1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
15#include <linux/sched.h>
16#include <linux/module.h>
17#include <linux/log2.h>
18#include <linux/workqueue.h>
19
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24{
25	int err;
26	if (!rtc->ops)
27		err = -ENODEV;
28	else if (!rtc->ops->read_time)
29		err = -EINVAL;
30	else {
31		memset(tm, 0, sizeof(struct rtc_time));
32		err = rtc->ops->read_time(rtc->dev.parent, tm);
33	}
34	return err;
35}
36
37int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38{
39	int err;
40
41	err = mutex_lock_interruptible(&rtc->ops_lock);
42	if (err)
43		return err;
44
45	err = __rtc_read_time(rtc, tm);
46	mutex_unlock(&rtc->ops_lock);
47	return err;
48}
49EXPORT_SYMBOL_GPL(rtc_read_time);
50
51int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52{
53	int err;
54
55	err = rtc_valid_tm(tm);
56	if (err != 0)
57		return err;
58
59	err = mutex_lock_interruptible(&rtc->ops_lock);
60	if (err)
61		return err;
62
63	if (!rtc->ops)
64		err = -ENODEV;
65	else if (rtc->ops->set_time)
66		err = rtc->ops->set_time(rtc->dev.parent, tm);
67	else if (rtc->ops->set_mmss) {
68		unsigned long secs;
69		err = rtc_tm_to_time(tm, &secs);
70		if (err == 0)
71			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72	} else
73		err = -EINVAL;
74
75	pm_stay_awake(rtc->dev.parent);
76	mutex_unlock(&rtc->ops_lock);
77	/* A timer might have just expired */
78	schedule_work(&rtc->irqwork);
79	return err;
80}
81EXPORT_SYMBOL_GPL(rtc_set_time);
82
83int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
84{
85	int err;
86
87	err = mutex_lock_interruptible(&rtc->ops_lock);
88	if (err)
89		return err;
90
91	if (!rtc->ops)
92		err = -ENODEV;
93	else if (rtc->ops->set_mmss)
94		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
95	else if (rtc->ops->read_time && rtc->ops->set_time) {
96		struct rtc_time new, old;
97
98		err = rtc->ops->read_time(rtc->dev.parent, &old);
99		if (err == 0) {
100			rtc_time_to_tm(secs, &new);
101
102			/*
103			 * avoid writing when we're going to change the day of
104			 * the month. We will retry in the next minute. This
105			 * basically means that if the RTC must not drift
106			 * by more than 1 minute in 11 minutes.
107			 */
108			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109				(new.tm_hour == 23 && new.tm_min == 59)))
110				err = rtc->ops->set_time(rtc->dev.parent,
111						&new);
112		}
113	} else {
114		err = -EINVAL;
115	}
116
117	pm_stay_awake(rtc->dev.parent);
118	mutex_unlock(&rtc->ops_lock);
119	/* A timer might have just expired */
120	schedule_work(&rtc->irqwork);
121
122	return err;
123}
124EXPORT_SYMBOL_GPL(rtc_set_mmss);
125
126static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
127{
128	int err;
129
130	err = mutex_lock_interruptible(&rtc->ops_lock);
131	if (err)
132		return err;
133
134	if (rtc->ops == NULL)
135		err = -ENODEV;
136	else if (!rtc->ops->read_alarm)
137		err = -EINVAL;
138	else {
139		memset(alarm, 0, sizeof(struct rtc_wkalrm));
140		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141	}
142
143	mutex_unlock(&rtc->ops_lock);
144	return err;
145}
146
147int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148{
149	int err;
150	struct rtc_time before, now;
151	int first_time = 1;
152	unsigned long t_now, t_alm;
153	enum { none, day, month, year } missing = none;
154	unsigned days;
155
156	/* The lower level RTC driver may return -1 in some fields,
157	 * creating invalid alarm->time values, for reasons like:
158	 *
159	 *   - The hardware may not be capable of filling them in;
160	 *     many alarms match only on time-of-day fields, not
161	 *     day/month/year calendar data.
162	 *
163	 *   - Some hardware uses illegal values as "wildcard" match
164	 *     values, which non-Linux firmware (like a BIOS) may try
165	 *     to set up as e.g. "alarm 15 minutes after each hour".
166	 *     Linux uses only oneshot alarms.
167	 *
168	 * When we see that here, we deal with it by using values from
169	 * a current RTC timestamp for any missing (-1) values.  The
170	 * RTC driver prevents "periodic alarm" modes.
171	 *
172	 * But this can be racey, because some fields of the RTC timestamp
173	 * may have wrapped in the interval since we read the RTC alarm,
174	 * which would lead to us inserting inconsistent values in place
175	 * of the -1 fields.
176	 *
177	 * Reading the alarm and timestamp in the reverse sequence
178	 * would have the same race condition, and not solve the issue.
179	 *
180	 * So, we must first read the RTC timestamp,
181	 * then read the RTC alarm value,
182	 * and then read a second RTC timestamp.
183	 *
184	 * If any fields of the second timestamp have changed
185	 * when compared with the first timestamp, then we know
186	 * our timestamp may be inconsistent with that used by
187	 * the low-level rtc_read_alarm_internal() function.
188	 *
189	 * So, when the two timestamps disagree, we just loop and do
190	 * the process again to get a fully consistent set of values.
191	 *
192	 * This could all instead be done in the lower level driver,
193	 * but since more than one lower level RTC implementation needs it,
194	 * then it's probably best best to do it here instead of there..
195	 */
196
197	/* Get the "before" timestamp */
198	err = rtc_read_time(rtc, &before);
199	if (err < 0)
200		return err;
201	do {
202		if (!first_time)
203			memcpy(&before, &now, sizeof(struct rtc_time));
204		first_time = 0;
205
206		/* get the RTC alarm values, which may be incomplete */
207		err = rtc_read_alarm_internal(rtc, alarm);
208		if (err)
209			return err;
210
211		/* full-function RTCs won't have such missing fields */
212		if (rtc_valid_tm(&alarm->time) == 0)
213			return 0;
214
215		/* get the "after" timestamp, to detect wrapped fields */
216		err = rtc_read_time(rtc, &now);
217		if (err < 0)
218			return err;
219
220		/* note that tm_sec is a "don't care" value here: */
221	} while (   before.tm_min   != now.tm_min
222		 || before.tm_hour  != now.tm_hour
223		 || before.tm_mon   != now.tm_mon
224		 || before.tm_year  != now.tm_year);
225
226	/* Fill in the missing alarm fields using the timestamp; we
227	 * know there's at least one since alarm->time is invalid.
228	 */
229	if (alarm->time.tm_sec == -1)
230		alarm->time.tm_sec = now.tm_sec;
231	if (alarm->time.tm_min == -1)
232		alarm->time.tm_min = now.tm_min;
233	if (alarm->time.tm_hour == -1)
234		alarm->time.tm_hour = now.tm_hour;
235
236	/* For simplicity, only support date rollover for now */
237	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238		alarm->time.tm_mday = now.tm_mday;
239		missing = day;
240	}
241	if ((unsigned)alarm->time.tm_mon >= 12) {
242		alarm->time.tm_mon = now.tm_mon;
243		if (missing == none)
244			missing = month;
245	}
246	if (alarm->time.tm_year == -1) {
247		alarm->time.tm_year = now.tm_year;
248		if (missing == none)
249			missing = year;
250	}
251
252	/* with luck, no rollover is needed */
253	rtc_tm_to_time(&now, &t_now);
254	rtc_tm_to_time(&alarm->time, &t_alm);
255	if (t_now < t_alm)
256		goto done;
257
258	switch (missing) {
259
260	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
261	 * that will trigger at 5am will do so at 5am Tuesday, which
262	 * could also be in the next month or year.  This is a common
263	 * case, especially for PCs.
264	 */
265	case day:
266		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267		t_alm += 24 * 60 * 60;
268		rtc_time_to_tm(t_alm, &alarm->time);
269		break;
270
271	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
272	 * be next month.  An alarm matching on the 30th, 29th, or 28th
273	 * may end up in the month after that!  Many newer PCs support
274	 * this type of alarm.
275	 */
276	case month:
277		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278		do {
279			if (alarm->time.tm_mon < 11)
280				alarm->time.tm_mon++;
281			else {
282				alarm->time.tm_mon = 0;
283				alarm->time.tm_year++;
284			}
285			days = rtc_month_days(alarm->time.tm_mon,
286					alarm->time.tm_year);
287		} while (days < alarm->time.tm_mday);
288		break;
289
290	/* Year rollover ... easy except for leap years! */
291	case year:
292		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293		do {
294			alarm->time.tm_year++;
295		} while (!is_leap_year(alarm->time.tm_year + 1900)
296			&& rtc_valid_tm(&alarm->time) != 0);
297		break;
298
299	default:
300		dev_warn(&rtc->dev, "alarm rollover not handled\n");
301	}
302
303done:
304	err = rtc_valid_tm(&alarm->time);
305
306	if (err) {
307		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
308			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
309			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
310			alarm->time.tm_sec);
311	}
312
313	return err;
314}
315
316int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
317{
318	int err;
319
320	err = mutex_lock_interruptible(&rtc->ops_lock);
321	if (err)
322		return err;
323	if (rtc->ops == NULL)
324		err = -ENODEV;
325	else if (!rtc->ops->read_alarm)
326		err = -EINVAL;
327	else {
328		memset(alarm, 0, sizeof(struct rtc_wkalrm));
329		alarm->enabled = rtc->aie_timer.enabled;
330		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
331	}
332	mutex_unlock(&rtc->ops_lock);
333
334	return err;
335}
336EXPORT_SYMBOL_GPL(rtc_read_alarm);
337
338static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
339{
340	struct rtc_time tm;
341	long now, scheduled;
342	int err;
343
344	err = rtc_valid_tm(&alarm->time);
345	if (err)
346		return err;
347	rtc_tm_to_time(&alarm->time, &scheduled);
348
349	/* Make sure we're not setting alarms in the past */
350	err = __rtc_read_time(rtc, &tm);
351	if (err)
352		return err;
353	rtc_tm_to_time(&tm, &now);
354	if (scheduled <= now)
355		return -ETIME;
356	/*
357	 * XXX - We just checked to make sure the alarm time is not
358	 * in the past, but there is still a race window where if
359	 * the is alarm set for the next second and the second ticks
360	 * over right here, before we set the alarm.
361	 */
362
363	if (!rtc->ops)
364		err = -ENODEV;
365	else if (!rtc->ops->set_alarm)
366		err = -EINVAL;
367	else
368		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
369
370	return err;
371}
372
373int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
374{
375	int err;
376
377	err = rtc_valid_tm(&alarm->time);
378	if (err != 0)
379		return err;
380
381	err = mutex_lock_interruptible(&rtc->ops_lock);
382	if (err)
383		return err;
384	if (rtc->aie_timer.enabled)
385		rtc_timer_remove(rtc, &rtc->aie_timer);
386
387	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
388	rtc->aie_timer.period = ktime_set(0, 0);
389	if (alarm->enabled)
390		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
391
392	mutex_unlock(&rtc->ops_lock);
393	return err;
394}
395EXPORT_SYMBOL_GPL(rtc_set_alarm);
396
397/* Called once per device from rtc_device_register */
398int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
399{
400	int err;
401	struct rtc_time now;
402
403	err = rtc_valid_tm(&alarm->time);
404	if (err != 0)
405		return err;
406
407	err = rtc_read_time(rtc, &now);
408	if (err)
409		return err;
410
411	err = mutex_lock_interruptible(&rtc->ops_lock);
412	if (err)
413		return err;
414
415	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
416	rtc->aie_timer.period = ktime_set(0, 0);
417
418	/* Alarm has to be enabled & in the futrure for us to enqueue it */
419	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
420			 rtc->aie_timer.node.expires.tv64)) {
421
422		rtc->aie_timer.enabled = 1;
423		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
424	}
425	mutex_unlock(&rtc->ops_lock);
426	return err;
427}
428EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
429
430
431
432int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
433{
434	int err = mutex_lock_interruptible(&rtc->ops_lock);
435	if (err)
436		return err;
437
438	if (rtc->aie_timer.enabled != enabled) {
439		if (enabled)
440			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
441		else
442			rtc_timer_remove(rtc, &rtc->aie_timer);
443	}
444
445	if (err)
446		/* nothing */;
447	else if (!rtc->ops)
448		err = -ENODEV;
449	else if (!rtc->ops->alarm_irq_enable)
450		err = -EINVAL;
451	else
452		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
453
454	mutex_unlock(&rtc->ops_lock);
455	return err;
456}
457EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
458
459int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
460{
461	int err = mutex_lock_interruptible(&rtc->ops_lock);
462	if (err)
463		return err;
464
465#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
466	if (enabled == 0 && rtc->uie_irq_active) {
467		mutex_unlock(&rtc->ops_lock);
468		return rtc_dev_update_irq_enable_emul(rtc, 0);
469	}
470#endif
471	/* make sure we're changing state */
472	if (rtc->uie_rtctimer.enabled == enabled)
473		goto out;
474
475	if (rtc->uie_unsupported) {
476		err = -EINVAL;
477		goto out;
478	}
479
480	if (enabled) {
481		struct rtc_time tm;
482		ktime_t now, onesec;
483
484		__rtc_read_time(rtc, &tm);
485		onesec = ktime_set(1, 0);
486		now = rtc_tm_to_ktime(tm);
487		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
488		rtc->uie_rtctimer.period = ktime_set(1, 0);
489		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
490	} else
491		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
492
493out:
494	mutex_unlock(&rtc->ops_lock);
495#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
496	/*
497	 * Enable emulation if the driver did not provide
498	 * the update_irq_enable function pointer or if returned
499	 * -EINVAL to signal that it has been configured without
500	 * interrupts or that are not available at the moment.
501	 */
502	if (err == -EINVAL)
503		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
504#endif
505	return err;
506
507}
508EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
509
510
511/**
512 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
513 * @rtc: pointer to the rtc device
514 *
515 * This function is called when an AIE, UIE or PIE mode interrupt
516 * has occurred (or been emulated).
517 *
518 * Triggers the registered irq_task function callback.
519 */
520void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
521{
522	unsigned long flags;
523
524	/* mark one irq of the appropriate mode */
525	spin_lock_irqsave(&rtc->irq_lock, flags);
526	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
527	spin_unlock_irqrestore(&rtc->irq_lock, flags);
528
529	/* call the task func */
530	spin_lock_irqsave(&rtc->irq_task_lock, flags);
531	if (rtc->irq_task)
532		rtc->irq_task->func(rtc->irq_task->private_data);
533	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
534
535	wake_up_interruptible(&rtc->irq_queue);
536	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
537}
538
539
540/**
541 * rtc_aie_update_irq - AIE mode rtctimer hook
542 * @private: pointer to the rtc_device
543 *
544 * This functions is called when the aie_timer expires.
545 */
546void rtc_aie_update_irq(void *private)
547{
548	struct rtc_device *rtc = (struct rtc_device *)private;
549	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
550}
551
552
553/**
554 * rtc_uie_update_irq - UIE mode rtctimer hook
555 * @private: pointer to the rtc_device
556 *
557 * This functions is called when the uie_timer expires.
558 */
559void rtc_uie_update_irq(void *private)
560{
561	struct rtc_device *rtc = (struct rtc_device *)private;
562	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
563}
564
565
566/**
567 * rtc_pie_update_irq - PIE mode hrtimer hook
568 * @timer: pointer to the pie mode hrtimer
569 *
570 * This function is used to emulate PIE mode interrupts
571 * using an hrtimer. This function is called when the periodic
572 * hrtimer expires.
573 */
574enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
575{
576	struct rtc_device *rtc;
577	ktime_t period;
578	int count;
579	rtc = container_of(timer, struct rtc_device, pie_timer);
580
581	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
582	count = hrtimer_forward_now(timer, period);
583
584	rtc_handle_legacy_irq(rtc, count, RTC_PF);
585
586	return HRTIMER_RESTART;
587}
588
589/**
590 * rtc_update_irq - Triggered when a RTC interrupt occurs.
591 * @rtc: the rtc device
592 * @num: how many irqs are being reported (usually one)
593 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
594 * Context: any
595 */
596void rtc_update_irq(struct rtc_device *rtc,
597		unsigned long num, unsigned long events)
598{
599	if (unlikely(IS_ERR_OR_NULL(rtc)))
600		return;
601
602	pm_stay_awake(rtc->dev.parent);
603	schedule_work(&rtc->irqwork);
604}
605EXPORT_SYMBOL_GPL(rtc_update_irq);
606
607static int __rtc_match(struct device *dev, const void *data)
608{
609	const char *name = data;
610
611	if (strcmp(dev_name(dev), name) == 0)
612		return 1;
613	return 0;
614}
615
616struct rtc_device *rtc_class_open(const char *name)
617{
618	struct device *dev;
619	struct rtc_device *rtc = NULL;
620
621	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
622	if (dev)
623		rtc = to_rtc_device(dev);
624
625	if (rtc) {
626		if (!try_module_get(rtc->owner)) {
627			put_device(dev);
628			rtc = NULL;
629		}
630	}
631
632	return rtc;
633}
634EXPORT_SYMBOL_GPL(rtc_class_open);
635
636void rtc_class_close(struct rtc_device *rtc)
637{
638	module_put(rtc->owner);
639	put_device(&rtc->dev);
640}
641EXPORT_SYMBOL_GPL(rtc_class_close);
642
643int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
644{
645	int retval = -EBUSY;
646
647	if (task == NULL || task->func == NULL)
648		return -EINVAL;
649
650	/* Cannot register while the char dev is in use */
651	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
652		return -EBUSY;
653
654	spin_lock_irq(&rtc->irq_task_lock);
655	if (rtc->irq_task == NULL) {
656		rtc->irq_task = task;
657		retval = 0;
658	}
659	spin_unlock_irq(&rtc->irq_task_lock);
660
661	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
662
663	return retval;
664}
665EXPORT_SYMBOL_GPL(rtc_irq_register);
666
667void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
668{
669	spin_lock_irq(&rtc->irq_task_lock);
670	if (rtc->irq_task == task)
671		rtc->irq_task = NULL;
672	spin_unlock_irq(&rtc->irq_task_lock);
673}
674EXPORT_SYMBOL_GPL(rtc_irq_unregister);
675
676static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
677{
678	/*
679	 * We always cancel the timer here first, because otherwise
680	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
681	 * when we manage to start the timer before the callback
682	 * returns HRTIMER_RESTART.
683	 *
684	 * We cannot use hrtimer_cancel() here as a running callback
685	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
686	 * would spin forever.
687	 */
688	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
689		return -1;
690
691	if (enabled) {
692		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
693
694		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
695	}
696	return 0;
697}
698
699/**
700 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
701 * @rtc: the rtc device
702 * @task: currently registered with rtc_irq_register()
703 * @enabled: true to enable periodic IRQs
704 * Context: any
705 *
706 * Note that rtc_irq_set_freq() should previously have been used to
707 * specify the desired frequency of periodic IRQ task->func() callbacks.
708 */
709int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
710{
711	int err = 0;
712	unsigned long flags;
713
714retry:
715	spin_lock_irqsave(&rtc->irq_task_lock, flags);
716	if (rtc->irq_task != NULL && task == NULL)
717		err = -EBUSY;
718	else if (rtc->irq_task != task)
719		err = -EACCES;
720	else {
721		if (rtc_update_hrtimer(rtc, enabled) < 0) {
722			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
723			cpu_relax();
724			goto retry;
725		}
726		rtc->pie_enabled = enabled;
727	}
728	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
729	return err;
730}
731EXPORT_SYMBOL_GPL(rtc_irq_set_state);
732
733/**
734 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
735 * @rtc: the rtc device
736 * @task: currently registered with rtc_irq_register()
737 * @freq: positive frequency with which task->func() will be called
738 * Context: any
739 *
740 * Note that rtc_irq_set_state() is used to enable or disable the
741 * periodic IRQs.
742 */
743int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
744{
745	int err = 0;
746	unsigned long flags;
747
748	if (freq <= 0 || freq > RTC_MAX_FREQ)
749		return -EINVAL;
750retry:
751	spin_lock_irqsave(&rtc->irq_task_lock, flags);
752	if (rtc->irq_task != NULL && task == NULL)
753		err = -EBUSY;
754	else if (rtc->irq_task != task)
755		err = -EACCES;
756	else {
757		rtc->irq_freq = freq;
758		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
759			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
760			cpu_relax();
761			goto retry;
762		}
763	}
764	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
765	return err;
766}
767EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
768
769/**
770 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
771 * @rtc rtc device
772 * @timer timer being added.
773 *
774 * Enqueues a timer onto the rtc devices timerqueue and sets
775 * the next alarm event appropriately.
776 *
777 * Sets the enabled bit on the added timer.
778 *
779 * Must hold ops_lock for proper serialization of timerqueue
780 */
781static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
782{
783	timer->enabled = 1;
784	timerqueue_add(&rtc->timerqueue, &timer->node);
785	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
786		struct rtc_wkalrm alarm;
787		int err;
788		alarm.time = rtc_ktime_to_tm(timer->node.expires);
789		alarm.enabled = 1;
790		err = __rtc_set_alarm(rtc, &alarm);
791		if (err == -ETIME) {
792			pm_stay_awake(rtc->dev.parent);
793			schedule_work(&rtc->irqwork);
794		} else if (err) {
795			timerqueue_del(&rtc->timerqueue, &timer->node);
796			timer->enabled = 0;
797			return err;
798		}
799	}
800	return 0;
801}
802
803static void rtc_alarm_disable(struct rtc_device *rtc)
804{
805	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
806		return;
807
808	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
809}
810
811/**
812 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
813 * @rtc rtc device
814 * @timer timer being removed.
815 *
816 * Removes a timer onto the rtc devices timerqueue and sets
817 * the next alarm event appropriately.
818 *
819 * Clears the enabled bit on the removed timer.
820 *
821 * Must hold ops_lock for proper serialization of timerqueue
822 */
823static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
824{
825	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
826	timerqueue_del(&rtc->timerqueue, &timer->node);
827	timer->enabled = 0;
828	if (next == &timer->node) {
829		struct rtc_wkalrm alarm;
830		int err;
831		next = timerqueue_getnext(&rtc->timerqueue);
832		if (!next) {
833			rtc_alarm_disable(rtc);
834			return;
835		}
836		alarm.time = rtc_ktime_to_tm(next->expires);
837		alarm.enabled = 1;
838		err = __rtc_set_alarm(rtc, &alarm);
839		if (err == -ETIME) {
840			pm_stay_awake(rtc->dev.parent);
841			schedule_work(&rtc->irqwork);
842		}
843	}
844}
845
846/**
847 * rtc_timer_do_work - Expires rtc timers
848 * @rtc rtc device
849 * @timer timer being removed.
850 *
851 * Expires rtc timers. Reprograms next alarm event if needed.
852 * Called via worktask.
853 *
854 * Serializes access to timerqueue via ops_lock mutex
855 */
856void rtc_timer_do_work(struct work_struct *work)
857{
858	struct rtc_timer *timer;
859	struct timerqueue_node *next;
860	ktime_t now;
861	struct rtc_time tm;
862
863	struct rtc_device *rtc =
864		container_of(work, struct rtc_device, irqwork);
865
866	mutex_lock(&rtc->ops_lock);
867again:
868	__rtc_read_time(rtc, &tm);
869	now = rtc_tm_to_ktime(tm);
870	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
871		if (next->expires.tv64 > now.tv64)
872			break;
873
874		/* expire timer */
875		timer = container_of(next, struct rtc_timer, node);
876		timerqueue_del(&rtc->timerqueue, &timer->node);
877		timer->enabled = 0;
878		if (timer->task.func)
879			timer->task.func(timer->task.private_data);
880
881		/* Re-add/fwd periodic timers */
882		if (ktime_to_ns(timer->period)) {
883			timer->node.expires = ktime_add(timer->node.expires,
884							timer->period);
885			timer->enabled = 1;
886			timerqueue_add(&rtc->timerqueue, &timer->node);
887		}
888	}
889
890	/* Set next alarm */
891	if (next) {
892		struct rtc_wkalrm alarm;
893		int err;
894		alarm.time = rtc_ktime_to_tm(next->expires);
895		alarm.enabled = 1;
896		err = __rtc_set_alarm(rtc, &alarm);
897		if (err == -ETIME)
898			goto again;
899	} else
900		rtc_alarm_disable(rtc);
901
902	pm_relax(rtc->dev.parent);
903	mutex_unlock(&rtc->ops_lock);
904}
905
906
907/* rtc_timer_init - Initializes an rtc_timer
908 * @timer: timer to be intiialized
909 * @f: function pointer to be called when timer fires
910 * @data: private data passed to function pointer
911 *
912 * Kernel interface to initializing an rtc_timer.
913 */
914void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
915{
916	timerqueue_init(&timer->node);
917	timer->enabled = 0;
918	timer->task.func = f;
919	timer->task.private_data = data;
920}
921
922/* rtc_timer_start - Sets an rtc_timer to fire in the future
923 * @ rtc: rtc device to be used
924 * @ timer: timer being set
925 * @ expires: time at which to expire the timer
926 * @ period: period that the timer will recur
927 *
928 * Kernel interface to set an rtc_timer
929 */
930int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
931			ktime_t expires, ktime_t period)
932{
933	int ret = 0;
934	mutex_lock(&rtc->ops_lock);
935	if (timer->enabled)
936		rtc_timer_remove(rtc, timer);
937
938	timer->node.expires = expires;
939	timer->period = period;
940
941	ret = rtc_timer_enqueue(rtc, timer);
942
943	mutex_unlock(&rtc->ops_lock);
944	return ret;
945}
946
947/* rtc_timer_cancel - Stops an rtc_timer
948 * @ rtc: rtc device to be used
949 * @ timer: timer being set
950 *
951 * Kernel interface to cancel an rtc_timer
952 */
953int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
954{
955	int ret = 0;
956	mutex_lock(&rtc->ops_lock);
957	if (timer->enabled)
958		rtc_timer_remove(rtc, timer);
959	mutex_unlock(&rtc->ops_lock);
960	return ret;
961}
962
963
964