core.c revision fa2984d4691c96367d6666694ecc6744135174c6
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31static int has_full_constraints;
32
33/*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38struct regulator_map {
39	struct list_head list;
40	const char *dev_name;   /* The dev_name() for the consumer */
41	const char *supply;
42	struct regulator_dev *regulator;
43};
44
45/*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50struct regulator {
51	struct device *dev;
52	struct list_head list;
53	int uA_load;
54	int min_uV;
55	int max_uV;
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69static const char *rdev_get_name(struct regulator_dev *rdev)
70{
71	if (rdev->constraints && rdev->constraints->name)
72		return rdev->constraints->name;
73	else if (rdev->desc->name)
74		return rdev->desc->name;
75	else
76		return "";
77}
78
79/* gets the regulator for a given consumer device */
80static struct regulator *get_device_regulator(struct device *dev)
81{
82	struct regulator *regulator = NULL;
83	struct regulator_dev *rdev;
84
85	mutex_lock(&regulator_list_mutex);
86	list_for_each_entry(rdev, &regulator_list, list) {
87		mutex_lock(&rdev->mutex);
88		list_for_each_entry(regulator, &rdev->consumer_list, list) {
89			if (regulator->dev == dev) {
90				mutex_unlock(&rdev->mutex);
91				mutex_unlock(&regulator_list_mutex);
92				return regulator;
93			}
94		}
95		mutex_unlock(&rdev->mutex);
96	}
97	mutex_unlock(&regulator_list_mutex);
98	return NULL;
99}
100
101/* Platform voltage constraint check */
102static int regulator_check_voltage(struct regulator_dev *rdev,
103				   int *min_uV, int *max_uV)
104{
105	BUG_ON(*min_uV > *max_uV);
106
107	if (!rdev->constraints) {
108		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
109		       rdev_get_name(rdev));
110		return -ENODEV;
111	}
112	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
113		printk(KERN_ERR "%s: operation not allowed for %s\n",
114		       __func__, rdev_get_name(rdev));
115		return -EPERM;
116	}
117
118	if (*max_uV > rdev->constraints->max_uV)
119		*max_uV = rdev->constraints->max_uV;
120	if (*min_uV < rdev->constraints->min_uV)
121		*min_uV = rdev->constraints->min_uV;
122
123	if (*min_uV > *max_uV)
124		return -EINVAL;
125
126	return 0;
127}
128
129/* current constraint check */
130static int regulator_check_current_limit(struct regulator_dev *rdev,
131					int *min_uA, int *max_uA)
132{
133	BUG_ON(*min_uA > *max_uA);
134
135	if (!rdev->constraints) {
136		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
137		       rdev_get_name(rdev));
138		return -ENODEV;
139	}
140	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
141		printk(KERN_ERR "%s: operation not allowed for %s\n",
142		       __func__, rdev_get_name(rdev));
143		return -EPERM;
144	}
145
146	if (*max_uA > rdev->constraints->max_uA)
147		*max_uA = rdev->constraints->max_uA;
148	if (*min_uA < rdev->constraints->min_uA)
149		*min_uA = rdev->constraints->min_uA;
150
151	if (*min_uA > *max_uA)
152		return -EINVAL;
153
154	return 0;
155}
156
157/* operating mode constraint check */
158static int regulator_check_mode(struct regulator_dev *rdev, int mode)
159{
160	switch (mode) {
161	case REGULATOR_MODE_FAST:
162	case REGULATOR_MODE_NORMAL:
163	case REGULATOR_MODE_IDLE:
164	case REGULATOR_MODE_STANDBY:
165		break;
166	default:
167		return -EINVAL;
168	}
169
170	if (!rdev->constraints) {
171		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
172		       rdev_get_name(rdev));
173		return -ENODEV;
174	}
175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
176		printk(KERN_ERR "%s: operation not allowed for %s\n",
177		       __func__, rdev_get_name(rdev));
178		return -EPERM;
179	}
180	if (!(rdev->constraints->valid_modes_mask & mode)) {
181		printk(KERN_ERR "%s: invalid mode %x for %s\n",
182		       __func__, mode, rdev_get_name(rdev));
183		return -EINVAL;
184	}
185	return 0;
186}
187
188/* dynamic regulator mode switching constraint check */
189static int regulator_check_drms(struct regulator_dev *rdev)
190{
191	if (!rdev->constraints) {
192		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
193		       rdev_get_name(rdev));
194		return -ENODEV;
195	}
196	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
197		printk(KERN_ERR "%s: operation not allowed for %s\n",
198		       __func__, rdev_get_name(rdev));
199		return -EPERM;
200	}
201	return 0;
202}
203
204static ssize_t device_requested_uA_show(struct device *dev,
205			     struct device_attribute *attr, char *buf)
206{
207	struct regulator *regulator;
208
209	regulator = get_device_regulator(dev);
210	if (regulator == NULL)
211		return 0;
212
213	return sprintf(buf, "%d\n", regulator->uA_load);
214}
215
216static ssize_t regulator_uV_show(struct device *dev,
217				struct device_attribute *attr, char *buf)
218{
219	struct regulator_dev *rdev = dev_get_drvdata(dev);
220	ssize_t ret;
221
222	mutex_lock(&rdev->mutex);
223	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
224	mutex_unlock(&rdev->mutex);
225
226	return ret;
227}
228static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
229
230static ssize_t regulator_uA_show(struct device *dev,
231				struct device_attribute *attr, char *buf)
232{
233	struct regulator_dev *rdev = dev_get_drvdata(dev);
234
235	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
236}
237static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
238
239static ssize_t regulator_name_show(struct device *dev,
240			     struct device_attribute *attr, char *buf)
241{
242	struct regulator_dev *rdev = dev_get_drvdata(dev);
243
244	return sprintf(buf, "%s\n", rdev_get_name(rdev));
245}
246
247static ssize_t regulator_print_opmode(char *buf, int mode)
248{
249	switch (mode) {
250	case REGULATOR_MODE_FAST:
251		return sprintf(buf, "fast\n");
252	case REGULATOR_MODE_NORMAL:
253		return sprintf(buf, "normal\n");
254	case REGULATOR_MODE_IDLE:
255		return sprintf(buf, "idle\n");
256	case REGULATOR_MODE_STANDBY:
257		return sprintf(buf, "standby\n");
258	}
259	return sprintf(buf, "unknown\n");
260}
261
262static ssize_t regulator_opmode_show(struct device *dev,
263				    struct device_attribute *attr, char *buf)
264{
265	struct regulator_dev *rdev = dev_get_drvdata(dev);
266
267	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
268}
269static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
270
271static ssize_t regulator_print_state(char *buf, int state)
272{
273	if (state > 0)
274		return sprintf(buf, "enabled\n");
275	else if (state == 0)
276		return sprintf(buf, "disabled\n");
277	else
278		return sprintf(buf, "unknown\n");
279}
280
281static ssize_t regulator_state_show(struct device *dev,
282				   struct device_attribute *attr, char *buf)
283{
284	struct regulator_dev *rdev = dev_get_drvdata(dev);
285	ssize_t ret;
286
287	mutex_lock(&rdev->mutex);
288	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
289	mutex_unlock(&rdev->mutex);
290
291	return ret;
292}
293static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
294
295static ssize_t regulator_status_show(struct device *dev,
296				   struct device_attribute *attr, char *buf)
297{
298	struct regulator_dev *rdev = dev_get_drvdata(dev);
299	int status;
300	char *label;
301
302	status = rdev->desc->ops->get_status(rdev);
303	if (status < 0)
304		return status;
305
306	switch (status) {
307	case REGULATOR_STATUS_OFF:
308		label = "off";
309		break;
310	case REGULATOR_STATUS_ON:
311		label = "on";
312		break;
313	case REGULATOR_STATUS_ERROR:
314		label = "error";
315		break;
316	case REGULATOR_STATUS_FAST:
317		label = "fast";
318		break;
319	case REGULATOR_STATUS_NORMAL:
320		label = "normal";
321		break;
322	case REGULATOR_STATUS_IDLE:
323		label = "idle";
324		break;
325	case REGULATOR_STATUS_STANDBY:
326		label = "standby";
327		break;
328	default:
329		return -ERANGE;
330	}
331
332	return sprintf(buf, "%s\n", label);
333}
334static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
335
336static ssize_t regulator_min_uA_show(struct device *dev,
337				    struct device_attribute *attr, char *buf)
338{
339	struct regulator_dev *rdev = dev_get_drvdata(dev);
340
341	if (!rdev->constraints)
342		return sprintf(buf, "constraint not defined\n");
343
344	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
345}
346static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
347
348static ssize_t regulator_max_uA_show(struct device *dev,
349				    struct device_attribute *attr, char *buf)
350{
351	struct regulator_dev *rdev = dev_get_drvdata(dev);
352
353	if (!rdev->constraints)
354		return sprintf(buf, "constraint not defined\n");
355
356	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
357}
358static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
359
360static ssize_t regulator_min_uV_show(struct device *dev,
361				    struct device_attribute *attr, char *buf)
362{
363	struct regulator_dev *rdev = dev_get_drvdata(dev);
364
365	if (!rdev->constraints)
366		return sprintf(buf, "constraint not defined\n");
367
368	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
369}
370static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
371
372static ssize_t regulator_max_uV_show(struct device *dev,
373				    struct device_attribute *attr, char *buf)
374{
375	struct regulator_dev *rdev = dev_get_drvdata(dev);
376
377	if (!rdev->constraints)
378		return sprintf(buf, "constraint not defined\n");
379
380	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
381}
382static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
383
384static ssize_t regulator_total_uA_show(struct device *dev,
385				      struct device_attribute *attr, char *buf)
386{
387	struct regulator_dev *rdev = dev_get_drvdata(dev);
388	struct regulator *regulator;
389	int uA = 0;
390
391	mutex_lock(&rdev->mutex);
392	list_for_each_entry(regulator, &rdev->consumer_list, list)
393		uA += regulator->uA_load;
394	mutex_unlock(&rdev->mutex);
395	return sprintf(buf, "%d\n", uA);
396}
397static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
398
399static ssize_t regulator_num_users_show(struct device *dev,
400				      struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403	return sprintf(buf, "%d\n", rdev->use_count);
404}
405
406static ssize_t regulator_type_show(struct device *dev,
407				  struct device_attribute *attr, char *buf)
408{
409	struct regulator_dev *rdev = dev_get_drvdata(dev);
410
411	switch (rdev->desc->type) {
412	case REGULATOR_VOLTAGE:
413		return sprintf(buf, "voltage\n");
414	case REGULATOR_CURRENT:
415		return sprintf(buf, "current\n");
416	}
417	return sprintf(buf, "unknown\n");
418}
419
420static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
421				struct device_attribute *attr, char *buf)
422{
423	struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
426}
427static DEVICE_ATTR(suspend_mem_microvolts, 0444,
428		regulator_suspend_mem_uV_show, NULL);
429
430static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
431				struct device_attribute *attr, char *buf)
432{
433	struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
436}
437static DEVICE_ATTR(suspend_disk_microvolts, 0444,
438		regulator_suspend_disk_uV_show, NULL);
439
440static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
441				struct device_attribute *attr, char *buf)
442{
443	struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
446}
447static DEVICE_ATTR(suspend_standby_microvolts, 0444,
448		regulator_suspend_standby_uV_show, NULL);
449
450static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
451				struct device_attribute *attr, char *buf)
452{
453	struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455	return regulator_print_opmode(buf,
456		rdev->constraints->state_mem.mode);
457}
458static DEVICE_ATTR(suspend_mem_mode, 0444,
459		regulator_suspend_mem_mode_show, NULL);
460
461static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
462				struct device_attribute *attr, char *buf)
463{
464	struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466	return regulator_print_opmode(buf,
467		rdev->constraints->state_disk.mode);
468}
469static DEVICE_ATTR(suspend_disk_mode, 0444,
470		regulator_suspend_disk_mode_show, NULL);
471
472static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
473				struct device_attribute *attr, char *buf)
474{
475	struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477	return regulator_print_opmode(buf,
478		rdev->constraints->state_standby.mode);
479}
480static DEVICE_ATTR(suspend_standby_mode, 0444,
481		regulator_suspend_standby_mode_show, NULL);
482
483static ssize_t regulator_suspend_mem_state_show(struct device *dev,
484				   struct device_attribute *attr, char *buf)
485{
486	struct regulator_dev *rdev = dev_get_drvdata(dev);
487
488	return regulator_print_state(buf,
489			rdev->constraints->state_mem.enabled);
490}
491static DEVICE_ATTR(suspend_mem_state, 0444,
492		regulator_suspend_mem_state_show, NULL);
493
494static ssize_t regulator_suspend_disk_state_show(struct device *dev,
495				   struct device_attribute *attr, char *buf)
496{
497	struct regulator_dev *rdev = dev_get_drvdata(dev);
498
499	return regulator_print_state(buf,
500			rdev->constraints->state_disk.enabled);
501}
502static DEVICE_ATTR(suspend_disk_state, 0444,
503		regulator_suspend_disk_state_show, NULL);
504
505static ssize_t regulator_suspend_standby_state_show(struct device *dev,
506				   struct device_attribute *attr, char *buf)
507{
508	struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510	return regulator_print_state(buf,
511			rdev->constraints->state_standby.enabled);
512}
513static DEVICE_ATTR(suspend_standby_state, 0444,
514		regulator_suspend_standby_state_show, NULL);
515
516
517/*
518 * These are the only attributes are present for all regulators.
519 * Other attributes are a function of regulator functionality.
520 */
521static struct device_attribute regulator_dev_attrs[] = {
522	__ATTR(name, 0444, regulator_name_show, NULL),
523	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
524	__ATTR(type, 0444, regulator_type_show, NULL),
525	__ATTR_NULL,
526};
527
528static void regulator_dev_release(struct device *dev)
529{
530	struct regulator_dev *rdev = dev_get_drvdata(dev);
531	kfree(rdev);
532}
533
534static struct class regulator_class = {
535	.name = "regulator",
536	.dev_release = regulator_dev_release,
537	.dev_attrs = regulator_dev_attrs,
538};
539
540/* Calculate the new optimum regulator operating mode based on the new total
541 * consumer load. All locks held by caller */
542static void drms_uA_update(struct regulator_dev *rdev)
543{
544	struct regulator *sibling;
545	int current_uA = 0, output_uV, input_uV, err;
546	unsigned int mode;
547
548	err = regulator_check_drms(rdev);
549	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
550	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
551		return;
552
553	/* get output voltage */
554	output_uV = rdev->desc->ops->get_voltage(rdev);
555	if (output_uV <= 0)
556		return;
557
558	/* get input voltage */
559	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
560		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
561	else
562		input_uV = rdev->constraints->input_uV;
563	if (input_uV <= 0)
564		return;
565
566	/* calc total requested load */
567	list_for_each_entry(sibling, &rdev->consumer_list, list)
568		current_uA += sibling->uA_load;
569
570	/* now get the optimum mode for our new total regulator load */
571	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
572						  output_uV, current_uA);
573
574	/* check the new mode is allowed */
575	err = regulator_check_mode(rdev, mode);
576	if (err == 0)
577		rdev->desc->ops->set_mode(rdev, mode);
578}
579
580static int suspend_set_state(struct regulator_dev *rdev,
581	struct regulator_state *rstate)
582{
583	int ret = 0;
584	bool can_set_state;
585
586	can_set_state = rdev->desc->ops->set_suspend_enable &&
587		rdev->desc->ops->set_suspend_disable;
588
589	/* If we have no suspend mode configration don't set anything;
590	 * only warn if the driver actually makes the suspend mode
591	 * configurable.
592	 */
593	if (!rstate->enabled && !rstate->disabled) {
594		if (can_set_state)
595			printk(KERN_WARNING "%s: No configuration for %s\n",
596			       __func__, rdev_get_name(rdev));
597		return 0;
598	}
599
600	if (rstate->enabled && rstate->disabled) {
601		printk(KERN_ERR "%s: invalid configuration for %s\n",
602		       __func__, rdev_get_name(rdev));
603		return -EINVAL;
604	}
605
606	if (!can_set_state) {
607		printk(KERN_ERR "%s: no way to set suspend state\n",
608			__func__);
609		return -EINVAL;
610	}
611
612	if (rstate->enabled)
613		ret = rdev->desc->ops->set_suspend_enable(rdev);
614	else
615		ret = rdev->desc->ops->set_suspend_disable(rdev);
616	if (ret < 0) {
617		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
618		return ret;
619	}
620
621	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
622		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
623		if (ret < 0) {
624			printk(KERN_ERR "%s: failed to set voltage\n",
625				__func__);
626			return ret;
627		}
628	}
629
630	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
631		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
632		if (ret < 0) {
633			printk(KERN_ERR "%s: failed to set mode\n", __func__);
634			return ret;
635		}
636	}
637	return ret;
638}
639
640/* locks held by caller */
641static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
642{
643	if (!rdev->constraints)
644		return -EINVAL;
645
646	switch (state) {
647	case PM_SUSPEND_STANDBY:
648		return suspend_set_state(rdev,
649			&rdev->constraints->state_standby);
650	case PM_SUSPEND_MEM:
651		return suspend_set_state(rdev,
652			&rdev->constraints->state_mem);
653	case PM_SUSPEND_MAX:
654		return suspend_set_state(rdev,
655			&rdev->constraints->state_disk);
656	default:
657		return -EINVAL;
658	}
659}
660
661static void print_constraints(struct regulator_dev *rdev)
662{
663	struct regulation_constraints *constraints = rdev->constraints;
664	char buf[80];
665	int count = 0;
666	int ret;
667
668	if (constraints->min_uV && constraints->max_uV) {
669		if (constraints->min_uV == constraints->max_uV)
670			count += sprintf(buf + count, "%d mV ",
671					 constraints->min_uV / 1000);
672		else
673			count += sprintf(buf + count, "%d <--> %d mV ",
674					 constraints->min_uV / 1000,
675					 constraints->max_uV / 1000);
676	}
677
678	if (!constraints->min_uV ||
679	    constraints->min_uV != constraints->max_uV) {
680		ret = _regulator_get_voltage(rdev);
681		if (ret > 0)
682			count += sprintf(buf + count, "at %d mV ", ret / 1000);
683	}
684
685	if (constraints->min_uA && constraints->max_uA) {
686		if (constraints->min_uA == constraints->max_uA)
687			count += sprintf(buf + count, "%d mA ",
688					 constraints->min_uA / 1000);
689		else
690			count += sprintf(buf + count, "%d <--> %d mA ",
691					 constraints->min_uA / 1000,
692					 constraints->max_uA / 1000);
693	}
694
695	if (!constraints->min_uA ||
696	    constraints->min_uA != constraints->max_uA) {
697		ret = _regulator_get_current_limit(rdev);
698		if (ret > 0)
699			count += sprintf(buf + count, "at %d uA ", ret / 1000);
700	}
701
702	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
703		count += sprintf(buf + count, "fast ");
704	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
705		count += sprintf(buf + count, "normal ");
706	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
707		count += sprintf(buf + count, "idle ");
708	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
709		count += sprintf(buf + count, "standby");
710
711	printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
712}
713
714static int machine_constraints_voltage(struct regulator_dev *rdev,
715	struct regulation_constraints *constraints)
716{
717	struct regulator_ops *ops = rdev->desc->ops;
718	const char *name = rdev_get_name(rdev);
719	int ret;
720
721	/* do we need to apply the constraint voltage */
722	if (rdev->constraints->apply_uV &&
723		rdev->constraints->min_uV == rdev->constraints->max_uV &&
724		ops->set_voltage) {
725		ret = ops->set_voltage(rdev,
726			rdev->constraints->min_uV, rdev->constraints->max_uV);
727			if (ret < 0) {
728				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
729				       __func__,
730				       rdev->constraints->min_uV, name);
731				rdev->constraints = NULL;
732				return ret;
733			}
734	}
735
736	/* constrain machine-level voltage specs to fit
737	 * the actual range supported by this regulator.
738	 */
739	if (ops->list_voltage && rdev->desc->n_voltages) {
740		int	count = rdev->desc->n_voltages;
741		int	i;
742		int	min_uV = INT_MAX;
743		int	max_uV = INT_MIN;
744		int	cmin = constraints->min_uV;
745		int	cmax = constraints->max_uV;
746
747		/* it's safe to autoconfigure fixed-voltage supplies
748		   and the constraints are used by list_voltage. */
749		if (count == 1 && !cmin) {
750			cmin = 1;
751			cmax = INT_MAX;
752			constraints->min_uV = cmin;
753			constraints->max_uV = cmax;
754		}
755
756		/* voltage constraints are optional */
757		if ((cmin == 0) && (cmax == 0))
758			return 0;
759
760		/* else require explicit machine-level constraints */
761		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
762			pr_err("%s: %s '%s' voltage constraints\n",
763				       __func__, "invalid", name);
764			return -EINVAL;
765		}
766
767		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
768		for (i = 0; i < count; i++) {
769			int	value;
770
771			value = ops->list_voltage(rdev, i);
772			if (value <= 0)
773				continue;
774
775			/* maybe adjust [min_uV..max_uV] */
776			if (value >= cmin && value < min_uV)
777				min_uV = value;
778			if (value <= cmax && value > max_uV)
779				max_uV = value;
780		}
781
782		/* final: [min_uV..max_uV] valid iff constraints valid */
783		if (max_uV < min_uV) {
784			pr_err("%s: %s '%s' voltage constraints\n",
785				       __func__, "unsupportable", name);
786			return -EINVAL;
787		}
788
789		/* use regulator's subset of machine constraints */
790		if (constraints->min_uV < min_uV) {
791			pr_debug("%s: override '%s' %s, %d -> %d\n",
792				       __func__, name, "min_uV",
793					constraints->min_uV, min_uV);
794			constraints->min_uV = min_uV;
795		}
796		if (constraints->max_uV > max_uV) {
797			pr_debug("%s: override '%s' %s, %d -> %d\n",
798				       __func__, name, "max_uV",
799					constraints->max_uV, max_uV);
800			constraints->max_uV = max_uV;
801		}
802	}
803
804	return 0;
805}
806
807/**
808 * set_machine_constraints - sets regulator constraints
809 * @rdev: regulator source
810 * @constraints: constraints to apply
811 *
812 * Allows platform initialisation code to define and constrain
813 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
814 * Constraints *must* be set by platform code in order for some
815 * regulator operations to proceed i.e. set_voltage, set_current_limit,
816 * set_mode.
817 */
818static int set_machine_constraints(struct regulator_dev *rdev,
819	struct regulation_constraints *constraints)
820{
821	int ret = 0;
822	const char *name;
823	struct regulator_ops *ops = rdev->desc->ops;
824
825	rdev->constraints = constraints;
826
827	name = rdev_get_name(rdev);
828
829	ret = machine_constraints_voltage(rdev, constraints);
830	if (ret != 0)
831		goto out;
832
833	/* do we need to setup our suspend state */
834	if (constraints->initial_state) {
835		ret = suspend_prepare(rdev, constraints->initial_state);
836		if (ret < 0) {
837			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
838			       __func__, name);
839			rdev->constraints = NULL;
840			goto out;
841		}
842	}
843
844	if (constraints->initial_mode) {
845		if (!ops->set_mode) {
846			printk(KERN_ERR "%s: no set_mode operation for %s\n",
847			       __func__, name);
848			ret = -EINVAL;
849			goto out;
850		}
851
852		ret = ops->set_mode(rdev, constraints->initial_mode);
853		if (ret < 0) {
854			printk(KERN_ERR
855			       "%s: failed to set initial mode for %s: %d\n",
856			       __func__, name, ret);
857			goto out;
858		}
859	}
860
861	/* If the constraints say the regulator should be on at this point
862	 * and we have control then make sure it is enabled.
863	 */
864	if ((constraints->always_on || constraints->boot_on) && ops->enable) {
865		ret = ops->enable(rdev);
866		if (ret < 0) {
867			printk(KERN_ERR "%s: failed to enable %s\n",
868			       __func__, name);
869			rdev->constraints = NULL;
870			goto out;
871		}
872	}
873
874	print_constraints(rdev);
875out:
876	return ret;
877}
878
879/**
880 * set_supply - set regulator supply regulator
881 * @rdev: regulator name
882 * @supply_rdev: supply regulator name
883 *
884 * Called by platform initialisation code to set the supply regulator for this
885 * regulator. This ensures that a regulators supply will also be enabled by the
886 * core if it's child is enabled.
887 */
888static int set_supply(struct regulator_dev *rdev,
889	struct regulator_dev *supply_rdev)
890{
891	int err;
892
893	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
894				"supply");
895	if (err) {
896		printk(KERN_ERR
897		       "%s: could not add device link %s err %d\n",
898		       __func__, supply_rdev->dev.kobj.name, err);
899		       goto out;
900	}
901	rdev->supply = supply_rdev;
902	list_add(&rdev->slist, &supply_rdev->supply_list);
903out:
904	return err;
905}
906
907/**
908 * set_consumer_device_supply: Bind a regulator to a symbolic supply
909 * @rdev:         regulator source
910 * @consumer_dev: device the supply applies to
911 * @consumer_dev_name: dev_name() string for device supply applies to
912 * @supply:       symbolic name for supply
913 *
914 * Allows platform initialisation code to map physical regulator
915 * sources to symbolic names for supplies for use by devices.  Devices
916 * should use these symbolic names to request regulators, avoiding the
917 * need to provide board-specific regulator names as platform data.
918 *
919 * Only one of consumer_dev and consumer_dev_name may be specified.
920 */
921static int set_consumer_device_supply(struct regulator_dev *rdev,
922	struct device *consumer_dev, const char *consumer_dev_name,
923	const char *supply)
924{
925	struct regulator_map *node;
926	int has_dev;
927
928	if (consumer_dev && consumer_dev_name)
929		return -EINVAL;
930
931	if (!consumer_dev_name && consumer_dev)
932		consumer_dev_name = dev_name(consumer_dev);
933
934	if (supply == NULL)
935		return -EINVAL;
936
937	if (consumer_dev_name != NULL)
938		has_dev = 1;
939	else
940		has_dev = 0;
941
942	list_for_each_entry(node, &regulator_map_list, list) {
943		if (consumer_dev_name != node->dev_name)
944			continue;
945		if (strcmp(node->supply, supply) != 0)
946			continue;
947
948		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
949				dev_name(&node->regulator->dev),
950				node->regulator->desc->name,
951				supply,
952				dev_name(&rdev->dev), rdev_get_name(rdev));
953		return -EBUSY;
954	}
955
956	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
957	if (node == NULL)
958		return -ENOMEM;
959
960	node->regulator = rdev;
961	node->supply = supply;
962
963	if (has_dev) {
964		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
965		if (node->dev_name == NULL) {
966			kfree(node);
967			return -ENOMEM;
968		}
969	}
970
971	list_add(&node->list, &regulator_map_list);
972	return 0;
973}
974
975static void unset_consumer_device_supply(struct regulator_dev *rdev,
976	const char *consumer_dev_name, struct device *consumer_dev)
977{
978	struct regulator_map *node, *n;
979
980	if (consumer_dev && !consumer_dev_name)
981		consumer_dev_name = dev_name(consumer_dev);
982
983	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
984		if (rdev != node->regulator)
985			continue;
986
987		if (consumer_dev_name && node->dev_name &&
988		    strcmp(consumer_dev_name, node->dev_name))
989			continue;
990
991		list_del(&node->list);
992		kfree(node->dev_name);
993		kfree(node);
994		return;
995	}
996}
997
998static void unset_regulator_supplies(struct regulator_dev *rdev)
999{
1000	struct regulator_map *node, *n;
1001
1002	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1003		if (rdev == node->regulator) {
1004			list_del(&node->list);
1005			kfree(node->dev_name);
1006			kfree(node);
1007			return;
1008		}
1009	}
1010}
1011
1012#define REG_STR_SIZE	32
1013
1014static struct regulator *create_regulator(struct regulator_dev *rdev,
1015					  struct device *dev,
1016					  const char *supply_name)
1017{
1018	struct regulator *regulator;
1019	char buf[REG_STR_SIZE];
1020	int err, size;
1021
1022	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1023	if (regulator == NULL)
1024		return NULL;
1025
1026	mutex_lock(&rdev->mutex);
1027	regulator->rdev = rdev;
1028	list_add(&regulator->list, &rdev->consumer_list);
1029
1030	if (dev) {
1031		/* create a 'requested_microamps_name' sysfs entry */
1032		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1033			supply_name);
1034		if (size >= REG_STR_SIZE)
1035			goto overflow_err;
1036
1037		regulator->dev = dev;
1038		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1039		if (regulator->dev_attr.attr.name == NULL)
1040			goto attr_name_err;
1041
1042		regulator->dev_attr.attr.owner = THIS_MODULE;
1043		regulator->dev_attr.attr.mode = 0444;
1044		regulator->dev_attr.show = device_requested_uA_show;
1045		err = device_create_file(dev, &regulator->dev_attr);
1046		if (err < 0) {
1047			printk(KERN_WARNING "%s: could not add regulator_dev"
1048				" load sysfs\n", __func__);
1049			goto attr_name_err;
1050		}
1051
1052		/* also add a link to the device sysfs entry */
1053		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1054				 dev->kobj.name, supply_name);
1055		if (size >= REG_STR_SIZE)
1056			goto attr_err;
1057
1058		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1059		if (regulator->supply_name == NULL)
1060			goto attr_err;
1061
1062		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1063					buf);
1064		if (err) {
1065			printk(KERN_WARNING
1066			       "%s: could not add device link %s err %d\n",
1067			       __func__, dev->kobj.name, err);
1068			device_remove_file(dev, &regulator->dev_attr);
1069			goto link_name_err;
1070		}
1071	}
1072	mutex_unlock(&rdev->mutex);
1073	return regulator;
1074link_name_err:
1075	kfree(regulator->supply_name);
1076attr_err:
1077	device_remove_file(regulator->dev, &regulator->dev_attr);
1078attr_name_err:
1079	kfree(regulator->dev_attr.attr.name);
1080overflow_err:
1081	list_del(&regulator->list);
1082	kfree(regulator);
1083	mutex_unlock(&rdev->mutex);
1084	return NULL;
1085}
1086
1087/* Internal regulator request function */
1088static struct regulator *_regulator_get(struct device *dev, const char *id,
1089					int exclusive)
1090{
1091	struct regulator_dev *rdev;
1092	struct regulator_map *map;
1093	struct regulator *regulator = ERR_PTR(-ENODEV);
1094	const char *devname = NULL;
1095	int ret;
1096
1097	if (id == NULL) {
1098		printk(KERN_ERR "regulator: get() with no identifier\n");
1099		return regulator;
1100	}
1101
1102	if (dev)
1103		devname = dev_name(dev);
1104
1105	mutex_lock(&regulator_list_mutex);
1106
1107	list_for_each_entry(map, &regulator_map_list, list) {
1108		/* If the mapping has a device set up it must match */
1109		if (map->dev_name &&
1110		    (!devname || strcmp(map->dev_name, devname)))
1111			continue;
1112
1113		if (strcmp(map->supply, id) == 0) {
1114			rdev = map->regulator;
1115			goto found;
1116		}
1117	}
1118	mutex_unlock(&regulator_list_mutex);
1119	return regulator;
1120
1121found:
1122	if (rdev->exclusive) {
1123		regulator = ERR_PTR(-EPERM);
1124		goto out;
1125	}
1126
1127	if (exclusive && rdev->open_count) {
1128		regulator = ERR_PTR(-EBUSY);
1129		goto out;
1130	}
1131
1132	if (!try_module_get(rdev->owner))
1133		goto out;
1134
1135	regulator = create_regulator(rdev, dev, id);
1136	if (regulator == NULL) {
1137		regulator = ERR_PTR(-ENOMEM);
1138		module_put(rdev->owner);
1139	}
1140
1141	rdev->open_count++;
1142	if (exclusive) {
1143		rdev->exclusive = 1;
1144
1145		ret = _regulator_is_enabled(rdev);
1146		if (ret > 0)
1147			rdev->use_count = 1;
1148		else
1149			rdev->use_count = 0;
1150	}
1151
1152out:
1153	mutex_unlock(&regulator_list_mutex);
1154
1155	return regulator;
1156}
1157
1158/**
1159 * regulator_get - lookup and obtain a reference to a regulator.
1160 * @dev: device for regulator "consumer"
1161 * @id: Supply name or regulator ID.
1162 *
1163 * Returns a struct regulator corresponding to the regulator producer,
1164 * or IS_ERR() condition containing errno.
1165 *
1166 * Use of supply names configured via regulator_set_device_supply() is
1167 * strongly encouraged.  It is recommended that the supply name used
1168 * should match the name used for the supply and/or the relevant
1169 * device pins in the datasheet.
1170 */
1171struct regulator *regulator_get(struct device *dev, const char *id)
1172{
1173	return _regulator_get(dev, id, 0);
1174}
1175EXPORT_SYMBOL_GPL(regulator_get);
1176
1177/**
1178 * regulator_get_exclusive - obtain exclusive access to a regulator.
1179 * @dev: device for regulator "consumer"
1180 * @id: Supply name or regulator ID.
1181 *
1182 * Returns a struct regulator corresponding to the regulator producer,
1183 * or IS_ERR() condition containing errno.  Other consumers will be
1184 * unable to obtain this reference is held and the use count for the
1185 * regulator will be initialised to reflect the current state of the
1186 * regulator.
1187 *
1188 * This is intended for use by consumers which cannot tolerate shared
1189 * use of the regulator such as those which need to force the
1190 * regulator off for correct operation of the hardware they are
1191 * controlling.
1192 *
1193 * Use of supply names configured via regulator_set_device_supply() is
1194 * strongly encouraged.  It is recommended that the supply name used
1195 * should match the name used for the supply and/or the relevant
1196 * device pins in the datasheet.
1197 */
1198struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1199{
1200	return _regulator_get(dev, id, 1);
1201}
1202EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1203
1204/**
1205 * regulator_put - "free" the regulator source
1206 * @regulator: regulator source
1207 *
1208 * Note: drivers must ensure that all regulator_enable calls made on this
1209 * regulator source are balanced by regulator_disable calls prior to calling
1210 * this function.
1211 */
1212void regulator_put(struct regulator *regulator)
1213{
1214	struct regulator_dev *rdev;
1215
1216	if (regulator == NULL || IS_ERR(regulator))
1217		return;
1218
1219	mutex_lock(&regulator_list_mutex);
1220	rdev = regulator->rdev;
1221
1222	/* remove any sysfs entries */
1223	if (regulator->dev) {
1224		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1225		kfree(regulator->supply_name);
1226		device_remove_file(regulator->dev, &regulator->dev_attr);
1227		kfree(regulator->dev_attr.attr.name);
1228	}
1229	list_del(&regulator->list);
1230	kfree(regulator);
1231
1232	rdev->open_count--;
1233	rdev->exclusive = 0;
1234
1235	module_put(rdev->owner);
1236	mutex_unlock(&regulator_list_mutex);
1237}
1238EXPORT_SYMBOL_GPL(regulator_put);
1239
1240static int _regulator_can_change_status(struct regulator_dev *rdev)
1241{
1242	if (!rdev->constraints)
1243		return 0;
1244
1245	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1246		return 1;
1247	else
1248		return 0;
1249}
1250
1251/* locks held by regulator_enable() */
1252static int _regulator_enable(struct regulator_dev *rdev)
1253{
1254	int ret;
1255
1256	/* do we need to enable the supply regulator first */
1257	if (rdev->supply) {
1258		ret = _regulator_enable(rdev->supply);
1259		if (ret < 0) {
1260			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1261			       __func__, rdev_get_name(rdev), ret);
1262			return ret;
1263		}
1264	}
1265
1266	/* check voltage and requested load before enabling */
1267	if (rdev->constraints &&
1268	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1269		drms_uA_update(rdev);
1270
1271	if (rdev->use_count == 0) {
1272		/* The regulator may on if it's not switchable or left on */
1273		ret = _regulator_is_enabled(rdev);
1274		if (ret == -EINVAL || ret == 0) {
1275			if (!_regulator_can_change_status(rdev))
1276				return -EPERM;
1277
1278			if (rdev->desc->ops->enable) {
1279				ret = rdev->desc->ops->enable(rdev);
1280				if (ret < 0)
1281					return ret;
1282			} else {
1283				return -EINVAL;
1284			}
1285		} else if (ret < 0) {
1286			printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1287			       __func__, rdev_get_name(rdev), ret);
1288			return ret;
1289		}
1290		/* Fallthrough on positive return values - already enabled */
1291	}
1292
1293	rdev->use_count++;
1294
1295	return 0;
1296}
1297
1298/**
1299 * regulator_enable - enable regulator output
1300 * @regulator: regulator source
1301 *
1302 * Request that the regulator be enabled with the regulator output at
1303 * the predefined voltage or current value.  Calls to regulator_enable()
1304 * must be balanced with calls to regulator_disable().
1305 *
1306 * NOTE: the output value can be set by other drivers, boot loader or may be
1307 * hardwired in the regulator.
1308 */
1309int regulator_enable(struct regulator *regulator)
1310{
1311	struct regulator_dev *rdev = regulator->rdev;
1312	int ret = 0;
1313
1314	mutex_lock(&rdev->mutex);
1315	ret = _regulator_enable(rdev);
1316	mutex_unlock(&rdev->mutex);
1317	return ret;
1318}
1319EXPORT_SYMBOL_GPL(regulator_enable);
1320
1321/* locks held by regulator_disable() */
1322static int _regulator_disable(struct regulator_dev *rdev)
1323{
1324	int ret = 0;
1325
1326	if (WARN(rdev->use_count <= 0,
1327			"unbalanced disables for %s\n",
1328			rdev_get_name(rdev)))
1329		return -EIO;
1330
1331	/* are we the last user and permitted to disable ? */
1332	if (rdev->use_count == 1 &&
1333	    (rdev->constraints && !rdev->constraints->always_on)) {
1334
1335		/* we are last user */
1336		if (_regulator_can_change_status(rdev) &&
1337		    rdev->desc->ops->disable) {
1338			ret = rdev->desc->ops->disable(rdev);
1339			if (ret < 0) {
1340				printk(KERN_ERR "%s: failed to disable %s\n",
1341				       __func__, rdev_get_name(rdev));
1342				return ret;
1343			}
1344		}
1345
1346		/* decrease our supplies ref count and disable if required */
1347		if (rdev->supply)
1348			_regulator_disable(rdev->supply);
1349
1350		rdev->use_count = 0;
1351	} else if (rdev->use_count > 1) {
1352
1353		if (rdev->constraints &&
1354			(rdev->constraints->valid_ops_mask &
1355			REGULATOR_CHANGE_DRMS))
1356			drms_uA_update(rdev);
1357
1358		rdev->use_count--;
1359	}
1360	return ret;
1361}
1362
1363/**
1364 * regulator_disable - disable regulator output
1365 * @regulator: regulator source
1366 *
1367 * Disable the regulator output voltage or current.  Calls to
1368 * regulator_enable() must be balanced with calls to
1369 * regulator_disable().
1370 *
1371 * NOTE: this will only disable the regulator output if no other consumer
1372 * devices have it enabled, the regulator device supports disabling and
1373 * machine constraints permit this operation.
1374 */
1375int regulator_disable(struct regulator *regulator)
1376{
1377	struct regulator_dev *rdev = regulator->rdev;
1378	int ret = 0;
1379
1380	mutex_lock(&rdev->mutex);
1381	ret = _regulator_disable(rdev);
1382	mutex_unlock(&rdev->mutex);
1383	return ret;
1384}
1385EXPORT_SYMBOL_GPL(regulator_disable);
1386
1387/* locks held by regulator_force_disable() */
1388static int _regulator_force_disable(struct regulator_dev *rdev)
1389{
1390	int ret = 0;
1391
1392	/* force disable */
1393	if (rdev->desc->ops->disable) {
1394		/* ah well, who wants to live forever... */
1395		ret = rdev->desc->ops->disable(rdev);
1396		if (ret < 0) {
1397			printk(KERN_ERR "%s: failed to force disable %s\n",
1398			       __func__, rdev_get_name(rdev));
1399			return ret;
1400		}
1401		/* notify other consumers that power has been forced off */
1402		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1403			NULL);
1404	}
1405
1406	/* decrease our supplies ref count and disable if required */
1407	if (rdev->supply)
1408		_regulator_disable(rdev->supply);
1409
1410	rdev->use_count = 0;
1411	return ret;
1412}
1413
1414/**
1415 * regulator_force_disable - force disable regulator output
1416 * @regulator: regulator source
1417 *
1418 * Forcibly disable the regulator output voltage or current.
1419 * NOTE: this *will* disable the regulator output even if other consumer
1420 * devices have it enabled. This should be used for situations when device
1421 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1422 */
1423int regulator_force_disable(struct regulator *regulator)
1424{
1425	int ret;
1426
1427	mutex_lock(&regulator->rdev->mutex);
1428	regulator->uA_load = 0;
1429	ret = _regulator_force_disable(regulator->rdev);
1430	mutex_unlock(&regulator->rdev->mutex);
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_force_disable);
1434
1435static int _regulator_is_enabled(struct regulator_dev *rdev)
1436{
1437	/* sanity check */
1438	if (!rdev->desc->ops->is_enabled)
1439		return -EINVAL;
1440
1441	return rdev->desc->ops->is_enabled(rdev);
1442}
1443
1444/**
1445 * regulator_is_enabled - is the regulator output enabled
1446 * @regulator: regulator source
1447 *
1448 * Returns positive if the regulator driver backing the source/client
1449 * has requested that the device be enabled, zero if it hasn't, else a
1450 * negative errno code.
1451 *
1452 * Note that the device backing this regulator handle can have multiple
1453 * users, so it might be enabled even if regulator_enable() was never
1454 * called for this particular source.
1455 */
1456int regulator_is_enabled(struct regulator *regulator)
1457{
1458	int ret;
1459
1460	mutex_lock(&regulator->rdev->mutex);
1461	ret = _regulator_is_enabled(regulator->rdev);
1462	mutex_unlock(&regulator->rdev->mutex);
1463
1464	return ret;
1465}
1466EXPORT_SYMBOL_GPL(regulator_is_enabled);
1467
1468/**
1469 * regulator_count_voltages - count regulator_list_voltage() selectors
1470 * @regulator: regulator source
1471 *
1472 * Returns number of selectors, or negative errno.  Selectors are
1473 * numbered starting at zero, and typically correspond to bitfields
1474 * in hardware registers.
1475 */
1476int regulator_count_voltages(struct regulator *regulator)
1477{
1478	struct regulator_dev	*rdev = regulator->rdev;
1479
1480	return rdev->desc->n_voltages ? : -EINVAL;
1481}
1482EXPORT_SYMBOL_GPL(regulator_count_voltages);
1483
1484/**
1485 * regulator_list_voltage - enumerate supported voltages
1486 * @regulator: regulator source
1487 * @selector: identify voltage to list
1488 * Context: can sleep
1489 *
1490 * Returns a voltage that can be passed to @regulator_set_voltage(),
1491 * zero if this selector code can't be used on this sytem, or a
1492 * negative errno.
1493 */
1494int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1495{
1496	struct regulator_dev	*rdev = regulator->rdev;
1497	struct regulator_ops	*ops = rdev->desc->ops;
1498	int			ret;
1499
1500	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1501		return -EINVAL;
1502
1503	mutex_lock(&rdev->mutex);
1504	ret = ops->list_voltage(rdev, selector);
1505	mutex_unlock(&rdev->mutex);
1506
1507	if (ret > 0) {
1508		if (ret < rdev->constraints->min_uV)
1509			ret = 0;
1510		else if (ret > rdev->constraints->max_uV)
1511			ret = 0;
1512	}
1513
1514	return ret;
1515}
1516EXPORT_SYMBOL_GPL(regulator_list_voltage);
1517
1518/**
1519 * regulator_is_supported_voltage - check if a voltage range can be supported
1520 *
1521 * @regulator: Regulator to check.
1522 * @min_uV: Minimum required voltage in uV.
1523 * @max_uV: Maximum required voltage in uV.
1524 *
1525 * Returns a boolean or a negative error code.
1526 */
1527int regulator_is_supported_voltage(struct regulator *regulator,
1528				   int min_uV, int max_uV)
1529{
1530	int i, voltages, ret;
1531
1532	ret = regulator_count_voltages(regulator);
1533	if (ret < 0)
1534		return ret;
1535	voltages = ret;
1536
1537	for (i = 0; i < voltages; i++) {
1538		ret = regulator_list_voltage(regulator, i);
1539
1540		if (ret >= min_uV && ret <= max_uV)
1541			return 1;
1542	}
1543
1544	return 0;
1545}
1546
1547/**
1548 * regulator_set_voltage - set regulator output voltage
1549 * @regulator: regulator source
1550 * @min_uV: Minimum required voltage in uV
1551 * @max_uV: Maximum acceptable voltage in uV
1552 *
1553 * Sets a voltage regulator to the desired output voltage. This can be set
1554 * during any regulator state. IOW, regulator can be disabled or enabled.
1555 *
1556 * If the regulator is enabled then the voltage will change to the new value
1557 * immediately otherwise if the regulator is disabled the regulator will
1558 * output at the new voltage when enabled.
1559 *
1560 * NOTE: If the regulator is shared between several devices then the lowest
1561 * request voltage that meets the system constraints will be used.
1562 * Regulator system constraints must be set for this regulator before
1563 * calling this function otherwise this call will fail.
1564 */
1565int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1566{
1567	struct regulator_dev *rdev = regulator->rdev;
1568	int ret;
1569
1570	mutex_lock(&rdev->mutex);
1571
1572	/* sanity check */
1573	if (!rdev->desc->ops->set_voltage) {
1574		ret = -EINVAL;
1575		goto out;
1576	}
1577
1578	/* constraints check */
1579	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1580	if (ret < 0)
1581		goto out;
1582	regulator->min_uV = min_uV;
1583	regulator->max_uV = max_uV;
1584	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1585
1586out:
1587	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1588	mutex_unlock(&rdev->mutex);
1589	return ret;
1590}
1591EXPORT_SYMBOL_GPL(regulator_set_voltage);
1592
1593static int _regulator_get_voltage(struct regulator_dev *rdev)
1594{
1595	/* sanity check */
1596	if (rdev->desc->ops->get_voltage)
1597		return rdev->desc->ops->get_voltage(rdev);
1598	else
1599		return -EINVAL;
1600}
1601
1602/**
1603 * regulator_get_voltage - get regulator output voltage
1604 * @regulator: regulator source
1605 *
1606 * This returns the current regulator voltage in uV.
1607 *
1608 * NOTE: If the regulator is disabled it will return the voltage value. This
1609 * function should not be used to determine regulator state.
1610 */
1611int regulator_get_voltage(struct regulator *regulator)
1612{
1613	int ret;
1614
1615	mutex_lock(&regulator->rdev->mutex);
1616
1617	ret = _regulator_get_voltage(regulator->rdev);
1618
1619	mutex_unlock(&regulator->rdev->mutex);
1620
1621	return ret;
1622}
1623EXPORT_SYMBOL_GPL(regulator_get_voltage);
1624
1625/**
1626 * regulator_set_current_limit - set regulator output current limit
1627 * @regulator: regulator source
1628 * @min_uA: Minimuum supported current in uA
1629 * @max_uA: Maximum supported current in uA
1630 *
1631 * Sets current sink to the desired output current. This can be set during
1632 * any regulator state. IOW, regulator can be disabled or enabled.
1633 *
1634 * If the regulator is enabled then the current will change to the new value
1635 * immediately otherwise if the regulator is disabled the regulator will
1636 * output at the new current when enabled.
1637 *
1638 * NOTE: Regulator system constraints must be set for this regulator before
1639 * calling this function otherwise this call will fail.
1640 */
1641int regulator_set_current_limit(struct regulator *regulator,
1642			       int min_uA, int max_uA)
1643{
1644	struct regulator_dev *rdev = regulator->rdev;
1645	int ret;
1646
1647	mutex_lock(&rdev->mutex);
1648
1649	/* sanity check */
1650	if (!rdev->desc->ops->set_current_limit) {
1651		ret = -EINVAL;
1652		goto out;
1653	}
1654
1655	/* constraints check */
1656	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1657	if (ret < 0)
1658		goto out;
1659
1660	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1661out:
1662	mutex_unlock(&rdev->mutex);
1663	return ret;
1664}
1665EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1666
1667static int _regulator_get_current_limit(struct regulator_dev *rdev)
1668{
1669	int ret;
1670
1671	mutex_lock(&rdev->mutex);
1672
1673	/* sanity check */
1674	if (!rdev->desc->ops->get_current_limit) {
1675		ret = -EINVAL;
1676		goto out;
1677	}
1678
1679	ret = rdev->desc->ops->get_current_limit(rdev);
1680out:
1681	mutex_unlock(&rdev->mutex);
1682	return ret;
1683}
1684
1685/**
1686 * regulator_get_current_limit - get regulator output current
1687 * @regulator: regulator source
1688 *
1689 * This returns the current supplied by the specified current sink in uA.
1690 *
1691 * NOTE: If the regulator is disabled it will return the current value. This
1692 * function should not be used to determine regulator state.
1693 */
1694int regulator_get_current_limit(struct regulator *regulator)
1695{
1696	return _regulator_get_current_limit(regulator->rdev);
1697}
1698EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1699
1700/**
1701 * regulator_set_mode - set regulator operating mode
1702 * @regulator: regulator source
1703 * @mode: operating mode - one of the REGULATOR_MODE constants
1704 *
1705 * Set regulator operating mode to increase regulator efficiency or improve
1706 * regulation performance.
1707 *
1708 * NOTE: Regulator system constraints must be set for this regulator before
1709 * calling this function otherwise this call will fail.
1710 */
1711int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1712{
1713	struct regulator_dev *rdev = regulator->rdev;
1714	int ret;
1715
1716	mutex_lock(&rdev->mutex);
1717
1718	/* sanity check */
1719	if (!rdev->desc->ops->set_mode) {
1720		ret = -EINVAL;
1721		goto out;
1722	}
1723
1724	/* constraints check */
1725	ret = regulator_check_mode(rdev, mode);
1726	if (ret < 0)
1727		goto out;
1728
1729	ret = rdev->desc->ops->set_mode(rdev, mode);
1730out:
1731	mutex_unlock(&rdev->mutex);
1732	return ret;
1733}
1734EXPORT_SYMBOL_GPL(regulator_set_mode);
1735
1736static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1737{
1738	int ret;
1739
1740	mutex_lock(&rdev->mutex);
1741
1742	/* sanity check */
1743	if (!rdev->desc->ops->get_mode) {
1744		ret = -EINVAL;
1745		goto out;
1746	}
1747
1748	ret = rdev->desc->ops->get_mode(rdev);
1749out:
1750	mutex_unlock(&rdev->mutex);
1751	return ret;
1752}
1753
1754/**
1755 * regulator_get_mode - get regulator operating mode
1756 * @regulator: regulator source
1757 *
1758 * Get the current regulator operating mode.
1759 */
1760unsigned int regulator_get_mode(struct regulator *regulator)
1761{
1762	return _regulator_get_mode(regulator->rdev);
1763}
1764EXPORT_SYMBOL_GPL(regulator_get_mode);
1765
1766/**
1767 * regulator_set_optimum_mode - set regulator optimum operating mode
1768 * @regulator: regulator source
1769 * @uA_load: load current
1770 *
1771 * Notifies the regulator core of a new device load. This is then used by
1772 * DRMS (if enabled by constraints) to set the most efficient regulator
1773 * operating mode for the new regulator loading.
1774 *
1775 * Consumer devices notify their supply regulator of the maximum power
1776 * they will require (can be taken from device datasheet in the power
1777 * consumption tables) when they change operational status and hence power
1778 * state. Examples of operational state changes that can affect power
1779 * consumption are :-
1780 *
1781 *    o Device is opened / closed.
1782 *    o Device I/O is about to begin or has just finished.
1783 *    o Device is idling in between work.
1784 *
1785 * This information is also exported via sysfs to userspace.
1786 *
1787 * DRMS will sum the total requested load on the regulator and change
1788 * to the most efficient operating mode if platform constraints allow.
1789 *
1790 * Returns the new regulator mode or error.
1791 */
1792int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1793{
1794	struct regulator_dev *rdev = regulator->rdev;
1795	struct regulator *consumer;
1796	int ret, output_uV, input_uV, total_uA_load = 0;
1797	unsigned int mode;
1798
1799	mutex_lock(&rdev->mutex);
1800
1801	regulator->uA_load = uA_load;
1802	ret = regulator_check_drms(rdev);
1803	if (ret < 0)
1804		goto out;
1805	ret = -EINVAL;
1806
1807	/* sanity check */
1808	if (!rdev->desc->ops->get_optimum_mode)
1809		goto out;
1810
1811	/* get output voltage */
1812	output_uV = rdev->desc->ops->get_voltage(rdev);
1813	if (output_uV <= 0) {
1814		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1815			__func__, rdev_get_name(rdev));
1816		goto out;
1817	}
1818
1819	/* get input voltage */
1820	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1821		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1822	else
1823		input_uV = rdev->constraints->input_uV;
1824	if (input_uV <= 0) {
1825		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1826			__func__, rdev_get_name(rdev));
1827		goto out;
1828	}
1829
1830	/* calc total requested load for this regulator */
1831	list_for_each_entry(consumer, &rdev->consumer_list, list)
1832		total_uA_load += consumer->uA_load;
1833
1834	mode = rdev->desc->ops->get_optimum_mode(rdev,
1835						 input_uV, output_uV,
1836						 total_uA_load);
1837	ret = regulator_check_mode(rdev, mode);
1838	if (ret < 0) {
1839		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1840			" %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1841			total_uA_load, input_uV, output_uV);
1842		goto out;
1843	}
1844
1845	ret = rdev->desc->ops->set_mode(rdev, mode);
1846	if (ret < 0) {
1847		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1848			__func__, mode, rdev_get_name(rdev));
1849		goto out;
1850	}
1851	ret = mode;
1852out:
1853	mutex_unlock(&rdev->mutex);
1854	return ret;
1855}
1856EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1857
1858/**
1859 * regulator_register_notifier - register regulator event notifier
1860 * @regulator: regulator source
1861 * @nb: notifier block
1862 *
1863 * Register notifier block to receive regulator events.
1864 */
1865int regulator_register_notifier(struct regulator *regulator,
1866			      struct notifier_block *nb)
1867{
1868	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1869						nb);
1870}
1871EXPORT_SYMBOL_GPL(regulator_register_notifier);
1872
1873/**
1874 * regulator_unregister_notifier - unregister regulator event notifier
1875 * @regulator: regulator source
1876 * @nb: notifier block
1877 *
1878 * Unregister regulator event notifier block.
1879 */
1880int regulator_unregister_notifier(struct regulator *regulator,
1881				struct notifier_block *nb)
1882{
1883	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1884						  nb);
1885}
1886EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1887
1888/* notify regulator consumers and downstream regulator consumers.
1889 * Note mutex must be held by caller.
1890 */
1891static void _notifier_call_chain(struct regulator_dev *rdev,
1892				  unsigned long event, void *data)
1893{
1894	struct regulator_dev *_rdev;
1895
1896	/* call rdev chain first */
1897	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1898
1899	/* now notify regulator we supply */
1900	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1901		mutex_lock(&_rdev->mutex);
1902		_notifier_call_chain(_rdev, event, data);
1903		mutex_unlock(&_rdev->mutex);
1904	}
1905}
1906
1907/**
1908 * regulator_bulk_get - get multiple regulator consumers
1909 *
1910 * @dev:           Device to supply
1911 * @num_consumers: Number of consumers to register
1912 * @consumers:     Configuration of consumers; clients are stored here.
1913 *
1914 * @return 0 on success, an errno on failure.
1915 *
1916 * This helper function allows drivers to get several regulator
1917 * consumers in one operation.  If any of the regulators cannot be
1918 * acquired then any regulators that were allocated will be freed
1919 * before returning to the caller.
1920 */
1921int regulator_bulk_get(struct device *dev, int num_consumers,
1922		       struct regulator_bulk_data *consumers)
1923{
1924	int i;
1925	int ret;
1926
1927	for (i = 0; i < num_consumers; i++)
1928		consumers[i].consumer = NULL;
1929
1930	for (i = 0; i < num_consumers; i++) {
1931		consumers[i].consumer = regulator_get(dev,
1932						      consumers[i].supply);
1933		if (IS_ERR(consumers[i].consumer)) {
1934			ret = PTR_ERR(consumers[i].consumer);
1935			dev_err(dev, "Failed to get supply '%s': %d\n",
1936				consumers[i].supply, ret);
1937			consumers[i].consumer = NULL;
1938			goto err;
1939		}
1940	}
1941
1942	return 0;
1943
1944err:
1945	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1946		regulator_put(consumers[i].consumer);
1947
1948	return ret;
1949}
1950EXPORT_SYMBOL_GPL(regulator_bulk_get);
1951
1952/**
1953 * regulator_bulk_enable - enable multiple regulator consumers
1954 *
1955 * @num_consumers: Number of consumers
1956 * @consumers:     Consumer data; clients are stored here.
1957 * @return         0 on success, an errno on failure
1958 *
1959 * This convenience API allows consumers to enable multiple regulator
1960 * clients in a single API call.  If any consumers cannot be enabled
1961 * then any others that were enabled will be disabled again prior to
1962 * return.
1963 */
1964int regulator_bulk_enable(int num_consumers,
1965			  struct regulator_bulk_data *consumers)
1966{
1967	int i;
1968	int ret;
1969
1970	for (i = 0; i < num_consumers; i++) {
1971		ret = regulator_enable(consumers[i].consumer);
1972		if (ret != 0)
1973			goto err;
1974	}
1975
1976	return 0;
1977
1978err:
1979	printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1980	for (i = 0; i < num_consumers; i++)
1981		regulator_disable(consumers[i].consumer);
1982
1983	return ret;
1984}
1985EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1986
1987/**
1988 * regulator_bulk_disable - disable multiple regulator consumers
1989 *
1990 * @num_consumers: Number of consumers
1991 * @consumers:     Consumer data; clients are stored here.
1992 * @return         0 on success, an errno on failure
1993 *
1994 * This convenience API allows consumers to disable multiple regulator
1995 * clients in a single API call.  If any consumers cannot be enabled
1996 * then any others that were disabled will be disabled again prior to
1997 * return.
1998 */
1999int regulator_bulk_disable(int num_consumers,
2000			   struct regulator_bulk_data *consumers)
2001{
2002	int i;
2003	int ret;
2004
2005	for (i = 0; i < num_consumers; i++) {
2006		ret = regulator_disable(consumers[i].consumer);
2007		if (ret != 0)
2008			goto err;
2009	}
2010
2011	return 0;
2012
2013err:
2014	printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2015	       ret);
2016	for (i = 0; i < num_consumers; i++)
2017		regulator_enable(consumers[i].consumer);
2018
2019	return ret;
2020}
2021EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2022
2023/**
2024 * regulator_bulk_free - free multiple regulator consumers
2025 *
2026 * @num_consumers: Number of consumers
2027 * @consumers:     Consumer data; clients are stored here.
2028 *
2029 * This convenience API allows consumers to free multiple regulator
2030 * clients in a single API call.
2031 */
2032void regulator_bulk_free(int num_consumers,
2033			 struct regulator_bulk_data *consumers)
2034{
2035	int i;
2036
2037	for (i = 0; i < num_consumers; i++) {
2038		regulator_put(consumers[i].consumer);
2039		consumers[i].consumer = NULL;
2040	}
2041}
2042EXPORT_SYMBOL_GPL(regulator_bulk_free);
2043
2044/**
2045 * regulator_notifier_call_chain - call regulator event notifier
2046 * @rdev: regulator source
2047 * @event: notifier block
2048 * @data: callback-specific data.
2049 *
2050 * Called by regulator drivers to notify clients a regulator event has
2051 * occurred. We also notify regulator clients downstream.
2052 * Note lock must be held by caller.
2053 */
2054int regulator_notifier_call_chain(struct regulator_dev *rdev,
2055				  unsigned long event, void *data)
2056{
2057	_notifier_call_chain(rdev, event, data);
2058	return NOTIFY_DONE;
2059
2060}
2061EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2062
2063/**
2064 * regulator_mode_to_status - convert a regulator mode into a status
2065 *
2066 * @mode: Mode to convert
2067 *
2068 * Convert a regulator mode into a status.
2069 */
2070int regulator_mode_to_status(unsigned int mode)
2071{
2072	switch (mode) {
2073	case REGULATOR_MODE_FAST:
2074		return REGULATOR_STATUS_FAST;
2075	case REGULATOR_MODE_NORMAL:
2076		return REGULATOR_STATUS_NORMAL;
2077	case REGULATOR_MODE_IDLE:
2078		return REGULATOR_STATUS_IDLE;
2079	case REGULATOR_STATUS_STANDBY:
2080		return REGULATOR_STATUS_STANDBY;
2081	default:
2082		return 0;
2083	}
2084}
2085EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2086
2087/*
2088 * To avoid cluttering sysfs (and memory) with useless state, only
2089 * create attributes that can be meaningfully displayed.
2090 */
2091static int add_regulator_attributes(struct regulator_dev *rdev)
2092{
2093	struct device		*dev = &rdev->dev;
2094	struct regulator_ops	*ops = rdev->desc->ops;
2095	int			status = 0;
2096
2097	/* some attributes need specific methods to be displayed */
2098	if (ops->get_voltage) {
2099		status = device_create_file(dev, &dev_attr_microvolts);
2100		if (status < 0)
2101			return status;
2102	}
2103	if (ops->get_current_limit) {
2104		status = device_create_file(dev, &dev_attr_microamps);
2105		if (status < 0)
2106			return status;
2107	}
2108	if (ops->get_mode) {
2109		status = device_create_file(dev, &dev_attr_opmode);
2110		if (status < 0)
2111			return status;
2112	}
2113	if (ops->is_enabled) {
2114		status = device_create_file(dev, &dev_attr_state);
2115		if (status < 0)
2116			return status;
2117	}
2118	if (ops->get_status) {
2119		status = device_create_file(dev, &dev_attr_status);
2120		if (status < 0)
2121			return status;
2122	}
2123
2124	/* some attributes are type-specific */
2125	if (rdev->desc->type == REGULATOR_CURRENT) {
2126		status = device_create_file(dev, &dev_attr_requested_microamps);
2127		if (status < 0)
2128			return status;
2129	}
2130
2131	/* all the other attributes exist to support constraints;
2132	 * don't show them if there are no constraints, or if the
2133	 * relevant supporting methods are missing.
2134	 */
2135	if (!rdev->constraints)
2136		return status;
2137
2138	/* constraints need specific supporting methods */
2139	if (ops->set_voltage) {
2140		status = device_create_file(dev, &dev_attr_min_microvolts);
2141		if (status < 0)
2142			return status;
2143		status = device_create_file(dev, &dev_attr_max_microvolts);
2144		if (status < 0)
2145			return status;
2146	}
2147	if (ops->set_current_limit) {
2148		status = device_create_file(dev, &dev_attr_min_microamps);
2149		if (status < 0)
2150			return status;
2151		status = device_create_file(dev, &dev_attr_max_microamps);
2152		if (status < 0)
2153			return status;
2154	}
2155
2156	/* suspend mode constraints need multiple supporting methods */
2157	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2158		return status;
2159
2160	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2161	if (status < 0)
2162		return status;
2163	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2164	if (status < 0)
2165		return status;
2166	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2167	if (status < 0)
2168		return status;
2169
2170	if (ops->set_suspend_voltage) {
2171		status = device_create_file(dev,
2172				&dev_attr_suspend_standby_microvolts);
2173		if (status < 0)
2174			return status;
2175		status = device_create_file(dev,
2176				&dev_attr_suspend_mem_microvolts);
2177		if (status < 0)
2178			return status;
2179		status = device_create_file(dev,
2180				&dev_attr_suspend_disk_microvolts);
2181		if (status < 0)
2182			return status;
2183	}
2184
2185	if (ops->set_suspend_mode) {
2186		status = device_create_file(dev,
2187				&dev_attr_suspend_standby_mode);
2188		if (status < 0)
2189			return status;
2190		status = device_create_file(dev,
2191				&dev_attr_suspend_mem_mode);
2192		if (status < 0)
2193			return status;
2194		status = device_create_file(dev,
2195				&dev_attr_suspend_disk_mode);
2196		if (status < 0)
2197			return status;
2198	}
2199
2200	return status;
2201}
2202
2203/**
2204 * regulator_register - register regulator
2205 * @regulator_desc: regulator to register
2206 * @dev: struct device for the regulator
2207 * @init_data: platform provided init data, passed through by driver
2208 * @driver_data: private regulator data
2209 *
2210 * Called by regulator drivers to register a regulator.
2211 * Returns 0 on success.
2212 */
2213struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2214	struct device *dev, struct regulator_init_data *init_data,
2215	void *driver_data)
2216{
2217	static atomic_t regulator_no = ATOMIC_INIT(0);
2218	struct regulator_dev *rdev;
2219	int ret, i;
2220
2221	if (regulator_desc == NULL)
2222		return ERR_PTR(-EINVAL);
2223
2224	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2225		return ERR_PTR(-EINVAL);
2226
2227	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2228	    regulator_desc->type != REGULATOR_CURRENT)
2229		return ERR_PTR(-EINVAL);
2230
2231	if (!init_data)
2232		return ERR_PTR(-EINVAL);
2233
2234	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2235	if (rdev == NULL)
2236		return ERR_PTR(-ENOMEM);
2237
2238	mutex_lock(&regulator_list_mutex);
2239
2240	mutex_init(&rdev->mutex);
2241	rdev->reg_data = driver_data;
2242	rdev->owner = regulator_desc->owner;
2243	rdev->desc = regulator_desc;
2244	INIT_LIST_HEAD(&rdev->consumer_list);
2245	INIT_LIST_HEAD(&rdev->supply_list);
2246	INIT_LIST_HEAD(&rdev->list);
2247	INIT_LIST_HEAD(&rdev->slist);
2248	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2249
2250	/* preform any regulator specific init */
2251	if (init_data->regulator_init) {
2252		ret = init_data->regulator_init(rdev->reg_data);
2253		if (ret < 0)
2254			goto clean;
2255	}
2256
2257	/* register with sysfs */
2258	rdev->dev.class = &regulator_class;
2259	rdev->dev.parent = dev;
2260	dev_set_name(&rdev->dev, "regulator.%d",
2261		     atomic_inc_return(&regulator_no) - 1);
2262	ret = device_register(&rdev->dev);
2263	if (ret != 0)
2264		goto clean;
2265
2266	dev_set_drvdata(&rdev->dev, rdev);
2267
2268	/* set regulator constraints */
2269	ret = set_machine_constraints(rdev, &init_data->constraints);
2270	if (ret < 0)
2271		goto scrub;
2272
2273	/* add attributes supported by this regulator */
2274	ret = add_regulator_attributes(rdev);
2275	if (ret < 0)
2276		goto scrub;
2277
2278	/* set supply regulator if it exists */
2279	if (init_data->supply_regulator_dev) {
2280		ret = set_supply(rdev,
2281			dev_get_drvdata(init_data->supply_regulator_dev));
2282		if (ret < 0)
2283			goto scrub;
2284	}
2285
2286	/* add consumers devices */
2287	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2288		ret = set_consumer_device_supply(rdev,
2289			init_data->consumer_supplies[i].dev,
2290			init_data->consumer_supplies[i].dev_name,
2291			init_data->consumer_supplies[i].supply);
2292		if (ret < 0) {
2293			for (--i; i >= 0; i--)
2294				unset_consumer_device_supply(rdev,
2295				    init_data->consumer_supplies[i].dev_name,
2296				    init_data->consumer_supplies[i].dev);
2297			goto scrub;
2298		}
2299	}
2300
2301	list_add(&rdev->list, &regulator_list);
2302out:
2303	mutex_unlock(&regulator_list_mutex);
2304	return rdev;
2305
2306scrub:
2307	device_unregister(&rdev->dev);
2308	/* device core frees rdev */
2309	rdev = ERR_PTR(ret);
2310	goto out;
2311
2312clean:
2313	kfree(rdev);
2314	rdev = ERR_PTR(ret);
2315	goto out;
2316}
2317EXPORT_SYMBOL_GPL(regulator_register);
2318
2319/**
2320 * regulator_unregister - unregister regulator
2321 * @rdev: regulator to unregister
2322 *
2323 * Called by regulator drivers to unregister a regulator.
2324 */
2325void regulator_unregister(struct regulator_dev *rdev)
2326{
2327	if (rdev == NULL)
2328		return;
2329
2330	mutex_lock(&regulator_list_mutex);
2331	WARN_ON(rdev->open_count);
2332	unset_regulator_supplies(rdev);
2333	list_del(&rdev->list);
2334	if (rdev->supply)
2335		sysfs_remove_link(&rdev->dev.kobj, "supply");
2336	device_unregister(&rdev->dev);
2337	mutex_unlock(&regulator_list_mutex);
2338}
2339EXPORT_SYMBOL_GPL(regulator_unregister);
2340
2341/**
2342 * regulator_suspend_prepare - prepare regulators for system wide suspend
2343 * @state: system suspend state
2344 *
2345 * Configure each regulator with it's suspend operating parameters for state.
2346 * This will usually be called by machine suspend code prior to supending.
2347 */
2348int regulator_suspend_prepare(suspend_state_t state)
2349{
2350	struct regulator_dev *rdev;
2351	int ret = 0;
2352
2353	/* ON is handled by regulator active state */
2354	if (state == PM_SUSPEND_ON)
2355		return -EINVAL;
2356
2357	mutex_lock(&regulator_list_mutex);
2358	list_for_each_entry(rdev, &regulator_list, list) {
2359
2360		mutex_lock(&rdev->mutex);
2361		ret = suspend_prepare(rdev, state);
2362		mutex_unlock(&rdev->mutex);
2363
2364		if (ret < 0) {
2365			printk(KERN_ERR "%s: failed to prepare %s\n",
2366				__func__, rdev_get_name(rdev));
2367			goto out;
2368		}
2369	}
2370out:
2371	mutex_unlock(&regulator_list_mutex);
2372	return ret;
2373}
2374EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2375
2376/**
2377 * regulator_has_full_constraints - the system has fully specified constraints
2378 *
2379 * Calling this function will cause the regulator API to disable all
2380 * regulators which have a zero use count and don't have an always_on
2381 * constraint in a late_initcall.
2382 *
2383 * The intention is that this will become the default behaviour in a
2384 * future kernel release so users are encouraged to use this facility
2385 * now.
2386 */
2387void regulator_has_full_constraints(void)
2388{
2389	has_full_constraints = 1;
2390}
2391EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2392
2393/**
2394 * rdev_get_drvdata - get rdev regulator driver data
2395 * @rdev: regulator
2396 *
2397 * Get rdev regulator driver private data. This call can be used in the
2398 * regulator driver context.
2399 */
2400void *rdev_get_drvdata(struct regulator_dev *rdev)
2401{
2402	return rdev->reg_data;
2403}
2404EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2405
2406/**
2407 * regulator_get_drvdata - get regulator driver data
2408 * @regulator: regulator
2409 *
2410 * Get regulator driver private data. This call can be used in the consumer
2411 * driver context when non API regulator specific functions need to be called.
2412 */
2413void *regulator_get_drvdata(struct regulator *regulator)
2414{
2415	return regulator->rdev->reg_data;
2416}
2417EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2418
2419/**
2420 * regulator_set_drvdata - set regulator driver data
2421 * @regulator: regulator
2422 * @data: data
2423 */
2424void regulator_set_drvdata(struct regulator *regulator, void *data)
2425{
2426	regulator->rdev->reg_data = data;
2427}
2428EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2429
2430/**
2431 * regulator_get_id - get regulator ID
2432 * @rdev: regulator
2433 */
2434int rdev_get_id(struct regulator_dev *rdev)
2435{
2436	return rdev->desc->id;
2437}
2438EXPORT_SYMBOL_GPL(rdev_get_id);
2439
2440struct device *rdev_get_dev(struct regulator_dev *rdev)
2441{
2442	return &rdev->dev;
2443}
2444EXPORT_SYMBOL_GPL(rdev_get_dev);
2445
2446void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2447{
2448	return reg_init_data->driver_data;
2449}
2450EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2451
2452static int __init regulator_init(void)
2453{
2454	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2455	return class_register(&regulator_class);
2456}
2457
2458/* init early to allow our consumers to complete system booting */
2459core_initcall(regulator_init);
2460
2461static int __init regulator_init_complete(void)
2462{
2463	struct regulator_dev *rdev;
2464	struct regulator_ops *ops;
2465	struct regulation_constraints *c;
2466	int enabled, ret;
2467	const char *name;
2468
2469	mutex_lock(&regulator_list_mutex);
2470
2471	/* If we have a full configuration then disable any regulators
2472	 * which are not in use or always_on.  This will become the
2473	 * default behaviour in the future.
2474	 */
2475	list_for_each_entry(rdev, &regulator_list, list) {
2476		ops = rdev->desc->ops;
2477		c = rdev->constraints;
2478
2479		name = rdev_get_name(rdev);
2480
2481		if (!ops->disable || (c && c->always_on))
2482			continue;
2483
2484		mutex_lock(&rdev->mutex);
2485
2486		if (rdev->use_count)
2487			goto unlock;
2488
2489		/* If we can't read the status assume it's on. */
2490		if (ops->is_enabled)
2491			enabled = ops->is_enabled(rdev);
2492		else
2493			enabled = 1;
2494
2495		if (!enabled)
2496			goto unlock;
2497
2498		if (has_full_constraints) {
2499			/* We log since this may kill the system if it
2500			 * goes wrong. */
2501			printk(KERN_INFO "%s: disabling %s\n",
2502			       __func__, name);
2503			ret = ops->disable(rdev);
2504			if (ret != 0) {
2505				printk(KERN_ERR
2506				       "%s: couldn't disable %s: %d\n",
2507				       __func__, name, ret);
2508			}
2509		} else {
2510			/* The intention is that in future we will
2511			 * assume that full constraints are provided
2512			 * so warn even if we aren't going to do
2513			 * anything here.
2514			 */
2515			printk(KERN_WARNING
2516			       "%s: incomplete constraints, leaving %s on\n",
2517			       __func__, name);
2518		}
2519
2520unlock:
2521		mutex_unlock(&rdev->mutex);
2522	}
2523
2524	mutex_unlock(&regulator_list_mutex);
2525
2526	return 0;
2527}
2528late_initcall(regulator_init_complete);
2529