core.c revision f5726ae33c382366ea1b23240d5620dcf675d81d
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_err(rdev, fmt, ...)					\
38	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_warn(rdev, fmt, ...)					\
40	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_info(rdev, fmt, ...)					\
42	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_dbg(rdev, fmt, ...)					\
44	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45
46static DEFINE_MUTEX(regulator_list_mutex);
47static LIST_HEAD(regulator_list);
48static LIST_HEAD(regulator_map_list);
49static bool has_full_constraints;
50static bool board_wants_dummy_regulator;
51
52#ifdef CONFIG_DEBUG_FS
53static struct dentry *debugfs_root;
54#endif
55
56/*
57 * struct regulator_map
58 *
59 * Used to provide symbolic supply names to devices.
60 */
61struct regulator_map {
62	struct list_head list;
63	const char *dev_name;   /* The dev_name() for the consumer */
64	const char *supply;
65	struct regulator_dev *regulator;
66};
67
68/*
69 * struct regulator
70 *
71 * One for each consumer device.
72 */
73struct regulator {
74	struct device *dev;
75	struct list_head list;
76	int uA_load;
77	int min_uV;
78	int max_uV;
79	char *supply_name;
80	struct device_attribute dev_attr;
81	struct regulator_dev *rdev;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator_dev *rdev,
86		struct regulator_dev **supply_rdev_ptr);
87static int _regulator_get_voltage(struct regulator_dev *rdev);
88static int _regulator_get_current_limit(struct regulator_dev *rdev);
89static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
90static void _notifier_call_chain(struct regulator_dev *rdev,
91				  unsigned long event, void *data);
92static int _regulator_do_set_voltage(struct regulator_dev *rdev,
93				     int min_uV, int max_uV);
94
95static const char *rdev_get_name(struct regulator_dev *rdev)
96{
97	if (rdev->constraints && rdev->constraints->name)
98		return rdev->constraints->name;
99	else if (rdev->desc->name)
100		return rdev->desc->name;
101	else
102		return "";
103}
104
105/* gets the regulator for a given consumer device */
106static struct regulator *get_device_regulator(struct device *dev)
107{
108	struct regulator *regulator = NULL;
109	struct regulator_dev *rdev;
110
111	mutex_lock(&regulator_list_mutex);
112	list_for_each_entry(rdev, &regulator_list, list) {
113		mutex_lock(&rdev->mutex);
114		list_for_each_entry(regulator, &rdev->consumer_list, list) {
115			if (regulator->dev == dev) {
116				mutex_unlock(&rdev->mutex);
117				mutex_unlock(&regulator_list_mutex);
118				return regulator;
119			}
120		}
121		mutex_unlock(&rdev->mutex);
122	}
123	mutex_unlock(&regulator_list_mutex);
124	return NULL;
125}
126
127/* Platform voltage constraint check */
128static int regulator_check_voltage(struct regulator_dev *rdev,
129				   int *min_uV, int *max_uV)
130{
131	BUG_ON(*min_uV > *max_uV);
132
133	if (!rdev->constraints) {
134		rdev_err(rdev, "no constraints\n");
135		return -ENODEV;
136	}
137	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
138		rdev_err(rdev, "operation not allowed\n");
139		return -EPERM;
140	}
141
142	if (*max_uV > rdev->constraints->max_uV)
143		*max_uV = rdev->constraints->max_uV;
144	if (*min_uV < rdev->constraints->min_uV)
145		*min_uV = rdev->constraints->min_uV;
146
147	if (*min_uV > *max_uV)
148		return -EINVAL;
149
150	return 0;
151}
152
153/* Make sure we select a voltage that suits the needs of all
154 * regulator consumers
155 */
156static int regulator_check_consumers(struct regulator_dev *rdev,
157				     int *min_uV, int *max_uV)
158{
159	struct regulator *regulator;
160
161	list_for_each_entry(regulator, &rdev->consumer_list, list) {
162		/*
163		 * Assume consumers that didn't say anything are OK
164		 * with anything in the constraint range.
165		 */
166		if (!regulator->min_uV && !regulator->max_uV)
167			continue;
168
169		if (*max_uV > regulator->max_uV)
170			*max_uV = regulator->max_uV;
171		if (*min_uV < regulator->min_uV)
172			*min_uV = regulator->min_uV;
173	}
174
175	if (*min_uV > *max_uV)
176		return -EINVAL;
177
178	return 0;
179}
180
181/* current constraint check */
182static int regulator_check_current_limit(struct regulator_dev *rdev,
183					int *min_uA, int *max_uA)
184{
185	BUG_ON(*min_uA > *max_uA);
186
187	if (!rdev->constraints) {
188		rdev_err(rdev, "no constraints\n");
189		return -ENODEV;
190	}
191	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
192		rdev_err(rdev, "operation not allowed\n");
193		return -EPERM;
194	}
195
196	if (*max_uA > rdev->constraints->max_uA)
197		*max_uA = rdev->constraints->max_uA;
198	if (*min_uA < rdev->constraints->min_uA)
199		*min_uA = rdev->constraints->min_uA;
200
201	if (*min_uA > *max_uA)
202		return -EINVAL;
203
204	return 0;
205}
206
207/* operating mode constraint check */
208static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
209{
210	switch (*mode) {
211	case REGULATOR_MODE_FAST:
212	case REGULATOR_MODE_NORMAL:
213	case REGULATOR_MODE_IDLE:
214	case REGULATOR_MODE_STANDBY:
215		break;
216	default:
217		return -EINVAL;
218	}
219
220	if (!rdev->constraints) {
221		rdev_err(rdev, "no constraints\n");
222		return -ENODEV;
223	}
224	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
225		rdev_err(rdev, "operation not allowed\n");
226		return -EPERM;
227	}
228
229	/* The modes are bitmasks, the most power hungry modes having
230	 * the lowest values. If the requested mode isn't supported
231	 * try higher modes. */
232	while (*mode) {
233		if (rdev->constraints->valid_modes_mask & *mode)
234			return 0;
235		*mode /= 2;
236	}
237
238	return -EINVAL;
239}
240
241/* dynamic regulator mode switching constraint check */
242static int regulator_check_drms(struct regulator_dev *rdev)
243{
244	if (!rdev->constraints) {
245		rdev_err(rdev, "no constraints\n");
246		return -ENODEV;
247	}
248	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
249		rdev_err(rdev, "operation not allowed\n");
250		return -EPERM;
251	}
252	return 0;
253}
254
255static ssize_t device_requested_uA_show(struct device *dev,
256			     struct device_attribute *attr, char *buf)
257{
258	struct regulator *regulator;
259
260	regulator = get_device_regulator(dev);
261	if (regulator == NULL)
262		return 0;
263
264	return sprintf(buf, "%d\n", regulator->uA_load);
265}
266
267static ssize_t regulator_uV_show(struct device *dev,
268				struct device_attribute *attr, char *buf)
269{
270	struct regulator_dev *rdev = dev_get_drvdata(dev);
271	ssize_t ret;
272
273	mutex_lock(&rdev->mutex);
274	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
275	mutex_unlock(&rdev->mutex);
276
277	return ret;
278}
279static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
280
281static ssize_t regulator_uA_show(struct device *dev,
282				struct device_attribute *attr, char *buf)
283{
284	struct regulator_dev *rdev = dev_get_drvdata(dev);
285
286	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
287}
288static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
289
290static ssize_t regulator_name_show(struct device *dev,
291			     struct device_attribute *attr, char *buf)
292{
293	struct regulator_dev *rdev = dev_get_drvdata(dev);
294
295	return sprintf(buf, "%s\n", rdev_get_name(rdev));
296}
297
298static ssize_t regulator_print_opmode(char *buf, int mode)
299{
300	switch (mode) {
301	case REGULATOR_MODE_FAST:
302		return sprintf(buf, "fast\n");
303	case REGULATOR_MODE_NORMAL:
304		return sprintf(buf, "normal\n");
305	case REGULATOR_MODE_IDLE:
306		return sprintf(buf, "idle\n");
307	case REGULATOR_MODE_STANDBY:
308		return sprintf(buf, "standby\n");
309	}
310	return sprintf(buf, "unknown\n");
311}
312
313static ssize_t regulator_opmode_show(struct device *dev,
314				    struct device_attribute *attr, char *buf)
315{
316	struct regulator_dev *rdev = dev_get_drvdata(dev);
317
318	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
319}
320static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
321
322static ssize_t regulator_print_state(char *buf, int state)
323{
324	if (state > 0)
325		return sprintf(buf, "enabled\n");
326	else if (state == 0)
327		return sprintf(buf, "disabled\n");
328	else
329		return sprintf(buf, "unknown\n");
330}
331
332static ssize_t regulator_state_show(struct device *dev,
333				   struct device_attribute *attr, char *buf)
334{
335	struct regulator_dev *rdev = dev_get_drvdata(dev);
336	ssize_t ret;
337
338	mutex_lock(&rdev->mutex);
339	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
340	mutex_unlock(&rdev->mutex);
341
342	return ret;
343}
344static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
345
346static ssize_t regulator_status_show(struct device *dev,
347				   struct device_attribute *attr, char *buf)
348{
349	struct regulator_dev *rdev = dev_get_drvdata(dev);
350	int status;
351	char *label;
352
353	status = rdev->desc->ops->get_status(rdev);
354	if (status < 0)
355		return status;
356
357	switch (status) {
358	case REGULATOR_STATUS_OFF:
359		label = "off";
360		break;
361	case REGULATOR_STATUS_ON:
362		label = "on";
363		break;
364	case REGULATOR_STATUS_ERROR:
365		label = "error";
366		break;
367	case REGULATOR_STATUS_FAST:
368		label = "fast";
369		break;
370	case REGULATOR_STATUS_NORMAL:
371		label = "normal";
372		break;
373	case REGULATOR_STATUS_IDLE:
374		label = "idle";
375		break;
376	case REGULATOR_STATUS_STANDBY:
377		label = "standby";
378		break;
379	default:
380		return -ERANGE;
381	}
382
383	return sprintf(buf, "%s\n", label);
384}
385static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
386
387static ssize_t regulator_min_uA_show(struct device *dev,
388				    struct device_attribute *attr, char *buf)
389{
390	struct regulator_dev *rdev = dev_get_drvdata(dev);
391
392	if (!rdev->constraints)
393		return sprintf(buf, "constraint not defined\n");
394
395	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
396}
397static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
398
399static ssize_t regulator_max_uA_show(struct device *dev,
400				    struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	if (!rdev->constraints)
405		return sprintf(buf, "constraint not defined\n");
406
407	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
408}
409static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
410
411static ssize_t regulator_min_uV_show(struct device *dev,
412				    struct device_attribute *attr, char *buf)
413{
414	struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416	if (!rdev->constraints)
417		return sprintf(buf, "constraint not defined\n");
418
419	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
420}
421static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
422
423static ssize_t regulator_max_uV_show(struct device *dev,
424				    struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	if (!rdev->constraints)
429		return sprintf(buf, "constraint not defined\n");
430
431	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
432}
433static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
434
435static ssize_t regulator_total_uA_show(struct device *dev,
436				      struct device_attribute *attr, char *buf)
437{
438	struct regulator_dev *rdev = dev_get_drvdata(dev);
439	struct regulator *regulator;
440	int uA = 0;
441
442	mutex_lock(&rdev->mutex);
443	list_for_each_entry(regulator, &rdev->consumer_list, list)
444		uA += regulator->uA_load;
445	mutex_unlock(&rdev->mutex);
446	return sprintf(buf, "%d\n", uA);
447}
448static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
449
450static ssize_t regulator_num_users_show(struct device *dev,
451				      struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454	return sprintf(buf, "%d\n", rdev->use_count);
455}
456
457static ssize_t regulator_type_show(struct device *dev,
458				  struct device_attribute *attr, char *buf)
459{
460	struct regulator_dev *rdev = dev_get_drvdata(dev);
461
462	switch (rdev->desc->type) {
463	case REGULATOR_VOLTAGE:
464		return sprintf(buf, "voltage\n");
465	case REGULATOR_CURRENT:
466		return sprintf(buf, "current\n");
467	}
468	return sprintf(buf, "unknown\n");
469}
470
471static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
472				struct device_attribute *attr, char *buf)
473{
474	struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
477}
478static DEVICE_ATTR(suspend_mem_microvolts, 0444,
479		regulator_suspend_mem_uV_show, NULL);
480
481static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
482				struct device_attribute *attr, char *buf)
483{
484	struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
487}
488static DEVICE_ATTR(suspend_disk_microvolts, 0444,
489		regulator_suspend_disk_uV_show, NULL);
490
491static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
492				struct device_attribute *attr, char *buf)
493{
494	struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
497}
498static DEVICE_ATTR(suspend_standby_microvolts, 0444,
499		regulator_suspend_standby_uV_show, NULL);
500
501static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
502				struct device_attribute *attr, char *buf)
503{
504	struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506	return regulator_print_opmode(buf,
507		rdev->constraints->state_mem.mode);
508}
509static DEVICE_ATTR(suspend_mem_mode, 0444,
510		regulator_suspend_mem_mode_show, NULL);
511
512static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
513				struct device_attribute *attr, char *buf)
514{
515	struct regulator_dev *rdev = dev_get_drvdata(dev);
516
517	return regulator_print_opmode(buf,
518		rdev->constraints->state_disk.mode);
519}
520static DEVICE_ATTR(suspend_disk_mode, 0444,
521		regulator_suspend_disk_mode_show, NULL);
522
523static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
524				struct device_attribute *attr, char *buf)
525{
526	struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528	return regulator_print_opmode(buf,
529		rdev->constraints->state_standby.mode);
530}
531static DEVICE_ATTR(suspend_standby_mode, 0444,
532		regulator_suspend_standby_mode_show, NULL);
533
534static ssize_t regulator_suspend_mem_state_show(struct device *dev,
535				   struct device_attribute *attr, char *buf)
536{
537	struct regulator_dev *rdev = dev_get_drvdata(dev);
538
539	return regulator_print_state(buf,
540			rdev->constraints->state_mem.enabled);
541}
542static DEVICE_ATTR(suspend_mem_state, 0444,
543		regulator_suspend_mem_state_show, NULL);
544
545static ssize_t regulator_suspend_disk_state_show(struct device *dev,
546				   struct device_attribute *attr, char *buf)
547{
548	struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550	return regulator_print_state(buf,
551			rdev->constraints->state_disk.enabled);
552}
553static DEVICE_ATTR(suspend_disk_state, 0444,
554		regulator_suspend_disk_state_show, NULL);
555
556static ssize_t regulator_suspend_standby_state_show(struct device *dev,
557				   struct device_attribute *attr, char *buf)
558{
559	struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561	return regulator_print_state(buf,
562			rdev->constraints->state_standby.enabled);
563}
564static DEVICE_ATTR(suspend_standby_state, 0444,
565		regulator_suspend_standby_state_show, NULL);
566
567
568/*
569 * These are the only attributes are present for all regulators.
570 * Other attributes are a function of regulator functionality.
571 */
572static struct device_attribute regulator_dev_attrs[] = {
573	__ATTR(name, 0444, regulator_name_show, NULL),
574	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
575	__ATTR(type, 0444, regulator_type_show, NULL),
576	__ATTR_NULL,
577};
578
579static void regulator_dev_release(struct device *dev)
580{
581	struct regulator_dev *rdev = dev_get_drvdata(dev);
582	kfree(rdev);
583}
584
585static struct class regulator_class = {
586	.name = "regulator",
587	.dev_release = regulator_dev_release,
588	.dev_attrs = regulator_dev_attrs,
589};
590
591/* Calculate the new optimum regulator operating mode based on the new total
592 * consumer load. All locks held by caller */
593static void drms_uA_update(struct regulator_dev *rdev)
594{
595	struct regulator *sibling;
596	int current_uA = 0, output_uV, input_uV, err;
597	unsigned int mode;
598
599	err = regulator_check_drms(rdev);
600	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
601	    (!rdev->desc->ops->get_voltage &&
602	     !rdev->desc->ops->get_voltage_sel) ||
603	    !rdev->desc->ops->set_mode)
604		return;
605
606	/* get output voltage */
607	output_uV = _regulator_get_voltage(rdev);
608	if (output_uV <= 0)
609		return;
610
611	/* get input voltage */
612	input_uV = 0;
613	if (rdev->supply)
614		input_uV = _regulator_get_voltage(rdev);
615	if (input_uV <= 0)
616		input_uV = rdev->constraints->input_uV;
617	if (input_uV <= 0)
618		return;
619
620	/* calc total requested load */
621	list_for_each_entry(sibling, &rdev->consumer_list, list)
622		current_uA += sibling->uA_load;
623
624	/* now get the optimum mode for our new total regulator load */
625	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
626						  output_uV, current_uA);
627
628	/* check the new mode is allowed */
629	err = regulator_mode_constrain(rdev, &mode);
630	if (err == 0)
631		rdev->desc->ops->set_mode(rdev, mode);
632}
633
634static int suspend_set_state(struct regulator_dev *rdev,
635	struct regulator_state *rstate)
636{
637	int ret = 0;
638	bool can_set_state;
639
640	can_set_state = rdev->desc->ops->set_suspend_enable &&
641		rdev->desc->ops->set_suspend_disable;
642
643	/* If we have no suspend mode configration don't set anything;
644	 * only warn if the driver actually makes the suspend mode
645	 * configurable.
646	 */
647	if (!rstate->enabled && !rstate->disabled) {
648		if (can_set_state)
649			rdev_warn(rdev, "No configuration\n");
650		return 0;
651	}
652
653	if (rstate->enabled && rstate->disabled) {
654		rdev_err(rdev, "invalid configuration\n");
655		return -EINVAL;
656	}
657
658	if (!can_set_state) {
659		rdev_err(rdev, "no way to set suspend state\n");
660		return -EINVAL;
661	}
662
663	if (rstate->enabled)
664		ret = rdev->desc->ops->set_suspend_enable(rdev);
665	else
666		ret = rdev->desc->ops->set_suspend_disable(rdev);
667	if (ret < 0) {
668		rdev_err(rdev, "failed to enabled/disable\n");
669		return ret;
670	}
671
672	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
673		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
674		if (ret < 0) {
675			rdev_err(rdev, "failed to set voltage\n");
676			return ret;
677		}
678	}
679
680	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
681		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
682		if (ret < 0) {
683			rdev_err(rdev, "failed to set mode\n");
684			return ret;
685		}
686	}
687	return ret;
688}
689
690/* locks held by caller */
691static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
692{
693	if (!rdev->constraints)
694		return -EINVAL;
695
696	switch (state) {
697	case PM_SUSPEND_STANDBY:
698		return suspend_set_state(rdev,
699			&rdev->constraints->state_standby);
700	case PM_SUSPEND_MEM:
701		return suspend_set_state(rdev,
702			&rdev->constraints->state_mem);
703	case PM_SUSPEND_MAX:
704		return suspend_set_state(rdev,
705			&rdev->constraints->state_disk);
706	default:
707		return -EINVAL;
708	}
709}
710
711static void print_constraints(struct regulator_dev *rdev)
712{
713	struct regulation_constraints *constraints = rdev->constraints;
714	char buf[80] = "";
715	int count = 0;
716	int ret;
717
718	if (constraints->min_uV && constraints->max_uV) {
719		if (constraints->min_uV == constraints->max_uV)
720			count += sprintf(buf + count, "%d mV ",
721					 constraints->min_uV / 1000);
722		else
723			count += sprintf(buf + count, "%d <--> %d mV ",
724					 constraints->min_uV / 1000,
725					 constraints->max_uV / 1000);
726	}
727
728	if (!constraints->min_uV ||
729	    constraints->min_uV != constraints->max_uV) {
730		ret = _regulator_get_voltage(rdev);
731		if (ret > 0)
732			count += sprintf(buf + count, "at %d mV ", ret / 1000);
733	}
734
735	if (constraints->uV_offset)
736		count += sprintf(buf, "%dmV offset ",
737				 constraints->uV_offset / 1000);
738
739	if (constraints->min_uA && constraints->max_uA) {
740		if (constraints->min_uA == constraints->max_uA)
741			count += sprintf(buf + count, "%d mA ",
742					 constraints->min_uA / 1000);
743		else
744			count += sprintf(buf + count, "%d <--> %d mA ",
745					 constraints->min_uA / 1000,
746					 constraints->max_uA / 1000);
747	}
748
749	if (!constraints->min_uA ||
750	    constraints->min_uA != constraints->max_uA) {
751		ret = _regulator_get_current_limit(rdev);
752		if (ret > 0)
753			count += sprintf(buf + count, "at %d mA ", ret / 1000);
754	}
755
756	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
757		count += sprintf(buf + count, "fast ");
758	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
759		count += sprintf(buf + count, "normal ");
760	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
761		count += sprintf(buf + count, "idle ");
762	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
763		count += sprintf(buf + count, "standby");
764
765	rdev_info(rdev, "%s\n", buf);
766}
767
768static int machine_constraints_voltage(struct regulator_dev *rdev,
769	struct regulation_constraints *constraints)
770{
771	struct regulator_ops *ops = rdev->desc->ops;
772	int ret;
773
774	/* do we need to apply the constraint voltage */
775	if (rdev->constraints->apply_uV &&
776	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
777		ret = _regulator_do_set_voltage(rdev,
778						rdev->constraints->min_uV,
779						rdev->constraints->max_uV);
780		if (ret < 0) {
781			rdev_err(rdev, "failed to apply %duV constraint\n",
782				 rdev->constraints->min_uV);
783			rdev->constraints = NULL;
784			return ret;
785		}
786	}
787
788	/* constrain machine-level voltage specs to fit
789	 * the actual range supported by this regulator.
790	 */
791	if (ops->list_voltage && rdev->desc->n_voltages) {
792		int	count = rdev->desc->n_voltages;
793		int	i;
794		int	min_uV = INT_MAX;
795		int	max_uV = INT_MIN;
796		int	cmin = constraints->min_uV;
797		int	cmax = constraints->max_uV;
798
799		/* it's safe to autoconfigure fixed-voltage supplies
800		   and the constraints are used by list_voltage. */
801		if (count == 1 && !cmin) {
802			cmin = 1;
803			cmax = INT_MAX;
804			constraints->min_uV = cmin;
805			constraints->max_uV = cmax;
806		}
807
808		/* voltage constraints are optional */
809		if ((cmin == 0) && (cmax == 0))
810			return 0;
811
812		/* else require explicit machine-level constraints */
813		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
814			rdev_err(rdev, "invalid voltage constraints\n");
815			return -EINVAL;
816		}
817
818		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
819		for (i = 0; i < count; i++) {
820			int	value;
821
822			value = ops->list_voltage(rdev, i);
823			if (value <= 0)
824				continue;
825
826			/* maybe adjust [min_uV..max_uV] */
827			if (value >= cmin && value < min_uV)
828				min_uV = value;
829			if (value <= cmax && value > max_uV)
830				max_uV = value;
831		}
832
833		/* final: [min_uV..max_uV] valid iff constraints valid */
834		if (max_uV < min_uV) {
835			rdev_err(rdev, "unsupportable voltage constraints\n");
836			return -EINVAL;
837		}
838
839		/* use regulator's subset of machine constraints */
840		if (constraints->min_uV < min_uV) {
841			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
842				 constraints->min_uV, min_uV);
843			constraints->min_uV = min_uV;
844		}
845		if (constraints->max_uV > max_uV) {
846			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
847				 constraints->max_uV, max_uV);
848			constraints->max_uV = max_uV;
849		}
850	}
851
852	return 0;
853}
854
855/**
856 * set_machine_constraints - sets regulator constraints
857 * @rdev: regulator source
858 * @constraints: constraints to apply
859 *
860 * Allows platform initialisation code to define and constrain
861 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
862 * Constraints *must* be set by platform code in order for some
863 * regulator operations to proceed i.e. set_voltage, set_current_limit,
864 * set_mode.
865 */
866static int set_machine_constraints(struct regulator_dev *rdev,
867	const struct regulation_constraints *constraints)
868{
869	int ret = 0;
870	struct regulator_ops *ops = rdev->desc->ops;
871
872	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
873				    GFP_KERNEL);
874	if (!rdev->constraints)
875		return -ENOMEM;
876
877	ret = machine_constraints_voltage(rdev, rdev->constraints);
878	if (ret != 0)
879		goto out;
880
881	/* do we need to setup our suspend state */
882	if (constraints->initial_state) {
883		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
884		if (ret < 0) {
885			rdev_err(rdev, "failed to set suspend state\n");
886			rdev->constraints = NULL;
887			goto out;
888		}
889	}
890
891	if (constraints->initial_mode) {
892		if (!ops->set_mode) {
893			rdev_err(rdev, "no set_mode operation\n");
894			ret = -EINVAL;
895			goto out;
896		}
897
898		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
899		if (ret < 0) {
900			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
901			goto out;
902		}
903	}
904
905	/* If the constraints say the regulator should be on at this point
906	 * and we have control then make sure it is enabled.
907	 */
908	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
909	    ops->enable) {
910		ret = ops->enable(rdev);
911		if (ret < 0) {
912			rdev_err(rdev, "failed to enable\n");
913			rdev->constraints = NULL;
914			goto out;
915		}
916	}
917
918	print_constraints(rdev);
919out:
920	return ret;
921}
922
923/**
924 * set_supply - set regulator supply regulator
925 * @rdev: regulator name
926 * @supply_rdev: supply regulator name
927 *
928 * Called by platform initialisation code to set the supply regulator for this
929 * regulator. This ensures that a regulators supply will also be enabled by the
930 * core if it's child is enabled.
931 */
932static int set_supply(struct regulator_dev *rdev,
933	struct regulator_dev *supply_rdev)
934{
935	int err;
936
937	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
938				"supply");
939	if (err) {
940		rdev_err(rdev, "could not add device link %s err %d\n",
941			 supply_rdev->dev.kobj.name, err);
942		       goto out;
943	}
944	rdev->supply = supply_rdev;
945	list_add(&rdev->slist, &supply_rdev->supply_list);
946out:
947	return err;
948}
949
950/**
951 * set_consumer_device_supply - Bind a regulator to a symbolic supply
952 * @rdev:         regulator source
953 * @consumer_dev: device the supply applies to
954 * @consumer_dev_name: dev_name() string for device supply applies to
955 * @supply:       symbolic name for supply
956 *
957 * Allows platform initialisation code to map physical regulator
958 * sources to symbolic names for supplies for use by devices.  Devices
959 * should use these symbolic names to request regulators, avoiding the
960 * need to provide board-specific regulator names as platform data.
961 *
962 * Only one of consumer_dev and consumer_dev_name may be specified.
963 */
964static int set_consumer_device_supply(struct regulator_dev *rdev,
965	struct device *consumer_dev, const char *consumer_dev_name,
966	const char *supply)
967{
968	struct regulator_map *node;
969	int has_dev;
970
971	if (consumer_dev && consumer_dev_name)
972		return -EINVAL;
973
974	if (!consumer_dev_name && consumer_dev)
975		consumer_dev_name = dev_name(consumer_dev);
976
977	if (supply == NULL)
978		return -EINVAL;
979
980	if (consumer_dev_name != NULL)
981		has_dev = 1;
982	else
983		has_dev = 0;
984
985	list_for_each_entry(node, &regulator_map_list, list) {
986		if (node->dev_name && consumer_dev_name) {
987			if (strcmp(node->dev_name, consumer_dev_name) != 0)
988				continue;
989		} else if (node->dev_name || consumer_dev_name) {
990			continue;
991		}
992
993		if (strcmp(node->supply, supply) != 0)
994			continue;
995
996		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
997			dev_name(&node->regulator->dev),
998			node->regulator->desc->name,
999			supply,
1000			dev_name(&rdev->dev), rdev_get_name(rdev));
1001		return -EBUSY;
1002	}
1003
1004	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1005	if (node == NULL)
1006		return -ENOMEM;
1007
1008	node->regulator = rdev;
1009	node->supply = supply;
1010
1011	if (has_dev) {
1012		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1013		if (node->dev_name == NULL) {
1014			kfree(node);
1015			return -ENOMEM;
1016		}
1017	}
1018
1019	list_add(&node->list, &regulator_map_list);
1020	return 0;
1021}
1022
1023static void unset_regulator_supplies(struct regulator_dev *rdev)
1024{
1025	struct regulator_map *node, *n;
1026
1027	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1028		if (rdev == node->regulator) {
1029			list_del(&node->list);
1030			kfree(node->dev_name);
1031			kfree(node);
1032		}
1033	}
1034}
1035
1036#define REG_STR_SIZE	64
1037
1038static struct regulator *create_regulator(struct regulator_dev *rdev,
1039					  struct device *dev,
1040					  const char *supply_name)
1041{
1042	struct regulator *regulator;
1043	char buf[REG_STR_SIZE];
1044	int err, size;
1045
1046	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1047	if (regulator == NULL)
1048		return NULL;
1049
1050	mutex_lock(&rdev->mutex);
1051	regulator->rdev = rdev;
1052	list_add(&regulator->list, &rdev->consumer_list);
1053
1054	if (dev) {
1055		/* create a 'requested_microamps_name' sysfs entry */
1056		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1057			supply_name);
1058		if (size >= REG_STR_SIZE)
1059			goto overflow_err;
1060
1061		regulator->dev = dev;
1062		sysfs_attr_init(&regulator->dev_attr.attr);
1063		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1064		if (regulator->dev_attr.attr.name == NULL)
1065			goto attr_name_err;
1066
1067		regulator->dev_attr.attr.mode = 0444;
1068		regulator->dev_attr.show = device_requested_uA_show;
1069		err = device_create_file(dev, &regulator->dev_attr);
1070		if (err < 0) {
1071			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1072			goto attr_name_err;
1073		}
1074
1075		/* also add a link to the device sysfs entry */
1076		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1077				 dev->kobj.name, supply_name);
1078		if (size >= REG_STR_SIZE)
1079			goto attr_err;
1080
1081		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1082		if (regulator->supply_name == NULL)
1083			goto attr_err;
1084
1085		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1086					buf);
1087		if (err) {
1088			rdev_warn(rdev, "could not add device link %s err %d\n",
1089				  dev->kobj.name, err);
1090			goto link_name_err;
1091		}
1092	}
1093	mutex_unlock(&rdev->mutex);
1094	return regulator;
1095link_name_err:
1096	kfree(regulator->supply_name);
1097attr_err:
1098	device_remove_file(regulator->dev, &regulator->dev_attr);
1099attr_name_err:
1100	kfree(regulator->dev_attr.attr.name);
1101overflow_err:
1102	list_del(&regulator->list);
1103	kfree(regulator);
1104	mutex_unlock(&rdev->mutex);
1105	return NULL;
1106}
1107
1108static int _regulator_get_enable_time(struct regulator_dev *rdev)
1109{
1110	if (!rdev->desc->ops->enable_time)
1111		return 0;
1112	return rdev->desc->ops->enable_time(rdev);
1113}
1114
1115/* Internal regulator request function */
1116static struct regulator *_regulator_get(struct device *dev, const char *id,
1117					int exclusive)
1118{
1119	struct regulator_dev *rdev;
1120	struct regulator_map *map;
1121	struct regulator *regulator = ERR_PTR(-ENODEV);
1122	const char *devname = NULL;
1123	int ret;
1124
1125	if (id == NULL) {
1126		pr_err("get() with no identifier\n");
1127		return regulator;
1128	}
1129
1130	if (dev)
1131		devname = dev_name(dev);
1132
1133	mutex_lock(&regulator_list_mutex);
1134
1135	list_for_each_entry(map, &regulator_map_list, list) {
1136		/* If the mapping has a device set up it must match */
1137		if (map->dev_name &&
1138		    (!devname || strcmp(map->dev_name, devname)))
1139			continue;
1140
1141		if (strcmp(map->supply, id) == 0) {
1142			rdev = map->regulator;
1143			goto found;
1144		}
1145	}
1146
1147	if (board_wants_dummy_regulator) {
1148		rdev = dummy_regulator_rdev;
1149		goto found;
1150	}
1151
1152#ifdef CONFIG_REGULATOR_DUMMY
1153	if (!devname)
1154		devname = "deviceless";
1155
1156	/* If the board didn't flag that it was fully constrained then
1157	 * substitute in a dummy regulator so consumers can continue.
1158	 */
1159	if (!has_full_constraints) {
1160		pr_warn("%s supply %s not found, using dummy regulator\n",
1161			devname, id);
1162		rdev = dummy_regulator_rdev;
1163		goto found;
1164	}
1165#endif
1166
1167	mutex_unlock(&regulator_list_mutex);
1168	return regulator;
1169
1170found:
1171	if (rdev->exclusive) {
1172		regulator = ERR_PTR(-EPERM);
1173		goto out;
1174	}
1175
1176	if (exclusive && rdev->open_count) {
1177		regulator = ERR_PTR(-EBUSY);
1178		goto out;
1179	}
1180
1181	if (!try_module_get(rdev->owner))
1182		goto out;
1183
1184	regulator = create_regulator(rdev, dev, id);
1185	if (regulator == NULL) {
1186		regulator = ERR_PTR(-ENOMEM);
1187		module_put(rdev->owner);
1188	}
1189
1190	rdev->open_count++;
1191	if (exclusive) {
1192		rdev->exclusive = 1;
1193
1194		ret = _regulator_is_enabled(rdev);
1195		if (ret > 0)
1196			rdev->use_count = 1;
1197		else
1198			rdev->use_count = 0;
1199	}
1200
1201out:
1202	mutex_unlock(&regulator_list_mutex);
1203
1204	return regulator;
1205}
1206
1207/**
1208 * regulator_get - lookup and obtain a reference to a regulator.
1209 * @dev: device for regulator "consumer"
1210 * @id: Supply name or regulator ID.
1211 *
1212 * Returns a struct regulator corresponding to the regulator producer,
1213 * or IS_ERR() condition containing errno.
1214 *
1215 * Use of supply names configured via regulator_set_device_supply() is
1216 * strongly encouraged.  It is recommended that the supply name used
1217 * should match the name used for the supply and/or the relevant
1218 * device pins in the datasheet.
1219 */
1220struct regulator *regulator_get(struct device *dev, const char *id)
1221{
1222	return _regulator_get(dev, id, 0);
1223}
1224EXPORT_SYMBOL_GPL(regulator_get);
1225
1226/**
1227 * regulator_get_exclusive - obtain exclusive access to a regulator.
1228 * @dev: device for regulator "consumer"
1229 * @id: Supply name or regulator ID.
1230 *
1231 * Returns a struct regulator corresponding to the regulator producer,
1232 * or IS_ERR() condition containing errno.  Other consumers will be
1233 * unable to obtain this reference is held and the use count for the
1234 * regulator will be initialised to reflect the current state of the
1235 * regulator.
1236 *
1237 * This is intended for use by consumers which cannot tolerate shared
1238 * use of the regulator such as those which need to force the
1239 * regulator off for correct operation of the hardware they are
1240 * controlling.
1241 *
1242 * Use of supply names configured via regulator_set_device_supply() is
1243 * strongly encouraged.  It is recommended that the supply name used
1244 * should match the name used for the supply and/or the relevant
1245 * device pins in the datasheet.
1246 */
1247struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1248{
1249	return _regulator_get(dev, id, 1);
1250}
1251EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1252
1253/**
1254 * regulator_put - "free" the regulator source
1255 * @regulator: regulator source
1256 *
1257 * Note: drivers must ensure that all regulator_enable calls made on this
1258 * regulator source are balanced by regulator_disable calls prior to calling
1259 * this function.
1260 */
1261void regulator_put(struct regulator *regulator)
1262{
1263	struct regulator_dev *rdev;
1264
1265	if (regulator == NULL || IS_ERR(regulator))
1266		return;
1267
1268	mutex_lock(&regulator_list_mutex);
1269	rdev = regulator->rdev;
1270
1271	/* remove any sysfs entries */
1272	if (regulator->dev) {
1273		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1274		kfree(regulator->supply_name);
1275		device_remove_file(regulator->dev, &regulator->dev_attr);
1276		kfree(regulator->dev_attr.attr.name);
1277	}
1278	list_del(&regulator->list);
1279	kfree(regulator);
1280
1281	rdev->open_count--;
1282	rdev->exclusive = 0;
1283
1284	module_put(rdev->owner);
1285	mutex_unlock(&regulator_list_mutex);
1286}
1287EXPORT_SYMBOL_GPL(regulator_put);
1288
1289static int _regulator_can_change_status(struct regulator_dev *rdev)
1290{
1291	if (!rdev->constraints)
1292		return 0;
1293
1294	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1295		return 1;
1296	else
1297		return 0;
1298}
1299
1300/* locks held by regulator_enable() */
1301static int _regulator_enable(struct regulator_dev *rdev)
1302{
1303	int ret, delay;
1304
1305	if (rdev->use_count == 0) {
1306		/* do we need to enable the supply regulator first */
1307		if (rdev->supply) {
1308			mutex_lock(&rdev->supply->mutex);
1309			ret = _regulator_enable(rdev->supply);
1310			mutex_unlock(&rdev->supply->mutex);
1311			if (ret < 0) {
1312				rdev_err(rdev, "failed to enable: %d\n", ret);
1313				return ret;
1314			}
1315		}
1316	}
1317
1318	/* check voltage and requested load before enabling */
1319	if (rdev->constraints &&
1320	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1321		drms_uA_update(rdev);
1322
1323	if (rdev->use_count == 0) {
1324		/* The regulator may on if it's not switchable or left on */
1325		ret = _regulator_is_enabled(rdev);
1326		if (ret == -EINVAL || ret == 0) {
1327			if (!_regulator_can_change_status(rdev))
1328				return -EPERM;
1329
1330			if (!rdev->desc->ops->enable)
1331				return -EINVAL;
1332
1333			/* Query before enabling in case configuration
1334			 * dependent.  */
1335			ret = _regulator_get_enable_time(rdev);
1336			if (ret >= 0) {
1337				delay = ret;
1338			} else {
1339				rdev_warn(rdev, "enable_time() failed: %d\n",
1340					   ret);
1341				delay = 0;
1342			}
1343
1344			trace_regulator_enable(rdev_get_name(rdev));
1345
1346			/* Allow the regulator to ramp; it would be useful
1347			 * to extend this for bulk operations so that the
1348			 * regulators can ramp together.  */
1349			ret = rdev->desc->ops->enable(rdev);
1350			if (ret < 0)
1351				return ret;
1352
1353			trace_regulator_enable_delay(rdev_get_name(rdev));
1354
1355			if (delay >= 1000) {
1356				mdelay(delay / 1000);
1357				udelay(delay % 1000);
1358			} else if (delay) {
1359				udelay(delay);
1360			}
1361
1362			trace_regulator_enable_complete(rdev_get_name(rdev));
1363
1364		} else if (ret < 0) {
1365			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1366			return ret;
1367		}
1368		/* Fallthrough on positive return values - already enabled */
1369	}
1370
1371	rdev->use_count++;
1372
1373	return 0;
1374}
1375
1376/**
1377 * regulator_enable - enable regulator output
1378 * @regulator: regulator source
1379 *
1380 * Request that the regulator be enabled with the regulator output at
1381 * the predefined voltage or current value.  Calls to regulator_enable()
1382 * must be balanced with calls to regulator_disable().
1383 *
1384 * NOTE: the output value can be set by other drivers, boot loader or may be
1385 * hardwired in the regulator.
1386 */
1387int regulator_enable(struct regulator *regulator)
1388{
1389	struct regulator_dev *rdev = regulator->rdev;
1390	int ret = 0;
1391
1392	mutex_lock(&rdev->mutex);
1393	ret = _regulator_enable(rdev);
1394	mutex_unlock(&rdev->mutex);
1395	return ret;
1396}
1397EXPORT_SYMBOL_GPL(regulator_enable);
1398
1399/* locks held by regulator_disable() */
1400static int _regulator_disable(struct regulator_dev *rdev,
1401		struct regulator_dev **supply_rdev_ptr)
1402{
1403	int ret = 0;
1404	*supply_rdev_ptr = NULL;
1405
1406	if (WARN(rdev->use_count <= 0,
1407		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1408		return -EIO;
1409
1410	/* are we the last user and permitted to disable ? */
1411	if (rdev->use_count == 1 &&
1412	    (rdev->constraints && !rdev->constraints->always_on)) {
1413
1414		/* we are last user */
1415		if (_regulator_can_change_status(rdev) &&
1416		    rdev->desc->ops->disable) {
1417			trace_regulator_disable(rdev_get_name(rdev));
1418
1419			ret = rdev->desc->ops->disable(rdev);
1420			if (ret < 0) {
1421				rdev_err(rdev, "failed to disable\n");
1422				return ret;
1423			}
1424
1425			trace_regulator_disable_complete(rdev_get_name(rdev));
1426
1427			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1428					     NULL);
1429		}
1430
1431		/* decrease our supplies ref count and disable if required */
1432		*supply_rdev_ptr = rdev->supply;
1433
1434		rdev->use_count = 0;
1435	} else if (rdev->use_count > 1) {
1436
1437		if (rdev->constraints &&
1438			(rdev->constraints->valid_ops_mask &
1439			REGULATOR_CHANGE_DRMS))
1440			drms_uA_update(rdev);
1441
1442		rdev->use_count--;
1443	}
1444	return ret;
1445}
1446
1447/**
1448 * regulator_disable - disable regulator output
1449 * @regulator: regulator source
1450 *
1451 * Disable the regulator output voltage or current.  Calls to
1452 * regulator_enable() must be balanced with calls to
1453 * regulator_disable().
1454 *
1455 * NOTE: this will only disable the regulator output if no other consumer
1456 * devices have it enabled, the regulator device supports disabling and
1457 * machine constraints permit this operation.
1458 */
1459int regulator_disable(struct regulator *regulator)
1460{
1461	struct regulator_dev *rdev = regulator->rdev;
1462	struct regulator_dev *supply_rdev = NULL;
1463	int ret = 0;
1464
1465	mutex_lock(&rdev->mutex);
1466	ret = _regulator_disable(rdev, &supply_rdev);
1467	mutex_unlock(&rdev->mutex);
1468
1469	/* decrease our supplies ref count and disable if required */
1470	while (supply_rdev != NULL) {
1471		rdev = supply_rdev;
1472
1473		mutex_lock(&rdev->mutex);
1474		_regulator_disable(rdev, &supply_rdev);
1475		mutex_unlock(&rdev->mutex);
1476	}
1477
1478	return ret;
1479}
1480EXPORT_SYMBOL_GPL(regulator_disable);
1481
1482/* locks held by regulator_force_disable() */
1483static int _regulator_force_disable(struct regulator_dev *rdev,
1484		struct regulator_dev **supply_rdev_ptr)
1485{
1486	int ret = 0;
1487
1488	/* force disable */
1489	if (rdev->desc->ops->disable) {
1490		/* ah well, who wants to live forever... */
1491		ret = rdev->desc->ops->disable(rdev);
1492		if (ret < 0) {
1493			rdev_err(rdev, "failed to force disable\n");
1494			return ret;
1495		}
1496		/* notify other consumers that power has been forced off */
1497		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1498			REGULATOR_EVENT_DISABLE, NULL);
1499	}
1500
1501	/* decrease our supplies ref count and disable if required */
1502	*supply_rdev_ptr = rdev->supply;
1503
1504	rdev->use_count = 0;
1505	return ret;
1506}
1507
1508/**
1509 * regulator_force_disable - force disable regulator output
1510 * @regulator: regulator source
1511 *
1512 * Forcibly disable the regulator output voltage or current.
1513 * NOTE: this *will* disable the regulator output even if other consumer
1514 * devices have it enabled. This should be used for situations when device
1515 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1516 */
1517int regulator_force_disable(struct regulator *regulator)
1518{
1519	struct regulator_dev *rdev = regulator->rdev;
1520	struct regulator_dev *supply_rdev = NULL;
1521	int ret;
1522
1523	mutex_lock(&rdev->mutex);
1524	regulator->uA_load = 0;
1525	ret = _regulator_force_disable(rdev, &supply_rdev);
1526	mutex_unlock(&rdev->mutex);
1527
1528	if (supply_rdev)
1529		regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL_GPL(regulator_force_disable);
1534
1535static int _regulator_is_enabled(struct regulator_dev *rdev)
1536{
1537	/* If we don't know then assume that the regulator is always on */
1538	if (!rdev->desc->ops->is_enabled)
1539		return 1;
1540
1541	return rdev->desc->ops->is_enabled(rdev);
1542}
1543
1544/**
1545 * regulator_is_enabled - is the regulator output enabled
1546 * @regulator: regulator source
1547 *
1548 * Returns positive if the regulator driver backing the source/client
1549 * has requested that the device be enabled, zero if it hasn't, else a
1550 * negative errno code.
1551 *
1552 * Note that the device backing this regulator handle can have multiple
1553 * users, so it might be enabled even if regulator_enable() was never
1554 * called for this particular source.
1555 */
1556int regulator_is_enabled(struct regulator *regulator)
1557{
1558	int ret;
1559
1560	mutex_lock(&regulator->rdev->mutex);
1561	ret = _regulator_is_enabled(regulator->rdev);
1562	mutex_unlock(&regulator->rdev->mutex);
1563
1564	return ret;
1565}
1566EXPORT_SYMBOL_GPL(regulator_is_enabled);
1567
1568/**
1569 * regulator_count_voltages - count regulator_list_voltage() selectors
1570 * @regulator: regulator source
1571 *
1572 * Returns number of selectors, or negative errno.  Selectors are
1573 * numbered starting at zero, and typically correspond to bitfields
1574 * in hardware registers.
1575 */
1576int regulator_count_voltages(struct regulator *regulator)
1577{
1578	struct regulator_dev	*rdev = regulator->rdev;
1579
1580	return rdev->desc->n_voltages ? : -EINVAL;
1581}
1582EXPORT_SYMBOL_GPL(regulator_count_voltages);
1583
1584/**
1585 * regulator_list_voltage - enumerate supported voltages
1586 * @regulator: regulator source
1587 * @selector: identify voltage to list
1588 * Context: can sleep
1589 *
1590 * Returns a voltage that can be passed to @regulator_set_voltage(),
1591 * zero if this selector code can't be used on this system, or a
1592 * negative errno.
1593 */
1594int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1595{
1596	struct regulator_dev	*rdev = regulator->rdev;
1597	struct regulator_ops	*ops = rdev->desc->ops;
1598	int			ret;
1599
1600	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1601		return -EINVAL;
1602
1603	mutex_lock(&rdev->mutex);
1604	ret = ops->list_voltage(rdev, selector);
1605	mutex_unlock(&rdev->mutex);
1606
1607	if (ret > 0) {
1608		if (ret < rdev->constraints->min_uV)
1609			ret = 0;
1610		else if (ret > rdev->constraints->max_uV)
1611			ret = 0;
1612	}
1613
1614	return ret;
1615}
1616EXPORT_SYMBOL_GPL(regulator_list_voltage);
1617
1618/**
1619 * regulator_is_supported_voltage - check if a voltage range can be supported
1620 *
1621 * @regulator: Regulator to check.
1622 * @min_uV: Minimum required voltage in uV.
1623 * @max_uV: Maximum required voltage in uV.
1624 *
1625 * Returns a boolean or a negative error code.
1626 */
1627int regulator_is_supported_voltage(struct regulator *regulator,
1628				   int min_uV, int max_uV)
1629{
1630	int i, voltages, ret;
1631
1632	ret = regulator_count_voltages(regulator);
1633	if (ret < 0)
1634		return ret;
1635	voltages = ret;
1636
1637	for (i = 0; i < voltages; i++) {
1638		ret = regulator_list_voltage(regulator, i);
1639
1640		if (ret >= min_uV && ret <= max_uV)
1641			return 1;
1642	}
1643
1644	return 0;
1645}
1646
1647static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1648				     int min_uV, int max_uV)
1649{
1650	int ret;
1651	int delay = 0;
1652	unsigned int selector;
1653
1654	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1655
1656	min_uV += rdev->constraints->uV_offset;
1657	max_uV += rdev->constraints->uV_offset;
1658
1659	if (rdev->desc->ops->set_voltage) {
1660		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1661						   &selector);
1662
1663		if (rdev->desc->ops->list_voltage)
1664			selector = rdev->desc->ops->list_voltage(rdev,
1665								 selector);
1666		else
1667			selector = -1;
1668	} else if (rdev->desc->ops->set_voltage_sel) {
1669		int best_val = INT_MAX;
1670		int i;
1671
1672		selector = 0;
1673
1674		/* Find the smallest voltage that falls within the specified
1675		 * range.
1676		 */
1677		for (i = 0; i < rdev->desc->n_voltages; i++) {
1678			ret = rdev->desc->ops->list_voltage(rdev, i);
1679			if (ret < 0)
1680				continue;
1681
1682			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1683				best_val = ret;
1684				selector = i;
1685			}
1686		}
1687
1688		/*
1689		 * If we can't obtain the old selector there is not enough
1690		 * info to call set_voltage_time_sel().
1691		 */
1692		if (rdev->desc->ops->set_voltage_time_sel &&
1693		    rdev->desc->ops->get_voltage_sel) {
1694			unsigned int old_selector = 0;
1695
1696			ret = rdev->desc->ops->get_voltage_sel(rdev);
1697			if (ret < 0)
1698				return ret;
1699			old_selector = ret;
1700			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1701						old_selector, selector);
1702		}
1703
1704		if (best_val != INT_MAX) {
1705			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1706			selector = best_val;
1707		} else {
1708			ret = -EINVAL;
1709		}
1710	} else {
1711		ret = -EINVAL;
1712	}
1713
1714	/* Insert any necessary delays */
1715	if (delay >= 1000) {
1716		mdelay(delay / 1000);
1717		udelay(delay % 1000);
1718	} else if (delay) {
1719		udelay(delay);
1720	}
1721
1722	if (ret == 0)
1723		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1724				     NULL);
1725
1726	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1727
1728	return ret;
1729}
1730
1731/**
1732 * regulator_set_voltage - set regulator output voltage
1733 * @regulator: regulator source
1734 * @min_uV: Minimum required voltage in uV
1735 * @max_uV: Maximum acceptable voltage in uV
1736 *
1737 * Sets a voltage regulator to the desired output voltage. This can be set
1738 * during any regulator state. IOW, regulator can be disabled or enabled.
1739 *
1740 * If the regulator is enabled then the voltage will change to the new value
1741 * immediately otherwise if the regulator is disabled the regulator will
1742 * output at the new voltage when enabled.
1743 *
1744 * NOTE: If the regulator is shared between several devices then the lowest
1745 * request voltage that meets the system constraints will be used.
1746 * Regulator system constraints must be set for this regulator before
1747 * calling this function otherwise this call will fail.
1748 */
1749int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1750{
1751	struct regulator_dev *rdev = regulator->rdev;
1752	int ret = 0;
1753
1754	mutex_lock(&rdev->mutex);
1755
1756	/* If we're setting the same range as last time the change
1757	 * should be a noop (some cpufreq implementations use the same
1758	 * voltage for multiple frequencies, for example).
1759	 */
1760	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1761		goto out;
1762
1763	/* sanity check */
1764	if (!rdev->desc->ops->set_voltage &&
1765	    !rdev->desc->ops->set_voltage_sel) {
1766		ret = -EINVAL;
1767		goto out;
1768	}
1769
1770	/* constraints check */
1771	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1772	if (ret < 0)
1773		goto out;
1774	regulator->min_uV = min_uV;
1775	regulator->max_uV = max_uV;
1776
1777	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1778	if (ret < 0)
1779		goto out;
1780
1781	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1782
1783out:
1784	mutex_unlock(&rdev->mutex);
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(regulator_set_voltage);
1788
1789/**
1790 * regulator_set_voltage_time - get raise/fall time
1791 * @regulator: regulator source
1792 * @old_uV: starting voltage in microvolts
1793 * @new_uV: target voltage in microvolts
1794 *
1795 * Provided with the starting and ending voltage, this function attempts to
1796 * calculate the time in microseconds required to rise or fall to this new
1797 * voltage.
1798 */
1799int regulator_set_voltage_time(struct regulator *regulator,
1800			       int old_uV, int new_uV)
1801{
1802	struct regulator_dev	*rdev = regulator->rdev;
1803	struct regulator_ops	*ops = rdev->desc->ops;
1804	int old_sel = -1;
1805	int new_sel = -1;
1806	int voltage;
1807	int i;
1808
1809	/* Currently requires operations to do this */
1810	if (!ops->list_voltage || !ops->set_voltage_time_sel
1811	    || !rdev->desc->n_voltages)
1812		return -EINVAL;
1813
1814	for (i = 0; i < rdev->desc->n_voltages; i++) {
1815		/* We only look for exact voltage matches here */
1816		voltage = regulator_list_voltage(regulator, i);
1817		if (voltage < 0)
1818			return -EINVAL;
1819		if (voltage == 0)
1820			continue;
1821		if (voltage == old_uV)
1822			old_sel = i;
1823		if (voltage == new_uV)
1824			new_sel = i;
1825	}
1826
1827	if (old_sel < 0 || new_sel < 0)
1828		return -EINVAL;
1829
1830	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1831}
1832EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1833
1834/**
1835 * regulator_sync_voltage - re-apply last regulator output voltage
1836 * @regulator: regulator source
1837 *
1838 * Re-apply the last configured voltage.  This is intended to be used
1839 * where some external control source the consumer is cooperating with
1840 * has caused the configured voltage to change.
1841 */
1842int regulator_sync_voltage(struct regulator *regulator)
1843{
1844	struct regulator_dev *rdev = regulator->rdev;
1845	int ret, min_uV, max_uV;
1846
1847	mutex_lock(&rdev->mutex);
1848
1849	if (!rdev->desc->ops->set_voltage &&
1850	    !rdev->desc->ops->set_voltage_sel) {
1851		ret = -EINVAL;
1852		goto out;
1853	}
1854
1855	/* This is only going to work if we've had a voltage configured. */
1856	if (!regulator->min_uV && !regulator->max_uV) {
1857		ret = -EINVAL;
1858		goto out;
1859	}
1860
1861	min_uV = regulator->min_uV;
1862	max_uV = regulator->max_uV;
1863
1864	/* This should be a paranoia check... */
1865	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1866	if (ret < 0)
1867		goto out;
1868
1869	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1870	if (ret < 0)
1871		goto out;
1872
1873	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1874
1875out:
1876	mutex_unlock(&rdev->mutex);
1877	return ret;
1878}
1879EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1880
1881static int _regulator_get_voltage(struct regulator_dev *rdev)
1882{
1883	int sel, ret;
1884
1885	if (rdev->desc->ops->get_voltage_sel) {
1886		sel = rdev->desc->ops->get_voltage_sel(rdev);
1887		if (sel < 0)
1888			return sel;
1889		ret = rdev->desc->ops->list_voltage(rdev, sel);
1890	} else if (rdev->desc->ops->get_voltage) {
1891		ret = rdev->desc->ops->get_voltage(rdev);
1892	} else {
1893		return -EINVAL;
1894	}
1895
1896	if (ret < 0)
1897		return ret;
1898	return ret - rdev->constraints->uV_offset;
1899}
1900
1901/**
1902 * regulator_get_voltage - get regulator output voltage
1903 * @regulator: regulator source
1904 *
1905 * This returns the current regulator voltage in uV.
1906 *
1907 * NOTE: If the regulator is disabled it will return the voltage value. This
1908 * function should not be used to determine regulator state.
1909 */
1910int regulator_get_voltage(struct regulator *regulator)
1911{
1912	int ret;
1913
1914	mutex_lock(&regulator->rdev->mutex);
1915
1916	ret = _regulator_get_voltage(regulator->rdev);
1917
1918	mutex_unlock(&regulator->rdev->mutex);
1919
1920	return ret;
1921}
1922EXPORT_SYMBOL_GPL(regulator_get_voltage);
1923
1924/**
1925 * regulator_set_current_limit - set regulator output current limit
1926 * @regulator: regulator source
1927 * @min_uA: Minimuum supported current in uA
1928 * @max_uA: Maximum supported current in uA
1929 *
1930 * Sets current sink to the desired output current. This can be set during
1931 * any regulator state. IOW, regulator can be disabled or enabled.
1932 *
1933 * If the regulator is enabled then the current will change to the new value
1934 * immediately otherwise if the regulator is disabled the regulator will
1935 * output at the new current when enabled.
1936 *
1937 * NOTE: Regulator system constraints must be set for this regulator before
1938 * calling this function otherwise this call will fail.
1939 */
1940int regulator_set_current_limit(struct regulator *regulator,
1941			       int min_uA, int max_uA)
1942{
1943	struct regulator_dev *rdev = regulator->rdev;
1944	int ret;
1945
1946	mutex_lock(&rdev->mutex);
1947
1948	/* sanity check */
1949	if (!rdev->desc->ops->set_current_limit) {
1950		ret = -EINVAL;
1951		goto out;
1952	}
1953
1954	/* constraints check */
1955	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1956	if (ret < 0)
1957		goto out;
1958
1959	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1960out:
1961	mutex_unlock(&rdev->mutex);
1962	return ret;
1963}
1964EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1965
1966static int _regulator_get_current_limit(struct regulator_dev *rdev)
1967{
1968	int ret;
1969
1970	mutex_lock(&rdev->mutex);
1971
1972	/* sanity check */
1973	if (!rdev->desc->ops->get_current_limit) {
1974		ret = -EINVAL;
1975		goto out;
1976	}
1977
1978	ret = rdev->desc->ops->get_current_limit(rdev);
1979out:
1980	mutex_unlock(&rdev->mutex);
1981	return ret;
1982}
1983
1984/**
1985 * regulator_get_current_limit - get regulator output current
1986 * @regulator: regulator source
1987 *
1988 * This returns the current supplied by the specified current sink in uA.
1989 *
1990 * NOTE: If the regulator is disabled it will return the current value. This
1991 * function should not be used to determine regulator state.
1992 */
1993int regulator_get_current_limit(struct regulator *regulator)
1994{
1995	return _regulator_get_current_limit(regulator->rdev);
1996}
1997EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1998
1999/**
2000 * regulator_set_mode - set regulator operating mode
2001 * @regulator: regulator source
2002 * @mode: operating mode - one of the REGULATOR_MODE constants
2003 *
2004 * Set regulator operating mode to increase regulator efficiency or improve
2005 * regulation performance.
2006 *
2007 * NOTE: Regulator system constraints must be set for this regulator before
2008 * calling this function otherwise this call will fail.
2009 */
2010int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2011{
2012	struct regulator_dev *rdev = regulator->rdev;
2013	int ret;
2014	int regulator_curr_mode;
2015
2016	mutex_lock(&rdev->mutex);
2017
2018	/* sanity check */
2019	if (!rdev->desc->ops->set_mode) {
2020		ret = -EINVAL;
2021		goto out;
2022	}
2023
2024	/* return if the same mode is requested */
2025	if (rdev->desc->ops->get_mode) {
2026		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2027		if (regulator_curr_mode == mode) {
2028			ret = 0;
2029			goto out;
2030		}
2031	}
2032
2033	/* constraints check */
2034	ret = regulator_mode_constrain(rdev, &mode);
2035	if (ret < 0)
2036		goto out;
2037
2038	ret = rdev->desc->ops->set_mode(rdev, mode);
2039out:
2040	mutex_unlock(&rdev->mutex);
2041	return ret;
2042}
2043EXPORT_SYMBOL_GPL(regulator_set_mode);
2044
2045static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2046{
2047	int ret;
2048
2049	mutex_lock(&rdev->mutex);
2050
2051	/* sanity check */
2052	if (!rdev->desc->ops->get_mode) {
2053		ret = -EINVAL;
2054		goto out;
2055	}
2056
2057	ret = rdev->desc->ops->get_mode(rdev);
2058out:
2059	mutex_unlock(&rdev->mutex);
2060	return ret;
2061}
2062
2063/**
2064 * regulator_get_mode - get regulator operating mode
2065 * @regulator: regulator source
2066 *
2067 * Get the current regulator operating mode.
2068 */
2069unsigned int regulator_get_mode(struct regulator *regulator)
2070{
2071	return _regulator_get_mode(regulator->rdev);
2072}
2073EXPORT_SYMBOL_GPL(regulator_get_mode);
2074
2075/**
2076 * regulator_set_optimum_mode - set regulator optimum operating mode
2077 * @regulator: regulator source
2078 * @uA_load: load current
2079 *
2080 * Notifies the regulator core of a new device load. This is then used by
2081 * DRMS (if enabled by constraints) to set the most efficient regulator
2082 * operating mode for the new regulator loading.
2083 *
2084 * Consumer devices notify their supply regulator of the maximum power
2085 * they will require (can be taken from device datasheet in the power
2086 * consumption tables) when they change operational status and hence power
2087 * state. Examples of operational state changes that can affect power
2088 * consumption are :-
2089 *
2090 *    o Device is opened / closed.
2091 *    o Device I/O is about to begin or has just finished.
2092 *    o Device is idling in between work.
2093 *
2094 * This information is also exported via sysfs to userspace.
2095 *
2096 * DRMS will sum the total requested load on the regulator and change
2097 * to the most efficient operating mode if platform constraints allow.
2098 *
2099 * Returns the new regulator mode or error.
2100 */
2101int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2102{
2103	struct regulator_dev *rdev = regulator->rdev;
2104	struct regulator *consumer;
2105	int ret, output_uV, input_uV, total_uA_load = 0;
2106	unsigned int mode;
2107
2108	mutex_lock(&rdev->mutex);
2109
2110	/*
2111	 * first check to see if we can set modes at all, otherwise just
2112	 * tell the consumer everything is OK.
2113	 */
2114	regulator->uA_load = uA_load;
2115	ret = regulator_check_drms(rdev);
2116	if (ret < 0) {
2117		ret = 0;
2118		goto out;
2119	}
2120
2121	if (!rdev->desc->ops->get_optimum_mode)
2122		goto out;
2123
2124	/*
2125	 * we can actually do this so any errors are indicators of
2126	 * potential real failure.
2127	 */
2128	ret = -EINVAL;
2129
2130	/* get output voltage */
2131	output_uV = _regulator_get_voltage(rdev);
2132	if (output_uV <= 0) {
2133		rdev_err(rdev, "invalid output voltage found\n");
2134		goto out;
2135	}
2136
2137	/* get input voltage */
2138	input_uV = 0;
2139	if (rdev->supply)
2140		input_uV = _regulator_get_voltage(rdev->supply);
2141	if (input_uV <= 0)
2142		input_uV = rdev->constraints->input_uV;
2143	if (input_uV <= 0) {
2144		rdev_err(rdev, "invalid input voltage found\n");
2145		goto out;
2146	}
2147
2148	/* calc total requested load for this regulator */
2149	list_for_each_entry(consumer, &rdev->consumer_list, list)
2150		total_uA_load += consumer->uA_load;
2151
2152	mode = rdev->desc->ops->get_optimum_mode(rdev,
2153						 input_uV, output_uV,
2154						 total_uA_load);
2155	ret = regulator_mode_constrain(rdev, &mode);
2156	if (ret < 0) {
2157		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2158			 total_uA_load, input_uV, output_uV);
2159		goto out;
2160	}
2161
2162	ret = rdev->desc->ops->set_mode(rdev, mode);
2163	if (ret < 0) {
2164		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2165		goto out;
2166	}
2167	ret = mode;
2168out:
2169	mutex_unlock(&rdev->mutex);
2170	return ret;
2171}
2172EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2173
2174/**
2175 * regulator_register_notifier - register regulator event notifier
2176 * @regulator: regulator source
2177 * @nb: notifier block
2178 *
2179 * Register notifier block to receive regulator events.
2180 */
2181int regulator_register_notifier(struct regulator *regulator,
2182			      struct notifier_block *nb)
2183{
2184	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2185						nb);
2186}
2187EXPORT_SYMBOL_GPL(regulator_register_notifier);
2188
2189/**
2190 * regulator_unregister_notifier - unregister regulator event notifier
2191 * @regulator: regulator source
2192 * @nb: notifier block
2193 *
2194 * Unregister regulator event notifier block.
2195 */
2196int regulator_unregister_notifier(struct regulator *regulator,
2197				struct notifier_block *nb)
2198{
2199	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2200						  nb);
2201}
2202EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2203
2204/* notify regulator consumers and downstream regulator consumers.
2205 * Note mutex must be held by caller.
2206 */
2207static void _notifier_call_chain(struct regulator_dev *rdev,
2208				  unsigned long event, void *data)
2209{
2210	struct regulator_dev *_rdev;
2211
2212	/* call rdev chain first */
2213	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2214
2215	/* now notify regulator we supply */
2216	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2217		mutex_lock(&_rdev->mutex);
2218		_notifier_call_chain(_rdev, event, data);
2219		mutex_unlock(&_rdev->mutex);
2220	}
2221}
2222
2223/**
2224 * regulator_bulk_get - get multiple regulator consumers
2225 *
2226 * @dev:           Device to supply
2227 * @num_consumers: Number of consumers to register
2228 * @consumers:     Configuration of consumers; clients are stored here.
2229 *
2230 * @return 0 on success, an errno on failure.
2231 *
2232 * This helper function allows drivers to get several regulator
2233 * consumers in one operation.  If any of the regulators cannot be
2234 * acquired then any regulators that were allocated will be freed
2235 * before returning to the caller.
2236 */
2237int regulator_bulk_get(struct device *dev, int num_consumers,
2238		       struct regulator_bulk_data *consumers)
2239{
2240	int i;
2241	int ret;
2242
2243	for (i = 0; i < num_consumers; i++)
2244		consumers[i].consumer = NULL;
2245
2246	for (i = 0; i < num_consumers; i++) {
2247		consumers[i].consumer = regulator_get(dev,
2248						      consumers[i].supply);
2249		if (IS_ERR(consumers[i].consumer)) {
2250			ret = PTR_ERR(consumers[i].consumer);
2251			dev_err(dev, "Failed to get supply '%s': %d\n",
2252				consumers[i].supply, ret);
2253			consumers[i].consumer = NULL;
2254			goto err;
2255		}
2256	}
2257
2258	return 0;
2259
2260err:
2261	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2262		regulator_put(consumers[i].consumer);
2263
2264	return ret;
2265}
2266EXPORT_SYMBOL_GPL(regulator_bulk_get);
2267
2268static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2269{
2270	struct regulator_bulk_data *bulk = data;
2271
2272	bulk->ret = regulator_enable(bulk->consumer);
2273}
2274
2275/**
2276 * regulator_bulk_enable - enable multiple regulator consumers
2277 *
2278 * @num_consumers: Number of consumers
2279 * @consumers:     Consumer data; clients are stored here.
2280 * @return         0 on success, an errno on failure
2281 *
2282 * This convenience API allows consumers to enable multiple regulator
2283 * clients in a single API call.  If any consumers cannot be enabled
2284 * then any others that were enabled will be disabled again prior to
2285 * return.
2286 */
2287int regulator_bulk_enable(int num_consumers,
2288			  struct regulator_bulk_data *consumers)
2289{
2290	LIST_HEAD(async_domain);
2291	int i;
2292	int ret = 0;
2293
2294	for (i = 0; i < num_consumers; i++)
2295		async_schedule_domain(regulator_bulk_enable_async,
2296				      &consumers[i], &async_domain);
2297
2298	async_synchronize_full_domain(&async_domain);
2299
2300	/* If any consumer failed we need to unwind any that succeeded */
2301	for (i = 0; i < num_consumers; i++) {
2302		if (consumers[i].ret != 0) {
2303			ret = consumers[i].ret;
2304			goto err;
2305		}
2306	}
2307
2308	return 0;
2309
2310err:
2311	for (i = 0; i < num_consumers; i++)
2312		if (consumers[i].ret == 0)
2313			regulator_disable(consumers[i].consumer);
2314		else
2315			pr_err("Failed to enable %s: %d\n",
2316			       consumers[i].supply, consumers[i].ret);
2317
2318	return ret;
2319}
2320EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2321
2322/**
2323 * regulator_bulk_disable - disable multiple regulator consumers
2324 *
2325 * @num_consumers: Number of consumers
2326 * @consumers:     Consumer data; clients are stored here.
2327 * @return         0 on success, an errno on failure
2328 *
2329 * This convenience API allows consumers to disable multiple regulator
2330 * clients in a single API call.  If any consumers cannot be enabled
2331 * then any others that were disabled will be disabled again prior to
2332 * return.
2333 */
2334int regulator_bulk_disable(int num_consumers,
2335			   struct regulator_bulk_data *consumers)
2336{
2337	int i;
2338	int ret;
2339
2340	for (i = 0; i < num_consumers; i++) {
2341		ret = regulator_disable(consumers[i].consumer);
2342		if (ret != 0)
2343			goto err;
2344	}
2345
2346	return 0;
2347
2348err:
2349	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2350	for (--i; i >= 0; --i)
2351		regulator_enable(consumers[i].consumer);
2352
2353	return ret;
2354}
2355EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2356
2357/**
2358 * regulator_bulk_free - free multiple regulator consumers
2359 *
2360 * @num_consumers: Number of consumers
2361 * @consumers:     Consumer data; clients are stored here.
2362 *
2363 * This convenience API allows consumers to free multiple regulator
2364 * clients in a single API call.
2365 */
2366void regulator_bulk_free(int num_consumers,
2367			 struct regulator_bulk_data *consumers)
2368{
2369	int i;
2370
2371	for (i = 0; i < num_consumers; i++) {
2372		regulator_put(consumers[i].consumer);
2373		consumers[i].consumer = NULL;
2374	}
2375}
2376EXPORT_SYMBOL_GPL(regulator_bulk_free);
2377
2378/**
2379 * regulator_notifier_call_chain - call regulator event notifier
2380 * @rdev: regulator source
2381 * @event: notifier block
2382 * @data: callback-specific data.
2383 *
2384 * Called by regulator drivers to notify clients a regulator event has
2385 * occurred. We also notify regulator clients downstream.
2386 * Note lock must be held by caller.
2387 */
2388int regulator_notifier_call_chain(struct regulator_dev *rdev,
2389				  unsigned long event, void *data)
2390{
2391	_notifier_call_chain(rdev, event, data);
2392	return NOTIFY_DONE;
2393
2394}
2395EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2396
2397/**
2398 * regulator_mode_to_status - convert a regulator mode into a status
2399 *
2400 * @mode: Mode to convert
2401 *
2402 * Convert a regulator mode into a status.
2403 */
2404int regulator_mode_to_status(unsigned int mode)
2405{
2406	switch (mode) {
2407	case REGULATOR_MODE_FAST:
2408		return REGULATOR_STATUS_FAST;
2409	case REGULATOR_MODE_NORMAL:
2410		return REGULATOR_STATUS_NORMAL;
2411	case REGULATOR_MODE_IDLE:
2412		return REGULATOR_STATUS_IDLE;
2413	case REGULATOR_STATUS_STANDBY:
2414		return REGULATOR_STATUS_STANDBY;
2415	default:
2416		return 0;
2417	}
2418}
2419EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2420
2421/*
2422 * To avoid cluttering sysfs (and memory) with useless state, only
2423 * create attributes that can be meaningfully displayed.
2424 */
2425static int add_regulator_attributes(struct regulator_dev *rdev)
2426{
2427	struct device		*dev = &rdev->dev;
2428	struct regulator_ops	*ops = rdev->desc->ops;
2429	int			status = 0;
2430
2431	/* some attributes need specific methods to be displayed */
2432	if (ops->get_voltage || ops->get_voltage_sel) {
2433		status = device_create_file(dev, &dev_attr_microvolts);
2434		if (status < 0)
2435			return status;
2436	}
2437	if (ops->get_current_limit) {
2438		status = device_create_file(dev, &dev_attr_microamps);
2439		if (status < 0)
2440			return status;
2441	}
2442	if (ops->get_mode) {
2443		status = device_create_file(dev, &dev_attr_opmode);
2444		if (status < 0)
2445			return status;
2446	}
2447	if (ops->is_enabled) {
2448		status = device_create_file(dev, &dev_attr_state);
2449		if (status < 0)
2450			return status;
2451	}
2452	if (ops->get_status) {
2453		status = device_create_file(dev, &dev_attr_status);
2454		if (status < 0)
2455			return status;
2456	}
2457
2458	/* some attributes are type-specific */
2459	if (rdev->desc->type == REGULATOR_CURRENT) {
2460		status = device_create_file(dev, &dev_attr_requested_microamps);
2461		if (status < 0)
2462			return status;
2463	}
2464
2465	/* all the other attributes exist to support constraints;
2466	 * don't show them if there are no constraints, or if the
2467	 * relevant supporting methods are missing.
2468	 */
2469	if (!rdev->constraints)
2470		return status;
2471
2472	/* constraints need specific supporting methods */
2473	if (ops->set_voltage || ops->set_voltage_sel) {
2474		status = device_create_file(dev, &dev_attr_min_microvolts);
2475		if (status < 0)
2476			return status;
2477		status = device_create_file(dev, &dev_attr_max_microvolts);
2478		if (status < 0)
2479			return status;
2480	}
2481	if (ops->set_current_limit) {
2482		status = device_create_file(dev, &dev_attr_min_microamps);
2483		if (status < 0)
2484			return status;
2485		status = device_create_file(dev, &dev_attr_max_microamps);
2486		if (status < 0)
2487			return status;
2488	}
2489
2490	/* suspend mode constraints need multiple supporting methods */
2491	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2492		return status;
2493
2494	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2495	if (status < 0)
2496		return status;
2497	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2498	if (status < 0)
2499		return status;
2500	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2501	if (status < 0)
2502		return status;
2503
2504	if (ops->set_suspend_voltage) {
2505		status = device_create_file(dev,
2506				&dev_attr_suspend_standby_microvolts);
2507		if (status < 0)
2508			return status;
2509		status = device_create_file(dev,
2510				&dev_attr_suspend_mem_microvolts);
2511		if (status < 0)
2512			return status;
2513		status = device_create_file(dev,
2514				&dev_attr_suspend_disk_microvolts);
2515		if (status < 0)
2516			return status;
2517	}
2518
2519	if (ops->set_suspend_mode) {
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_standby_mode);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_mem_mode);
2526		if (status < 0)
2527			return status;
2528		status = device_create_file(dev,
2529				&dev_attr_suspend_disk_mode);
2530		if (status < 0)
2531			return status;
2532	}
2533
2534	return status;
2535}
2536
2537static void rdev_init_debugfs(struct regulator_dev *rdev)
2538{
2539#ifdef CONFIG_DEBUG_FS
2540	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2541	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2542		rdev_warn(rdev, "Failed to create debugfs directory\n");
2543		rdev->debugfs = NULL;
2544		return;
2545	}
2546
2547	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2548			   &rdev->use_count);
2549	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2550			   &rdev->open_count);
2551#endif
2552}
2553
2554/**
2555 * regulator_register - register regulator
2556 * @regulator_desc: regulator to register
2557 * @dev: struct device for the regulator
2558 * @init_data: platform provided init data, passed through by driver
2559 * @driver_data: private regulator data
2560 *
2561 * Called by regulator drivers to register a regulator.
2562 * Returns 0 on success.
2563 */
2564struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2565	struct device *dev, const struct regulator_init_data *init_data,
2566	void *driver_data)
2567{
2568	static atomic_t regulator_no = ATOMIC_INIT(0);
2569	struct regulator_dev *rdev;
2570	int ret, i;
2571
2572	if (regulator_desc == NULL)
2573		return ERR_PTR(-EINVAL);
2574
2575	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2576		return ERR_PTR(-EINVAL);
2577
2578	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2579	    regulator_desc->type != REGULATOR_CURRENT)
2580		return ERR_PTR(-EINVAL);
2581
2582	if (!init_data)
2583		return ERR_PTR(-EINVAL);
2584
2585	/* Only one of each should be implemented */
2586	WARN_ON(regulator_desc->ops->get_voltage &&
2587		regulator_desc->ops->get_voltage_sel);
2588	WARN_ON(regulator_desc->ops->set_voltage &&
2589		regulator_desc->ops->set_voltage_sel);
2590
2591	/* If we're using selectors we must implement list_voltage. */
2592	if (regulator_desc->ops->get_voltage_sel &&
2593	    !regulator_desc->ops->list_voltage) {
2594		return ERR_PTR(-EINVAL);
2595	}
2596	if (regulator_desc->ops->set_voltage_sel &&
2597	    !regulator_desc->ops->list_voltage) {
2598		return ERR_PTR(-EINVAL);
2599	}
2600
2601	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2602	if (rdev == NULL)
2603		return ERR_PTR(-ENOMEM);
2604
2605	mutex_lock(&regulator_list_mutex);
2606
2607	mutex_init(&rdev->mutex);
2608	rdev->reg_data = driver_data;
2609	rdev->owner = regulator_desc->owner;
2610	rdev->desc = regulator_desc;
2611	INIT_LIST_HEAD(&rdev->consumer_list);
2612	INIT_LIST_HEAD(&rdev->supply_list);
2613	INIT_LIST_HEAD(&rdev->list);
2614	INIT_LIST_HEAD(&rdev->slist);
2615	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2616
2617	/* preform any regulator specific init */
2618	if (init_data->regulator_init) {
2619		ret = init_data->regulator_init(rdev->reg_data);
2620		if (ret < 0)
2621			goto clean;
2622	}
2623
2624	/* register with sysfs */
2625	rdev->dev.class = &regulator_class;
2626	rdev->dev.parent = dev;
2627	dev_set_name(&rdev->dev, "regulator.%d",
2628		     atomic_inc_return(&regulator_no) - 1);
2629	ret = device_register(&rdev->dev);
2630	if (ret != 0) {
2631		put_device(&rdev->dev);
2632		goto clean;
2633	}
2634
2635	dev_set_drvdata(&rdev->dev, rdev);
2636
2637	/* set regulator constraints */
2638	ret = set_machine_constraints(rdev, &init_data->constraints);
2639	if (ret < 0)
2640		goto scrub;
2641
2642	/* add attributes supported by this regulator */
2643	ret = add_regulator_attributes(rdev);
2644	if (ret < 0)
2645		goto scrub;
2646
2647	if (init_data->supply_regulator) {
2648		struct regulator_dev *r;
2649		int found = 0;
2650
2651		list_for_each_entry(r, &regulator_list, list) {
2652			if (strcmp(rdev_get_name(r),
2653				   init_data->supply_regulator) == 0) {
2654				found = 1;
2655				break;
2656			}
2657		}
2658
2659		if (!found) {
2660			dev_err(dev, "Failed to find supply %s\n",
2661				init_data->supply_regulator);
2662			ret = -ENODEV;
2663			goto scrub;
2664		}
2665
2666		ret = set_supply(rdev, r);
2667		if (ret < 0)
2668			goto scrub;
2669	}
2670
2671	/* add consumers devices */
2672	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2673		ret = set_consumer_device_supply(rdev,
2674			init_data->consumer_supplies[i].dev,
2675			init_data->consumer_supplies[i].dev_name,
2676			init_data->consumer_supplies[i].supply);
2677		if (ret < 0) {
2678			dev_err(dev, "Failed to set supply %s\n",
2679				init_data->consumer_supplies[i].supply);
2680			goto unset_supplies;
2681		}
2682	}
2683
2684	list_add(&rdev->list, &regulator_list);
2685
2686	rdev_init_debugfs(rdev);
2687out:
2688	mutex_unlock(&regulator_list_mutex);
2689	return rdev;
2690
2691unset_supplies:
2692	unset_regulator_supplies(rdev);
2693
2694scrub:
2695	device_unregister(&rdev->dev);
2696	/* device core frees rdev */
2697	rdev = ERR_PTR(ret);
2698	goto out;
2699
2700clean:
2701	kfree(rdev);
2702	rdev = ERR_PTR(ret);
2703	goto out;
2704}
2705EXPORT_SYMBOL_GPL(regulator_register);
2706
2707/**
2708 * regulator_unregister - unregister regulator
2709 * @rdev: regulator to unregister
2710 *
2711 * Called by regulator drivers to unregister a regulator.
2712 */
2713void regulator_unregister(struct regulator_dev *rdev)
2714{
2715	if (rdev == NULL)
2716		return;
2717
2718	mutex_lock(&regulator_list_mutex);
2719#ifdef CONFIG_DEBUG_FS
2720	debugfs_remove_recursive(rdev->debugfs);
2721#endif
2722	WARN_ON(rdev->open_count);
2723	unset_regulator_supplies(rdev);
2724	list_del(&rdev->list);
2725	if (rdev->supply)
2726		sysfs_remove_link(&rdev->dev.kobj, "supply");
2727	device_unregister(&rdev->dev);
2728	kfree(rdev->constraints);
2729	mutex_unlock(&regulator_list_mutex);
2730}
2731EXPORT_SYMBOL_GPL(regulator_unregister);
2732
2733/**
2734 * regulator_suspend_prepare - prepare regulators for system wide suspend
2735 * @state: system suspend state
2736 *
2737 * Configure each regulator with it's suspend operating parameters for state.
2738 * This will usually be called by machine suspend code prior to supending.
2739 */
2740int regulator_suspend_prepare(suspend_state_t state)
2741{
2742	struct regulator_dev *rdev;
2743	int ret = 0;
2744
2745	/* ON is handled by regulator active state */
2746	if (state == PM_SUSPEND_ON)
2747		return -EINVAL;
2748
2749	mutex_lock(&regulator_list_mutex);
2750	list_for_each_entry(rdev, &regulator_list, list) {
2751
2752		mutex_lock(&rdev->mutex);
2753		ret = suspend_prepare(rdev, state);
2754		mutex_unlock(&rdev->mutex);
2755
2756		if (ret < 0) {
2757			rdev_err(rdev, "failed to prepare\n");
2758			goto out;
2759		}
2760	}
2761out:
2762	mutex_unlock(&regulator_list_mutex);
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2766
2767/**
2768 * regulator_suspend_finish - resume regulators from system wide suspend
2769 *
2770 * Turn on regulators that might be turned off by regulator_suspend_prepare
2771 * and that should be turned on according to the regulators properties.
2772 */
2773int regulator_suspend_finish(void)
2774{
2775	struct regulator_dev *rdev;
2776	int ret = 0, error;
2777
2778	mutex_lock(&regulator_list_mutex);
2779	list_for_each_entry(rdev, &regulator_list, list) {
2780		struct regulator_ops *ops = rdev->desc->ops;
2781
2782		mutex_lock(&rdev->mutex);
2783		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2784				ops->enable) {
2785			error = ops->enable(rdev);
2786			if (error)
2787				ret = error;
2788		} else {
2789			if (!has_full_constraints)
2790				goto unlock;
2791			if (!ops->disable)
2792				goto unlock;
2793			if (ops->is_enabled && !ops->is_enabled(rdev))
2794				goto unlock;
2795
2796			error = ops->disable(rdev);
2797			if (error)
2798				ret = error;
2799		}
2800unlock:
2801		mutex_unlock(&rdev->mutex);
2802	}
2803	mutex_unlock(&regulator_list_mutex);
2804	return ret;
2805}
2806EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2807
2808/**
2809 * regulator_has_full_constraints - the system has fully specified constraints
2810 *
2811 * Calling this function will cause the regulator API to disable all
2812 * regulators which have a zero use count and don't have an always_on
2813 * constraint in a late_initcall.
2814 *
2815 * The intention is that this will become the default behaviour in a
2816 * future kernel release so users are encouraged to use this facility
2817 * now.
2818 */
2819void regulator_has_full_constraints(void)
2820{
2821	has_full_constraints = 1;
2822}
2823EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2824
2825/**
2826 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2827 *
2828 * Calling this function will cause the regulator API to provide a
2829 * dummy regulator to consumers if no physical regulator is found,
2830 * allowing most consumers to proceed as though a regulator were
2831 * configured.  This allows systems such as those with software
2832 * controllable regulators for the CPU core only to be brought up more
2833 * readily.
2834 */
2835void regulator_use_dummy_regulator(void)
2836{
2837	board_wants_dummy_regulator = true;
2838}
2839EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2840
2841/**
2842 * rdev_get_drvdata - get rdev regulator driver data
2843 * @rdev: regulator
2844 *
2845 * Get rdev regulator driver private data. This call can be used in the
2846 * regulator driver context.
2847 */
2848void *rdev_get_drvdata(struct regulator_dev *rdev)
2849{
2850	return rdev->reg_data;
2851}
2852EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2853
2854/**
2855 * regulator_get_drvdata - get regulator driver data
2856 * @regulator: regulator
2857 *
2858 * Get regulator driver private data. This call can be used in the consumer
2859 * driver context when non API regulator specific functions need to be called.
2860 */
2861void *regulator_get_drvdata(struct regulator *regulator)
2862{
2863	return regulator->rdev->reg_data;
2864}
2865EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2866
2867/**
2868 * regulator_set_drvdata - set regulator driver data
2869 * @regulator: regulator
2870 * @data: data
2871 */
2872void regulator_set_drvdata(struct regulator *regulator, void *data)
2873{
2874	regulator->rdev->reg_data = data;
2875}
2876EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2877
2878/**
2879 * regulator_get_id - get regulator ID
2880 * @rdev: regulator
2881 */
2882int rdev_get_id(struct regulator_dev *rdev)
2883{
2884	return rdev->desc->id;
2885}
2886EXPORT_SYMBOL_GPL(rdev_get_id);
2887
2888struct device *rdev_get_dev(struct regulator_dev *rdev)
2889{
2890	return &rdev->dev;
2891}
2892EXPORT_SYMBOL_GPL(rdev_get_dev);
2893
2894void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2895{
2896	return reg_init_data->driver_data;
2897}
2898EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2899
2900static int __init regulator_init(void)
2901{
2902	int ret;
2903
2904	ret = class_register(&regulator_class);
2905
2906#ifdef CONFIG_DEBUG_FS
2907	debugfs_root = debugfs_create_dir("regulator", NULL);
2908	if (IS_ERR(debugfs_root) || !debugfs_root) {
2909		pr_warn("regulator: Failed to create debugfs directory\n");
2910		debugfs_root = NULL;
2911	}
2912#endif
2913
2914	regulator_dummy_init();
2915
2916	return ret;
2917}
2918
2919/* init early to allow our consumers to complete system booting */
2920core_initcall(regulator_init);
2921
2922static int __init regulator_init_complete(void)
2923{
2924	struct regulator_dev *rdev;
2925	struct regulator_ops *ops;
2926	struct regulation_constraints *c;
2927	int enabled, ret;
2928
2929	mutex_lock(&regulator_list_mutex);
2930
2931	/* If we have a full configuration then disable any regulators
2932	 * which are not in use or always_on.  This will become the
2933	 * default behaviour in the future.
2934	 */
2935	list_for_each_entry(rdev, &regulator_list, list) {
2936		ops = rdev->desc->ops;
2937		c = rdev->constraints;
2938
2939		if (!ops->disable || (c && c->always_on))
2940			continue;
2941
2942		mutex_lock(&rdev->mutex);
2943
2944		if (rdev->use_count)
2945			goto unlock;
2946
2947		/* If we can't read the status assume it's on. */
2948		if (ops->is_enabled)
2949			enabled = ops->is_enabled(rdev);
2950		else
2951			enabled = 1;
2952
2953		if (!enabled)
2954			goto unlock;
2955
2956		if (has_full_constraints) {
2957			/* We log since this may kill the system if it
2958			 * goes wrong. */
2959			rdev_info(rdev, "disabling\n");
2960			ret = ops->disable(rdev);
2961			if (ret != 0) {
2962				rdev_err(rdev, "couldn't disable: %d\n", ret);
2963			}
2964		} else {
2965			/* The intention is that in future we will
2966			 * assume that full constraints are provided
2967			 * so warn even if we aren't going to do
2968			 * anything here.
2969			 */
2970			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2971		}
2972
2973unlock:
2974		mutex_unlock(&rdev->mutex);
2975	}
2976
2977	mutex_unlock(&regulator_list_mutex);
2978
2979	return 0;
2980}
2981late_initcall(regulator_init_complete);
2982