);
1753
1754	if (ret > 0) {
1755		if (ret < rdev->constraints->min_uV)
1756			ret = 0;
1757		else if (ret > rdev->constraints->max_uV)
1758			ret = 0;
1759	}
1760
1761	return ret;
1762}
1763EXPORT_SYMBOL_GPL(regulator_list_voltage);
1764
1765/**
1766 * regulator_is_supported_voltage - check if a voltage range can be supported
1767 *
1768 * @regulator: Regulator to check.
1769 * @min_uV: Minimum required voltage in uV.
1770 * @max_uV: Maximum required voltage in uV.
1771 *
1772 * Returns a boolean or a negative error code.
1773 */
1774int regulator_is_supported_voltage(struct regulator *regulator,
1775				   int min_uV, int max_uV)
1776{
1777	int i, voltages, ret;
1778
1779	ret = regulator_count_voltages(regulator);
1780	if (ret < 0)
1781		return ret;
1782	voltages = ret;
1783
1784	for (i = 0; i < voltages; i++) {
1785		ret = regulator_list_voltage(regulator, i);
1786
1787		if (ret >= min_uV && ret <= max_uV)
1788			return 1;
1789	}
1790
1791	return 0;
1792}
1793EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1794
1795static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1796				     int min_uV, int max_uV)
1797{
1798	int ret;
1799	int delay = 0;
1800	unsigned int selector;
1801
1802	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1803
1804	min_uV += rdev->constraints->uV_offset;
1805	max_uV += rdev->constraints->uV_offset;
1806
1807	if (rdev->desc->ops->set_voltage) {
1808		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1809						   &selector);
1810
1811		if (rdev->desc->ops->list_voltage)
1812			selector = rdev->desc->ops->list_voltage(rdev,
1813								 selector);
1814		else
1815			selector = -1;
1816	} else if (rdev->desc->ops->set_voltage_sel) {
1817		int best_val = INT_MAX;
1818		int i;
1819
1820		selector = 0;
1821
1822		/* Find the smallest voltage that falls within the specified
1823		 * range.
1824		 */
1825		for (i = 0; i < rdev->desc->n_voltages; i++) {
1826			ret = rdev->desc->ops->list_voltage(rdev, i);
1827			if (ret < 0)
1828				continue;
1829
1830			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1831				best_val = ret;
1832				selector = i;
1833			}
1834		}
1835
1836		/*
1837		 * If we can't obtain the old selector there is not enough
1838		 * info to call set_voltage_time_sel().
1839		 */
1840		if (rdev->desc->ops->set_voltage_time_sel &&
1841		    rdev->desc->ops->get_voltage_sel) {
1842			unsigned int old_selector = 0;
1843
1844			ret = rdev->desc->ops->get_voltage_sel(rdev);
1845			if (ret < 0)
1846				return ret;
1847			old_selector = ret;
1848			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1849						old_selector, selector);
1850		}
1851
1852		if (best_val != INT_MAX) {
1853			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1854			selector = best_val;
1855		} else {
1856			ret = -EINVAL;
1857		}
1858	} else {
1859		ret = -EINVAL;
1860	}
1861
1862	/* Insert any necessary delays */
1863	if (delay >= 1000) {
1864		mdelay(delay / 1000);
1865		udelay(delay % 1000);
1866	} else if (delay) {
1867		udelay(delay);
1868	}
1869
1870	if (ret == 0)
1871		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1872				     NULL);
1873
1874	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1875
1876	return ret;
1877}
1878
1879/**
1880 * regulator_set_voltage - set regulator output voltage
1881 * @regulator: regulator source
1882 * @min_uV: Minimum required voltage in uV
1883 * @max_uV: Maximum acceptable voltage in uV
1884 *
1885 * Sets a voltage regulator to the desired output voltage. This can be set
1886 * during any regulator state. IOW, regulator can be disabled or enabled.
1887 *
1888 * If the regulator is enabled then the voltage will change to the new value
1889 * immediately otherwise if the regulator is disabled the regulator will
1890 * output at the new voltage when enabled.
1891 *
1892 * NOTE: If the regulator is shared between several devices then the lowest
1893 * request voltage that meets the system constraints will be used.
1894 * Regulator system constraints must be set for this regulator before
1895 * calling this function otherwise this call will fail.
1896 */
1897int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1898{
1899	struct regulator_dev *rdev = regulator->rdev;
1900	int ret = 0;
1901
1902	mutex_lock(&rdev->mutex);
1903
1904	/* If we're setting the same range as last time the change
1905	 * should be a noop (some cpufreq implementations use the same
1906	 * voltage for multiple frequencies, for example).
1907	 */
1908	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1909		goto out;
1910
1911	/* sanity check */
1912	if (!rdev->desc->ops->set_voltage &&
1913	    !rdev->desc->ops->set_voltage_sel) {
1914		ret = -EINVAL;
1915		goto out;
1916	}
1917
1918	/* constraints check */
1919	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1920	if (ret < 0)
1921		goto out;
1922	regulator->min_uV = min_uV;
1923	regulator->max_uV = max_uV;
1924
1925	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1926	if (ret < 0)
1927		goto out;
1928
1929	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1930
1931out:
1932	mutex_unlock(&rdev->mutex);
1933	return ret;
1934}
1935EXPORT_SYMBOL_GPL(regulator_set_voltage);
1936
1937/**
1938 * regulator_set_voltage_time - get raise/fall time
1939 * @regulator: regulator source
1940 * @old_uV: starting voltage in microvolts
1941 * @new_uV: target voltage in microvolts
1942 *
1943 * Provided with the starting and ending voltage, this function attempts to
1944 * calculate the time in microseconds required to rise or fall to this new
1945 * voltage.
1946 */
1947int regulator_set_voltage_time(struct regulator *regulator,
1948			       int old_uV, int new_uV)
1949{
1950	struct regulator_dev	*rdev = regulator->rdev;
1951	struct regulator_ops	*ops = rdev->desc->ops;
1952	int old_sel = -1;
1953	int new_sel = -1;
1954	int voltage;
1955	int i;
1956
1957	/* Currently requires operations to do this */
1958	if (!ops->list_voltage || !ops->set_voltage_time_sel
1959	    || !rdev->desc->n_voltages)
1960		return -EINVAL;
1961
1962	for (i = 0; i < rdev->desc->n_voltages; i++) {
1963		/* We only look for exact voltage matches here */
1964		voltage = regulator_list_voltage(regulator, i);
1965		if (voltage < 0)
1966			return -EINVAL;
1967		if (voltage == 0)
1968			continue;
1969		if (voltage == old_uV)
1970			old_sel = i;
1971		if (voltage == new_uV)
1972			new_sel = i;
1973	}
1974
1975	if (old_sel < 0 || new_sel < 0)
1976		return -EINVAL;
1977
1978	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1979}
1980EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1981
1982/**
1983 * regulator_sync_voltage - re-apply last regulator output voltage
1984 * @regulator: regulator source
1985 *
1986 * Re-apply the last configured voltage.  This is intended to be used
1987 * where some external control source the consumer is cooperating with
1988 * has caused the configured voltage to change.
1989 */
1990int regulator_sync_voltage(struct regulator *regulator)
1991{
1992	struct regulator_dev *rdev = regulator->rdev;
1993	int ret, min_uV, max_uV;
1994
1995	mutex_lock(&rdev->mutex);
1996
1997	if (!rdev->desc->ops->set_voltage &&
1998	    !rdev->desc->ops->set_voltage_sel) {
1999		ret = -EINVAL;
2000		goto out;
2001	}
2002
2003	/* This is only going to work if we've had a voltage configured. */
2004	if (!regulator->min_uV && !regulator->max_uV) {
2005		ret = -EINVAL;
2006		goto out;
2007	}
2008
2009	min_uV = regulator->min_uV;
2010	max_uV = regulator->max_uV;
2011
2012	/* This should be a paranoia check... */
2013	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2014	if (ret < 0)
2015		goto out;
2016
2017	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2018	if (ret < 0)
2019		goto out;
2020
2021	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2022
2023out:
2024	mutex_unlock(&rdev->mutex);
2025	return ret;
2026}
2027EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2028
2029static int _regulator_get_voltage(struct regulator_dev *rdev)
2030{
2031	int sel, ret;
2032
2033	if (rdev->desc->ops->get_voltage_sel) {
2034		sel = rdev->desc->ops->get_voltage_sel(rdev);
2035		if (sel < 0)
2036			return sel;
2037		ret = rdev->desc->ops->list_voltage(rdev, sel);
2038	} else if (rdev->desc->ops->get_voltage) {
2039		ret = rdev->desc->ops->get_voltage(rdev);
2040	} else {
2041		return -EINVAL;
2042	}
2043
2044	if (ret < 0)
2045		return ret;
2046	return ret - rdev->constraints->uV_offset;
2047}
2048
2049/**
2050 * regulator_get_voltage - get regulator output voltage
2051 * @regulator: regulator source
2052 *
2053 * This returns the current regulator voltage in uV.
2054 *
2055 * NOTE: If the regulator is disabled it will return the voltage value. This
2056 * function should not be used to determine regulator state.
2057 */
2058int regulator_get_voltage(struct regulator *regulator)
2059{
2060	int ret;
2061
2062	mutex_lock(&regulator->rdev->mutex);
2063
2064	ret = _regulator_get_voltage(regulator->rdev);
2065
2066	mutex_unlock(&regulator->rdev->mutex);
2067
2068	return ret;
2069}
2070EXPORT_SYMBOL_GPL(regulator_get_voltage);
2071
2072/**
2073 * regulator_set_current_limit - set regulator output current limit
2074 * @regulator: regulator source
2075 * @min_uA: Minimuum supported current in uA
2076 * @max_uA: Maximum supported current in uA
2077 *
2078 * Sets current sink to the desired output current. This can be set during
2079 * any regulator state. IOW, regulator can be disabled or enabled.
2080 *
2081 * If the regulator is enabled then the current will change to the new value
2082 * immediately otherwise if the regulator is disabled the regulator will
2083 * output at the new current when enabled.
2084 *
2085 * NOTE: Regulator system constraints must be set for this regulator before
2086 * calling this function otherwise this call will fail.
2087 */
2088int regulator_set_current_limit(struct regulator *regulator,
2089			       int min_uA, int max_uA)
2090{
2091	struct regulator_dev *rdev = regulator->rdev;
2092	int ret;
2093
2094	mutex_lock(&rdev->mutex);
2095
2096	/* sanity check */
2097	if (!rdev->desc->ops->set_current_limit) {
2098		ret = -EINVAL;
2099		goto out;
2100	}
2101
2102	/* constraints check */
2103	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2104	if (ret < 0)
2105		goto out;
2106
2107	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2108out:
2109	mutex_unlock(&rdev->mutex);
2110	return ret;
2111}
2112EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2113
2114static int _regulator_get_current_limit(struct regulator_dev *rdev)
2115{
2116	int ret;
2117
2118	mutex_lock(&rdev->mutex);
2119
2120	/* sanity check */
2121	if (!rdev->desc->ops->get_current_limit) {
2122		ret = -EINVAL;
2123		goto out;
2124	}
2125
2126	ret = rdev->desc->ops->get_current_limit(rdev);
2127out:
2128	mutex_unlock(&rdev->mutex);
2129	return ret;
2130}
2131
2132/**
2133 * regulator_get_current_limit - get regulator output current
2134 * @regulator: regulator source
2135 *
2136 * This returns the current supplied by the specified current sink in uA.
2137 *
2138 * NOTE: If the regulator is disabled it will return the current value. This
2139 * function should not be used to determine regulator state.
2140 */
2141int regulator_get_current_limit(struct regulator *regulator)
2142{
2143	return _regulator_get_current_limit(regulator->rdev);
2144}
2145EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2146
2147/**
2148 * regulator_set_mode - set regulator operating mode
2149 * @regulator: regulator source
2150 * @mode: operating mode - one of the REGULATOR_MODE constants
2151 *
2152 * Set regulator operating mode to increase regulator efficiency or improve
2153 * regulation performance.
2154 *
2155 * NOTE: Regulator system constraints must be set for this regulator before
2156 * calling this function otherwise this call will fail.
2157 */
2158int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2159{
2160	struct regulator_dev *rdev = regulator->rdev;
2161	int ret;
2162	int regulator_curr_mode;
2163
2164	mutex_lock(&rdev->mutex);
2165
2166	/* sanity check */
2167	if (!rdev->desc->ops->set_mode) {
2168		ret = -EINVAL;
2169		goto out;
2170	}
2171
2172	/* return if the same mode is requested */
2173	if (rdev->desc->ops->get_mode) {
2174		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2175		if (regulator_curr_mode == mode) {
2176			ret = 0;
2177			goto out;
2178		}
2179	}
2180
2181	/* constraints check */
2182	ret = regulator_mode_constrain(rdev, &mode);
2183	if (ret < 0)
2184		goto out;
2185
2186	ret = rdev->desc->ops->set_mode(rdev, mode);
2187out:
2188	mutex_unlock(&rdev->mutex);
2189	return ret;
2190}
2191EXPORT_SYMBOL_GPL(regulator_set_mode);
2192
2193static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2194{
2195	int ret;
2196
2197	mutex_lock(&rdev->mutex);
2198
2199	/* sanity check */
2200	if (!rdev->desc->ops->get_mode) {
2201		ret = -EINVAL;
2202		goto out;
2203	}
2204
2205	ret = rdev->desc->ops->get_mode(rdev);
2206out:
2207	mutex_unlock(&rdev->mutex);
2208	return ret;
2209}
2210
2211/**
2212 * regulator_get_mode - get regulator operating mode
2213 * @regulator: regulator source
2214 *
2215 * Get the current regulator operating mode.
2216 */
2217unsigned int regulator_get_mode(struct regulator *regulator)
2218{
2219	return _regulator_get_mode(regulator->rdev);
2220}
2221EXPORT_SYMBOL_GPL(regulator_get_mode);
2222
2223/**
2224 * regulator_set_optimum_mode - set regulator optimum operating mode
2225 * @regulator: regulator source
2226 * @uA_load: load current
2227 *
2228 * Notifies the regulator core of a new device load. This is then used by
2229 * DRMS (if enabled by constraints) to set the most efficient regulator
2230 * operating mode for the new regulator loading.
2231 *
2232 * Consumer devices notify their supply regulator of the maximum power
2233 * they will require (can be taken from device datasheet in the power
2234 * consumption tables) when they change operational status and hence power
2235 * state. Examples of operational state changes that can affect power
2236 * consumption are :-
2237 *
2238 *    o Device is opened / closed.
2239 *    o Device I/O is about to begin or has just finished.
2240 *    o Device is idling in between work.
2241 *
2242 * This information is also exported via sysfs to userspace.
2243 *
2244 * DRMS will sum the total requested load on the regulator and change
2245 * to the most efficient operating mode if platform constraints allow.
2246 *
2247 * Returns the new regulator mode or error.
2248 */
2249int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2250{
2251	struct regulator_dev *rdev = regulator->rdev;
2252	struct regulator *consumer;
2253	int ret, output_uV, input_uV, total_uA_load = 0;
2254	unsigned int mode;
2255
2256	mutex_lock(&rdev->mutex);
2257
2258	/*
2259	 * first check to see if we can set modes at all, otherwise just
2260	 * tell the consumer everything is OK.
2261	 */
2262	regulator->uA_load = uA_load;
2263	ret = regulator_check_drms(rdev);
2264	if (ret < 0) {
2265		ret = 0;
2266		goto out;
2267	}
2268
2269	if (!rdev->desc->ops->get_optimum_mode)
2270		goto out;
2271
2272	/*
2273	 * we can actually do this so any errors are indicators of
2274	 * potential real failure.
2275	 */
2276	ret = -EINVAL;
2277
2278	/* get output voltage */
2279	output_uV = _regulator_get_voltage(rdev);
2280	if (output_uV <= 0) {
2281		rdev_err(rdev, "invalid output voltage found\n");
2282		goto out;
2283	}
2284
2285	/* get input voltage */
2286	input_uV = 0;
2287	if (rdev->supply)
2288		input_uV = regulator_get_voltage(rdev->supply);
2289	if (input_uV <= 0)
2290		input_uV = rdev->constraints->input_uV;
2291	if (input_uV <= 0) {
2292		rdev_err(rdev, "invalid input voltage found\n");
2293		goto out;
2294	}
2295
2296	/* calc total requested load for this regulator */
2297	list_for_each_entry(consumer, &rdev->consumer_list, list)
2298		total_uA_load += consumer->uA_load;
2299
2300	mode = rdev->desc->ops->get_optimum_mode(rdev,
2301						 input_uV, output_uV,
2302						 total_uA_load);
2303	ret = regulator_mode_constrain(rdev, &mode);
2304	if (ret < 0) {
2305		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2306			 total_uA_load, input_uV, output_uV);
2307		goto out;
2308	}
2309
2310	ret = rdev->desc->ops->set_mode(rdev, mode);
2311	if (ret < 0) {
2312		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2313		goto out;
2314	}
2315	ret = mode;
2316out:
2317	mutex_unlock(&rdev->mutex);
2318	return ret;
2319}
2320EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2321
2322/**
2323 * regulator_register_notifier - register regulator event notifier
2324 * @regulator: regulator source
2325 * @nb: notifier block
2326 *
2327 * Register notifier block to receive regulator events.
2328 */
2329int regulator_register_notifier(struct regulator *regulator,
2330			      struct notifier_block *nb)
2331{
2332	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2333						nb);
2334}
2335EXPORT_SYMBOL_GPL(regulator_register_notifier);
2336
2337/**
2338 * regulator_unregister_notifier - unregister regulator event notifier
2339 * @regulator: regulator source
2340 * @nb: notifier block
2341 *
2342 * Unregister regulator event notifier block.
2343 */
2344int regulator_unregister_notifier(struct regulator *regulator,
2345				struct notifier_block *nb)
2346{
2347	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2348						  nb);
2349}
2350EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2351
2352/* notify regulator consumers and downstream regulator consumers.
2353 * Note mutex must be held by caller.
2354 */
2355static void _notifier_call_chain(struct regulator_dev *rdev,
2356				  unsigned long event, void *data)
2357{
2358	/* call rdev chain first */
2359	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2360}
2361
2362/**
2363 * regulator_bulk_get - get multiple regulator consumers
2364 *
2365 * @dev:           Device to supply
2366 * @num_consumers: Number of consumers to register
2367 * @consumers:     Configuration of consumers; clients are stored here.
2368 *
2369 * @return 0 on success, an errno on failure.
2370 *
2371 * This helper function allows drivers to get several regulator
2372 * consumers in one operation.  If any of the regulators cannot be
2373 * acquired then any regulators that were allocated will be freed
2374 * before returning to the caller.
2375 */
2376int regulator_bulk_get(struct device *dev, int num_consumers,
2377		       struct regulator_bulk_data *consumers)
2378{
2379	int i;
2380	int ret;
2381
2382	for (i = 0; i < num_consumers; i++)
2383		consumers[i].consumer = NULL;
2384
2385	for (i = 0; i < num_consumers; i++) {
2386		consumers[i].consumer = regulator_get(dev,
2387						      consumers[i].supply);
2388		if (IS_ERR(consumers[i].consumer)) {
2389			ret = PTR_ERR(consumers[i].consumer);
2390			dev_err(dev, "Failed to get supply '%s': %d\n",
2391				consumers[i].supply, ret);
2392			consumers[i].consumer = NULL;
2393			goto err;
2394		}
2395	}
2396
2397	return 0;
2398
2399err:
2400	while (--i >= 0)
2401		regulator_put(consumers[i].consumer);
2402
2403	return ret;
2404}
2405EXPORT_SYMBOL_GPL(regulator_bulk_get);
2406
2407static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2408{
2409	struct regulator_bulk_data *bulk = data;
2410
2411	bulk->ret = regulator_enable(bulk->consumer);
2412}
2413
2414/**
2415 * regulator_bulk_enable - enable multiple regulator consumers
2416 *
2417 * @num_consumers: Number of consumers
2418 * @consumers:     Consumer data; clients are stored here.
2419 * @return         0 on success, an errno on failure
2420 *
2421 * This convenience API allows consumers to enable multiple regulator
2422 * clients in a single API call.  If any consumers cannot be enabled
2423 * then any others that were enabled will be disabled again prior to
2424 * return.
2425 */
2426int regulator_bulk_enable(int num_consumers,
2427			  struct regulator_bulk_data *consumers)
2428{
2429	LIST_HEAD(async_domain);
2430	int i;
2431	int ret = 0;
2432
2433	for (i = 0; i < num_consumers; i++)
2434		async_schedule_domain(regulator_bulk_enable_async,
2435				      &consumers[i], &async_domain);
2436
2437	async_synchronize_full_domain(&async_domain);
2438
2439	/* If any consumer failed we need to unwind any that succeeded */
2440	for (i = 0; i < num_consumers; i++) {
2441		if (consumers[i].ret != 0) {
2442			ret = consumers[i].ret;
2443			goto err;
2444		}
2445	}
2446
2447	return 0;
2448
2449err:
2450	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2451	while (--i >= 0)
2452		regulator_disable(consumers[i].consumer);
2453
2454	return ret;
2455}
2456EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2457
2458/**
2459 * regulator_bulk_disable - disable multiple regulator consumers
2460 *
2461 * @num_consumers: Number of consumers
2462 * @consumers:     Consumer data; clients are stored here.
2463 * @return         0 on success, an errno on failure
2464 *
2465 * This convenience API allows consumers to disable multiple regulator
2466 * clients in a single API call.  If any consumers cannot be disabled
2467 * then any others that were disabled will be enabled again prior to
2468 * return.
2469 */
2470int regulator_bulk_disable(int num_consumers,
2471			   struct regulator_bulk_data *consumers)
2472{
2473	int i;
2474	int ret;
2475
2476	for (i = num_consumers - 1; i >= 0; --i) {
2477		ret = regulator_disable(consumers[i].consumer);
2478		if (ret != 0)
2479			goto err;
2480	}
2481
2482	return 0;
2483
2484err:
2485	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2486	for (++i; i < num_consumers; ++i)
2487		regulator_enable(consumers[i].consumer);
2488
2489	return ret;
2490}
2491EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2492
2493/**
2494 * regulator_bulk_force_disable - force disable multiple regulator consumers
2495 *
2496 * @num_consumers: Number of consumers
2497 * @consumers:     Consumer data; clients are stored here.
2498 * @return         0 on success, an errno on failure
2499 *
2500 * This convenience API allows consumers to forcibly disable multiple regulator
2501 * clients in a single API call.
2502 * NOTE: This should be used for situations when device damage will
2503 * likely occur if the regulators are not disabled (e.g. over temp).
2504 * Although regulator_force_disable function call for some consumers can
2505 * return error numbers, the function is called for all consumers.
2506 */
2507int regulator_bulk_force_disable(int num_consumers,
2508			   struct regulator_bulk_data *consumers)
2509{
2510	int i;
2511	int ret;
2512
2513	for (i = 0; i < num_consumers; i++)
2514		consumers[i].ret =
2515			    regulator_force_disable(consumers[i].consumer);
2516
2517	for (i = 0; i < num_consumers; i++) {
2518		if (consumers[i].ret != 0) {
2519			ret = consumers[i].ret;
2520			goto out;
2521		}
2522	}
2523
2524	return 0;
2525out:
2526	return ret;
2527}
2528EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2529
2530/**
2531 * regulator_bulk_free - free multiple regulator consumers
2532 *
2533 * @num_consumers: Number of consumers
2534 * @consumers:     Consumer data; clients are stored here.
2535 *
2536 * This convenience API allows consumers to free multiple regulator
2537 * clients in a single API call.
2538 */
2539void regulator_bulk_free(int num_consumers,
2540			 struct regulator_bulk_data *consumers)
2541{
2542	int i;
2543
2544	for (i = 0; i < num_consumers; i++) {
2545		regulator_put(consumers[i].consumer);
2546		consumers[i].consumer = NULL;
2547	}
2548}
2549EXPORT_SYMBOL_GPL(regulator_bulk_free);
2550
2551/**
2552 * regulator_notifier_call_chain - call regulator event notifier
2553 * @rdev: regulator source
2554 * @event: notifier block
2555 * @data: callback-specific data.
2556 *
2557 * Called by regulator drivers to notify clients a regulator event has
2558 * occurred. We also notify regulator clients downstream.
2559 * Note lock must be held by caller.
2560 */
2561int regulator_notifier_call_chain(struct regulator_dev *rdev,
2562				  unsigned long event, void *data)
2563{
2564	_notifier_call_chain(rdev, event, data);
2565	return NOTIFY_DONE;
2566
2567}
2568EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2569
2570/**
2571 * regulator_mode_to_status - convert a regulator mode into a status
2572 *
2573 * @mode: Mode to convert
2574 *
2575 * Convert a regulator mode into a status.
2576 */
2577int regulator_mode_to_status(unsigned int mode)
2578{
2579	switch (mode) {
2580	case REGULATOR_MODE_FAST:
2581		return REGULATOR_STATUS_FAST;
2582	case REGULATOR_MODE_NORMAL:
2583		return REGULATOR_STATUS_NORMAL;
2584	case REGULATOR_MODE_IDLE:
2585		return REGULATOR_STATUS_IDLE;
2586	case REGULATOR_STATUS_STANDBY:
2587		return REGULATOR_STATUS_STANDBY;
2588	default:
2589		return 0;
2590	}
2591}
2592EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2593
2594/*
2595 * To avoid cluttering sysfs (and memory) with useless state, only
2596 * create attributes that can be meaningfully displayed.
2597 */
2598static int add_regulator_attributes(struct regulator_dev *rdev)
2599{
2600	struct device		*dev = &rdev->dev;
2601	struct regulator_ops	*ops = rdev->desc->ops;
2602	int			status = 0;
2603
2604	/* some attributes need specific methods to be displayed */
2605	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2606	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2607		status = device_create_file(dev, &dev_attr_microvolts);
2608		if (status < 0)
2609			return status;
2610	}
2611	if (ops->get_current_limit) {
2612		status = device_create_file(dev, &dev_attr_microamps);
2613		if (status < 0)
2614			return status;
2615	}
2616	if (ops->get_mode) {
2617		status = device_create_file(dev, &dev_attr_opmode);
2618		if (status < 0)
2619			return status;
2620	}
2621	if (ops->is_enabled) {
2622		status = device_create_file(dev, &dev_attr_state);
2623		if (status < 0)
2624			return status;
2625	}
2626	if (ops->get_status) {
2627		status = device_create_file(dev, &dev_attr_status);
2628		if (status < 0)
2629			return status;
2630	}
2631
2632	/* some attributes are type-specific */
2633	if (rdev->desc->type == REGULATOR_CURRENT) {
2634		status = device_create_file(dev, &dev_attr_requested_microamps);
2635		if (status < 0)
2636			return status;
2637	}
2638
2639	/* all the other attributes exist to support constraints;
2640	 * don't show them if there are no constraints, or if the
2641	 * relevant supporting methods are missing.
2642	 */
2643	if (!rdev->constraints)
2644		return status;
2645
2646	/* constraints need specific supporting methods */
2647	if (ops->set_voltage || ops->set_voltage_sel) {
2648		status = device_create_file(dev, &dev_attr_min_microvolts);
2649		if (status < 0)
2650			return status;
2651		status = device_create_file(dev, &dev_attr_max_microvolts);
2652		if (status < 0)
2653			return status;
2654	}
2655	if (ops->set_current_limit) {
2656		status = device_create_file(dev, &dev_attr_min_microamps);
2657		if (status < 0)
2658			return status;
2659		status = device_create_file(dev, &dev_attr_max_microamps);
2660		if (status < 0)
2661			return status;
2662	}
2663
2664	/* suspend mode constraints need multiple supporting methods */
2665	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2666		return status;
2667
2668	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2669	if (status < 0)
2670		return status;
2671	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2672	if (status < 0)
2673		return status;
2674	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2675	if (status < 0)
2676		return status;
2677
2678	if (ops->set_suspend_voltage) {
2679		status = device_create_file(dev,
2680				&dev_attr_suspend_standby_microvolts);
2681		if (status < 0)
2682			return status;
2683		status = device_create_file(dev,
2684				&dev_attr_suspend_mem_microvolts);
2685		if (status < 0)
2686			return status;
2687		status = device_create_file(dev,
2688				&dev_attr_suspend_disk_microvolts);
2689		if (status < 0)
2690			return status;
2691	}
2692
2693	if (ops->set_suspend_mode) {
2694		status = device_create_file(dev,
2695				&dev_attr_suspend_standby_mode);
2696		if (status < 0)
2697			return status;
2698		status = device_create_file(dev,
2699				&dev_attr_suspend_mem_mode);
2700		if (status < 0)
2701			return status;
2702		status = device_create_file(dev,
2703				&dev_attr_suspend_disk_mode);
2704		if (status < 0)
2705			return status;
2706	}
2707
2708	return status;
2709}
2710
2711static void rdev_init_debugfs(struct regulator_dev *rdev)
2712{
2713#ifdef CONFIG_DEBUG_FS
2714	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2715	if (IS_ERR_OR_NULL(rdev->debugfs)) {
2716		rdev_warn(rdev, "Failed to create debugfs directory\n");
2717		rdev->debugfs = NULL;
2718		return;
2719	}
2720
2721	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2722			   &rdev->use_count);
2723	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2724			   &rdev->open_count);
2725#endif
2726}
2727
2728/**
2729 * regulator_register - register regulator
2730 * @regulator_desc: regulator to register
2731 * @dev: struct device for the regulator
2732 * @init_data: platform provided init data, passed through by driver
2733 * @driver_data: private regulator data
2734 *
2735 * Called by regulator drivers to register a regulator.
2736 * Returns 0 on success.
2737 */
2738struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2739	struct device *dev, const struct regulator_init_data *init_data,
2740	void *driver_data, struct device_node *of_node)
2741{
2742	const struct regulation_constraints *constraints = NULL;
2743	static atomic_t regulator_no = ATOMIC_INIT(0);
2744	struct regulator_dev *rdev;
2745	int ret, i;
2746	const char *supply = NULL;
2747
2748	if (regulator_desc == NULL)
2749		return ERR_PTR(-EINVAL);
2750
2751	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2752		return ERR_PTR(-EINVAL);
2753
2754	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2755	    regulator_desc->type != REGULATOR_CURRENT)
2756		return ERR_PTR(-EINVAL);
2757
2758	/* Only one of each should be implemented */
2759	WARN_ON(regulator_desc->ops->get_voltage &&
2760		regulator_desc->ops->get_voltage_sel);
2761	WARN_ON(regulator_desc->ops->set_voltage &&
2762		regulator_desc->ops->set_voltage_sel);
2763
2764	/* If we're using selectors we must implement list_voltage. */
2765	if (regulator_desc->ops->get_voltage_sel &&
2766	    !regulator_desc->ops->list_voltage) {
2767		return ERR_PTR(-EINVAL);
2768	}
2769	if (regulator_desc->ops->set_voltage_sel &&
2770	    !regulator_desc->ops->list_voltage) {
2771		return ERR_PTR(-EINVAL);
2772	}
2773
2774	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2775	if (rdev == NULL)
2776		return ERR_PTR(-ENOMEM);
2777
2778	mutex_lock(&regulator_list_mutex);
2779
2780	mutex_init(&rdev->mutex);
2781	rdev->reg_data = driver_data;
2782	rdev->owner = regulator_desc->owner;
2783	rdev->desc = regulator_desc;
2784	INIT_LIST_HEAD(&rdev->consumer_list);
2785	INIT_LIST_HEAD(&rdev->list);
2786	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2787	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2788
2789	/* preform any regulator specific init */
2790	if (init_data && init_data->regulator_init) {
2791		ret = init_data->regulator_init(rdev->reg_data);
2792		if (ret < 0)
2793			goto clean;
2794	}
2795
2796	/* register with sysfs */
2797	rdev->dev.class = &regulator_class;
2798	rdev->dev.of_node = of_node;
2799	rdev->dev.parent = dev;
2800	dev_set_name(&rdev->dev, "regulator.%d",
2801		     atomic_inc_return(&regulator_no) - 1);
2802	ret = device_register(&rdev->dev);
2803	if (ret != 0) {
2804		put_device(&rdev->dev);
2805		goto clean;
2806	}
2807
2808	dev_set_drvdata(&rdev->dev, rdev);
2809
2810	/* set regulator constraints */
2811	if (init_data)
2812		constraints = &init_data->constraints;
2813
2814	ret = set_machine_constraints(rdev, constraints);
2815	if (ret < 0)
2816		goto scrub;
2817
2818	/* add attributes supported by this regulator */
2819	ret = add_regulator_attributes(rdev);
2820	if (ret < 0)
2821		goto scrub;
2822
2823	if (init_data && init_data->supply_regulator)
2824		supply = init_data->supply_regulator;
2825	else if (regulator_desc->supply_name)
2826		supply = regulator_desc->supply_name;
2827
2828	if (supply) {
2829		struct regulator_dev *r;
2830
2831		r = regulator_dev_lookup(dev, supply);
2832
2833		if (!r) {
2834			dev_err(dev, "Failed to find supply %s\n", supply);
2835			ret = -ENODEV;
2836			goto scrub;
2837		}
2838
2839		ret = set_supply(rdev, r);
2840		if (ret < 0)
2841			goto scrub;
2842
2843		/* Enable supply if rail is enabled */
2844		if (rdev->desc->ops->is_enabled &&
2845				rdev->desc->ops->is_enabled(rdev)) {
2846			ret = regulator_enable(rdev->supply);
2847			if (ret < 0)
2848				goto scrub;
2849		}
2850	}
2851
2852	/* add consumers devices */
2853	if (init_data) {
2854		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2855			ret = set_consumer_device_supply(rdev,
2856				init_data->consumer_supplies[i].dev,
2857				init_data->consumer_supplies[i].dev_name,
2858				init_data->consumer_supplies[i].supply);
2859			if (ret < 0) {
2860				dev_err(dev, "Failed to set supply %s\n",
2861					init_data->consumer_supplies[i].supply);
2862				goto unset_supplies;
2863			}
2864		}
2865	}
2866
2867	list_add(&rdev->list, &regulator_list);
2868
2869	rdev_init_debugfs(rdev);
2870out:
2871	mutex_unlock(&regulator_list_mutex);
2872	return rdev;
2873
2874unset_supplies:
2875	unset_regulator_supplies(rdev);
2876
2877scrub:
2878	kfree(rdev->constraints);
2879	device_unregister(&rdev->dev);
2880	/* device core frees rdev */
2881	rdev = ERR_PTR(ret);
2882	goto out;
2883
2884clean:
2885	kfree(rdev);
2886	rdev = ERR_PTR(ret);
2887	goto out;
2888}
2889EXPORT_SYMBOL_GPL(regulator_register);
2890
2891/**
2892 * regulator_unregister - unregister regulator
2893 * @rdev: regulator to unregister
2894 *
2895 * Called by regulator drivers to unregister a regulator.
2896 */
2897void regulator_unregister(struct regulator_dev *rdev)
2898{
2899	if (rdev == NULL)
2900		return;
2901
2902	mutex_lock(&regulator_list_mutex);
2903#ifdef CONFIG_DEBUG_FS
2904	debugfs_remove_recursive(rdev->debugfs);
2905#endif
2906	flush_work_sync(&rdev->disable_work.work);
2907	WARN_ON(rdev->open_count);
2908	unset_regulator_supplies(rdev);
2909	list_del(&rdev->list);
2910	if (rdev->supply)
2911		regulator_put(rdev->supply);
2912	kfree(rdev->constraints);
2913	device_unregister(&rdev->dev);
2914	mutex_unlock(&regulator_list_mutex);
2915}
2916EXPORT_SYMBOL_GPL(regulator_unregister);
2917
2918/**
2919 * regulator_suspend_prepare - prepare regulators for system wide suspend
2920 * @state: system suspend state
2921 *
2922 * Configure each regulator with it's suspend operating parameters for state.
2923 * This will usually be called by machine suspend code prior to supending.
2924 */
2925int regulator_suspend_prepare(suspend_state_t state)
2926{
2927	struct regulator_dev *rdev;
2928	int ret = 0;
2929
2930	/* ON is handled by regulator active state */
2931	if (state == PM_SUSPEND_ON)
2932		return -EINVAL;
2933
2934	mutex_lock(&regulator_list_mutex);
2935	list_for_each_entry(rdev, &regulator_list, list) {
2936
2937		mutex_lock(&rdev->mutex);
2938		ret = suspend_prepare(rdev, state);
2939		mutex_unlock(&rdev->mutex);
2940
2941		if (ret < 0) {
2942			rdev_err(rdev, "failed to prepare\n");
2943			goto out;
2944		}
2945	}
2946out:
2947	mutex_unlock(&regulator_list_mutex);
2948	return ret;
2949}
2950EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2951
2952/**
2953 * regulator_suspend_finish - resume regulators from system wide suspend
2954 *
2955 * Turn on regulators that might be turned off by regulator_suspend_prepare
2956 * and that should be turned on according to the regulators properties.
2957 */
2958int regulator_suspend_finish(void)
2959{
2960	struct regulator_dev *rdev;
2961	int ret = 0, error;
2962
2963	mutex_lock(&regulator_list_mutex);
2964	list_for_each_entry(rdev, &regulator_list, list) {
2965		struct regulator_ops *ops = rdev->desc->ops;
2966
2967		mutex_lock(&rdev->mutex);
2968		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2969				ops->enable) {
2970			error = ops->enable(rdev);
2971			if (error)
2972				ret = error;
2973		} else {
2974			if (!has_full_constraints)
2975				goto unlock;
2976			if (!ops->disable)
2977				goto unlock;
2978			if (ops->is_enabled && !ops->is_enabled(rdev))
2979				goto unlock;
2980
2981			error = ops->disable(rdev);
2982			if (error)
2983				ret = error;
2984		}
2985unlock:
2986		mutex_unlock(&rdev->mutex);
2987	}
2988	mutex_unlock(&regulator_list_mutex);
2989	return ret;
2990}
2991EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2992
2993/**
2994 * regulator_has_full_constraints - the system has fully specified constraints
2995 *
2996 * Calling this function will cause the regulator API to disable all
2997 * regulators which have a zero use count and don't have an always_on
2998 * constraint in a late_initcall.
2999 *
3000 * The intention is that this will become the default behaviour in a
3001 * future kernel release so users are encouraged to use this facility
3002 * now.
3003 */
3004void regulator_has_full_constraints(void)
3005{
3006	has_full_constraints = 1;
3007}
3008EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3009
3010/**
3011 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3012 *
3013 * Calling this function will cause the regulator API to provide a
3014 * dummy regulator to consumers if no physical regulator is found,
3015 * allowing most consumers to proceed as though a regulator were
3016 * configured.  This allows systems such as those with software
3017 * controllable regulators for the CPU core only to be brought up more
3018 * readily.
3019 */
3020void regulator_use_dummy_regulator(void)
3021{
3022	board_wants_dummy_regulator = true;
3023}
3024EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3025
3026/**
3027 * rdev_get_drvdata - get rdev regulator driver data
3028 * @rdev: regulator
3029 *
3030 * Get rdev regulator driver private data. This call can be used in the
3031 * regulator driver context.
3032 */
3033void *rdev_get_drvdata(struct regulator_dev *rdev)
3034{
3035	return rdev->reg_data;
3036}
3037EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3038
3039/**
3040 * regulator_get_drvdata - get regulator driver data
3041 * @regulator: regulator
3042 *
3043 * Get regulator driver private data. This call can be used in the consumer
3044 * driver context when non API regulator specific functions need to be called.
3045 */
3046void *regulator_get_drvdata(struct regulator *regulator)
3047{
3048	return regulator->rdev->reg_data;
3049}
3050EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3051
3052/**
3053 * regulator_set_drvdata - set regulator driver data
3054 * @regulator: regulator
3055 * @data: data
3056 */
3057void regulator_set_drvdata(struct regulator *regulator, void *data)
3058{
3059	regulator->rdev->reg_data = data;
3060}
3061EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3062
3063/**
3064 * regulator_get_id - get regulator ID
3065 * @rdev: regulator
3066 */
3067int rdev_get_id(struct regulator_dev *rdev)
3068{
3069	return rdev->desc->id;
3070}
3071EXPORT_SYMBOL_GPL(rdev_get_id);
3072
3073struct device *rdev_get_dev(struct regulator_dev *rdev)
3074{
3075	return &rdev->dev;
3076}
3077EXPORT_SYMBOL_GPL(rdev_get_dev);
3078
3079void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3080{
3081	return reg_init_data->driver_data;
3082}
3083EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3084
3085#ifdef CONFIG_DEBUG_FS
3086static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3087				    size_t count, loff_t *ppos)
3088{
3089	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3090	ssize_t len, ret = 0;
3091	struct regulator_map *map;
3092
3093	if (!buf)
3094		return -ENOMEM;
3095
3096	list_for_each_entry(map, &regulator_map_list, list) {
3097		len = snprintf(buf + ret, PAGE_SIZE - ret,
3098			       "%s -> %s.%s\n",
3099			       rdev_get_name(map->regulator), map->dev_name,
3100			       map->supply);
3101		if (len >= 0)
3102			ret += len;
3103		if (ret > PAGE_SIZE) {
3104			ret = PAGE_SIZE;
3105			break;
3106		}
3107	}
3108
3109	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3110
3111	kfree(buf);
3112
3113	return ret;
3114}
3115
3116static const struct file_operations supply_map_fops = {
3117	.read = supply_map_read_file,
3118	.llseek = default_llseek,
3119};
3120#endif
3121
3122static int __init regulator_init(void)
3123{
3124	int ret;
3125
3126	ret = class_register(&regulator_class);
3127
3128#ifdef CONFIG_DEBUG_FS
3129	debugfs_root = debugfs_create_dir("regulator", NULL);
3130	if (IS_ERR_OR_NULL(debugfs_root)) {
3131		pr_warn("regulator: Failed to create debugfs directory\n");
3132		debugfs_root = NULL;
3133	}
3134
3135	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3136			    &supply_map_fops);
3137#endif
3138
3139	regulator_dummy_init();
3140
3141	return ret;
3142}
3143
3144/* init early to allow our consumers to complete system booting */
3145core_initcall(regulator_init);
3146
3147static int __init regulator_init_complete(void)
3148{
3149	struct regulator_dev *rdev;
3150	struct regulator_ops *ops;
3151	struct regulation_constraints *c;
3152	int enabled, ret;
3153
3154	mutex_lock(&regulator_list_mutex);
3155
3156	/* If we have a full configuration then disable any regulators
3157	 * which are not in use or always_on.  This will become the
3158	 * default behaviour in the future.
3159	 */
3160	list_for_each_entry(rdev, &regulator_list, list) {
3161		ops = rdev->desc->ops;
3162		c = rdev->constraints;
3163
3164		if (!ops->disable || (c && c->always_on))
3165			continue;
3166
3167		mutex_lock(&rdev->mutex);
3168
3169		if (rdev->use_count)
3170			goto unlock;
3171
3172		/* If we can't read the status assume it's on. */
3173		if (ops->is_enabled)
3174			enabled = ops->is_enabled(rdev);
3175		else
3176			enabled = 1;
3177
3178		if (!enabled)
3179			goto unlock;
3180
3181		if (has_full_constraints) {
3182			/* We log since this may kill the system if it
3183			 * goes wrong. */
3184			rdev_info(rdev, "disabling\n");
3185			ret = ops->disable(rdev);
3186			if (ret != 0) {
3187				rdev_err(rdev, "couldn't disable: %d\n", ret);
3188			}
3189		} else {
3190			/* The intention is that in future we will
3191			 * assume that full constraints are provided
3192			 * so warn even if we aren't going to do
3193			 * anything here.
3194			 */
3195			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3196		}
3197
3198unlock:
3199		mutex_unlock(&rdev->mutex);
3200	}
3201
3202	mutex_unlock(&regulator_list_mutex);
3203
3204	return 0;
3205}
3206late_initcall(regulator_init_complete);
3207