core.c revision fe203ddfa5451a13589b1c7da9edab80b7fc06d1
1/*
2 * core.c  --  Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 *  This program is free software; you can redistribute  it and/or modify it
10 *  under  the terms of  the GNU General  Public License as published by the
11 *  Free Software Foundation;  either version 2 of the  License, or (at your
12 *  option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/suspend.h>
22#include <linux/regulator/consumer.h>
23#include <linux/regulator/driver.h>
24#include <linux/regulator/machine.h>
25
26#define REGULATOR_VERSION "0.5"
27
28static DEFINE_MUTEX(regulator_list_mutex);
29static LIST_HEAD(regulator_list);
30static LIST_HEAD(regulator_map_list);
31
32/*
33 * struct regulator_map
34 *
35 * Used to provide symbolic supply names to devices.
36 */
37struct regulator_map {
38	struct list_head list;
39	struct device *dev;
40	const char *supply;
41	struct regulator_dev *regulator;
42};
43
44/*
45 * struct regulator
46 *
47 * One for each consumer device.
48 */
49struct regulator {
50	struct device *dev;
51	struct list_head list;
52	int uA_load;
53	int min_uV;
54	int max_uV;
55	int enabled; /* count of client enables */
56	char *supply_name;
57	struct device_attribute dev_attr;
58	struct regulator_dev *rdev;
59};
60
61static int _regulator_is_enabled(struct regulator_dev *rdev);
62static int _regulator_disable(struct regulator_dev *rdev);
63static int _regulator_get_voltage(struct regulator_dev *rdev);
64static int _regulator_get_current_limit(struct regulator_dev *rdev);
65static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66static void _notifier_call_chain(struct regulator_dev *rdev,
67				  unsigned long event, void *data);
68
69/* gets the regulator for a given consumer device */
70static struct regulator *get_device_regulator(struct device *dev)
71{
72	struct regulator *regulator = NULL;
73	struct regulator_dev *rdev;
74
75	mutex_lock(&regulator_list_mutex);
76	list_for_each_entry(rdev, &regulator_list, list) {
77		mutex_lock(&rdev->mutex);
78		list_for_each_entry(regulator, &rdev->consumer_list, list) {
79			if (regulator->dev == dev) {
80				mutex_unlock(&rdev->mutex);
81				mutex_unlock(&regulator_list_mutex);
82				return regulator;
83			}
84		}
85		mutex_unlock(&rdev->mutex);
86	}
87	mutex_unlock(&regulator_list_mutex);
88	return NULL;
89}
90
91/* Platform voltage constraint check */
92static int regulator_check_voltage(struct regulator_dev *rdev,
93				   int *min_uV, int *max_uV)
94{
95	BUG_ON(*min_uV > *max_uV);
96
97	if (!rdev->constraints) {
98		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99		       rdev->desc->name);
100		return -ENODEV;
101	}
102	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103		printk(KERN_ERR "%s: operation not allowed for %s\n",
104		       __func__, rdev->desc->name);
105		return -EPERM;
106	}
107
108	if (*max_uV > rdev->constraints->max_uV)
109		*max_uV = rdev->constraints->max_uV;
110	if (*min_uV < rdev->constraints->min_uV)
111		*min_uV = rdev->constraints->min_uV;
112
113	if (*min_uV > *max_uV)
114		return -EINVAL;
115
116	return 0;
117}
118
119/* current constraint check */
120static int regulator_check_current_limit(struct regulator_dev *rdev,
121					int *min_uA, int *max_uA)
122{
123	BUG_ON(*min_uA > *max_uA);
124
125	if (!rdev->constraints) {
126		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127		       rdev->desc->name);
128		return -ENODEV;
129	}
130	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131		printk(KERN_ERR "%s: operation not allowed for %s\n",
132		       __func__, rdev->desc->name);
133		return -EPERM;
134	}
135
136	if (*max_uA > rdev->constraints->max_uA)
137		*max_uA = rdev->constraints->max_uA;
138	if (*min_uA < rdev->constraints->min_uA)
139		*min_uA = rdev->constraints->min_uA;
140
141	if (*min_uA > *max_uA)
142		return -EINVAL;
143
144	return 0;
145}
146
147/* operating mode constraint check */
148static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149{
150	switch (mode) {
151	case REGULATOR_MODE_FAST:
152	case REGULATOR_MODE_NORMAL:
153	case REGULATOR_MODE_IDLE:
154	case REGULATOR_MODE_STANDBY:
155		break;
156	default:
157		return -EINVAL;
158	}
159
160	if (!rdev->constraints) {
161		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162		       rdev->desc->name);
163		return -ENODEV;
164	}
165	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166		printk(KERN_ERR "%s: operation not allowed for %s\n",
167		       __func__, rdev->desc->name);
168		return -EPERM;
169	}
170	if (!(rdev->constraints->valid_modes_mask & mode)) {
171		printk(KERN_ERR "%s: invalid mode %x for %s\n",
172		       __func__, mode, rdev->desc->name);
173		return -EINVAL;
174	}
175	return 0;
176}
177
178/* dynamic regulator mode switching constraint check */
179static int regulator_check_drms(struct regulator_dev *rdev)
180{
181	if (!rdev->constraints) {
182		printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183		       rdev->desc->name);
184		return -ENODEV;
185	}
186	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187		printk(KERN_ERR "%s: operation not allowed for %s\n",
188		       __func__, rdev->desc->name);
189		return -EPERM;
190	}
191	return 0;
192}
193
194static ssize_t device_requested_uA_show(struct device *dev,
195			     struct device_attribute *attr, char *buf)
196{
197	struct regulator *regulator;
198
199	regulator = get_device_regulator(dev);
200	if (regulator == NULL)
201		return 0;
202
203	return sprintf(buf, "%d\n", regulator->uA_load);
204}
205
206static ssize_t regulator_uV_show(struct device *dev,
207				struct device_attribute *attr, char *buf)
208{
209	struct regulator_dev *rdev = dev_get_drvdata(dev);
210	ssize_t ret;
211
212	mutex_lock(&rdev->mutex);
213	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214	mutex_unlock(&rdev->mutex);
215
216	return ret;
217}
218static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220static ssize_t regulator_uA_show(struct device *dev,
221				struct device_attribute *attr, char *buf)
222{
223	struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226}
227static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229static ssize_t regulator_name_show(struct device *dev,
230			     struct device_attribute *attr, char *buf)
231{
232	struct regulator_dev *rdev = dev_get_drvdata(dev);
233	const char *name;
234
235	if (rdev->constraints->name)
236		name = rdev->constraints->name;
237	else if (rdev->desc->name)
238		name = rdev->desc->name;
239	else
240		name = "";
241
242	return sprintf(buf, "%s\n", name);
243}
244
245static ssize_t regulator_print_opmode(char *buf, int mode)
246{
247	switch (mode) {
248	case REGULATOR_MODE_FAST:
249		return sprintf(buf, "fast\n");
250	case REGULATOR_MODE_NORMAL:
251		return sprintf(buf, "normal\n");
252	case REGULATOR_MODE_IDLE:
253		return sprintf(buf, "idle\n");
254	case REGULATOR_MODE_STANDBY:
255		return sprintf(buf, "standby\n");
256	}
257	return sprintf(buf, "unknown\n");
258}
259
260static ssize_t regulator_opmode_show(struct device *dev,
261				    struct device_attribute *attr, char *buf)
262{
263	struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266}
267static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269static ssize_t regulator_print_state(char *buf, int state)
270{
271	if (state > 0)
272		return sprintf(buf, "enabled\n");
273	else if (state == 0)
274		return sprintf(buf, "disabled\n");
275	else
276		return sprintf(buf, "unknown\n");
277}
278
279static ssize_t regulator_state_show(struct device *dev,
280				   struct device_attribute *attr, char *buf)
281{
282	struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284	return regulator_print_state(buf, _regulator_is_enabled(rdev));
285}
286static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288static ssize_t regulator_status_show(struct device *dev,
289				   struct device_attribute *attr, char *buf)
290{
291	struct regulator_dev *rdev = dev_get_drvdata(dev);
292	int status;
293	char *label;
294
295	status = rdev->desc->ops->get_status(rdev);
296	if (status < 0)
297		return status;
298
299	switch (status) {
300	case REGULATOR_STATUS_OFF:
301		label = "off";
302		break;
303	case REGULATOR_STATUS_ON:
304		label = "on";
305		break;
306	case REGULATOR_STATUS_ERROR:
307		label = "error";
308		break;
309	case REGULATOR_STATUS_FAST:
310		label = "fast";
311		break;
312	case REGULATOR_STATUS_NORMAL:
313		label = "normal";
314		break;
315	case REGULATOR_STATUS_IDLE:
316		label = "idle";
317		break;
318	case REGULATOR_STATUS_STANDBY:
319		label = "standby";
320		break;
321	default:
322		return -ERANGE;
323	}
324
325	return sprintf(buf, "%s\n", label);
326}
327static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329static ssize_t regulator_min_uA_show(struct device *dev,
330				    struct device_attribute *attr, char *buf)
331{
332	struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334	if (!rdev->constraints)
335		return sprintf(buf, "constraint not defined\n");
336
337	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338}
339static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341static ssize_t regulator_max_uA_show(struct device *dev,
342				    struct device_attribute *attr, char *buf)
343{
344	struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346	if (!rdev->constraints)
347		return sprintf(buf, "constraint not defined\n");
348
349	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350}
351static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353static ssize_t regulator_min_uV_show(struct device *dev,
354				    struct device_attribute *attr, char *buf)
355{
356	struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358	if (!rdev->constraints)
359		return sprintf(buf, "constraint not defined\n");
360
361	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362}
363static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365static ssize_t regulator_max_uV_show(struct device *dev,
366				    struct device_attribute *attr, char *buf)
367{
368	struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370	if (!rdev->constraints)
371		return sprintf(buf, "constraint not defined\n");
372
373	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374}
375static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377static ssize_t regulator_total_uA_show(struct device *dev,
378				      struct device_attribute *attr, char *buf)
379{
380	struct regulator_dev *rdev = dev_get_drvdata(dev);
381	struct regulator *regulator;
382	int uA = 0;
383
384	mutex_lock(&rdev->mutex);
385	list_for_each_entry(regulator, &rdev->consumer_list, list)
386	    uA += regulator->uA_load;
387	mutex_unlock(&rdev->mutex);
388	return sprintf(buf, "%d\n", uA);
389}
390static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392static ssize_t regulator_num_users_show(struct device *dev,
393				      struct device_attribute *attr, char *buf)
394{
395	struct regulator_dev *rdev = dev_get_drvdata(dev);
396	return sprintf(buf, "%d\n", rdev->use_count);
397}
398
399static ssize_t regulator_type_show(struct device *dev,
400				  struct device_attribute *attr, char *buf)
401{
402	struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404	switch (rdev->desc->type) {
405	case REGULATOR_VOLTAGE:
406		return sprintf(buf, "voltage\n");
407	case REGULATOR_CURRENT:
408		return sprintf(buf, "current\n");
409	}
410	return sprintf(buf, "unknown\n");
411}
412
413static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414				struct device_attribute *attr, char *buf)
415{
416	struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419}
420static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421		regulator_suspend_mem_uV_show, NULL);
422
423static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424				struct device_attribute *attr, char *buf)
425{
426	struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429}
430static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431		regulator_suspend_disk_uV_show, NULL);
432
433static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434				struct device_attribute *attr, char *buf)
435{
436	struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439}
440static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441		regulator_suspend_standby_uV_show, NULL);
442
443static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444				struct device_attribute *attr, char *buf)
445{
446	struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448	return regulator_print_opmode(buf,
449		rdev->constraints->state_mem.mode);
450}
451static DEVICE_ATTR(suspend_mem_mode, 0444,
452		regulator_suspend_mem_mode_show, NULL);
453
454static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455				struct device_attribute *attr, char *buf)
456{
457	struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459	return regulator_print_opmode(buf,
460		rdev->constraints->state_disk.mode);
461}
462static DEVICE_ATTR(suspend_disk_mode, 0444,
463		regulator_suspend_disk_mode_show, NULL);
464
465static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466				struct device_attribute *attr, char *buf)
467{
468	struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470	return regulator_print_opmode(buf,
471		rdev->constraints->state_standby.mode);
472}
473static DEVICE_ATTR(suspend_standby_mode, 0444,
474		regulator_suspend_standby_mode_show, NULL);
475
476static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477				   struct device_attribute *attr, char *buf)
478{
479	struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481	return regulator_print_state(buf,
482			rdev->constraints->state_mem.enabled);
483}
484static DEVICE_ATTR(suspend_mem_state, 0444,
485		regulator_suspend_mem_state_show, NULL);
486
487static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488				   struct device_attribute *attr, char *buf)
489{
490	struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492	return regulator_print_state(buf,
493			rdev->constraints->state_disk.enabled);
494}
495static DEVICE_ATTR(suspend_disk_state, 0444,
496		regulator_suspend_disk_state_show, NULL);
497
498static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499				   struct device_attribute *attr, char *buf)
500{
501	struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503	return regulator_print_state(buf,
504			rdev->constraints->state_standby.enabled);
505}
506static DEVICE_ATTR(suspend_standby_state, 0444,
507		regulator_suspend_standby_state_show, NULL);
508
509
510/*
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
513 */
514static struct device_attribute regulator_dev_attrs[] = {
515	__ATTR(name, 0444, regulator_name_show, NULL),
516	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
517	__ATTR(type, 0444, regulator_type_show, NULL),
518	__ATTR_NULL,
519};
520
521static void regulator_dev_release(struct device *dev)
522{
523	struct regulator_dev *rdev = dev_get_drvdata(dev);
524	kfree(rdev);
525}
526
527static struct class regulator_class = {
528	.name = "regulator",
529	.dev_release = regulator_dev_release,
530	.dev_attrs = regulator_dev_attrs,
531};
532
533/* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535static void drms_uA_update(struct regulator_dev *rdev)
536{
537	struct regulator *sibling;
538	int current_uA = 0, output_uV, input_uV, err;
539	unsigned int mode;
540
541	err = regulator_check_drms(rdev);
542	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543	    !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
544	return;
545
546	/* get output voltage */
547	output_uV = rdev->desc->ops->get_voltage(rdev);
548	if (output_uV <= 0)
549		return;
550
551	/* get input voltage */
552	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554	else
555		input_uV = rdev->constraints->input_uV;
556	if (input_uV <= 0)
557		return;
558
559	/* calc total requested load */
560	list_for_each_entry(sibling, &rdev->consumer_list, list)
561	    current_uA += sibling->uA_load;
562
563	/* now get the optimum mode for our new total regulator load */
564	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565						  output_uV, current_uA);
566
567	/* check the new mode is allowed */
568	err = regulator_check_mode(rdev, mode);
569	if (err == 0)
570		rdev->desc->ops->set_mode(rdev, mode);
571}
572
573static int suspend_set_state(struct regulator_dev *rdev,
574	struct regulator_state *rstate)
575{
576	int ret = 0;
577
578	/* enable & disable are mandatory for suspend control */
579	if (!rdev->desc->ops->set_suspend_enable ||
580		!rdev->desc->ops->set_suspend_disable) {
581		printk(KERN_ERR "%s: no way to set suspend state\n",
582			__func__);
583		return -EINVAL;
584	}
585
586	if (rstate->enabled)
587		ret = rdev->desc->ops->set_suspend_enable(rdev);
588	else
589		ret = rdev->desc->ops->set_suspend_disable(rdev);
590	if (ret < 0) {
591		printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592		return ret;
593	}
594
595	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597		if (ret < 0) {
598			printk(KERN_ERR "%s: failed to set voltage\n",
599				__func__);
600			return ret;
601		}
602	}
603
604	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606		if (ret < 0) {
607			printk(KERN_ERR "%s: failed to set mode\n", __func__);
608			return ret;
609		}
610	}
611	return ret;
612}
613
614/* locks held by caller */
615static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616{
617	if (!rdev->constraints)
618		return -EINVAL;
619
620	switch (state) {
621	case PM_SUSPEND_STANDBY:
622		return suspend_set_state(rdev,
623			&rdev->constraints->state_standby);
624	case PM_SUSPEND_MEM:
625		return suspend_set_state(rdev,
626			&rdev->constraints->state_mem);
627	case PM_SUSPEND_MAX:
628		return suspend_set_state(rdev,
629			&rdev->constraints->state_disk);
630	default:
631		return -EINVAL;
632	}
633}
634
635static void print_constraints(struct regulator_dev *rdev)
636{
637	struct regulation_constraints *constraints = rdev->constraints;
638	char buf[80];
639	int count;
640
641	if (rdev->desc->type == REGULATOR_VOLTAGE) {
642		if (constraints->min_uV == constraints->max_uV)
643			count = sprintf(buf, "%d mV ",
644					constraints->min_uV / 1000);
645		else
646			count = sprintf(buf, "%d <--> %d mV ",
647					constraints->min_uV / 1000,
648					constraints->max_uV / 1000);
649	} else {
650		if (constraints->min_uA == constraints->max_uA)
651			count = sprintf(buf, "%d mA ",
652					constraints->min_uA / 1000);
653		else
654			count = sprintf(buf, "%d <--> %d mA ",
655					constraints->min_uA / 1000,
656					constraints->max_uA / 1000);
657	}
658	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659		count += sprintf(buf + count, "fast ");
660	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661		count += sprintf(buf + count, "normal ");
662	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663		count += sprintf(buf + count, "idle ");
664	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665		count += sprintf(buf + count, "standby");
666
667	printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668}
669
670/**
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
674 *
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
680 */
681static int set_machine_constraints(struct regulator_dev *rdev,
682	struct regulation_constraints *constraints)
683{
684	int ret = 0;
685	const char *name;
686	struct regulator_ops *ops = rdev->desc->ops;
687
688	if (constraints->name)
689		name = constraints->name;
690	else if (rdev->desc->name)
691		name = rdev->desc->name;
692	else
693		name = "regulator";
694
695	rdev->constraints = constraints;
696
697	/* do we need to apply the constraint voltage */
698	if (rdev->constraints->apply_uV &&
699		rdev->constraints->min_uV == rdev->constraints->max_uV &&
700		ops->set_voltage) {
701		ret = ops->set_voltage(rdev,
702			rdev->constraints->min_uV, rdev->constraints->max_uV);
703			if (ret < 0) {
704				printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
705				       __func__,
706				       rdev->constraints->min_uV, name);
707				rdev->constraints = NULL;
708				goto out;
709			}
710	}
711
712	/* are we enabled at boot time by firmware / bootloader */
713	if (rdev->constraints->boot_on)
714		rdev->use_count = 1;
715
716	/* do we need to setup our suspend state */
717	if (constraints->initial_state) {
718		ret = suspend_prepare(rdev, constraints->initial_state);
719		if (ret < 0) {
720			printk(KERN_ERR "%s: failed to set suspend state for %s\n",
721			       __func__, name);
722			rdev->constraints = NULL;
723			goto out;
724		}
725	}
726
727	/* if always_on is set then turn the regulator on if it's not
728	 * already on. */
729	if (constraints->always_on && ops->enable &&
730	    ((ops->is_enabled && !ops->is_enabled(rdev)) ||
731	     (!ops->is_enabled && !constraints->boot_on))) {
732		ret = ops->enable(rdev);
733		if (ret < 0) {
734			printk(KERN_ERR "%s: failed to enable %s\n",
735			       __func__, name);
736			rdev->constraints = NULL;
737			goto out;
738		}
739	}
740
741	print_constraints(rdev);
742out:
743	return ret;
744}
745
746/**
747 * set_supply - set regulator supply regulator
748 * @rdev: regulator name
749 * @supply_rdev: supply regulator name
750 *
751 * Called by platform initialisation code to set the supply regulator for this
752 * regulator. This ensures that a regulators supply will also be enabled by the
753 * core if it's child is enabled.
754 */
755static int set_supply(struct regulator_dev *rdev,
756	struct regulator_dev *supply_rdev)
757{
758	int err;
759
760	err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
761				"supply");
762	if (err) {
763		printk(KERN_ERR
764		       "%s: could not add device link %s err %d\n",
765		       __func__, supply_rdev->dev.kobj.name, err);
766		       goto out;
767	}
768	rdev->supply = supply_rdev;
769	list_add(&rdev->slist, &supply_rdev->supply_list);
770out:
771	return err;
772}
773
774/**
775 * set_consumer_device_supply: Bind a regulator to a symbolic supply
776 * @rdev:         regulator source
777 * @consumer_dev: device the supply applies to
778 * @supply:       symbolic name for supply
779 *
780 * Allows platform initialisation code to map physical regulator
781 * sources to symbolic names for supplies for use by devices.  Devices
782 * should use these symbolic names to request regulators, avoiding the
783 * need to provide board-specific regulator names as platform data.
784 */
785static int set_consumer_device_supply(struct regulator_dev *rdev,
786	struct device *consumer_dev, const char *supply)
787{
788	struct regulator_map *node;
789
790	if (supply == NULL)
791		return -EINVAL;
792
793	list_for_each_entry(node, &regulator_map_list, list) {
794		if (consumer_dev != node->dev)
795			continue;
796		if (strcmp(node->supply, supply) != 0)
797			continue;
798
799		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
800				dev_name(&node->regulator->dev),
801				node->regulator->desc->name,
802				supply,
803				dev_name(&rdev->dev), rdev->desc->name);
804		return -EBUSY;
805	}
806
807	node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
808	if (node == NULL)
809		return -ENOMEM;
810
811	node->regulator = rdev;
812	node->dev = consumer_dev;
813	node->supply = supply;
814
815	list_add(&node->list, &regulator_map_list);
816	return 0;
817}
818
819static void unset_consumer_device_supply(struct regulator_dev *rdev,
820	struct device *consumer_dev)
821{
822	struct regulator_map *node, *n;
823
824	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
825		if (rdev == node->regulator &&
826			consumer_dev == node->dev) {
827			list_del(&node->list);
828			kfree(node);
829			return;
830		}
831	}
832}
833
834static void unset_regulator_supplies(struct regulator_dev *rdev)
835{
836	struct regulator_map *node, *n;
837
838	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
839		if (rdev == node->regulator) {
840			list_del(&node->list);
841			kfree(node);
842			return;
843		}
844	}
845}
846
847#define REG_STR_SIZE	32
848
849static struct regulator *create_regulator(struct regulator_dev *rdev,
850					  struct device *dev,
851					  const char *supply_name)
852{
853	struct regulator *regulator;
854	char buf[REG_STR_SIZE];
855	int err, size;
856
857	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
858	if (regulator == NULL)
859		return NULL;
860
861	mutex_lock(&rdev->mutex);
862	regulator->rdev = rdev;
863	list_add(&regulator->list, &rdev->consumer_list);
864
865	if (dev) {
866		/* create a 'requested_microamps_name' sysfs entry */
867		size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
868			supply_name);
869		if (size >= REG_STR_SIZE)
870			goto overflow_err;
871
872		regulator->dev = dev;
873		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
874		if (regulator->dev_attr.attr.name == NULL)
875			goto attr_name_err;
876
877		regulator->dev_attr.attr.owner = THIS_MODULE;
878		regulator->dev_attr.attr.mode = 0444;
879		regulator->dev_attr.show = device_requested_uA_show;
880		err = device_create_file(dev, &regulator->dev_attr);
881		if (err < 0) {
882			printk(KERN_WARNING "%s: could not add regulator_dev"
883				" load sysfs\n", __func__);
884			goto attr_name_err;
885		}
886
887		/* also add a link to the device sysfs entry */
888		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
889				 dev->kobj.name, supply_name);
890		if (size >= REG_STR_SIZE)
891			goto attr_err;
892
893		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
894		if (regulator->supply_name == NULL)
895			goto attr_err;
896
897		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
898					buf);
899		if (err) {
900			printk(KERN_WARNING
901			       "%s: could not add device link %s err %d\n",
902			       __func__, dev->kobj.name, err);
903			device_remove_file(dev, &regulator->dev_attr);
904			goto link_name_err;
905		}
906	}
907	mutex_unlock(&rdev->mutex);
908	return regulator;
909link_name_err:
910	kfree(regulator->supply_name);
911attr_err:
912	device_remove_file(regulator->dev, &regulator->dev_attr);
913attr_name_err:
914	kfree(regulator->dev_attr.attr.name);
915overflow_err:
916	list_del(&regulator->list);
917	kfree(regulator);
918	mutex_unlock(&rdev->mutex);
919	return NULL;
920}
921
922/**
923 * regulator_get - lookup and obtain a reference to a regulator.
924 * @dev: device for regulator "consumer"
925 * @id: Supply name or regulator ID.
926 *
927 * Returns a struct regulator corresponding to the regulator producer,
928 * or IS_ERR() condition containing errno.
929 *
930 * Use of supply names configured via regulator_set_device_supply() is
931 * strongly encouraged.  It is recommended that the supply name used
932 * should match the name used for the supply and/or the relevant
933 * device pins in the datasheet.
934 */
935struct regulator *regulator_get(struct device *dev, const char *id)
936{
937	struct regulator_dev *rdev;
938	struct regulator_map *map;
939	struct regulator *regulator = ERR_PTR(-ENODEV);
940
941	if (id == NULL) {
942		printk(KERN_ERR "regulator: get() with no identifier\n");
943		return regulator;
944	}
945
946	mutex_lock(&regulator_list_mutex);
947
948	list_for_each_entry(map, &regulator_map_list, list) {
949		if (dev == map->dev &&
950		    strcmp(map->supply, id) == 0) {
951			rdev = map->regulator;
952			goto found;
953		}
954	}
955	printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
956	       id);
957	mutex_unlock(&regulator_list_mutex);
958	return regulator;
959
960found:
961	if (!try_module_get(rdev->owner))
962		goto out;
963
964	regulator = create_regulator(rdev, dev, id);
965	if (regulator == NULL) {
966		regulator = ERR_PTR(-ENOMEM);
967		module_put(rdev->owner);
968	}
969
970out:
971	mutex_unlock(&regulator_list_mutex);
972	return regulator;
973}
974EXPORT_SYMBOL_GPL(regulator_get);
975
976/**
977 * regulator_put - "free" the regulator source
978 * @regulator: regulator source
979 *
980 * Note: drivers must ensure that all regulator_enable calls made on this
981 * regulator source are balanced by regulator_disable calls prior to calling
982 * this function.
983 */
984void regulator_put(struct regulator *regulator)
985{
986	struct regulator_dev *rdev;
987
988	if (regulator == NULL || IS_ERR(regulator))
989		return;
990
991	mutex_lock(&regulator_list_mutex);
992	rdev = regulator->rdev;
993
994	if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
995			       regulator->supply_name))
996		_regulator_disable(rdev);
997
998	/* remove any sysfs entries */
999	if (regulator->dev) {
1000		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1001		kfree(regulator->supply_name);
1002		device_remove_file(regulator->dev, &regulator->dev_attr);
1003		kfree(regulator->dev_attr.attr.name);
1004	}
1005	list_del(&regulator->list);
1006	kfree(regulator);
1007
1008	module_put(rdev->owner);
1009	mutex_unlock(&regulator_list_mutex);
1010}
1011EXPORT_SYMBOL_GPL(regulator_put);
1012
1013/* locks held by regulator_enable() */
1014static int _regulator_enable(struct regulator_dev *rdev)
1015{
1016	int ret = -EINVAL;
1017
1018	if (!rdev->constraints) {
1019		printk(KERN_ERR "%s: %s has no constraints\n",
1020		       __func__, rdev->desc->name);
1021		return ret;
1022	}
1023
1024	/* do we need to enable the supply regulator first */
1025	if (rdev->supply) {
1026		ret = _regulator_enable(rdev->supply);
1027		if (ret < 0) {
1028			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1029			       __func__, rdev->desc->name, ret);
1030			return ret;
1031		}
1032	}
1033
1034	/* check voltage and requested load before enabling */
1035	if (rdev->desc->ops->enable) {
1036
1037		if (rdev->constraints &&
1038			(rdev->constraints->valid_ops_mask &
1039			REGULATOR_CHANGE_DRMS))
1040			drms_uA_update(rdev);
1041
1042		ret = rdev->desc->ops->enable(rdev);
1043		if (ret < 0) {
1044			printk(KERN_ERR "%s: failed to enable %s: %d\n",
1045			       __func__, rdev->desc->name, ret);
1046			return ret;
1047		}
1048		rdev->use_count++;
1049		return ret;
1050	}
1051
1052	return ret;
1053}
1054
1055/**
1056 * regulator_enable - enable regulator output
1057 * @regulator: regulator source
1058 *
1059 * Request that the regulator be enabled with the regulator output at
1060 * the predefined voltage or current value.  Calls to regulator_enable()
1061 * must be balanced with calls to regulator_disable().
1062 *
1063 * NOTE: the output value can be set by other drivers, boot loader or may be
1064 * hardwired in the regulator.
1065 */
1066int regulator_enable(struct regulator *regulator)
1067{
1068	struct regulator_dev *rdev = regulator->rdev;
1069	int ret = 0;
1070
1071	mutex_lock(&rdev->mutex);
1072	if (regulator->enabled == 0)
1073		ret = _regulator_enable(rdev);
1074	else if (regulator->enabled < 0)
1075		ret = -EIO;
1076	if (ret == 0)
1077		regulator->enabled++;
1078	mutex_unlock(&rdev->mutex);
1079	return ret;
1080}
1081EXPORT_SYMBOL_GPL(regulator_enable);
1082
1083/* locks held by regulator_disable() */
1084static int _regulator_disable(struct regulator_dev *rdev)
1085{
1086	int ret = 0;
1087
1088	/* are we the last user and permitted to disable ? */
1089	if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1090
1091		/* we are last user */
1092		if (rdev->desc->ops->disable) {
1093			ret = rdev->desc->ops->disable(rdev);
1094			if (ret < 0) {
1095				printk(KERN_ERR "%s: failed to disable %s\n",
1096				       __func__, rdev->desc->name);
1097				return ret;
1098			}
1099		}
1100
1101		/* decrease our supplies ref count and disable if required */
1102		if (rdev->supply)
1103			_regulator_disable(rdev->supply);
1104
1105		rdev->use_count = 0;
1106	} else if (rdev->use_count > 1) {
1107
1108		if (rdev->constraints &&
1109			(rdev->constraints->valid_ops_mask &
1110			REGULATOR_CHANGE_DRMS))
1111			drms_uA_update(rdev);
1112
1113		rdev->use_count--;
1114	}
1115	return ret;
1116}
1117
1118/**
1119 * regulator_disable - disable regulator output
1120 * @regulator: regulator source
1121 *
1122 * Disable the regulator output voltage or current.  Calls to
1123 * regulator_enable() must be balanced with calls to
1124 * regulator_disable().
1125 *
1126 * NOTE: this will only disable the regulator output if no other consumer
1127 * devices have it enabled, the regulator device supports disabling and
1128 * machine constraints permit this operation.
1129 */
1130int regulator_disable(struct regulator *regulator)
1131{
1132	struct regulator_dev *rdev = regulator->rdev;
1133	int ret = 0;
1134
1135	mutex_lock(&rdev->mutex);
1136	if (regulator->enabled == 1) {
1137		ret = _regulator_disable(rdev);
1138		if (ret == 0)
1139			regulator->uA_load = 0;
1140	} else if (WARN(regulator->enabled <= 0,
1141			"unbalanced disables for supply %s\n",
1142			regulator->supply_name))
1143		ret = -EIO;
1144	if (ret == 0)
1145		regulator->enabled--;
1146	mutex_unlock(&rdev->mutex);
1147	return ret;
1148}
1149EXPORT_SYMBOL_GPL(regulator_disable);
1150
1151/* locks held by regulator_force_disable() */
1152static int _regulator_force_disable(struct regulator_dev *rdev)
1153{
1154	int ret = 0;
1155
1156	/* force disable */
1157	if (rdev->desc->ops->disable) {
1158		/* ah well, who wants to live forever... */
1159		ret = rdev->desc->ops->disable(rdev);
1160		if (ret < 0) {
1161			printk(KERN_ERR "%s: failed to force disable %s\n",
1162			       __func__, rdev->desc->name);
1163			return ret;
1164		}
1165		/* notify other consumers that power has been forced off */
1166		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1167			NULL);
1168	}
1169
1170	/* decrease our supplies ref count and disable if required */
1171	if (rdev->supply)
1172		_regulator_disable(rdev->supply);
1173
1174	rdev->use_count = 0;
1175	return ret;
1176}
1177
1178/**
1179 * regulator_force_disable - force disable regulator output
1180 * @regulator: regulator source
1181 *
1182 * Forcibly disable the regulator output voltage or current.
1183 * NOTE: this *will* disable the regulator output even if other consumer
1184 * devices have it enabled. This should be used for situations when device
1185 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1186 */
1187int regulator_force_disable(struct regulator *regulator)
1188{
1189	int ret;
1190
1191	mutex_lock(&regulator->rdev->mutex);
1192	regulator->enabled = 0;
1193	regulator->uA_load = 0;
1194	ret = _regulator_force_disable(regulator->rdev);
1195	mutex_unlock(&regulator->rdev->mutex);
1196	return ret;
1197}
1198EXPORT_SYMBOL_GPL(regulator_force_disable);
1199
1200static int _regulator_is_enabled(struct regulator_dev *rdev)
1201{
1202	int ret;
1203
1204	mutex_lock(&rdev->mutex);
1205
1206	/* sanity check */
1207	if (!rdev->desc->ops->is_enabled) {
1208		ret = -EINVAL;
1209		goto out;
1210	}
1211
1212	ret = rdev->desc->ops->is_enabled(rdev);
1213out:
1214	mutex_unlock(&rdev->mutex);
1215	return ret;
1216}
1217
1218/**
1219 * regulator_is_enabled - is the regulator output enabled
1220 * @regulator: regulator source
1221 *
1222 * Returns positive if the regulator driver backing the source/client
1223 * has requested that the device be enabled, zero if it hasn't, else a
1224 * negative errno code.
1225 *
1226 * Note that the device backing this regulator handle can have multiple
1227 * users, so it might be enabled even if regulator_enable() was never
1228 * called for this particular source.
1229 */
1230int regulator_is_enabled(struct regulator *regulator)
1231{
1232	return _regulator_is_enabled(regulator->rdev);
1233}
1234EXPORT_SYMBOL_GPL(regulator_is_enabled);
1235
1236/**
1237 * regulator_set_voltage - set regulator output voltage
1238 * @regulator: regulator source
1239 * @min_uV: Minimum required voltage in uV
1240 * @max_uV: Maximum acceptable voltage in uV
1241 *
1242 * Sets a voltage regulator to the desired output voltage. This can be set
1243 * during any regulator state. IOW, regulator can be disabled or enabled.
1244 *
1245 * If the regulator is enabled then the voltage will change to the new value
1246 * immediately otherwise if the regulator is disabled the regulator will
1247 * output at the new voltage when enabled.
1248 *
1249 * NOTE: If the regulator is shared between several devices then the lowest
1250 * request voltage that meets the system constraints will be used.
1251 * Regulator system constraints must be set for this regulator before
1252 * calling this function otherwise this call will fail.
1253 */
1254int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1255{
1256	struct regulator_dev *rdev = regulator->rdev;
1257	int ret;
1258
1259	mutex_lock(&rdev->mutex);
1260
1261	/* sanity check */
1262	if (!rdev->desc->ops->set_voltage) {
1263		ret = -EINVAL;
1264		goto out;
1265	}
1266
1267	/* constraints check */
1268	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1269	if (ret < 0)
1270		goto out;
1271	regulator->min_uV = min_uV;
1272	regulator->max_uV = max_uV;
1273	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1274
1275out:
1276	_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1277	mutex_unlock(&rdev->mutex);
1278	return ret;
1279}
1280EXPORT_SYMBOL_GPL(regulator_set_voltage);
1281
1282static int _regulator_get_voltage(struct regulator_dev *rdev)
1283{
1284	/* sanity check */
1285	if (rdev->desc->ops->get_voltage)
1286		return rdev->desc->ops->get_voltage(rdev);
1287	else
1288		return -EINVAL;
1289}
1290
1291/**
1292 * regulator_get_voltage - get regulator output voltage
1293 * @regulator: regulator source
1294 *
1295 * This returns the current regulator voltage in uV.
1296 *
1297 * NOTE: If the regulator is disabled it will return the voltage value. This
1298 * function should not be used to determine regulator state.
1299 */
1300int regulator_get_voltage(struct regulator *regulator)
1301{
1302	int ret;
1303
1304	mutex_lock(&regulator->rdev->mutex);
1305
1306	ret = _regulator_get_voltage(regulator->rdev);
1307
1308	mutex_unlock(&regulator->rdev->mutex);
1309
1310	return ret;
1311}
1312EXPORT_SYMBOL_GPL(regulator_get_voltage);
1313
1314/**
1315 * regulator_set_current_limit - set regulator output current limit
1316 * @regulator: regulator source
1317 * @min_uA: Minimuum supported current in uA
1318 * @max_uA: Maximum supported current in uA
1319 *
1320 * Sets current sink to the desired output current. This can be set during
1321 * any regulator state. IOW, regulator can be disabled or enabled.
1322 *
1323 * If the regulator is enabled then the current will change to the new value
1324 * immediately otherwise if the regulator is disabled the regulator will
1325 * output at the new current when enabled.
1326 *
1327 * NOTE: Regulator system constraints must be set for this regulator before
1328 * calling this function otherwise this call will fail.
1329 */
1330int regulator_set_current_limit(struct regulator *regulator,
1331			       int min_uA, int max_uA)
1332{
1333	struct regulator_dev *rdev = regulator->rdev;
1334	int ret;
1335
1336	mutex_lock(&rdev->mutex);
1337
1338	/* sanity check */
1339	if (!rdev->desc->ops->set_current_limit) {
1340		ret = -EINVAL;
1341		goto out;
1342	}
1343
1344	/* constraints check */
1345	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1346	if (ret < 0)
1347		goto out;
1348
1349	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1350out:
1351	mutex_unlock(&rdev->mutex);
1352	return ret;
1353}
1354EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1355
1356static int _regulator_get_current_limit(struct regulator_dev *rdev)
1357{
1358	int ret;
1359
1360	mutex_lock(&rdev->mutex);
1361
1362	/* sanity check */
1363	if (!rdev->desc->ops->get_current_limit) {
1364		ret = -EINVAL;
1365		goto out;
1366	}
1367
1368	ret = rdev->desc->ops->get_current_limit(rdev);
1369out:
1370	mutex_unlock(&rdev->mutex);
1371	return ret;
1372}
1373
1374/**
1375 * regulator_get_current_limit - get regulator output current
1376 * @regulator: regulator source
1377 *
1378 * This returns the current supplied by the specified current sink in uA.
1379 *
1380 * NOTE: If the regulator is disabled it will return the current value. This
1381 * function should not be used to determine regulator state.
1382 */
1383int regulator_get_current_limit(struct regulator *regulator)
1384{
1385	return _regulator_get_current_limit(regulator->rdev);
1386}
1387EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1388
1389/**
1390 * regulator_set_mode - set regulator operating mode
1391 * @regulator: regulator source
1392 * @mode: operating mode - one of the REGULATOR_MODE constants
1393 *
1394 * Set regulator operating mode to increase regulator efficiency or improve
1395 * regulation performance.
1396 *
1397 * NOTE: Regulator system constraints must be set for this regulator before
1398 * calling this function otherwise this call will fail.
1399 */
1400int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1401{
1402	struct regulator_dev *rdev = regulator->rdev;
1403	int ret;
1404
1405	mutex_lock(&rdev->mutex);
1406
1407	/* sanity check */
1408	if (!rdev->desc->ops->set_mode) {
1409		ret = -EINVAL;
1410		goto out;
1411	}
1412
1413	/* constraints check */
1414	ret = regulator_check_mode(rdev, mode);
1415	if (ret < 0)
1416		goto out;
1417
1418	ret = rdev->desc->ops->set_mode(rdev, mode);
1419out:
1420	mutex_unlock(&rdev->mutex);
1421	return ret;
1422}
1423EXPORT_SYMBOL_GPL(regulator_set_mode);
1424
1425static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1426{
1427	int ret;
1428
1429	mutex_lock(&rdev->mutex);
1430
1431	/* sanity check */
1432	if (!rdev->desc->ops->get_mode) {
1433		ret = -EINVAL;
1434		goto out;
1435	}
1436
1437	ret = rdev->desc->ops->get_mode(rdev);
1438out:
1439	mutex_unlock(&rdev->mutex);
1440	return ret;
1441}
1442
1443/**
1444 * regulator_get_mode - get regulator operating mode
1445 * @regulator: regulator source
1446 *
1447 * Get the current regulator operating mode.
1448 */
1449unsigned int regulator_get_mode(struct regulator *regulator)
1450{
1451	return _regulator_get_mode(regulator->rdev);
1452}
1453EXPORT_SYMBOL_GPL(regulator_get_mode);
1454
1455/**
1456 * regulator_set_optimum_mode - set regulator optimum operating mode
1457 * @regulator: regulator source
1458 * @uA_load: load current
1459 *
1460 * Notifies the regulator core of a new device load. This is then used by
1461 * DRMS (if enabled by constraints) to set the most efficient regulator
1462 * operating mode for the new regulator loading.
1463 *
1464 * Consumer devices notify their supply regulator of the maximum power
1465 * they will require (can be taken from device datasheet in the power
1466 * consumption tables) when they change operational status and hence power
1467 * state. Examples of operational state changes that can affect power
1468 * consumption are :-
1469 *
1470 *    o Device is opened / closed.
1471 *    o Device I/O is about to begin or has just finished.
1472 *    o Device is idling in between work.
1473 *
1474 * This information is also exported via sysfs to userspace.
1475 *
1476 * DRMS will sum the total requested load on the regulator and change
1477 * to the most efficient operating mode if platform constraints allow.
1478 *
1479 * Returns the new regulator mode or error.
1480 */
1481int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1482{
1483	struct regulator_dev *rdev = regulator->rdev;
1484	struct regulator *consumer;
1485	int ret, output_uV, input_uV, total_uA_load = 0;
1486	unsigned int mode;
1487
1488	mutex_lock(&rdev->mutex);
1489
1490	regulator->uA_load = uA_load;
1491	ret = regulator_check_drms(rdev);
1492	if (ret < 0)
1493		goto out;
1494	ret = -EINVAL;
1495
1496	/* sanity check */
1497	if (!rdev->desc->ops->get_optimum_mode)
1498		goto out;
1499
1500	/* get output voltage */
1501	output_uV = rdev->desc->ops->get_voltage(rdev);
1502	if (output_uV <= 0) {
1503		printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1504			__func__, rdev->desc->name);
1505		goto out;
1506	}
1507
1508	/* get input voltage */
1509	if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1510		input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1511	else
1512		input_uV = rdev->constraints->input_uV;
1513	if (input_uV <= 0) {
1514		printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1515			__func__, rdev->desc->name);
1516		goto out;
1517	}
1518
1519	/* calc total requested load for this regulator */
1520	list_for_each_entry(consumer, &rdev->consumer_list, list)
1521	    total_uA_load += consumer->uA_load;
1522
1523	mode = rdev->desc->ops->get_optimum_mode(rdev,
1524						 input_uV, output_uV,
1525						 total_uA_load);
1526	ret = regulator_check_mode(rdev, mode);
1527	if (ret < 0) {
1528		printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1529			" %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1530			total_uA_load, input_uV, output_uV);
1531		goto out;
1532	}
1533
1534	ret = rdev->desc->ops->set_mode(rdev, mode);
1535	if (ret < 0) {
1536		printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1537			__func__, mode, rdev->desc->name);
1538		goto out;
1539	}
1540	ret = mode;
1541out:
1542	mutex_unlock(&rdev->mutex);
1543	return ret;
1544}
1545EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1546
1547/**
1548 * regulator_register_notifier - register regulator event notifier
1549 * @regulator: regulator source
1550 * @nb: notifier block
1551 *
1552 * Register notifier block to receive regulator events.
1553 */
1554int regulator_register_notifier(struct regulator *regulator,
1555			      struct notifier_block *nb)
1556{
1557	return blocking_notifier_chain_register(&regulator->rdev->notifier,
1558						nb);
1559}
1560EXPORT_SYMBOL_GPL(regulator_register_notifier);
1561
1562/**
1563 * regulator_unregister_notifier - unregister regulator event notifier
1564 * @regulator: regulator source
1565 * @nb: notifier block
1566 *
1567 * Unregister regulator event notifier block.
1568 */
1569int regulator_unregister_notifier(struct regulator *regulator,
1570				struct notifier_block *nb)
1571{
1572	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1573						  nb);
1574}
1575EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1576
1577/* notify regulator consumers and downstream regulator consumers.
1578 * Note mutex must be held by caller.
1579 */
1580static void _notifier_call_chain(struct regulator_dev *rdev,
1581				  unsigned long event, void *data)
1582{
1583	struct regulator_dev *_rdev;
1584
1585	/* call rdev chain first */
1586	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1587
1588	/* now notify regulator we supply */
1589	list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1590	  mutex_lock(&_rdev->mutex);
1591	  _notifier_call_chain(_rdev, event, data);
1592	  mutex_unlock(&_rdev->mutex);
1593	}
1594}
1595
1596/**
1597 * regulator_bulk_get - get multiple regulator consumers
1598 *
1599 * @dev:           Device to supply
1600 * @num_consumers: Number of consumers to register
1601 * @consumers:     Configuration of consumers; clients are stored here.
1602 *
1603 * @return 0 on success, an errno on failure.
1604 *
1605 * This helper function allows drivers to get several regulator
1606 * consumers in one operation.  If any of the regulators cannot be
1607 * acquired then any regulators that were allocated will be freed
1608 * before returning to the caller.
1609 */
1610int regulator_bulk_get(struct device *dev, int num_consumers,
1611		       struct regulator_bulk_data *consumers)
1612{
1613	int i;
1614	int ret;
1615
1616	for (i = 0; i < num_consumers; i++)
1617		consumers[i].consumer = NULL;
1618
1619	for (i = 0; i < num_consumers; i++) {
1620		consumers[i].consumer = regulator_get(dev,
1621						      consumers[i].supply);
1622		if (IS_ERR(consumers[i].consumer)) {
1623			dev_err(dev, "Failed to get supply '%s'\n",
1624				consumers[i].supply);
1625			ret = PTR_ERR(consumers[i].consumer);
1626			consumers[i].consumer = NULL;
1627			goto err;
1628		}
1629	}
1630
1631	return 0;
1632
1633err:
1634	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1635		regulator_put(consumers[i].consumer);
1636
1637	return ret;
1638}
1639EXPORT_SYMBOL_GPL(regulator_bulk_get);
1640
1641/**
1642 * regulator_bulk_enable - enable multiple regulator consumers
1643 *
1644 * @num_consumers: Number of consumers
1645 * @consumers:     Consumer data; clients are stored here.
1646 * @return         0 on success, an errno on failure
1647 *
1648 * This convenience API allows consumers to enable multiple regulator
1649 * clients in a single API call.  If any consumers cannot be enabled
1650 * then any others that were enabled will be disabled again prior to
1651 * return.
1652 */
1653int regulator_bulk_enable(int num_consumers,
1654			  struct regulator_bulk_data *consumers)
1655{
1656	int i;
1657	int ret;
1658
1659	for (i = 0; i < num_consumers; i++) {
1660		ret = regulator_enable(consumers[i].consumer);
1661		if (ret != 0)
1662			goto err;
1663	}
1664
1665	return 0;
1666
1667err:
1668	printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1669	for (i = 0; i < num_consumers; i++)
1670		regulator_disable(consumers[i].consumer);
1671
1672	return ret;
1673}
1674EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1675
1676/**
1677 * regulator_bulk_disable - disable multiple regulator consumers
1678 *
1679 * @num_consumers: Number of consumers
1680 * @consumers:     Consumer data; clients are stored here.
1681 * @return         0 on success, an errno on failure
1682 *
1683 * This convenience API allows consumers to disable multiple regulator
1684 * clients in a single API call.  If any consumers cannot be enabled
1685 * then any others that were disabled will be disabled again prior to
1686 * return.
1687 */
1688int regulator_bulk_disable(int num_consumers,
1689			   struct regulator_bulk_data *consumers)
1690{
1691	int i;
1692	int ret;
1693
1694	for (i = 0; i < num_consumers; i++) {
1695		ret = regulator_disable(consumers[i].consumer);
1696		if (ret != 0)
1697			goto err;
1698	}
1699
1700	return 0;
1701
1702err:
1703	printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1704	for (i = 0; i < num_consumers; i++)
1705		regulator_enable(consumers[i].consumer);
1706
1707	return ret;
1708}
1709EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1710
1711/**
1712 * regulator_bulk_free - free multiple regulator consumers
1713 *
1714 * @num_consumers: Number of consumers
1715 * @consumers:     Consumer data; clients are stored here.
1716 *
1717 * This convenience API allows consumers to free multiple regulator
1718 * clients in a single API call.
1719 */
1720void regulator_bulk_free(int num_consumers,
1721			 struct regulator_bulk_data *consumers)
1722{
1723	int i;
1724
1725	for (i = 0; i < num_consumers; i++) {
1726		regulator_put(consumers[i].consumer);
1727		consumers[i].consumer = NULL;
1728	}
1729}
1730EXPORT_SYMBOL_GPL(regulator_bulk_free);
1731
1732/**
1733 * regulator_notifier_call_chain - call regulator event notifier
1734 * @rdev: regulator source
1735 * @event: notifier block
1736 * @data: callback-specific data.
1737 *
1738 * Called by regulator drivers to notify clients a regulator event has
1739 * occurred. We also notify regulator clients downstream.
1740 * Note lock must be held by caller.
1741 */
1742int regulator_notifier_call_chain(struct regulator_dev *rdev,
1743				  unsigned long event, void *data)
1744{
1745	_notifier_call_chain(rdev, event, data);
1746	return NOTIFY_DONE;
1747
1748}
1749EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1750
1751/*
1752 * To avoid cluttering sysfs (and memory) with useless state, only
1753 * create attributes that can be meaningfully displayed.
1754 */
1755static int add_regulator_attributes(struct regulator_dev *rdev)
1756{
1757	struct device		*dev = &rdev->dev;
1758	struct regulator_ops	*ops = rdev->desc->ops;
1759	int			status = 0;
1760
1761	/* some attributes need specific methods to be displayed */
1762	if (ops->get_voltage) {
1763		status = device_create_file(dev, &dev_attr_microvolts);
1764		if (status < 0)
1765			return status;
1766	}
1767	if (ops->get_current_limit) {
1768		status = device_create_file(dev, &dev_attr_microamps);
1769		if (status < 0)
1770			return status;
1771	}
1772	if (ops->get_mode) {
1773		status = device_create_file(dev, &dev_attr_opmode);
1774		if (status < 0)
1775			return status;
1776	}
1777	if (ops->is_enabled) {
1778		status = device_create_file(dev, &dev_attr_state);
1779		if (status < 0)
1780			return status;
1781	}
1782	if (ops->get_status) {
1783		status = device_create_file(dev, &dev_attr_status);
1784		if (status < 0)
1785			return status;
1786	}
1787
1788	/* some attributes are type-specific */
1789	if (rdev->desc->type == REGULATOR_CURRENT) {
1790		status = device_create_file(dev, &dev_attr_requested_microamps);
1791		if (status < 0)
1792			return status;
1793	}
1794
1795	/* all the other attributes exist to support constraints;
1796	 * don't show them if there are no constraints, or if the
1797	 * relevant supporting methods are missing.
1798	 */
1799	if (!rdev->constraints)
1800		return status;
1801
1802	/* constraints need specific supporting methods */
1803	if (ops->set_voltage) {
1804		status = device_create_file(dev, &dev_attr_min_microvolts);
1805		if (status < 0)
1806			return status;
1807		status = device_create_file(dev, &dev_attr_max_microvolts);
1808		if (status < 0)
1809			return status;
1810	}
1811	if (ops->set_current_limit) {
1812		status = device_create_file(dev, &dev_attr_min_microamps);
1813		if (status < 0)
1814			return status;
1815		status = device_create_file(dev, &dev_attr_max_microamps);
1816		if (status < 0)
1817			return status;
1818	}
1819
1820	/* suspend mode constraints need multiple supporting methods */
1821	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1822		return status;
1823
1824	status = device_create_file(dev, &dev_attr_suspend_standby_state);
1825	if (status < 0)
1826		return status;
1827	status = device_create_file(dev, &dev_attr_suspend_mem_state);
1828	if (status < 0)
1829		return status;
1830	status = device_create_file(dev, &dev_attr_suspend_disk_state);
1831	if (status < 0)
1832		return status;
1833
1834	if (ops->set_suspend_voltage) {
1835		status = device_create_file(dev,
1836				&dev_attr_suspend_standby_microvolts);
1837		if (status < 0)
1838			return status;
1839		status = device_create_file(dev,
1840				&dev_attr_suspend_mem_microvolts);
1841		if (status < 0)
1842			return status;
1843		status = device_create_file(dev,
1844				&dev_attr_suspend_disk_microvolts);
1845		if (status < 0)
1846			return status;
1847	}
1848
1849	if (ops->set_suspend_mode) {
1850		status = device_create_file(dev,
1851				&dev_attr_suspend_standby_mode);
1852		if (status < 0)
1853			return status;
1854		status = device_create_file(dev,
1855				&dev_attr_suspend_mem_mode);
1856		if (status < 0)
1857			return status;
1858		status = device_create_file(dev,
1859				&dev_attr_suspend_disk_mode);
1860		if (status < 0)
1861			return status;
1862	}
1863
1864	return status;
1865}
1866
1867/**
1868 * regulator_register - register regulator
1869 * @regulator_desc: regulator to register
1870 * @dev: struct device for the regulator
1871 * @init_data: platform provided init data, passed through by driver
1872 * @driver_data: private regulator data
1873 *
1874 * Called by regulator drivers to register a regulator.
1875 * Returns 0 on success.
1876 */
1877struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1878	struct device *dev, struct regulator_init_data *init_data,
1879	void *driver_data)
1880{
1881	static atomic_t regulator_no = ATOMIC_INIT(0);
1882	struct regulator_dev *rdev;
1883	int ret, i;
1884
1885	if (regulator_desc == NULL)
1886		return ERR_PTR(-EINVAL);
1887
1888	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1889		return ERR_PTR(-EINVAL);
1890
1891	if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1892	    !regulator_desc->type == REGULATOR_CURRENT)
1893		return ERR_PTR(-EINVAL);
1894
1895	if (!init_data)
1896		return ERR_PTR(-EINVAL);
1897
1898	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1899	if (rdev == NULL)
1900		return ERR_PTR(-ENOMEM);
1901
1902	mutex_lock(&regulator_list_mutex);
1903
1904	mutex_init(&rdev->mutex);
1905	rdev->reg_data = driver_data;
1906	rdev->owner = regulator_desc->owner;
1907	rdev->desc = regulator_desc;
1908	INIT_LIST_HEAD(&rdev->consumer_list);
1909	INIT_LIST_HEAD(&rdev->supply_list);
1910	INIT_LIST_HEAD(&rdev->list);
1911	INIT_LIST_HEAD(&rdev->slist);
1912	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1913
1914	/* preform any regulator specific init */
1915	if (init_data->regulator_init) {
1916		ret = init_data->regulator_init(rdev->reg_data);
1917		if (ret < 0)
1918			goto clean;
1919	}
1920
1921	/* register with sysfs */
1922	rdev->dev.class = &regulator_class;
1923	rdev->dev.parent = dev;
1924	dev_set_name(&rdev->dev, "regulator.%d",
1925		     atomic_inc_return(&regulator_no) - 1);
1926	ret = device_register(&rdev->dev);
1927	if (ret != 0)
1928		goto clean;
1929
1930	dev_set_drvdata(&rdev->dev, rdev);
1931
1932	/* set regulator constraints */
1933	ret = set_machine_constraints(rdev, &init_data->constraints);
1934	if (ret < 0)
1935		goto scrub;
1936
1937	/* add attributes supported by this regulator */
1938	ret = add_regulator_attributes(rdev);
1939	if (ret < 0)
1940		goto scrub;
1941
1942	/* set supply regulator if it exists */
1943	if (init_data->supply_regulator_dev) {
1944		ret = set_supply(rdev,
1945			dev_get_drvdata(init_data->supply_regulator_dev));
1946		if (ret < 0)
1947			goto scrub;
1948	}
1949
1950	/* add consumers devices */
1951	for (i = 0; i < init_data->num_consumer_supplies; i++) {
1952		ret = set_consumer_device_supply(rdev,
1953			init_data->consumer_supplies[i].dev,
1954			init_data->consumer_supplies[i].supply);
1955		if (ret < 0) {
1956			for (--i; i >= 0; i--)
1957				unset_consumer_device_supply(rdev,
1958					init_data->consumer_supplies[i].dev);
1959			goto scrub;
1960		}
1961	}
1962
1963	list_add(&rdev->list, &regulator_list);
1964out:
1965	mutex_unlock(&regulator_list_mutex);
1966	return rdev;
1967
1968scrub:
1969	device_unregister(&rdev->dev);
1970clean:
1971	kfree(rdev);
1972	rdev = ERR_PTR(ret);
1973	goto out;
1974}
1975EXPORT_SYMBOL_GPL(regulator_register);
1976
1977/**
1978 * regulator_unregister - unregister regulator
1979 * @rdev: regulator to unregister
1980 *
1981 * Called by regulator drivers to unregister a regulator.
1982 */
1983void regulator_unregister(struct regulator_dev *rdev)
1984{
1985	if (rdev == NULL)
1986		return;
1987
1988	mutex_lock(&regulator_list_mutex);
1989	unset_regulator_supplies(rdev);
1990	list_del(&rdev->list);
1991	if (rdev->supply)
1992		sysfs_remove_link(&rdev->dev.kobj, "supply");
1993	device_unregister(&rdev->dev);
1994	mutex_unlock(&regulator_list_mutex);
1995}
1996EXPORT_SYMBOL_GPL(regulator_unregister);
1997
1998/**
1999 * regulator_suspend_prepare - prepare regulators for system wide suspend
2000 * @state: system suspend state
2001 *
2002 * Configure each regulator with it's suspend operating parameters for state.
2003 * This will usually be called by machine suspend code prior to supending.
2004 */
2005int regulator_suspend_prepare(suspend_state_t state)
2006{
2007	struct regulator_dev *rdev;
2008	int ret = 0;
2009
2010	/* ON is handled by regulator active state */
2011	if (state == PM_SUSPEND_ON)
2012		return -EINVAL;
2013
2014	mutex_lock(&regulator_list_mutex);
2015	list_for_each_entry(rdev, &regulator_list, list) {
2016
2017		mutex_lock(&rdev->mutex);
2018		ret = suspend_prepare(rdev, state);
2019		mutex_unlock(&rdev->mutex);
2020
2021		if (ret < 0) {
2022			printk(KERN_ERR "%s: failed to prepare %s\n",
2023				__func__, rdev->desc->name);
2024			goto out;
2025		}
2026	}
2027out:
2028	mutex_unlock(&regulator_list_mutex);
2029	return ret;
2030}
2031EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2032
2033/**
2034 * rdev_get_drvdata - get rdev regulator driver data
2035 * @rdev: regulator
2036 *
2037 * Get rdev regulator driver private data. This call can be used in the
2038 * regulator driver context.
2039 */
2040void *rdev_get_drvdata(struct regulator_dev *rdev)
2041{
2042	return rdev->reg_data;
2043}
2044EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2045
2046/**
2047 * regulator_get_drvdata - get regulator driver data
2048 * @regulator: regulator
2049 *
2050 * Get regulator driver private data. This call can be used in the consumer
2051 * driver context when non API regulator specific functions need to be called.
2052 */
2053void *regulator_get_drvdata(struct regulator *regulator)
2054{
2055	return regulator->rdev->reg_data;
2056}
2057EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2058
2059/**
2060 * regulator_set_drvdata - set regulator driver data
2061 * @regulator: regulator
2062 * @data: data
2063 */
2064void regulator_set_drvdata(struct regulator *regulator, void *data)
2065{
2066	regulator->rdev->reg_data = data;
2067}
2068EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2069
2070/**
2071 * regulator_get_id - get regulator ID
2072 * @rdev: regulator
2073 */
2074int rdev_get_id(struct regulator_dev *rdev)
2075{
2076	return rdev->desc->id;
2077}
2078EXPORT_SYMBOL_GPL(rdev_get_id);
2079
2080struct device *rdev_get_dev(struct regulator_dev *rdev)
2081{
2082	return &rdev->dev;
2083}
2084EXPORT_SYMBOL_GPL(rdev_get_dev);
2085
2086void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2087{
2088	return reg_init_data->driver_data;
2089}
2090EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2091
2092static int __init regulator_init(void)
2093{
2094	printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2095	return class_register(&regulator_class);
2096}
2097
2098/* init early to allow our consumers to complete system booting */
2099core_initcall(regulator_init);
2100