core.c revision fbe31057fafebdc2811a7101b8b4a0460f5417d1
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39
40#define rdev_crit(rdev, fmt, ...)					\
41	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_err(rdev, fmt, ...)					\
43	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_warn(rdev, fmt, ...)					\
45	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46#define rdev_info(rdev, fmt, ...)					\
47	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48#define rdev_dbg(rdev, fmt, ...)					\
49	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51static DEFINE_MUTEX(regulator_list_mutex);
52static LIST_HEAD(regulator_list);
53static LIST_HEAD(regulator_map_list);
54static bool has_full_constraints;
55static bool board_wants_dummy_regulator;
56
57static struct dentry *debugfs_root;
58
59/*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64struct regulator_map {
65	struct list_head list;
66	const char *dev_name;   /* The dev_name() for the consumer */
67	const char *supply;
68	struct regulator_dev *regulator;
69};
70
71/*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76struct regulator {
77	struct device *dev;
78	struct list_head list;
79	unsigned int always_on:1;
80	unsigned int bypass:1;
81	int uA_load;
82	int min_uV;
83	int max_uV;
84	char *supply_name;
85	struct device_attribute dev_attr;
86	struct regulator_dev *rdev;
87	struct dentry *debugfs;
88};
89
90static int _regulator_is_enabled(struct regulator_dev *rdev);
91static int _regulator_disable(struct regulator_dev *rdev);
92static int _regulator_get_voltage(struct regulator_dev *rdev);
93static int _regulator_get_current_limit(struct regulator_dev *rdev);
94static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95static void _notifier_call_chain(struct regulator_dev *rdev,
96				  unsigned long event, void *data);
97static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98				     int min_uV, int max_uV);
99static struct regulator *create_regulator(struct regulator_dev *rdev,
100					  struct device *dev,
101					  const char *supply_name);
102
103static const char *rdev_get_name(struct regulator_dev *rdev)
104{
105	if (rdev->constraints && rdev->constraints->name)
106		return rdev->constraints->name;
107	else if (rdev->desc->name)
108		return rdev->desc->name;
109	else
110		return "";
111}
112
113/**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123{
124	struct device_node *regnode = NULL;
125	char prop_name[32]; /* 32 is max size of property name */
126
127	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129	snprintf(prop_name, 32, "%s-supply", supply);
130	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132	if (!regnode) {
133		dev_dbg(dev, "Looking up %s property in node %s failed",
134				prop_name, dev->of_node->full_name);
135		return NULL;
136	}
137	return regnode;
138}
139
140static int _regulator_can_change_status(struct regulator_dev *rdev)
141{
142	if (!rdev->constraints)
143		return 0;
144
145	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146		return 1;
147	else
148		return 0;
149}
150
151/* Platform voltage constraint check */
152static int regulator_check_voltage(struct regulator_dev *rdev,
153				   int *min_uV, int *max_uV)
154{
155	BUG_ON(*min_uV > *max_uV);
156
157	if (!rdev->constraints) {
158		rdev_err(rdev, "no constraints\n");
159		return -ENODEV;
160	}
161	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162		rdev_err(rdev, "operation not allowed\n");
163		return -EPERM;
164	}
165
166	if (*max_uV > rdev->constraints->max_uV)
167		*max_uV = rdev->constraints->max_uV;
168	if (*min_uV < rdev->constraints->min_uV)
169		*min_uV = rdev->constraints->min_uV;
170
171	if (*min_uV > *max_uV) {
172		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173			 *min_uV, *max_uV);
174		return -EINVAL;
175	}
176
177	return 0;
178}
179
180/* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183static int regulator_check_consumers(struct regulator_dev *rdev,
184				     int *min_uV, int *max_uV)
185{
186	struct regulator *regulator;
187
188	list_for_each_entry(regulator, &rdev->consumer_list, list) {
189		/*
190		 * Assume consumers that didn't say anything are OK
191		 * with anything in the constraint range.
192		 */
193		if (!regulator->min_uV && !regulator->max_uV)
194			continue;
195
196		if (*max_uV > regulator->max_uV)
197			*max_uV = regulator->max_uV;
198		if (*min_uV < regulator->min_uV)
199			*min_uV = regulator->min_uV;
200	}
201
202	if (*min_uV > *max_uV) {
203		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
204			*min_uV, *max_uV);
205		return -EINVAL;
206	}
207
208	return 0;
209}
210
211/* current constraint check */
212static int regulator_check_current_limit(struct regulator_dev *rdev,
213					int *min_uA, int *max_uA)
214{
215	BUG_ON(*min_uA > *max_uA);
216
217	if (!rdev->constraints) {
218		rdev_err(rdev, "no constraints\n");
219		return -ENODEV;
220	}
221	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222		rdev_err(rdev, "operation not allowed\n");
223		return -EPERM;
224	}
225
226	if (*max_uA > rdev->constraints->max_uA)
227		*max_uA = rdev->constraints->max_uA;
228	if (*min_uA < rdev->constraints->min_uA)
229		*min_uA = rdev->constraints->min_uA;
230
231	if (*min_uA > *max_uA) {
232		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233			 *min_uA, *max_uA);
234		return -EINVAL;
235	}
236
237	return 0;
238}
239
240/* operating mode constraint check */
241static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242{
243	switch (*mode) {
244	case REGULATOR_MODE_FAST:
245	case REGULATOR_MODE_NORMAL:
246	case REGULATOR_MODE_IDLE:
247	case REGULATOR_MODE_STANDBY:
248		break;
249	default:
250		rdev_err(rdev, "invalid mode %x specified\n", *mode);
251		return -EINVAL;
252	}
253
254	if (!rdev->constraints) {
255		rdev_err(rdev, "no constraints\n");
256		return -ENODEV;
257	}
258	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259		rdev_err(rdev, "operation not allowed\n");
260		return -EPERM;
261	}
262
263	/* The modes are bitmasks, the most power hungry modes having
264	 * the lowest values. If the requested mode isn't supported
265	 * try higher modes. */
266	while (*mode) {
267		if (rdev->constraints->valid_modes_mask & *mode)
268			return 0;
269		*mode /= 2;
270	}
271
272	return -EINVAL;
273}
274
275/* dynamic regulator mode switching constraint check */
276static int regulator_check_drms(struct regulator_dev *rdev)
277{
278	if (!rdev->constraints) {
279		rdev_err(rdev, "no constraints\n");
280		return -ENODEV;
281	}
282	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283		rdev_err(rdev, "operation not allowed\n");
284		return -EPERM;
285	}
286	return 0;
287}
288
289static ssize_t regulator_uV_show(struct device *dev,
290				struct device_attribute *attr, char *buf)
291{
292	struct regulator_dev *rdev = dev_get_drvdata(dev);
293	ssize_t ret;
294
295	mutex_lock(&rdev->mutex);
296	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297	mutex_unlock(&rdev->mutex);
298
299	return ret;
300}
301static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303static ssize_t regulator_uA_show(struct device *dev,
304				struct device_attribute *attr, char *buf)
305{
306	struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309}
310static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312static ssize_t regulator_name_show(struct device *dev,
313			     struct device_attribute *attr, char *buf)
314{
315	struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317	return sprintf(buf, "%s\n", rdev_get_name(rdev));
318}
319
320static ssize_t regulator_print_opmode(char *buf, int mode)
321{
322	switch (mode) {
323	case REGULATOR_MODE_FAST:
324		return sprintf(buf, "fast\n");
325	case REGULATOR_MODE_NORMAL:
326		return sprintf(buf, "normal\n");
327	case REGULATOR_MODE_IDLE:
328		return sprintf(buf, "idle\n");
329	case REGULATOR_MODE_STANDBY:
330		return sprintf(buf, "standby\n");
331	}
332	return sprintf(buf, "unknown\n");
333}
334
335static ssize_t regulator_opmode_show(struct device *dev,
336				    struct device_attribute *attr, char *buf)
337{
338	struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341}
342static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344static ssize_t regulator_print_state(char *buf, int state)
345{
346	if (state > 0)
347		return sprintf(buf, "enabled\n");
348	else if (state == 0)
349		return sprintf(buf, "disabled\n");
350	else
351		return sprintf(buf, "unknown\n");
352}
353
354static ssize_t regulator_state_show(struct device *dev,
355				   struct device_attribute *attr, char *buf)
356{
357	struct regulator_dev *rdev = dev_get_drvdata(dev);
358	ssize_t ret;
359
360	mutex_lock(&rdev->mutex);
361	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362	mutex_unlock(&rdev->mutex);
363
364	return ret;
365}
366static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368static ssize_t regulator_status_show(struct device *dev,
369				   struct device_attribute *attr, char *buf)
370{
371	struct regulator_dev *rdev = dev_get_drvdata(dev);
372	int status;
373	char *label;
374
375	status = rdev->desc->ops->get_status(rdev);
376	if (status < 0)
377		return status;
378
379	switch (status) {
380	case REGULATOR_STATUS_OFF:
381		label = "off";
382		break;
383	case REGULATOR_STATUS_ON:
384		label = "on";
385		break;
386	case REGULATOR_STATUS_ERROR:
387		label = "error";
388		break;
389	case REGULATOR_STATUS_FAST:
390		label = "fast";
391		break;
392	case REGULATOR_STATUS_NORMAL:
393		label = "normal";
394		break;
395	case REGULATOR_STATUS_IDLE:
396		label = "idle";
397		break;
398	case REGULATOR_STATUS_STANDBY:
399		label = "standby";
400		break;
401	case REGULATOR_STATUS_BYPASS:
402		label = "bypass";
403		break;
404	case REGULATOR_STATUS_UNDEFINED:
405		label = "undefined";
406		break;
407	default:
408		return -ERANGE;
409	}
410
411	return sprintf(buf, "%s\n", label);
412}
413static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415static ssize_t regulator_min_uA_show(struct device *dev,
416				    struct device_attribute *attr, char *buf)
417{
418	struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420	if (!rdev->constraints)
421		return sprintf(buf, "constraint not defined\n");
422
423	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424}
425static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427static ssize_t regulator_max_uA_show(struct device *dev,
428				    struct device_attribute *attr, char *buf)
429{
430	struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432	if (!rdev->constraints)
433		return sprintf(buf, "constraint not defined\n");
434
435	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436}
437static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439static ssize_t regulator_min_uV_show(struct device *dev,
440				    struct device_attribute *attr, char *buf)
441{
442	struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444	if (!rdev->constraints)
445		return sprintf(buf, "constraint not defined\n");
446
447	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448}
449static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451static ssize_t regulator_max_uV_show(struct device *dev,
452				    struct device_attribute *attr, char *buf)
453{
454	struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456	if (!rdev->constraints)
457		return sprintf(buf, "constraint not defined\n");
458
459	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460}
461static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463static ssize_t regulator_total_uA_show(struct device *dev,
464				      struct device_attribute *attr, char *buf)
465{
466	struct regulator_dev *rdev = dev_get_drvdata(dev);
467	struct regulator *regulator;
468	int uA = 0;
469
470	mutex_lock(&rdev->mutex);
471	list_for_each_entry(regulator, &rdev->consumer_list, list)
472		uA += regulator->uA_load;
473	mutex_unlock(&rdev->mutex);
474	return sprintf(buf, "%d\n", uA);
475}
476static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478static ssize_t regulator_num_users_show(struct device *dev,
479				      struct device_attribute *attr, char *buf)
480{
481	struct regulator_dev *rdev = dev_get_drvdata(dev);
482	return sprintf(buf, "%d\n", rdev->use_count);
483}
484
485static ssize_t regulator_type_show(struct device *dev,
486				  struct device_attribute *attr, char *buf)
487{
488	struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490	switch (rdev->desc->type) {
491	case REGULATOR_VOLTAGE:
492		return sprintf(buf, "voltage\n");
493	case REGULATOR_CURRENT:
494		return sprintf(buf, "current\n");
495	}
496	return sprintf(buf, "unknown\n");
497}
498
499static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500				struct device_attribute *attr, char *buf)
501{
502	struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505}
506static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507		regulator_suspend_mem_uV_show, NULL);
508
509static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510				struct device_attribute *attr, char *buf)
511{
512	struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515}
516static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517		regulator_suspend_disk_uV_show, NULL);
518
519static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520				struct device_attribute *attr, char *buf)
521{
522	struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525}
526static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527		regulator_suspend_standby_uV_show, NULL);
528
529static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530				struct device_attribute *attr, char *buf)
531{
532	struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534	return regulator_print_opmode(buf,
535		rdev->constraints->state_mem.mode);
536}
537static DEVICE_ATTR(suspend_mem_mode, 0444,
538		regulator_suspend_mem_mode_show, NULL);
539
540static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541				struct device_attribute *attr, char *buf)
542{
543	struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545	return regulator_print_opmode(buf,
546		rdev->constraints->state_disk.mode);
547}
548static DEVICE_ATTR(suspend_disk_mode, 0444,
549		regulator_suspend_disk_mode_show, NULL);
550
551static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552				struct device_attribute *attr, char *buf)
553{
554	struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556	return regulator_print_opmode(buf,
557		rdev->constraints->state_standby.mode);
558}
559static DEVICE_ATTR(suspend_standby_mode, 0444,
560		regulator_suspend_standby_mode_show, NULL);
561
562static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563				   struct device_attribute *attr, char *buf)
564{
565	struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567	return regulator_print_state(buf,
568			rdev->constraints->state_mem.enabled);
569}
570static DEVICE_ATTR(suspend_mem_state, 0444,
571		regulator_suspend_mem_state_show, NULL);
572
573static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574				   struct device_attribute *attr, char *buf)
575{
576	struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578	return regulator_print_state(buf,
579			rdev->constraints->state_disk.enabled);
580}
581static DEVICE_ATTR(suspend_disk_state, 0444,
582		regulator_suspend_disk_state_show, NULL);
583
584static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585				   struct device_attribute *attr, char *buf)
586{
587	struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589	return regulator_print_state(buf,
590			rdev->constraints->state_standby.enabled);
591}
592static DEVICE_ATTR(suspend_standby_state, 0444,
593		regulator_suspend_standby_state_show, NULL);
594
595static ssize_t regulator_bypass_show(struct device *dev,
596				     struct device_attribute *attr, char *buf)
597{
598	struct regulator_dev *rdev = dev_get_drvdata(dev);
599	const char *report;
600	bool bypass;
601	int ret;
602
603	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605	if (ret != 0)
606		report = "unknown";
607	else if (bypass)
608		report = "enabled";
609	else
610		report = "disabled";
611
612	return sprintf(buf, "%s\n", report);
613}
614static DEVICE_ATTR(bypass, 0444,
615		   regulator_bypass_show, NULL);
616
617/*
618 * These are the only attributes are present for all regulators.
619 * Other attributes are a function of regulator functionality.
620 */
621static struct device_attribute regulator_dev_attrs[] = {
622	__ATTR(name, 0444, regulator_name_show, NULL),
623	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
624	__ATTR(type, 0444, regulator_type_show, NULL),
625	__ATTR_NULL,
626};
627
628static void regulator_dev_release(struct device *dev)
629{
630	struct regulator_dev *rdev = dev_get_drvdata(dev);
631	kfree(rdev);
632}
633
634static struct class regulator_class = {
635	.name = "regulator",
636	.dev_release = regulator_dev_release,
637	.dev_attrs = regulator_dev_attrs,
638};
639
640/* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
642static void drms_uA_update(struct regulator_dev *rdev)
643{
644	struct regulator *sibling;
645	int current_uA = 0, output_uV, input_uV, err;
646	unsigned int mode;
647
648	err = regulator_check_drms(rdev);
649	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650	    (!rdev->desc->ops->get_voltage &&
651	     !rdev->desc->ops->get_voltage_sel) ||
652	    !rdev->desc->ops->set_mode)
653		return;
654
655	/* get output voltage */
656	output_uV = _regulator_get_voltage(rdev);
657	if (output_uV <= 0)
658		return;
659
660	/* get input voltage */
661	input_uV = 0;
662	if (rdev->supply)
663		input_uV = regulator_get_voltage(rdev->supply);
664	if (input_uV <= 0)
665		input_uV = rdev->constraints->input_uV;
666	if (input_uV <= 0)
667		return;
668
669	/* calc total requested load */
670	list_for_each_entry(sibling, &rdev->consumer_list, list)
671		current_uA += sibling->uA_load;
672
673	/* now get the optimum mode for our new total regulator load */
674	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675						  output_uV, current_uA);
676
677	/* check the new mode is allowed */
678	err = regulator_mode_constrain(rdev, &mode);
679	if (err == 0)
680		rdev->desc->ops->set_mode(rdev, mode);
681}
682
683static int suspend_set_state(struct regulator_dev *rdev,
684	struct regulator_state *rstate)
685{
686	int ret = 0;
687
688	/* If we have no suspend mode configration don't set anything;
689	 * only warn if the driver implements set_suspend_voltage or
690	 * set_suspend_mode callback.
691	 */
692	if (!rstate->enabled && !rstate->disabled) {
693		if (rdev->desc->ops->set_suspend_voltage ||
694		    rdev->desc->ops->set_suspend_mode)
695			rdev_warn(rdev, "No configuration\n");
696		return 0;
697	}
698
699	if (rstate->enabled && rstate->disabled) {
700		rdev_err(rdev, "invalid configuration\n");
701		return -EINVAL;
702	}
703
704	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705		ret = rdev->desc->ops->set_suspend_enable(rdev);
706	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707		ret = rdev->desc->ops->set_suspend_disable(rdev);
708	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709		ret = 0;
710
711	if (ret < 0) {
712		rdev_err(rdev, "failed to enabled/disable\n");
713		return ret;
714	}
715
716	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718		if (ret < 0) {
719			rdev_err(rdev, "failed to set voltage\n");
720			return ret;
721		}
722	}
723
724	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726		if (ret < 0) {
727			rdev_err(rdev, "failed to set mode\n");
728			return ret;
729		}
730	}
731	return ret;
732}
733
734/* locks held by caller */
735static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736{
737	if (!rdev->constraints)
738		return -EINVAL;
739
740	switch (state) {
741	case PM_SUSPEND_STANDBY:
742		return suspend_set_state(rdev,
743			&rdev->constraints->state_standby);
744	case PM_SUSPEND_MEM:
745		return suspend_set_state(rdev,
746			&rdev->constraints->state_mem);
747	case PM_SUSPEND_MAX:
748		return suspend_set_state(rdev,
749			&rdev->constraints->state_disk);
750	default:
751		return -EINVAL;
752	}
753}
754
755static void print_constraints(struct regulator_dev *rdev)
756{
757	struct regulation_constraints *constraints = rdev->constraints;
758	char buf[80] = "";
759	int count = 0;
760	int ret;
761
762	if (constraints->min_uV && constraints->max_uV) {
763		if (constraints->min_uV == constraints->max_uV)
764			count += sprintf(buf + count, "%d mV ",
765					 constraints->min_uV / 1000);
766		else
767			count += sprintf(buf + count, "%d <--> %d mV ",
768					 constraints->min_uV / 1000,
769					 constraints->max_uV / 1000);
770	}
771
772	if (!constraints->min_uV ||
773	    constraints->min_uV != constraints->max_uV) {
774		ret = _regulator_get_voltage(rdev);
775		if (ret > 0)
776			count += sprintf(buf + count, "at %d mV ", ret / 1000);
777	}
778
779	if (constraints->uV_offset)
780		count += sprintf(buf, "%dmV offset ",
781				 constraints->uV_offset / 1000);
782
783	if (constraints->min_uA && constraints->max_uA) {
784		if (constraints->min_uA == constraints->max_uA)
785			count += sprintf(buf + count, "%d mA ",
786					 constraints->min_uA / 1000);
787		else
788			count += sprintf(buf + count, "%d <--> %d mA ",
789					 constraints->min_uA / 1000,
790					 constraints->max_uA / 1000);
791	}
792
793	if (!constraints->min_uA ||
794	    constraints->min_uA != constraints->max_uA) {
795		ret = _regulator_get_current_limit(rdev);
796		if (ret > 0)
797			count += sprintf(buf + count, "at %d mA ", ret / 1000);
798	}
799
800	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801		count += sprintf(buf + count, "fast ");
802	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803		count += sprintf(buf + count, "normal ");
804	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805		count += sprintf(buf + count, "idle ");
806	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807		count += sprintf(buf + count, "standby");
808
809	if (!count)
810		sprintf(buf, "no parameters");
811
812	rdev_info(rdev, "%s\n", buf);
813
814	if ((constraints->min_uV != constraints->max_uV) &&
815	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816		rdev_warn(rdev,
817			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818}
819
820static int machine_constraints_voltage(struct regulator_dev *rdev,
821	struct regulation_constraints *constraints)
822{
823	struct regulator_ops *ops = rdev->desc->ops;
824	int ret;
825
826	/* do we need to apply the constraint voltage */
827	if (rdev->constraints->apply_uV &&
828	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
829		ret = _regulator_do_set_voltage(rdev,
830						rdev->constraints->min_uV,
831						rdev->constraints->max_uV);
832		if (ret < 0) {
833			rdev_err(rdev, "failed to apply %duV constraint\n",
834				 rdev->constraints->min_uV);
835			return ret;
836		}
837	}
838
839	/* constrain machine-level voltage specs to fit
840	 * the actual range supported by this regulator.
841	 */
842	if (ops->list_voltage && rdev->desc->n_voltages) {
843		int	count = rdev->desc->n_voltages;
844		int	i;
845		int	min_uV = INT_MAX;
846		int	max_uV = INT_MIN;
847		int	cmin = constraints->min_uV;
848		int	cmax = constraints->max_uV;
849
850		/* it's safe to autoconfigure fixed-voltage supplies
851		   and the constraints are used by list_voltage. */
852		if (count == 1 && !cmin) {
853			cmin = 1;
854			cmax = INT_MAX;
855			constraints->min_uV = cmin;
856			constraints->max_uV = cmax;
857		}
858
859		/* voltage constraints are optional */
860		if ((cmin == 0) && (cmax == 0))
861			return 0;
862
863		/* else require explicit machine-level constraints */
864		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865			rdev_err(rdev, "invalid voltage constraints\n");
866			return -EINVAL;
867		}
868
869		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870		for (i = 0; i < count; i++) {
871			int	value;
872
873			value = ops->list_voltage(rdev, i);
874			if (value <= 0)
875				continue;
876
877			/* maybe adjust [min_uV..max_uV] */
878			if (value >= cmin && value < min_uV)
879				min_uV = value;
880			if (value <= cmax && value > max_uV)
881				max_uV = value;
882		}
883
884		/* final: [min_uV..max_uV] valid iff constraints valid */
885		if (max_uV < min_uV) {
886			rdev_err(rdev,
887				 "unsupportable voltage constraints %u-%uuV\n",
888				 min_uV, max_uV);
889			return -EINVAL;
890		}
891
892		/* use regulator's subset of machine constraints */
893		if (constraints->min_uV < min_uV) {
894			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895				 constraints->min_uV, min_uV);
896			constraints->min_uV = min_uV;
897		}
898		if (constraints->max_uV > max_uV) {
899			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900				 constraints->max_uV, max_uV);
901			constraints->max_uV = max_uV;
902		}
903	}
904
905	return 0;
906}
907
908/**
909 * set_machine_constraints - sets regulator constraints
910 * @rdev: regulator source
911 * @constraints: constraints to apply
912 *
913 * Allows platform initialisation code to define and constrain
914 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915 * Constraints *must* be set by platform code in order for some
916 * regulator operations to proceed i.e. set_voltage, set_current_limit,
917 * set_mode.
918 */
919static int set_machine_constraints(struct regulator_dev *rdev,
920	const struct regulation_constraints *constraints)
921{
922	int ret = 0;
923	struct regulator_ops *ops = rdev->desc->ops;
924
925	if (constraints)
926		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927					    GFP_KERNEL);
928	else
929		rdev->constraints = kzalloc(sizeof(*constraints),
930					    GFP_KERNEL);
931	if (!rdev->constraints)
932		return -ENOMEM;
933
934	ret = machine_constraints_voltage(rdev, rdev->constraints);
935	if (ret != 0)
936		goto out;
937
938	/* do we need to setup our suspend state */
939	if (rdev->constraints->initial_state) {
940		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941		if (ret < 0) {
942			rdev_err(rdev, "failed to set suspend state\n");
943			goto out;
944		}
945	}
946
947	if (rdev->constraints->initial_mode) {
948		if (!ops->set_mode) {
949			rdev_err(rdev, "no set_mode operation\n");
950			ret = -EINVAL;
951			goto out;
952		}
953
954		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955		if (ret < 0) {
956			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957			goto out;
958		}
959	}
960
961	/* If the constraints say the regulator should be on at this point
962	 * and we have control then make sure it is enabled.
963	 */
964	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965	    ops->enable) {
966		ret = ops->enable(rdev);
967		if (ret < 0) {
968			rdev_err(rdev, "failed to enable\n");
969			goto out;
970		}
971	}
972
973	if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975		if (ret < 0) {
976			rdev_err(rdev, "failed to set ramp_delay\n");
977			goto out;
978		}
979	}
980
981	print_constraints(rdev);
982	return 0;
983out:
984	kfree(rdev->constraints);
985	rdev->constraints = NULL;
986	return ret;
987}
988
989/**
990 * set_supply - set regulator supply regulator
991 * @rdev: regulator name
992 * @supply_rdev: supply regulator name
993 *
994 * Called by platform initialisation code to set the supply regulator for this
995 * regulator. This ensures that a regulators supply will also be enabled by the
996 * core if it's child is enabled.
997 */
998static int set_supply(struct regulator_dev *rdev,
999		      struct regulator_dev *supply_rdev)
1000{
1001	int err;
1002
1003	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006	if (rdev->supply == NULL) {
1007		err = -ENOMEM;
1008		return err;
1009	}
1010	supply_rdev->open_count++;
1011
1012	return 0;
1013}
1014
1015/**
1016 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017 * @rdev:         regulator source
1018 * @consumer_dev_name: dev_name() string for device supply applies to
1019 * @supply:       symbolic name for supply
1020 *
1021 * Allows platform initialisation code to map physical regulator
1022 * sources to symbolic names for supplies for use by devices.  Devices
1023 * should use these symbolic names to request regulators, avoiding the
1024 * need to provide board-specific regulator names as platform data.
1025 */
1026static int set_consumer_device_supply(struct regulator_dev *rdev,
1027				      const char *consumer_dev_name,
1028				      const char *supply)
1029{
1030	struct regulator_map *node;
1031	int has_dev;
1032
1033	if (supply == NULL)
1034		return -EINVAL;
1035
1036	if (consumer_dev_name != NULL)
1037		has_dev = 1;
1038	else
1039		has_dev = 0;
1040
1041	list_for_each_entry(node, &regulator_map_list, list) {
1042		if (node->dev_name && consumer_dev_name) {
1043			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044				continue;
1045		} else if (node->dev_name || consumer_dev_name) {
1046			continue;
1047		}
1048
1049		if (strcmp(node->supply, supply) != 0)
1050			continue;
1051
1052		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053			 consumer_dev_name,
1054			 dev_name(&node->regulator->dev),
1055			 node->regulator->desc->name,
1056			 supply,
1057			 dev_name(&rdev->dev), rdev_get_name(rdev));
1058		return -EBUSY;
1059	}
1060
1061	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062	if (node == NULL)
1063		return -ENOMEM;
1064
1065	node->regulator = rdev;
1066	node->supply = supply;
1067
1068	if (has_dev) {
1069		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070		if (node->dev_name == NULL) {
1071			kfree(node);
1072			return -ENOMEM;
1073		}
1074	}
1075
1076	list_add(&node->list, &regulator_map_list);
1077	return 0;
1078}
1079
1080static void unset_regulator_supplies(struct regulator_dev *rdev)
1081{
1082	struct regulator_map *node, *n;
1083
1084	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085		if (rdev == node->regulator) {
1086			list_del(&node->list);
1087			kfree(node->dev_name);
1088			kfree(node);
1089		}
1090	}
1091}
1092
1093#define REG_STR_SIZE	64
1094
1095static struct regulator *create_regulator(struct regulator_dev *rdev,
1096					  struct device *dev,
1097					  const char *supply_name)
1098{
1099	struct regulator *regulator;
1100	char buf[REG_STR_SIZE];
1101	int err, size;
1102
1103	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104	if (regulator == NULL)
1105		return NULL;
1106
1107	mutex_lock(&rdev->mutex);
1108	regulator->rdev = rdev;
1109	list_add(&regulator->list, &rdev->consumer_list);
1110
1111	if (dev) {
1112		regulator->dev = dev;
1113
1114		/* Add a link to the device sysfs entry */
1115		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116				 dev->kobj.name, supply_name);
1117		if (size >= REG_STR_SIZE)
1118			goto overflow_err;
1119
1120		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121		if (regulator->supply_name == NULL)
1122			goto overflow_err;
1123
1124		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125					buf);
1126		if (err) {
1127			rdev_warn(rdev, "could not add device link %s err %d\n",
1128				  dev->kobj.name, err);
1129			/* non-fatal */
1130		}
1131	} else {
1132		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133		if (regulator->supply_name == NULL)
1134			goto overflow_err;
1135	}
1136
1137	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138						rdev->debugfs);
1139	if (!regulator->debugfs) {
1140		rdev_warn(rdev, "Failed to create debugfs directory\n");
1141	} else {
1142		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143				   &regulator->uA_load);
1144		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145				   &regulator->min_uV);
1146		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147				   &regulator->max_uV);
1148	}
1149
1150	/*
1151	 * Check now if the regulator is an always on regulator - if
1152	 * it is then we don't need to do nearly so much work for
1153	 * enable/disable calls.
1154	 */
1155	if (!_regulator_can_change_status(rdev) &&
1156	    _regulator_is_enabled(rdev))
1157		regulator->always_on = true;
1158
1159	mutex_unlock(&rdev->mutex);
1160	return regulator;
1161overflow_err:
1162	list_del(&regulator->list);
1163	kfree(regulator);
1164	mutex_unlock(&rdev->mutex);
1165	return NULL;
1166}
1167
1168static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169{
1170	if (!rdev->desc->ops->enable_time)
1171		return rdev->desc->enable_time;
1172	return rdev->desc->ops->enable_time(rdev);
1173}
1174
1175static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176						  const char *supply,
1177						  int *ret)
1178{
1179	struct regulator_dev *r;
1180	struct device_node *node;
1181	struct regulator_map *map;
1182	const char *devname = NULL;
1183
1184	/* first do a dt based lookup */
1185	if (dev && dev->of_node) {
1186		node = of_get_regulator(dev, supply);
1187		if (node) {
1188			list_for_each_entry(r, &regulator_list, list)
1189				if (r->dev.parent &&
1190					node == r->dev.of_node)
1191					return r;
1192		} else {
1193			/*
1194			 * If we couldn't even get the node then it's
1195			 * not just that the device didn't register
1196			 * yet, there's no node and we'll never
1197			 * succeed.
1198			 */
1199			*ret = -ENODEV;
1200		}
1201	}
1202
1203	/* if not found, try doing it non-dt way */
1204	if (dev)
1205		devname = dev_name(dev);
1206
1207	list_for_each_entry(r, &regulator_list, list)
1208		if (strcmp(rdev_get_name(r), supply) == 0)
1209			return r;
1210
1211	list_for_each_entry(map, &regulator_map_list, list) {
1212		/* If the mapping has a device set up it must match */
1213		if (map->dev_name &&
1214		    (!devname || strcmp(map->dev_name, devname)))
1215			continue;
1216
1217		if (strcmp(map->supply, supply) == 0)
1218			return map->regulator;
1219	}
1220
1221
1222	return NULL;
1223}
1224
1225/* Internal regulator request function */
1226static struct regulator *_regulator_get(struct device *dev, const char *id,
1227					int exclusive)
1228{
1229	struct regulator_dev *rdev;
1230	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231	const char *devname = NULL;
1232	int ret;
1233
1234	if (id == NULL) {
1235		pr_err("get() with no identifier\n");
1236		return regulator;
1237	}
1238
1239	if (dev)
1240		devname = dev_name(dev);
1241
1242	mutex_lock(&regulator_list_mutex);
1243
1244	rdev = regulator_dev_lookup(dev, id, &ret);
1245	if (rdev)
1246		goto found;
1247
1248	if (board_wants_dummy_regulator) {
1249		rdev = dummy_regulator_rdev;
1250		goto found;
1251	}
1252
1253#ifdef CONFIG_REGULATOR_DUMMY
1254	if (!devname)
1255		devname = "deviceless";
1256
1257	/* If the board didn't flag that it was fully constrained then
1258	 * substitute in a dummy regulator so consumers can continue.
1259	 */
1260	if (!has_full_constraints) {
1261		pr_warn("%s supply %s not found, using dummy regulator\n",
1262			devname, id);
1263		rdev = dummy_regulator_rdev;
1264		goto found;
1265	}
1266#endif
1267
1268	mutex_unlock(&regulator_list_mutex);
1269	return regulator;
1270
1271found:
1272	if (rdev->exclusive) {
1273		regulator = ERR_PTR(-EPERM);
1274		goto out;
1275	}
1276
1277	if (exclusive && rdev->open_count) {
1278		regulator = ERR_PTR(-EBUSY);
1279		goto out;
1280	}
1281
1282	if (!try_module_get(rdev->owner))
1283		goto out;
1284
1285	regulator = create_regulator(rdev, dev, id);
1286	if (regulator == NULL) {
1287		regulator = ERR_PTR(-ENOMEM);
1288		module_put(rdev->owner);
1289		goto out;
1290	}
1291
1292	rdev->open_count++;
1293	if (exclusive) {
1294		rdev->exclusive = 1;
1295
1296		ret = _regulator_is_enabled(rdev);
1297		if (ret > 0)
1298			rdev->use_count = 1;
1299		else
1300			rdev->use_count = 0;
1301	}
1302
1303out:
1304	mutex_unlock(&regulator_list_mutex);
1305
1306	return regulator;
1307}
1308
1309/**
1310 * regulator_get - lookup and obtain a reference to a regulator.
1311 * @dev: device for regulator "consumer"
1312 * @id: Supply name or regulator ID.
1313 *
1314 * Returns a struct regulator corresponding to the regulator producer,
1315 * or IS_ERR() condition containing errno.
1316 *
1317 * Use of supply names configured via regulator_set_device_supply() is
1318 * strongly encouraged.  It is recommended that the supply name used
1319 * should match the name used for the supply and/or the relevant
1320 * device pins in the datasheet.
1321 */
1322struct regulator *regulator_get(struct device *dev, const char *id)
1323{
1324	return _regulator_get(dev, id, 0);
1325}
1326EXPORT_SYMBOL_GPL(regulator_get);
1327
1328static void devm_regulator_release(struct device *dev, void *res)
1329{
1330	regulator_put(*(struct regulator **)res);
1331}
1332
1333/**
1334 * devm_regulator_get - Resource managed regulator_get()
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Managed regulator_get(). Regulators returned from this function are
1339 * automatically regulator_put() on driver detach. See regulator_get() for more
1340 * information.
1341 */
1342struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343{
1344	struct regulator **ptr, *regulator;
1345
1346	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347	if (!ptr)
1348		return ERR_PTR(-ENOMEM);
1349
1350	regulator = regulator_get(dev, id);
1351	if (!IS_ERR(regulator)) {
1352		*ptr = regulator;
1353		devres_add(dev, ptr);
1354	} else {
1355		devres_free(ptr);
1356	}
1357
1358	return regulator;
1359}
1360EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362/**
1363 * regulator_get_exclusive - obtain exclusive access to a regulator.
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1366 *
1367 * Returns a struct regulator corresponding to the regulator producer,
1368 * or IS_ERR() condition containing errno.  Other consumers will be
1369 * unable to obtain this reference is held and the use count for the
1370 * regulator will be initialised to reflect the current state of the
1371 * regulator.
1372 *
1373 * This is intended for use by consumers which cannot tolerate shared
1374 * use of the regulator such as those which need to force the
1375 * regulator off for correct operation of the hardware they are
1376 * controlling.
1377 *
1378 * Use of supply names configured via regulator_set_device_supply() is
1379 * strongly encouraged.  It is recommended that the supply name used
1380 * should match the name used for the supply and/or the relevant
1381 * device pins in the datasheet.
1382 */
1383struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384{
1385	return _regulator_get(dev, id, 1);
1386}
1387EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389/* Locks held by regulator_put() */
1390static void _regulator_put(struct regulator *regulator)
1391{
1392	struct regulator_dev *rdev;
1393
1394	if (regulator == NULL || IS_ERR(regulator))
1395		return;
1396
1397	rdev = regulator->rdev;
1398
1399	debugfs_remove_recursive(regulator->debugfs);
1400
1401	/* remove any sysfs entries */
1402	if (regulator->dev)
1403		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404	kfree(regulator->supply_name);
1405	list_del(&regulator->list);
1406	kfree(regulator);
1407
1408	rdev->open_count--;
1409	rdev->exclusive = 0;
1410
1411	module_put(rdev->owner);
1412}
1413
1414/**
1415 * regulator_put - "free" the regulator source
1416 * @regulator: regulator source
1417 *
1418 * Note: drivers must ensure that all regulator_enable calls made on this
1419 * regulator source are balanced by regulator_disable calls prior to calling
1420 * this function.
1421 */
1422void regulator_put(struct regulator *regulator)
1423{
1424	mutex_lock(&regulator_list_mutex);
1425	_regulator_put(regulator);
1426	mutex_unlock(&regulator_list_mutex);
1427}
1428EXPORT_SYMBOL_GPL(regulator_put);
1429
1430static int devm_regulator_match(struct device *dev, void *res, void *data)
1431{
1432	struct regulator **r = res;
1433	if (!r || !*r) {
1434		WARN_ON(!r || !*r);
1435		return 0;
1436	}
1437	return *r == data;
1438}
1439
1440/**
1441 * devm_regulator_put - Resource managed regulator_put()
1442 * @regulator: regulator to free
1443 *
1444 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445 * this function will not need to be called and the resource management
1446 * code will ensure that the resource is freed.
1447 */
1448void devm_regulator_put(struct regulator *regulator)
1449{
1450	int rc;
1451
1452	rc = devres_release(regulator->dev, devm_regulator_release,
1453			    devm_regulator_match, regulator);
1454	if (rc != 0)
1455		WARN_ON(rc);
1456}
1457EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459static int _regulator_do_enable(struct regulator_dev *rdev)
1460{
1461	int ret, delay;
1462
1463	/* Query before enabling in case configuration dependent.  */
1464	ret = _regulator_get_enable_time(rdev);
1465	if (ret >= 0) {
1466		delay = ret;
1467	} else {
1468		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469		delay = 0;
1470	}
1471
1472	trace_regulator_enable(rdev_get_name(rdev));
1473
1474	if (rdev->ena_gpio) {
1475		gpio_set_value_cansleep(rdev->ena_gpio,
1476					!rdev->ena_gpio_invert);
1477		rdev->ena_gpio_state = 1;
1478	} else if (rdev->desc->ops->enable) {
1479		ret = rdev->desc->ops->enable(rdev);
1480		if (ret < 0)
1481			return ret;
1482	} else {
1483		return -EINVAL;
1484	}
1485
1486	/* Allow the regulator to ramp; it would be useful to extend
1487	 * this for bulk operations so that the regulators can ramp
1488	 * together.  */
1489	trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491	if (delay >= 1000) {
1492		mdelay(delay / 1000);
1493		udelay(delay % 1000);
1494	} else if (delay) {
1495		udelay(delay);
1496	}
1497
1498	trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500	return 0;
1501}
1502
1503/* locks held by regulator_enable() */
1504static int _regulator_enable(struct regulator_dev *rdev)
1505{
1506	int ret;
1507
1508	/* check voltage and requested load before enabling */
1509	if (rdev->constraints &&
1510	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511		drms_uA_update(rdev);
1512
1513	if (rdev->use_count == 0) {
1514		/* The regulator may on if it's not switchable or left on */
1515		ret = _regulator_is_enabled(rdev);
1516		if (ret == -EINVAL || ret == 0) {
1517			if (!_regulator_can_change_status(rdev))
1518				return -EPERM;
1519
1520			ret = _regulator_do_enable(rdev);
1521			if (ret < 0)
1522				return ret;
1523
1524		} else if (ret < 0) {
1525			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526			return ret;
1527		}
1528		/* Fallthrough on positive return values - already enabled */
1529	}
1530
1531	rdev->use_count++;
1532
1533	return 0;
1534}
1535
1536/**
1537 * regulator_enable - enable regulator output
1538 * @regulator: regulator source
1539 *
1540 * Request that the regulator be enabled with the regulator output at
1541 * the predefined voltage or current value.  Calls to regulator_enable()
1542 * must be balanced with calls to regulator_disable().
1543 *
1544 * NOTE: the output value can be set by other drivers, boot loader or may be
1545 * hardwired in the regulator.
1546 */
1547int regulator_enable(struct regulator *regulator)
1548{
1549	struct regulator_dev *rdev = regulator->rdev;
1550	int ret = 0;
1551
1552	if (regulator->always_on)
1553		return 0;
1554
1555	if (rdev->supply) {
1556		ret = regulator_enable(rdev->supply);
1557		if (ret != 0)
1558			return ret;
1559	}
1560
1561	mutex_lock(&rdev->mutex);
1562	ret = _regulator_enable(rdev);
1563	mutex_unlock(&rdev->mutex);
1564
1565	if (ret != 0 && rdev->supply)
1566		regulator_disable(rdev->supply);
1567
1568	return ret;
1569}
1570EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572static int _regulator_do_disable(struct regulator_dev *rdev)
1573{
1574	int ret;
1575
1576	trace_regulator_disable(rdev_get_name(rdev));
1577
1578	if (rdev->ena_gpio) {
1579		gpio_set_value_cansleep(rdev->ena_gpio,
1580					rdev->ena_gpio_invert);
1581		rdev->ena_gpio_state = 0;
1582
1583	} else if (rdev->desc->ops->disable) {
1584		ret = rdev->desc->ops->disable(rdev);
1585		if (ret != 0)
1586			return ret;
1587	}
1588
1589	trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592			     NULL);
1593	return 0;
1594}
1595
1596/* locks held by regulator_disable() */
1597static int _regulator_disable(struct regulator_dev *rdev)
1598{
1599	int ret = 0;
1600
1601	if (WARN(rdev->use_count <= 0,
1602		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603		return -EIO;
1604
1605	/* are we the last user and permitted to disable ? */
1606	if (rdev->use_count == 1 &&
1607	    (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609		/* we are last user */
1610		if (_regulator_can_change_status(rdev)) {
1611			ret = _regulator_do_disable(rdev);
1612			if (ret < 0) {
1613				rdev_err(rdev, "failed to disable\n");
1614				return ret;
1615			}
1616		}
1617
1618		rdev->use_count = 0;
1619	} else if (rdev->use_count > 1) {
1620
1621		if (rdev->constraints &&
1622			(rdev->constraints->valid_ops_mask &
1623			REGULATOR_CHANGE_DRMS))
1624			drms_uA_update(rdev);
1625
1626		rdev->use_count--;
1627	}
1628
1629	return ret;
1630}
1631
1632/**
1633 * regulator_disable - disable regulator output
1634 * @regulator: regulator source
1635 *
1636 * Disable the regulator output voltage or current.  Calls to
1637 * regulator_enable() must be balanced with calls to
1638 * regulator_disable().
1639 *
1640 * NOTE: this will only disable the regulator output if no other consumer
1641 * devices have it enabled, the regulator device supports disabling and
1642 * machine constraints permit this operation.
1643 */
1644int regulator_disable(struct regulator *regulator)
1645{
1646	struct regulator_dev *rdev = regulator->rdev;
1647	int ret = 0;
1648
1649	if (regulator->always_on)
1650		return 0;
1651
1652	mutex_lock(&rdev->mutex);
1653	ret = _regulator_disable(rdev);
1654	mutex_unlock(&rdev->mutex);
1655
1656	if (ret == 0 && rdev->supply)
1657		regulator_disable(rdev->supply);
1658
1659	return ret;
1660}
1661EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663/* locks held by regulator_force_disable() */
1664static int _regulator_force_disable(struct regulator_dev *rdev)
1665{
1666	int ret = 0;
1667
1668	/* force disable */
1669	if (rdev->desc->ops->disable) {
1670		/* ah well, who wants to live forever... */
1671		ret = rdev->desc->ops->disable(rdev);
1672		if (ret < 0) {
1673			rdev_err(rdev, "failed to force disable\n");
1674			return ret;
1675		}
1676		/* notify other consumers that power has been forced off */
1677		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678			REGULATOR_EVENT_DISABLE, NULL);
1679	}
1680
1681	return ret;
1682}
1683
1684/**
1685 * regulator_force_disable - force disable regulator output
1686 * @regulator: regulator source
1687 *
1688 * Forcibly disable the regulator output voltage or current.
1689 * NOTE: this *will* disable the regulator output even if other consumer
1690 * devices have it enabled. This should be used for situations when device
1691 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692 */
1693int regulator_force_disable(struct regulator *regulator)
1694{
1695	struct regulator_dev *rdev = regulator->rdev;
1696	int ret;
1697
1698	mutex_lock(&rdev->mutex);
1699	regulator->uA_load = 0;
1700	ret = _regulator_force_disable(regulator->rdev);
1701	mutex_unlock(&rdev->mutex);
1702
1703	if (rdev->supply)
1704		while (rdev->open_count--)
1705			regulator_disable(rdev->supply);
1706
1707	return ret;
1708}
1709EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711static void regulator_disable_work(struct work_struct *work)
1712{
1713	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714						  disable_work.work);
1715	int count, i, ret;
1716
1717	mutex_lock(&rdev->mutex);
1718
1719	BUG_ON(!rdev->deferred_disables);
1720
1721	count = rdev->deferred_disables;
1722	rdev->deferred_disables = 0;
1723
1724	for (i = 0; i < count; i++) {
1725		ret = _regulator_disable(rdev);
1726		if (ret != 0)
1727			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728	}
1729
1730	mutex_unlock(&rdev->mutex);
1731
1732	if (rdev->supply) {
1733		for (i = 0; i < count; i++) {
1734			ret = regulator_disable(rdev->supply);
1735			if (ret != 0) {
1736				rdev_err(rdev,
1737					 "Supply disable failed: %d\n", ret);
1738			}
1739		}
1740	}
1741}
1742
1743/**
1744 * regulator_disable_deferred - disable regulator output with delay
1745 * @regulator: regulator source
1746 * @ms: miliseconds until the regulator is disabled
1747 *
1748 * Execute regulator_disable() on the regulator after a delay.  This
1749 * is intended for use with devices that require some time to quiesce.
1750 *
1751 * NOTE: this will only disable the regulator output if no other consumer
1752 * devices have it enabled, the regulator device supports disabling and
1753 * machine constraints permit this operation.
1754 */
1755int regulator_disable_deferred(struct regulator *regulator, int ms)
1756{
1757	struct regulator_dev *rdev = regulator->rdev;
1758	int ret;
1759
1760	if (regulator->always_on)
1761		return 0;
1762
1763	if (!ms)
1764		return regulator_disable(regulator);
1765
1766	mutex_lock(&rdev->mutex);
1767	rdev->deferred_disables++;
1768	mutex_unlock(&rdev->mutex);
1769
1770	ret = schedule_delayed_work(&rdev->disable_work,
1771				    msecs_to_jiffies(ms));
1772	if (ret < 0)
1773		return ret;
1774	else
1775		return 0;
1776}
1777EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779/**
1780 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781 *
1782 * @rdev: regulator to operate on
1783 *
1784 * Regulators that use regmap for their register I/O can set the
1785 * enable_reg and enable_mask fields in their descriptor and then use
1786 * this as their is_enabled operation, saving some code.
1787 */
1788int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789{
1790	unsigned int val;
1791	int ret;
1792
1793	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794	if (ret != 0)
1795		return ret;
1796
1797	return (val & rdev->desc->enable_mask) != 0;
1798}
1799EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801/**
1802 * regulator_enable_regmap - standard enable() for regmap users
1803 *
1804 * @rdev: regulator to operate on
1805 *
1806 * Regulators that use regmap for their register I/O can set the
1807 * enable_reg and enable_mask fields in their descriptor and then use
1808 * this as their enable() operation, saving some code.
1809 */
1810int regulator_enable_regmap(struct regulator_dev *rdev)
1811{
1812	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813				  rdev->desc->enable_mask,
1814				  rdev->desc->enable_mask);
1815}
1816EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818/**
1819 * regulator_disable_regmap - standard disable() for regmap users
1820 *
1821 * @rdev: regulator to operate on
1822 *
1823 * Regulators that use regmap for their register I/O can set the
1824 * enable_reg and enable_mask fields in their descriptor and then use
1825 * this as their disable() operation, saving some code.
1826 */
1827int regulator_disable_regmap(struct regulator_dev *rdev)
1828{
1829	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830				  rdev->desc->enable_mask, 0);
1831}
1832EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834static int _regulator_is_enabled(struct regulator_dev *rdev)
1835{
1836	/* A GPIO control always takes precedence */
1837	if (rdev->ena_gpio)
1838		return rdev->ena_gpio_state;
1839
1840	/* If we don't know then assume that the regulator is always on */
1841	if (!rdev->desc->ops->is_enabled)
1842		return 1;
1843
1844	return rdev->desc->ops->is_enabled(rdev);
1845}
1846
1847/**
1848 * regulator_is_enabled - is the regulator output enabled
1849 * @regulator: regulator source
1850 *
1851 * Returns positive if the regulator driver backing the source/client
1852 * has requested that the device be enabled, zero if it hasn't, else a
1853 * negative errno code.
1854 *
1855 * Note that the device backing this regulator handle can have multiple
1856 * users, so it might be enabled even if regulator_enable() was never
1857 * called for this particular source.
1858 */
1859int regulator_is_enabled(struct regulator *regulator)
1860{
1861	int ret;
1862
1863	if (regulator->always_on)
1864		return 1;
1865
1866	mutex_lock(&regulator->rdev->mutex);
1867	ret = _regulator_is_enabled(regulator->rdev);
1868	mutex_unlock(&regulator->rdev->mutex);
1869
1870	return ret;
1871}
1872EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874/**
1875 * regulator_can_change_voltage - check if regulator can change voltage
1876 * @regulator: regulator source
1877 *
1878 * Returns positive if the regulator driver backing the source/client
1879 * can change its voltage, false otherwise. Usefull for detecting fixed
1880 * or dummy regulators and disabling voltage change logic in the client
1881 * driver.
1882 */
1883int regulator_can_change_voltage(struct regulator *regulator)
1884{
1885	struct regulator_dev	*rdev = regulator->rdev;
1886
1887	if (rdev->constraints &&
1888	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1889		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1890			return 1;
1891
1892		if (rdev->desc->continuous_voltage_range &&
1893		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
1894		    rdev->constraints->min_uV != rdev->constraints->max_uV)
1895			return 1;
1896	}
1897
1898	return 0;
1899}
1900EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1901
1902/**
1903 * regulator_count_voltages - count regulator_list_voltage() selectors
1904 * @regulator: regulator source
1905 *
1906 * Returns number of selectors, or negative errno.  Selectors are
1907 * numbered starting at zero, and typically correspond to bitfields
1908 * in hardware registers.
1909 */
1910int regulator_count_voltages(struct regulator *regulator)
1911{
1912	struct regulator_dev	*rdev = regulator->rdev;
1913
1914	return rdev->desc->n_voltages ? : -EINVAL;
1915}
1916EXPORT_SYMBOL_GPL(regulator_count_voltages);
1917
1918/**
1919 * regulator_list_voltage_linear - List voltages with simple calculation
1920 *
1921 * @rdev: Regulator device
1922 * @selector: Selector to convert into a voltage
1923 *
1924 * Regulators with a simple linear mapping between voltages and
1925 * selectors can set min_uV and uV_step in the regulator descriptor
1926 * and then use this function as their list_voltage() operation,
1927 */
1928int regulator_list_voltage_linear(struct regulator_dev *rdev,
1929				  unsigned int selector)
1930{
1931	if (selector >= rdev->desc->n_voltages)
1932		return -EINVAL;
1933	if (selector < rdev->desc->linear_min_sel)
1934		return 0;
1935
1936	selector -= rdev->desc->linear_min_sel;
1937
1938	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1939}
1940EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1941
1942/**
1943 * regulator_list_voltage_table - List voltages with table based mapping
1944 *
1945 * @rdev: Regulator device
1946 * @selector: Selector to convert into a voltage
1947 *
1948 * Regulators with table based mapping between voltages and
1949 * selectors can set volt_table in the regulator descriptor
1950 * and then use this function as their list_voltage() operation.
1951 */
1952int regulator_list_voltage_table(struct regulator_dev *rdev,
1953				 unsigned int selector)
1954{
1955	if (!rdev->desc->volt_table) {
1956		BUG_ON(!rdev->desc->volt_table);
1957		return -EINVAL;
1958	}
1959
1960	if (selector >= rdev->desc->n_voltages)
1961		return -EINVAL;
1962
1963	return rdev->desc->volt_table[selector];
1964}
1965EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1966
1967/**
1968 * regulator_list_voltage - enumerate supported voltages
1969 * @regulator: regulator source
1970 * @selector: identify voltage to list
1971 * Context: can sleep
1972 *
1973 * Returns a voltage that can be passed to @regulator_set_voltage(),
1974 * zero if this selector code can't be used on this system, or a
1975 * negative errno.
1976 */
1977int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1978{
1979	struct regulator_dev	*rdev = regulator->rdev;
1980	struct regulator_ops	*ops = rdev->desc->ops;
1981	int			ret;
1982
1983	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1984		return -EINVAL;
1985
1986	mutex_lock(&rdev->mutex);
1987	ret = ops->list_voltage(rdev, selector);
1988	mutex_unlock(&rdev->mutex);
1989
1990	if (ret > 0) {
1991		if (ret < rdev->constraints->min_uV)
1992			ret = 0;
1993		else if (ret > rdev->constraints->max_uV)
1994			ret = 0;
1995	}
1996
1997	return ret;
1998}
1999EXPORT_SYMBOL_GPL(regulator_list_voltage);
2000
2001/**
2002 * regulator_is_supported_voltage - check if a voltage range can be supported
2003 *
2004 * @regulator: Regulator to check.
2005 * @min_uV: Minimum required voltage in uV.
2006 * @max_uV: Maximum required voltage in uV.
2007 *
2008 * Returns a boolean or a negative error code.
2009 */
2010int regulator_is_supported_voltage(struct regulator *regulator,
2011				   int min_uV, int max_uV)
2012{
2013	struct regulator_dev *rdev = regulator->rdev;
2014	int i, voltages, ret;
2015
2016	/* If we can't change voltage check the current voltage */
2017	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2018		ret = regulator_get_voltage(regulator);
2019		if (ret >= 0)
2020			return (min_uV <= ret && ret <= max_uV);
2021		else
2022			return ret;
2023	}
2024
2025	/* Any voltage within constrains range is fine? */
2026	if (rdev->desc->continuous_voltage_range)
2027		return min_uV >= rdev->constraints->min_uV &&
2028				max_uV <= rdev->constraints->max_uV;
2029
2030	ret = regulator_count_voltages(regulator);
2031	if (ret < 0)
2032		return ret;
2033	voltages = ret;
2034
2035	for (i = 0; i < voltages; i++) {
2036		ret = regulator_list_voltage(regulator, i);
2037
2038		if (ret >= min_uV && ret <= max_uV)
2039			return 1;
2040	}
2041
2042	return 0;
2043}
2044EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2045
2046/**
2047 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2048 *
2049 * @rdev: regulator to operate on
2050 *
2051 * Regulators that use regmap for their register I/O can set the
2052 * vsel_reg and vsel_mask fields in their descriptor and then use this
2053 * as their get_voltage_vsel operation, saving some code.
2054 */
2055int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2056{
2057	unsigned int val;
2058	int ret;
2059
2060	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2061	if (ret != 0)
2062		return ret;
2063
2064	val &= rdev->desc->vsel_mask;
2065	val >>= ffs(rdev->desc->vsel_mask) - 1;
2066
2067	return val;
2068}
2069EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2070
2071/**
2072 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2073 *
2074 * @rdev: regulator to operate on
2075 * @sel: Selector to set
2076 *
2077 * Regulators that use regmap for their register I/O can set the
2078 * vsel_reg and vsel_mask fields in their descriptor and then use this
2079 * as their set_voltage_vsel operation, saving some code.
2080 */
2081int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2082{
2083	int ret;
2084
2085	sel <<= ffs(rdev->desc->vsel_mask) - 1;
2086
2087	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2088				  rdev->desc->vsel_mask, sel);
2089	if (ret)
2090		return ret;
2091
2092	if (rdev->desc->apply_bit)
2093		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2094					 rdev->desc->apply_bit,
2095					 rdev->desc->apply_bit);
2096	return ret;
2097}
2098EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2099
2100/**
2101 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2102 *
2103 * @rdev: Regulator to operate on
2104 * @min_uV: Lower bound for voltage
2105 * @max_uV: Upper bound for voltage
2106 *
2107 * Drivers implementing set_voltage_sel() and list_voltage() can use
2108 * this as their map_voltage() operation.  It will find a suitable
2109 * voltage by calling list_voltage() until it gets something in bounds
2110 * for the requested voltages.
2111 */
2112int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2113				  int min_uV, int max_uV)
2114{
2115	int best_val = INT_MAX;
2116	int selector = 0;
2117	int i, ret;
2118
2119	/* Find the smallest voltage that falls within the specified
2120	 * range.
2121	 */
2122	for (i = 0; i < rdev->desc->n_voltages; i++) {
2123		ret = rdev->desc->ops->list_voltage(rdev, i);
2124		if (ret < 0)
2125			continue;
2126
2127		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2128			best_val = ret;
2129			selector = i;
2130		}
2131	}
2132
2133	if (best_val != INT_MAX)
2134		return selector;
2135	else
2136		return -EINVAL;
2137}
2138EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2139
2140/**
2141 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2142 *
2143 * @rdev: Regulator to operate on
2144 * @min_uV: Lower bound for voltage
2145 * @max_uV: Upper bound for voltage
2146 *
2147 * Drivers providing min_uV and uV_step in their regulator_desc can
2148 * use this as their map_voltage() operation.
2149 */
2150int regulator_map_voltage_linear(struct regulator_dev *rdev,
2151				 int min_uV, int max_uV)
2152{
2153	int ret, voltage;
2154
2155	/* Allow uV_step to be 0 for fixed voltage */
2156	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2157		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2158			return 0;
2159		else
2160			return -EINVAL;
2161	}
2162
2163	if (!rdev->desc->uV_step) {
2164		BUG_ON(!rdev->desc->uV_step);
2165		return -EINVAL;
2166	}
2167
2168	if (min_uV < rdev->desc->min_uV)
2169		min_uV = rdev->desc->min_uV;
2170
2171	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2172	if (ret < 0)
2173		return ret;
2174
2175	ret += rdev->desc->linear_min_sel;
2176
2177	/* Map back into a voltage to verify we're still in bounds */
2178	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2179	if (voltage < min_uV || voltage > max_uV)
2180		return -EINVAL;
2181
2182	return ret;
2183}
2184EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2185
2186static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2187				     int min_uV, int max_uV)
2188{
2189	int ret;
2190	int delay = 0;
2191	int best_val = 0;
2192	unsigned int selector;
2193	int old_selector = -1;
2194
2195	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2196
2197	min_uV += rdev->constraints->uV_offset;
2198	max_uV += rdev->constraints->uV_offset;
2199
2200	/*
2201	 * If we can't obtain the old selector there is not enough
2202	 * info to call set_voltage_time_sel().
2203	 */
2204	if (_regulator_is_enabled(rdev) &&
2205	    rdev->desc->ops->set_voltage_time_sel &&
2206	    rdev->desc->ops->get_voltage_sel) {
2207		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2208		if (old_selector < 0)
2209			return old_selector;
2210	}
2211
2212	if (rdev->desc->ops->set_voltage) {
2213		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2214						   &selector);
2215
2216		if (ret >= 0) {
2217			if (rdev->desc->ops->list_voltage)
2218				best_val = rdev->desc->ops->list_voltage(rdev,
2219									 selector);
2220			else
2221				best_val = _regulator_get_voltage(rdev);
2222		}
2223
2224	} else if (rdev->desc->ops->set_voltage_sel) {
2225		if (rdev->desc->ops->map_voltage) {
2226			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2227							   max_uV);
2228		} else {
2229			if (rdev->desc->ops->list_voltage ==
2230			    regulator_list_voltage_linear)
2231				ret = regulator_map_voltage_linear(rdev,
2232								min_uV, max_uV);
2233			else
2234				ret = regulator_map_voltage_iterate(rdev,
2235								min_uV, max_uV);
2236		}
2237
2238		if (ret >= 0) {
2239			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2240			if (min_uV <= best_val && max_uV >= best_val) {
2241				selector = ret;
2242				if (old_selector == selector)
2243					ret = 0;
2244				else
2245					ret = rdev->desc->ops->set_voltage_sel(
2246								rdev, ret);
2247			} else {
2248				ret = -EINVAL;
2249			}
2250		}
2251	} else {
2252		ret = -EINVAL;
2253	}
2254
2255	/* Call set_voltage_time_sel if successfully obtained old_selector */
2256	if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2257	    old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2258
2259		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2260						old_selector, selector);
2261		if (delay < 0) {
2262			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2263				  delay);
2264			delay = 0;
2265		}
2266
2267		/* Insert any necessary delays */
2268		if (delay >= 1000) {
2269			mdelay(delay / 1000);
2270			udelay(delay % 1000);
2271		} else if (delay) {
2272			udelay(delay);
2273		}
2274	}
2275
2276	if (ret == 0 && best_val >= 0) {
2277		unsigned long data = best_val;
2278
2279		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2280				     (void *)data);
2281	}
2282
2283	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2284
2285	return ret;
2286}
2287
2288/**
2289 * regulator_set_voltage - set regulator output voltage
2290 * @regulator: regulator source
2291 * @min_uV: Minimum required voltage in uV
2292 * @max_uV: Maximum acceptable voltage in uV
2293 *
2294 * Sets a voltage regulator to the desired output voltage. This can be set
2295 * during any regulator state. IOW, regulator can be disabled or enabled.
2296 *
2297 * If the regulator is enabled then the voltage will change to the new value
2298 * immediately otherwise if the regulator is disabled the regulator will
2299 * output at the new voltage when enabled.
2300 *
2301 * NOTE: If the regulator is shared between several devices then the lowest
2302 * request voltage that meets the system constraints will be used.
2303 * Regulator system constraints must be set for this regulator before
2304 * calling this function otherwise this call will fail.
2305 */
2306int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2307{
2308	struct regulator_dev *rdev = regulator->rdev;
2309	int ret = 0;
2310	int old_min_uV, old_max_uV;
2311
2312	mutex_lock(&rdev->mutex);
2313
2314	/* If we're setting the same range as last time the change
2315	 * should be a noop (some cpufreq implementations use the same
2316	 * voltage for multiple frequencies, for example).
2317	 */
2318	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2319		goto out;
2320
2321	/* sanity check */
2322	if (!rdev->desc->ops->set_voltage &&
2323	    !rdev->desc->ops->set_voltage_sel) {
2324		ret = -EINVAL;
2325		goto out;
2326	}
2327
2328	/* constraints check */
2329	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2330	if (ret < 0)
2331		goto out;
2332
2333	/* restore original values in case of error */
2334	old_min_uV = regulator->min_uV;
2335	old_max_uV = regulator->max_uV;
2336	regulator->min_uV = min_uV;
2337	regulator->max_uV = max_uV;
2338
2339	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2340	if (ret < 0)
2341		goto out2;
2342
2343	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2344	if (ret < 0)
2345		goto out2;
2346
2347out:
2348	mutex_unlock(&rdev->mutex);
2349	return ret;
2350out2:
2351	regulator->min_uV = old_min_uV;
2352	regulator->max_uV = old_max_uV;
2353	mutex_unlock(&rdev->mutex);
2354	return ret;
2355}
2356EXPORT_SYMBOL_GPL(regulator_set_voltage);
2357
2358/**
2359 * regulator_set_voltage_time - get raise/fall time
2360 * @regulator: regulator source
2361 * @old_uV: starting voltage in microvolts
2362 * @new_uV: target voltage in microvolts
2363 *
2364 * Provided with the starting and ending voltage, this function attempts to
2365 * calculate the time in microseconds required to rise or fall to this new
2366 * voltage.
2367 */
2368int regulator_set_voltage_time(struct regulator *regulator,
2369			       int old_uV, int new_uV)
2370{
2371	struct regulator_dev	*rdev = regulator->rdev;
2372	struct regulator_ops	*ops = rdev->desc->ops;
2373	int old_sel = -1;
2374	int new_sel = -1;
2375	int voltage;
2376	int i;
2377
2378	/* Currently requires operations to do this */
2379	if (!ops->list_voltage || !ops->set_voltage_time_sel
2380	    || !rdev->desc->n_voltages)
2381		return -EINVAL;
2382
2383	for (i = 0; i < rdev->desc->n_voltages; i++) {
2384		/* We only look for exact voltage matches here */
2385		voltage = regulator_list_voltage(regulator, i);
2386		if (voltage < 0)
2387			return -EINVAL;
2388		if (voltage == 0)
2389			continue;
2390		if (voltage == old_uV)
2391			old_sel = i;
2392		if (voltage == new_uV)
2393			new_sel = i;
2394	}
2395
2396	if (old_sel < 0 || new_sel < 0)
2397		return -EINVAL;
2398
2399	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2400}
2401EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2402
2403/**
2404 * regulator_set_voltage_time_sel - get raise/fall time
2405 * @rdev: regulator source device
2406 * @old_selector: selector for starting voltage
2407 * @new_selector: selector for target voltage
2408 *
2409 * Provided with the starting and target voltage selectors, this function
2410 * returns time in microseconds required to rise or fall to this new voltage
2411 *
2412 * Drivers providing ramp_delay in regulation_constraints can use this as their
2413 * set_voltage_time_sel() operation.
2414 */
2415int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2416				   unsigned int old_selector,
2417				   unsigned int new_selector)
2418{
2419	unsigned int ramp_delay = 0;
2420	int old_volt, new_volt;
2421
2422	if (rdev->constraints->ramp_delay)
2423		ramp_delay = rdev->constraints->ramp_delay;
2424	else if (rdev->desc->ramp_delay)
2425		ramp_delay = rdev->desc->ramp_delay;
2426
2427	if (ramp_delay == 0) {
2428		rdev_warn(rdev, "ramp_delay not set\n");
2429		return 0;
2430	}
2431
2432	/* sanity check */
2433	if (!rdev->desc->ops->list_voltage)
2434		return -EINVAL;
2435
2436	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2437	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2438
2439	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2440}
2441EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2442
2443/**
2444 * regulator_sync_voltage - re-apply last regulator output voltage
2445 * @regulator: regulator source
2446 *
2447 * Re-apply the last configured voltage.  This is intended to be used
2448 * where some external control source the consumer is cooperating with
2449 * has caused the configured voltage to change.
2450 */
2451int regulator_sync_voltage(struct regulator *regulator)
2452{
2453	struct regulator_dev *rdev = regulator->rdev;
2454	int ret, min_uV, max_uV;
2455
2456	mutex_lock(&rdev->mutex);
2457
2458	if (!rdev->desc->ops->set_voltage &&
2459	    !rdev->desc->ops->set_voltage_sel) {
2460		ret = -EINVAL;
2461		goto out;
2462	}
2463
2464	/* This is only going to work if we've had a voltage configured. */
2465	if (!regulator->min_uV && !regulator->max_uV) {
2466		ret = -EINVAL;
2467		goto out;
2468	}
2469
2470	min_uV = regulator->min_uV;
2471	max_uV = regulator->max_uV;
2472
2473	/* This should be a paranoia check... */
2474	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2475	if (ret < 0)
2476		goto out;
2477
2478	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2479	if (ret < 0)
2480		goto out;
2481
2482	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2483
2484out:
2485	mutex_unlock(&rdev->mutex);
2486	return ret;
2487}
2488EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2489
2490static int _regulator_get_voltage(struct regulator_dev *rdev)
2491{
2492	int sel, ret;
2493
2494	if (rdev->desc->ops->get_voltage_sel) {
2495		sel = rdev->desc->ops->get_voltage_sel(rdev);
2496		if (sel < 0)
2497			return sel;
2498		ret = rdev->desc->ops->list_voltage(rdev, sel);
2499	} else if (rdev->desc->ops->get_voltage) {
2500		ret = rdev->desc->ops->get_voltage(rdev);
2501	} else if (rdev->desc->ops->list_voltage) {
2502		ret = rdev->desc->ops->list_voltage(rdev, 0);
2503	} else {
2504		return -EINVAL;
2505	}
2506
2507	if (ret < 0)
2508		return ret;
2509	return ret - rdev->constraints->uV_offset;
2510}
2511
2512/**
2513 * regulator_get_voltage - get regulator output voltage
2514 * @regulator: regulator source
2515 *
2516 * This returns the current regulator voltage in uV.
2517 *
2518 * NOTE: If the regulator is disabled it will return the voltage value. This
2519 * function should not be used to determine regulator state.
2520 */
2521int regulator_get_voltage(struct regulator *regulator)
2522{
2523	int ret;
2524
2525	mutex_lock(&regulator->rdev->mutex);
2526
2527	ret = _regulator_get_voltage(regulator->rdev);
2528
2529	mutex_unlock(&regulator->rdev->mutex);
2530
2531	return ret;
2532}
2533EXPORT_SYMBOL_GPL(regulator_get_voltage);
2534
2535/**
2536 * regulator_set_current_limit - set regulator output current limit
2537 * @regulator: regulator source
2538 * @min_uA: Minimuum supported current in uA
2539 * @max_uA: Maximum supported current in uA
2540 *
2541 * Sets current sink to the desired output current. This can be set during
2542 * any regulator state. IOW, regulator can be disabled or enabled.
2543 *
2544 * If the regulator is enabled then the current will change to the new value
2545 * immediately otherwise if the regulator is disabled the regulator will
2546 * output at the new current when enabled.
2547 *
2548 * NOTE: Regulator system constraints must be set for this regulator before
2549 * calling this function otherwise this call will fail.
2550 */
2551int regulator_set_current_limit(struct regulator *regulator,
2552			       int min_uA, int max_uA)
2553{
2554	struct regulator_dev *rdev = regulator->rdev;
2555	int ret;
2556
2557	mutex_lock(&rdev->mutex);
2558
2559	/* sanity check */
2560	if (!rdev->desc->ops->set_current_limit) {
2561		ret = -EINVAL;
2562		goto out;
2563	}
2564
2565	/* constraints check */
2566	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2567	if (ret < 0)
2568		goto out;
2569
2570	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2571out:
2572	mutex_unlock(&rdev->mutex);
2573	return ret;
2574}
2575EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2576
2577static int _regulator_get_current_limit(struct regulator_dev *rdev)
2578{
2579	int ret;
2580
2581	mutex_lock(&rdev->mutex);
2582
2583	/* sanity check */
2584	if (!rdev->desc->ops->get_current_limit) {
2585		ret = -EINVAL;
2586		goto out;
2587	}
2588
2589	ret = rdev->desc->ops->get_current_limit(rdev);
2590out:
2591	mutex_unlock(&rdev->mutex);
2592	return ret;
2593}
2594
2595/**
2596 * regulator_get_current_limit - get regulator output current
2597 * @regulator: regulator source
2598 *
2599 * This returns the current supplied by the specified current sink in uA.
2600 *
2601 * NOTE: If the regulator is disabled it will return the current value. This
2602 * function should not be used to determine regulator state.
2603 */
2604int regulator_get_current_limit(struct regulator *regulator)
2605{
2606	return _regulator_get_current_limit(regulator->rdev);
2607}
2608EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2609
2610/**
2611 * regulator_set_mode - set regulator operating mode
2612 * @regulator: regulator source
2613 * @mode: operating mode - one of the REGULATOR_MODE constants
2614 *
2615 * Set regulator operating mode to increase regulator efficiency or improve
2616 * regulation performance.
2617 *
2618 * NOTE: Regulator system constraints must be set for this regulator before
2619 * calling this function otherwise this call will fail.
2620 */
2621int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2622{
2623	struct regulator_dev *rdev = regulator->rdev;
2624	int ret;
2625	int regulator_curr_mode;
2626
2627	mutex_lock(&rdev->mutex);
2628
2629	/* sanity check */
2630	if (!rdev->desc->ops->set_mode) {
2631		ret = -EINVAL;
2632		goto out;
2633	}
2634
2635	/* return if the same mode is requested */
2636	if (rdev->desc->ops->get_mode) {
2637		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2638		if (regulator_curr_mode == mode) {
2639			ret = 0;
2640			goto out;
2641		}
2642	}
2643
2644	/* constraints check */
2645	ret = regulator_mode_constrain(rdev, &mode);
2646	if (ret < 0)
2647		goto out;
2648
2649	ret = rdev->desc->ops->set_mode(rdev, mode);
2650out:
2651	mutex_unlock(&rdev->mutex);
2652	return ret;
2653}
2654EXPORT_SYMBOL_GPL(regulator_set_mode);
2655
2656static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2657{
2658	int ret;
2659
2660	mutex_lock(&rdev->mutex);
2661
2662	/* sanity check */
2663	if (!rdev->desc->ops->get_mode) {
2664		ret = -EINVAL;
2665		goto out;
2666	}
2667
2668	ret = rdev->desc->ops->get_mode(rdev);
2669out:
2670	mutex_unlock(&rdev->mutex);
2671	return ret;
2672}
2673
2674/**
2675 * regulator_get_mode - get regulator operating mode
2676 * @regulator: regulator source
2677 *
2678 * Get the current regulator operating mode.
2679 */
2680unsigned int regulator_get_mode(struct regulator *regulator)
2681{
2682	return _regulator_get_mode(regulator->rdev);
2683}
2684EXPORT_SYMBOL_GPL(regulator_get_mode);
2685
2686/**
2687 * regulator_set_optimum_mode - set regulator optimum operating mode
2688 * @regulator: regulator source
2689 * @uA_load: load current
2690 *
2691 * Notifies the regulator core of a new device load. This is then used by
2692 * DRMS (if enabled by constraints) to set the most efficient regulator
2693 * operating mode for the new regulator loading.
2694 *
2695 * Consumer devices notify their supply regulator of the maximum power
2696 * they will require (can be taken from device datasheet in the power
2697 * consumption tables) when they change operational status and hence power
2698 * state. Examples of operational state changes that can affect power
2699 * consumption are :-
2700 *
2701 *    o Device is opened / closed.
2702 *    o Device I/O is about to begin or has just finished.
2703 *    o Device is idling in between work.
2704 *
2705 * This information is also exported via sysfs to userspace.
2706 *
2707 * DRMS will sum the total requested load on the regulator and change
2708 * to the most efficient operating mode if platform constraints allow.
2709 *
2710 * Returns the new regulator mode or error.
2711 */
2712int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2713{
2714	struct regulator_dev *rdev = regulator->rdev;
2715	struct regulator *consumer;
2716	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2717	unsigned int mode;
2718
2719	if (rdev->supply)
2720		input_uV = regulator_get_voltage(rdev->supply);
2721
2722	mutex_lock(&rdev->mutex);
2723
2724	/*
2725	 * first check to see if we can set modes at all, otherwise just
2726	 * tell the consumer everything is OK.
2727	 */
2728	regulator->uA_load = uA_load;
2729	ret = regulator_check_drms(rdev);
2730	if (ret < 0) {
2731		ret = 0;
2732		goto out;
2733	}
2734
2735	if (!rdev->desc->ops->get_optimum_mode)
2736		goto out;
2737
2738	/*
2739	 * we can actually do this so any errors are indicators of
2740	 * potential real failure.
2741	 */
2742	ret = -EINVAL;
2743
2744	if (!rdev->desc->ops->set_mode)
2745		goto out;
2746
2747	/* get output voltage */
2748	output_uV = _regulator_get_voltage(rdev);
2749	if (output_uV <= 0) {
2750		rdev_err(rdev, "invalid output voltage found\n");
2751		goto out;
2752	}
2753
2754	/* No supply? Use constraint voltage */
2755	if (input_uV <= 0)
2756		input_uV = rdev->constraints->input_uV;
2757	if (input_uV <= 0) {
2758		rdev_err(rdev, "invalid input voltage found\n");
2759		goto out;
2760	}
2761
2762	/* calc total requested load for this regulator */
2763	list_for_each_entry(consumer, &rdev->consumer_list, list)
2764		total_uA_load += consumer->uA_load;
2765
2766	mode = rdev->desc->ops->get_optimum_mode(rdev,
2767						 input_uV, output_uV,
2768						 total_uA_load);
2769	ret = regulator_mode_constrain(rdev, &mode);
2770	if (ret < 0) {
2771		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2772			 total_uA_load, input_uV, output_uV);
2773		goto out;
2774	}
2775
2776	ret = rdev->desc->ops->set_mode(rdev, mode);
2777	if (ret < 0) {
2778		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2779		goto out;
2780	}
2781	ret = mode;
2782out:
2783	mutex_unlock(&rdev->mutex);
2784	return ret;
2785}
2786EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2787
2788/**
2789 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2790 *
2791 * @rdev: device to operate on.
2792 * @enable: state to set.
2793 */
2794int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2795{
2796	unsigned int val;
2797
2798	if (enable)
2799		val = rdev->desc->bypass_mask;
2800	else
2801		val = 0;
2802
2803	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2804				  rdev->desc->bypass_mask, val);
2805}
2806EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2807
2808/**
2809 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2810 *
2811 * @rdev: device to operate on.
2812 * @enable: current state.
2813 */
2814int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2815{
2816	unsigned int val;
2817	int ret;
2818
2819	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2820	if (ret != 0)
2821		return ret;
2822
2823	*enable = val & rdev->desc->bypass_mask;
2824
2825	return 0;
2826}
2827EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2828
2829/**
2830 * regulator_allow_bypass - allow the regulator to go into bypass mode
2831 *
2832 * @regulator: Regulator to configure
2833 * @allow: enable or disable bypass mode
2834 *
2835 * Allow the regulator to go into bypass mode if all other consumers
2836 * for the regulator also enable bypass mode and the machine
2837 * constraints allow this.  Bypass mode means that the regulator is
2838 * simply passing the input directly to the output with no regulation.
2839 */
2840int regulator_allow_bypass(struct regulator *regulator, bool enable)
2841{
2842	struct regulator_dev *rdev = regulator->rdev;
2843	int ret = 0;
2844
2845	if (!rdev->desc->ops->set_bypass)
2846		return 0;
2847
2848	if (rdev->constraints &&
2849	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2850		return 0;
2851
2852	mutex_lock(&rdev->mutex);
2853
2854	if (enable && !regulator->bypass) {
2855		rdev->bypass_count++;
2856
2857		if (rdev->bypass_count == rdev->open_count) {
2858			ret = rdev->desc->ops->set_bypass(rdev, enable);
2859			if (ret != 0)
2860				rdev->bypass_count--;
2861		}
2862
2863	} else if (!enable && regulator->bypass) {
2864		rdev->bypass_count--;
2865
2866		if (rdev->bypass_count != rdev->open_count) {
2867			ret = rdev->desc->ops->set_bypass(rdev, enable);
2868			if (ret != 0)
2869				rdev->bypass_count++;
2870		}
2871	}
2872
2873	if (ret == 0)
2874		regulator->bypass = enable;
2875
2876	mutex_unlock(&rdev->mutex);
2877
2878	return ret;
2879}
2880EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2881
2882/**
2883 * regulator_register_notifier - register regulator event notifier
2884 * @regulator: regulator source
2885 * @nb: notifier block
2886 *
2887 * Register notifier block to receive regulator events.
2888 */
2889int regulator_register_notifier(struct regulator *regulator,
2890			      struct notifier_block *nb)
2891{
2892	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2893						nb);
2894}
2895EXPORT_SYMBOL_GPL(regulator_register_notifier);
2896
2897/**
2898 * regulator_unregister_notifier - unregister regulator event notifier
2899 * @regulator: regulator source
2900 * @nb: notifier block
2901 *
2902 * Unregister regulator event notifier block.
2903 */
2904int regulator_unregister_notifier(struct regulator *regulator,
2905				struct notifier_block *nb)
2906{
2907	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2908						  nb);
2909}
2910EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2911
2912/* notify regulator consumers and downstream regulator consumers.
2913 * Note mutex must be held by caller.
2914 */
2915static void _notifier_call_chain(struct regulator_dev *rdev,
2916				  unsigned long event, void *data)
2917{
2918	/* call rdev chain first */
2919	blocking_notifier_call_chain(&rdev->notifier, event, data);
2920}
2921
2922/**
2923 * regulator_bulk_get - get multiple regulator consumers
2924 *
2925 * @dev:           Device to supply
2926 * @num_consumers: Number of consumers to register
2927 * @consumers:     Configuration of consumers; clients are stored here.
2928 *
2929 * @return 0 on success, an errno on failure.
2930 *
2931 * This helper function allows drivers to get several regulator
2932 * consumers in one operation.  If any of the regulators cannot be
2933 * acquired then any regulators that were allocated will be freed
2934 * before returning to the caller.
2935 */
2936int regulator_bulk_get(struct device *dev, int num_consumers,
2937		       struct regulator_bulk_data *consumers)
2938{
2939	int i;
2940	int ret;
2941
2942	for (i = 0; i < num_consumers; i++)
2943		consumers[i].consumer = NULL;
2944
2945	for (i = 0; i < num_consumers; i++) {
2946		consumers[i].consumer = regulator_get(dev,
2947						      consumers[i].supply);
2948		if (IS_ERR(consumers[i].consumer)) {
2949			ret = PTR_ERR(consumers[i].consumer);
2950			dev_err(dev, "Failed to get supply '%s': %d\n",
2951				consumers[i].supply, ret);
2952			consumers[i].consumer = NULL;
2953			goto err;
2954		}
2955	}
2956
2957	return 0;
2958
2959err:
2960	while (--i >= 0)
2961		regulator_put(consumers[i].consumer);
2962
2963	return ret;
2964}
2965EXPORT_SYMBOL_GPL(regulator_bulk_get);
2966
2967/**
2968 * devm_regulator_bulk_get - managed get multiple regulator consumers
2969 *
2970 * @dev:           Device to supply
2971 * @num_consumers: Number of consumers to register
2972 * @consumers:     Configuration of consumers; clients are stored here.
2973 *
2974 * @return 0 on success, an errno on failure.
2975 *
2976 * This helper function allows drivers to get several regulator
2977 * consumers in one operation with management, the regulators will
2978 * automatically be freed when the device is unbound.  If any of the
2979 * regulators cannot be acquired then any regulators that were
2980 * allocated will be freed before returning to the caller.
2981 */
2982int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2983			    struct regulator_bulk_data *consumers)
2984{
2985	int i;
2986	int ret;
2987
2988	for (i = 0; i < num_consumers; i++)
2989		consumers[i].consumer = NULL;
2990
2991	for (i = 0; i < num_consumers; i++) {
2992		consumers[i].consumer = devm_regulator_get(dev,
2993							   consumers[i].supply);
2994		if (IS_ERR(consumers[i].consumer)) {
2995			ret = PTR_ERR(consumers[i].consumer);
2996			dev_err(dev, "Failed to get supply '%s': %d\n",
2997				consumers[i].supply, ret);
2998			consumers[i].consumer = NULL;
2999			goto err;
3000		}
3001	}
3002
3003	return 0;
3004
3005err:
3006	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3007		devm_regulator_put(consumers[i].consumer);
3008
3009	return ret;
3010}
3011EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3012
3013static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3014{
3015	struct regulator_bulk_data *bulk = data;
3016
3017	bulk->ret = regulator_enable(bulk->consumer);
3018}
3019
3020/**
3021 * regulator_bulk_enable - enable multiple regulator consumers
3022 *
3023 * @num_consumers: Number of consumers
3024 * @consumers:     Consumer data; clients are stored here.
3025 * @return         0 on success, an errno on failure
3026 *
3027 * This convenience API allows consumers to enable multiple regulator
3028 * clients in a single API call.  If any consumers cannot be enabled
3029 * then any others that were enabled will be disabled again prior to
3030 * return.
3031 */
3032int regulator_bulk_enable(int num_consumers,
3033			  struct regulator_bulk_data *consumers)
3034{
3035	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3036	int i;
3037	int ret = 0;
3038
3039	for (i = 0; i < num_consumers; i++) {
3040		if (consumers[i].consumer->always_on)
3041			consumers[i].ret = 0;
3042		else
3043			async_schedule_domain(regulator_bulk_enable_async,
3044					      &consumers[i], &async_domain);
3045	}
3046
3047	async_synchronize_full_domain(&async_domain);
3048
3049	/* If any consumer failed we need to unwind any that succeeded */
3050	for (i = 0; i < num_consumers; i++) {
3051		if (consumers[i].ret != 0) {
3052			ret = consumers[i].ret;
3053			goto err;
3054		}
3055	}
3056
3057	return 0;
3058
3059err:
3060	for (i = 0; i < num_consumers; i++) {
3061		if (consumers[i].ret < 0)
3062			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3063			       consumers[i].ret);
3064		else
3065			regulator_disable(consumers[i].consumer);
3066	}
3067
3068	return ret;
3069}
3070EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3071
3072/**
3073 * regulator_bulk_disable - disable multiple regulator consumers
3074 *
3075 * @num_consumers: Number of consumers
3076 * @consumers:     Consumer data; clients are stored here.
3077 * @return         0 on success, an errno on failure
3078 *
3079 * This convenience API allows consumers to disable multiple regulator
3080 * clients in a single API call.  If any consumers cannot be disabled
3081 * then any others that were disabled will be enabled again prior to
3082 * return.
3083 */
3084int regulator_bulk_disable(int num_consumers,
3085			   struct regulator_bulk_data *consumers)
3086{
3087	int i;
3088	int ret, r;
3089
3090	for (i = num_consumers - 1; i >= 0; --i) {
3091		ret = regulator_disable(consumers[i].consumer);
3092		if (ret != 0)
3093			goto err;
3094	}
3095
3096	return 0;
3097
3098err:
3099	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3100	for (++i; i < num_consumers; ++i) {
3101		r = regulator_enable(consumers[i].consumer);
3102		if (r != 0)
3103			pr_err("Failed to reename %s: %d\n",
3104			       consumers[i].supply, r);
3105	}
3106
3107	return ret;
3108}
3109EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3110
3111/**
3112 * regulator_bulk_force_disable - force disable multiple regulator consumers
3113 *
3114 * @num_consumers: Number of consumers
3115 * @consumers:     Consumer data; clients are stored here.
3116 * @return         0 on success, an errno on failure
3117 *
3118 * This convenience API allows consumers to forcibly disable multiple regulator
3119 * clients in a single API call.
3120 * NOTE: This should be used for situations when device damage will
3121 * likely occur if the regulators are not disabled (e.g. over temp).
3122 * Although regulator_force_disable function call for some consumers can
3123 * return error numbers, the function is called for all consumers.
3124 */
3125int regulator_bulk_force_disable(int num_consumers,
3126			   struct regulator_bulk_data *consumers)
3127{
3128	int i;
3129	int ret;
3130
3131	for (i = 0; i < num_consumers; i++)
3132		consumers[i].ret =
3133			    regulator_force_disable(consumers[i].consumer);
3134
3135	for (i = 0; i < num_consumers; i++) {
3136		if (consumers[i].ret != 0) {
3137			ret = consumers[i].ret;
3138			goto out;
3139		}
3140	}
3141
3142	return 0;
3143out:
3144	return ret;
3145}
3146EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3147
3148/**
3149 * regulator_bulk_free - free multiple regulator consumers
3150 *
3151 * @num_consumers: Number of consumers
3152 * @consumers:     Consumer data; clients are stored here.
3153 *
3154 * This convenience API allows consumers to free multiple regulator
3155 * clients in a single API call.
3156 */
3157void regulator_bulk_free(int num_consumers,
3158			 struct regulator_bulk_data *consumers)
3159{
3160	int i;
3161
3162	for (i = 0; i < num_consumers; i++) {
3163		regulator_put(consumers[i].consumer);
3164		consumers[i].consumer = NULL;
3165	}
3166}
3167EXPORT_SYMBOL_GPL(regulator_bulk_free);
3168
3169/**
3170 * regulator_notifier_call_chain - call regulator event notifier
3171 * @rdev: regulator source
3172 * @event: notifier block
3173 * @data: callback-specific data.
3174 *
3175 * Called by regulator drivers to notify clients a regulator event has
3176 * occurred. We also notify regulator clients downstream.
3177 * Note lock must be held by caller.
3178 */
3179int regulator_notifier_call_chain(struct regulator_dev *rdev,
3180				  unsigned long event, void *data)
3181{
3182	_notifier_call_chain(rdev, event, data);
3183	return NOTIFY_DONE;
3184
3185}
3186EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3187
3188/**
3189 * regulator_mode_to_status - convert a regulator mode into a status
3190 *
3191 * @mode: Mode to convert
3192 *
3193 * Convert a regulator mode into a status.
3194 */
3195int regulator_mode_to_status(unsigned int mode)
3196{
3197	switch (mode) {
3198	case REGULATOR_MODE_FAST:
3199		return REGULATOR_STATUS_FAST;
3200	case REGULATOR_MODE_NORMAL:
3201		return REGULATOR_STATUS_NORMAL;
3202	case REGULATOR_MODE_IDLE:
3203		return REGULATOR_STATUS_IDLE;
3204	case REGULATOR_MODE_STANDBY:
3205		return REGULATOR_STATUS_STANDBY;
3206	default:
3207		return REGULATOR_STATUS_UNDEFINED;
3208	}
3209}
3210EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3211
3212/*
3213 * To avoid cluttering sysfs (and memory) with useless state, only
3214 * create attributes that can be meaningfully displayed.
3215 */
3216static int add_regulator_attributes(struct regulator_dev *rdev)
3217{
3218	struct device		*dev = &rdev->dev;
3219	struct regulator_ops	*ops = rdev->desc->ops;
3220	int			status = 0;
3221
3222	/* some attributes need specific methods to be displayed */
3223	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3224	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3225	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3226		status = device_create_file(dev, &dev_attr_microvolts);
3227		if (status < 0)
3228			return status;
3229	}
3230	if (ops->get_current_limit) {
3231		status = device_create_file(dev, &dev_attr_microamps);
3232		if (status < 0)
3233			return status;
3234	}
3235	if (ops->get_mode) {
3236		status = device_create_file(dev, &dev_attr_opmode);
3237		if (status < 0)
3238			return status;
3239	}
3240	if (rdev->ena_gpio || ops->is_enabled) {
3241		status = device_create_file(dev, &dev_attr_state);
3242		if (status < 0)
3243			return status;
3244	}
3245	if (ops->get_status) {
3246		status = device_create_file(dev, &dev_attr_status);
3247		if (status < 0)
3248			return status;
3249	}
3250	if (ops->get_bypass) {
3251		status = device_create_file(dev, &dev_attr_bypass);
3252		if (status < 0)
3253			return status;
3254	}
3255
3256	/* some attributes are type-specific */
3257	if (rdev->desc->type == REGULATOR_CURRENT) {
3258		status = device_create_file(dev, &dev_attr_requested_microamps);
3259		if (status < 0)
3260			return status;
3261	}
3262
3263	/* all the other attributes exist to support constraints;
3264	 * don't show them if there are no constraints, or if the
3265	 * relevant supporting methods are missing.
3266	 */
3267	if (!rdev->constraints)
3268		return status;
3269
3270	/* constraints need specific supporting methods */
3271	if (ops->set_voltage || ops->set_voltage_sel) {
3272		status = device_create_file(dev, &dev_attr_min_microvolts);
3273		if (status < 0)
3274			return status;
3275		status = device_create_file(dev, &dev_attr_max_microvolts);
3276		if (status < 0)
3277			return status;
3278	}
3279	if (ops->set_current_limit) {
3280		status = device_create_file(dev, &dev_attr_min_microamps);
3281		if (status < 0)
3282			return status;
3283		status = device_create_file(dev, &dev_attr_max_microamps);
3284		if (status < 0)
3285			return status;
3286	}
3287
3288	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3289	if (status < 0)
3290		return status;
3291	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3292	if (status < 0)
3293		return status;
3294	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3295	if (status < 0)
3296		return status;
3297
3298	if (ops->set_suspend_voltage) {
3299		status = device_create_file(dev,
3300				&dev_attr_suspend_standby_microvolts);
3301		if (status < 0)
3302			return status;
3303		status = device_create_file(dev,
3304				&dev_attr_suspend_mem_microvolts);
3305		if (status < 0)
3306			return status;
3307		status = device_create_file(dev,
3308				&dev_attr_suspend_disk_microvolts);
3309		if (status < 0)
3310			return status;
3311	}
3312
3313	if (ops->set_suspend_mode) {
3314		status = device_create_file(dev,
3315				&dev_attr_suspend_standby_mode);
3316		if (status < 0)
3317			return status;
3318		status = device_create_file(dev,
3319				&dev_attr_suspend_mem_mode);
3320		if (status < 0)
3321			return status;
3322		status = device_create_file(dev,
3323				&dev_attr_suspend_disk_mode);
3324		if (status < 0)
3325			return status;
3326	}
3327
3328	return status;
3329}
3330
3331static void rdev_init_debugfs(struct regulator_dev *rdev)
3332{
3333	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3334	if (!rdev->debugfs) {
3335		rdev_warn(rdev, "Failed to create debugfs directory\n");
3336		return;
3337	}
3338
3339	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3340			   &rdev->use_count);
3341	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3342			   &rdev->open_count);
3343	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3344			   &rdev->bypass_count);
3345}
3346
3347/**
3348 * regulator_register - register regulator
3349 * @regulator_desc: regulator to register
3350 * @config: runtime configuration for regulator
3351 *
3352 * Called by regulator drivers to register a regulator.
3353 * Returns a valid pointer to struct regulator_dev on success
3354 * or an ERR_PTR() on error.
3355 */
3356struct regulator_dev *
3357regulator_register(const struct regulator_desc *regulator_desc,
3358		   const struct regulator_config *config)
3359{
3360	const struct regulation_constraints *constraints = NULL;
3361	const struct regulator_init_data *init_data;
3362	static atomic_t regulator_no = ATOMIC_INIT(0);
3363	struct regulator_dev *rdev;
3364	struct device *dev;
3365	int ret, i;
3366	const char *supply = NULL;
3367
3368	if (regulator_desc == NULL || config == NULL)
3369		return ERR_PTR(-EINVAL);
3370
3371	dev = config->dev;
3372	WARN_ON(!dev);
3373
3374	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3375		return ERR_PTR(-EINVAL);
3376
3377	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3378	    regulator_desc->type != REGULATOR_CURRENT)
3379		return ERR_PTR(-EINVAL);
3380
3381	/* Only one of each should be implemented */
3382	WARN_ON(regulator_desc->ops->get_voltage &&
3383		regulator_desc->ops->get_voltage_sel);
3384	WARN_ON(regulator_desc->ops->set_voltage &&
3385		regulator_desc->ops->set_voltage_sel);
3386
3387	/* If we're using selectors we must implement list_voltage. */
3388	if (regulator_desc->ops->get_voltage_sel &&
3389	    !regulator_desc->ops->list_voltage) {
3390		return ERR_PTR(-EINVAL);
3391	}
3392	if (regulator_desc->ops->set_voltage_sel &&
3393	    !regulator_desc->ops->list_voltage) {
3394		return ERR_PTR(-EINVAL);
3395	}
3396
3397	init_data = config->init_data;
3398
3399	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3400	if (rdev == NULL)
3401		return ERR_PTR(-ENOMEM);
3402
3403	mutex_lock(&regulator_list_mutex);
3404
3405	mutex_init(&rdev->mutex);
3406	rdev->reg_data = config->driver_data;
3407	rdev->owner = regulator_desc->owner;
3408	rdev->desc = regulator_desc;
3409	if (config->regmap)
3410		rdev->regmap = config->regmap;
3411	else if (dev_get_regmap(dev, NULL))
3412		rdev->regmap = dev_get_regmap(dev, NULL);
3413	else if (dev->parent)
3414		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3415	INIT_LIST_HEAD(&rdev->consumer_list);
3416	INIT_LIST_HEAD(&rdev->list);
3417	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3418	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3419
3420	/* preform any regulator specific init */
3421	if (init_data && init_data->regulator_init) {
3422		ret = init_data->regulator_init(rdev->reg_data);
3423		if (ret < 0)
3424			goto clean;
3425	}
3426
3427	/* register with sysfs */
3428	rdev->dev.class = &regulator_class;
3429	rdev->dev.of_node = config->of_node;
3430	rdev->dev.parent = dev;
3431	dev_set_name(&rdev->dev, "regulator.%d",
3432		     atomic_inc_return(&regulator_no) - 1);
3433	ret = device_register(&rdev->dev);
3434	if (ret != 0) {
3435		put_device(&rdev->dev);
3436		goto clean;
3437	}
3438
3439	dev_set_drvdata(&rdev->dev, rdev);
3440
3441	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3442		ret = gpio_request_one(config->ena_gpio,
3443				       GPIOF_DIR_OUT | config->ena_gpio_flags,
3444				       rdev_get_name(rdev));
3445		if (ret != 0) {
3446			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3447				 config->ena_gpio, ret);
3448			goto wash;
3449		}
3450
3451		rdev->ena_gpio = config->ena_gpio;
3452		rdev->ena_gpio_invert = config->ena_gpio_invert;
3453
3454		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3455			rdev->ena_gpio_state = 1;
3456
3457		if (rdev->ena_gpio_invert)
3458			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3459	}
3460
3461	/* set regulator constraints */
3462	if (init_data)
3463		constraints = &init_data->constraints;
3464
3465	ret = set_machine_constraints(rdev, constraints);
3466	if (ret < 0)
3467		goto scrub;
3468
3469	/* add attributes supported by this regulator */
3470	ret = add_regulator_attributes(rdev);
3471	if (ret < 0)
3472		goto scrub;
3473
3474	if (init_data && init_data->supply_regulator)
3475		supply = init_data->supply_regulator;
3476	else if (regulator_desc->supply_name)
3477		supply = regulator_desc->supply_name;
3478
3479	if (supply) {
3480		struct regulator_dev *r;
3481
3482		r = regulator_dev_lookup(dev, supply, &ret);
3483
3484		if (!r) {
3485			dev_err(dev, "Failed to find supply %s\n", supply);
3486			ret = -EPROBE_DEFER;
3487			goto scrub;
3488		}
3489
3490		ret = set_supply(rdev, r);
3491		if (ret < 0)
3492			goto scrub;
3493
3494		/* Enable supply if rail is enabled */
3495		if (_regulator_is_enabled(rdev)) {
3496			ret = regulator_enable(rdev->supply);
3497			if (ret < 0)
3498				goto scrub;
3499		}
3500	}
3501
3502	/* add consumers devices */
3503	if (init_data) {
3504		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3505			ret = set_consumer_device_supply(rdev,
3506				init_data->consumer_supplies[i].dev_name,
3507				init_data->consumer_supplies[i].supply);
3508			if (ret < 0) {
3509				dev_err(dev, "Failed to set supply %s\n",
3510					init_data->consumer_supplies[i].supply);
3511				goto unset_supplies;
3512			}
3513		}
3514	}
3515
3516	list_add(&rdev->list, &regulator_list);
3517
3518	rdev_init_debugfs(rdev);
3519out:
3520	mutex_unlock(&regulator_list_mutex);
3521	return rdev;
3522
3523unset_supplies:
3524	unset_regulator_supplies(rdev);
3525
3526scrub:
3527	if (rdev->supply)
3528		_regulator_put(rdev->supply);
3529	if (rdev->ena_gpio)
3530		gpio_free(rdev->ena_gpio);
3531	kfree(rdev->constraints);
3532wash:
3533	device_unregister(&rdev->dev);
3534	/* device core frees rdev */
3535	rdev = ERR_PTR(ret);
3536	goto out;
3537
3538clean:
3539	kfree(rdev);
3540	rdev = ERR_PTR(ret);
3541	goto out;
3542}
3543EXPORT_SYMBOL_GPL(regulator_register);
3544
3545/**
3546 * regulator_unregister - unregister regulator
3547 * @rdev: regulator to unregister
3548 *
3549 * Called by regulator drivers to unregister a regulator.
3550 */
3551void regulator_unregister(struct regulator_dev *rdev)
3552{
3553	if (rdev == NULL)
3554		return;
3555
3556	if (rdev->supply)
3557		regulator_put(rdev->supply);
3558	mutex_lock(&regulator_list_mutex);
3559	debugfs_remove_recursive(rdev->debugfs);
3560	flush_work(&rdev->disable_work.work);
3561	WARN_ON(rdev->open_count);
3562	unset_regulator_supplies(rdev);
3563	list_del(&rdev->list);
3564	kfree(rdev->constraints);
3565	if (rdev->ena_gpio)
3566		gpio_free(rdev->ena_gpio);
3567	device_unregister(&rdev->dev);
3568	mutex_unlock(&regulator_list_mutex);
3569}
3570EXPORT_SYMBOL_GPL(regulator_unregister);
3571
3572/**
3573 * regulator_suspend_prepare - prepare regulators for system wide suspend
3574 * @state: system suspend state
3575 *
3576 * Configure each regulator with it's suspend operating parameters for state.
3577 * This will usually be called by machine suspend code prior to supending.
3578 */
3579int regulator_suspend_prepare(suspend_state_t state)
3580{
3581	struct regulator_dev *rdev;
3582	int ret = 0;
3583
3584	/* ON is handled by regulator active state */
3585	if (state == PM_SUSPEND_ON)
3586		return -EINVAL;
3587
3588	mutex_lock(&regulator_list_mutex);
3589	list_for_each_entry(rdev, &regulator_list, list) {
3590
3591		mutex_lock(&rdev->mutex);
3592		ret = suspend_prepare(rdev, state);
3593		mutex_unlock(&rdev->mutex);
3594
3595		if (ret < 0) {
3596			rdev_err(rdev, "failed to prepare\n");
3597			goto out;
3598		}
3599	}
3600out:
3601	mutex_unlock(&regulator_list_mutex);
3602	return ret;
3603}
3604EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3605
3606/**
3607 * regulator_suspend_finish - resume regulators from system wide suspend
3608 *
3609 * Turn on regulators that might be turned off by regulator_suspend_prepare
3610 * and that should be turned on according to the regulators properties.
3611 */
3612int regulator_suspend_finish(void)
3613{
3614	struct regulator_dev *rdev;
3615	int ret = 0, error;
3616
3617	mutex_lock(&regulator_list_mutex);
3618	list_for_each_entry(rdev, &regulator_list, list) {
3619		struct regulator_ops *ops = rdev->desc->ops;
3620
3621		mutex_lock(&rdev->mutex);
3622		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3623				ops->enable) {
3624			error = ops->enable(rdev);
3625			if (error)
3626				ret = error;
3627		} else {
3628			if (!has_full_constraints)
3629				goto unlock;
3630			if (!ops->disable)
3631				goto unlock;
3632			if (!_regulator_is_enabled(rdev))
3633				goto unlock;
3634
3635			error = ops->disable(rdev);
3636			if (error)
3637				ret = error;
3638		}
3639unlock:
3640		mutex_unlock(&rdev->mutex);
3641	}
3642	mutex_unlock(&regulator_list_mutex);
3643	return ret;
3644}
3645EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3646
3647/**
3648 * regulator_has_full_constraints - the system has fully specified constraints
3649 *
3650 * Calling this function will cause the regulator API to disable all
3651 * regulators which have a zero use count and don't have an always_on
3652 * constraint in a late_initcall.
3653 *
3654 * The intention is that this will become the default behaviour in a
3655 * future kernel release so users are encouraged to use this facility
3656 * now.
3657 */
3658void regulator_has_full_constraints(void)
3659{
3660	has_full_constraints = 1;
3661}
3662EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3663
3664/**
3665 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3666 *
3667 * Calling this function will cause the regulator API to provide a
3668 * dummy regulator to consumers if no physical regulator is found,
3669 * allowing most consumers to proceed as though a regulator were
3670 * configured.  This allows systems such as those with software
3671 * controllable regulators for the CPU core only to be brought up more
3672 * readily.
3673 */
3674void regulator_use_dummy_regulator(void)
3675{
3676	board_wants_dummy_regulator = true;
3677}
3678EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3679
3680/**
3681 * rdev_get_drvdata - get rdev regulator driver data
3682 * @rdev: regulator
3683 *
3684 * Get rdev regulator driver private data. This call can be used in the
3685 * regulator driver context.
3686 */
3687void *rdev_get_drvdata(struct regulator_dev *rdev)
3688{
3689	return rdev->reg_data;
3690}
3691EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3692
3693/**
3694 * regulator_get_drvdata - get regulator driver data
3695 * @regulator: regulator
3696 *
3697 * Get regulator driver private data. This call can be used in the consumer
3698 * driver context when non API regulator specific functions need to be called.
3699 */
3700void *regulator_get_drvdata(struct regulator *regulator)
3701{
3702	return regulator->rdev->reg_data;
3703}
3704EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3705
3706/**
3707 * regulator_set_drvdata - set regulator driver data
3708 * @regulator: regulator
3709 * @data: data
3710 */
3711void regulator_set_drvdata(struct regulator *regulator, void *data)
3712{
3713	regulator->rdev->reg_data = data;
3714}
3715EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3716
3717/**
3718 * regulator_get_id - get regulator ID
3719 * @rdev: regulator
3720 */
3721int rdev_get_id(struct regulator_dev *rdev)
3722{
3723	return rdev->desc->id;
3724}
3725EXPORT_SYMBOL_GPL(rdev_get_id);
3726
3727struct device *rdev_get_dev(struct regulator_dev *rdev)
3728{
3729	return &rdev->dev;
3730}
3731EXPORT_SYMBOL_GPL(rdev_get_dev);
3732
3733void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3734{
3735	return reg_init_data->driver_data;
3736}
3737EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3738
3739#ifdef CONFIG_DEBUG_FS
3740static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3741				    size_t count, loff_t *ppos)
3742{
3743	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3744	ssize_t len, ret = 0;
3745	struct regulator_map *map;
3746
3747	if (!buf)
3748		return -ENOMEM;
3749
3750	list_for_each_entry(map, &regulator_map_list, list) {
3751		len = snprintf(buf + ret, PAGE_SIZE - ret,
3752			       "%s -> %s.%s\n",
3753			       rdev_get_name(map->regulator), map->dev_name,
3754			       map->supply);
3755		if (len >= 0)
3756			ret += len;
3757		if (ret > PAGE_SIZE) {
3758			ret = PAGE_SIZE;
3759			break;
3760		}
3761	}
3762
3763	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3764
3765	kfree(buf);
3766
3767	return ret;
3768}
3769#endif
3770
3771static const struct file_operations supply_map_fops = {
3772#ifdef CONFIG_DEBUG_FS
3773	.read = supply_map_read_file,
3774	.llseek = default_llseek,
3775#endif
3776};
3777
3778static int __init regulator_init(void)
3779{
3780	int ret;
3781
3782	ret = class_register(&regulator_class);
3783
3784	debugfs_root = debugfs_create_dir("regulator", NULL);
3785	if (!debugfs_root)
3786		pr_warn("regulator: Failed to create debugfs directory\n");
3787
3788	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3789			    &supply_map_fops);
3790
3791	regulator_dummy_init();
3792
3793	return ret;
3794}
3795
3796/* init early to allow our consumers to complete system booting */
3797core_initcall(regulator_init);
3798
3799static int __init regulator_init_complete(void)
3800{
3801	struct regulator_dev *rdev;
3802	struct regulator_ops *ops;
3803	struct regulation_constraints *c;
3804	int enabled, ret;
3805
3806	/*
3807	 * Since DT doesn't provide an idiomatic mechanism for
3808	 * enabling full constraints and since it's much more natural
3809	 * with DT to provide them just assume that a DT enabled
3810	 * system has full constraints.
3811	 */
3812	if (of_have_populated_dt())
3813		has_full_constraints = true;
3814
3815	mutex_lock(&regulator_list_mutex);
3816
3817	/* If we have a full configuration then disable any regulators
3818	 * which are not in use or always_on.  This will become the
3819	 * default behaviour in the future.
3820	 */
3821	list_for_each_entry(rdev, &regulator_list, list) {
3822		ops = rdev->desc->ops;
3823		c = rdev->constraints;
3824
3825		if (!ops->disable || (c && c->always_on))
3826			continue;
3827
3828		mutex_lock(&rdev->mutex);
3829
3830		if (rdev->use_count)
3831			goto unlock;
3832
3833		/* If we can't read the status assume it's on. */
3834		if (ops->is_enabled)
3835			enabled = ops->is_enabled(rdev);
3836		else
3837			enabled = 1;
3838
3839		if (!enabled)
3840			goto unlock;
3841
3842		if (has_full_constraints) {
3843			/* We log since this may kill the system if it
3844			 * goes wrong. */
3845			rdev_info(rdev, "disabling\n");
3846			ret = ops->disable(rdev);
3847			if (ret != 0) {
3848				rdev_err(rdev, "couldn't disable: %d\n", ret);
3849			}
3850		} else {
3851			/* The intention is that in future we will
3852			 * assume that full constraints are provided
3853			 * so warn even if we aren't going to do
3854			 * anything here.
3855			 */
3856			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3857		}
3858
3859unlock:
3860		mutex_unlock(&rdev->mutex);
3861	}
3862
3863	mutex_unlock(&regulator_list_mutex);
3864
3865	return 0;
3866}
3867late_initcall(regulator_init_complete);
3868