rtc-ds1305.c revision e6229bec25be4ba00f31dd26e25721cc96c22262
1/*
2 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
3 *
4 * Copyright (C) 2008 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 */
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/bcd.h>
14#include <linux/rtc.h>
15#include <linux/workqueue.h>
16
17#include <linux/spi/spi.h>
18#include <linux/spi/ds1305.h>
19
20
21/*
22 * Registers ... mask DS1305_WRITE into register address to write,
23 * otherwise you're reading it.  All non-bitmask values are BCD.
24 */
25#define DS1305_WRITE		0x80
26
27
28/* RTC date/time ... the main special cases are that we:
29 *  - Need fancy "hours" encoding in 12hour mode
30 *  - Don't rely on the "day-of-week" field (or tm_wday)
31 *  - Are a 21st-century clock (2000 <= year < 2100)
32 */
33#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
34
35#define DS1305_SEC		0x00		/* register addresses */
36#define DS1305_MIN		0x01
37#define DS1305_HOUR		0x02
38#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
39#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
40#define DS1305_WDAY		0x03
41#define DS1305_MDAY		0x04
42#define DS1305_MON		0x05
43#define DS1305_YEAR		0x06
44
45
46/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
47 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
48 *
49 * NOTE that since we don't use WDAY, we limit ourselves to alarms
50 * only one day into the future (vs potentially up to a week).
51 *
52 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
53 * don't currently support them.  We'd either need to do it only when
54 * no alarm is pending (not the standard model), or to use the second
55 * alarm (implying that this is a DS1305 not DS1306, *and* that either
56 * it's wired up a second IRQ we know, or that INTCN is set)
57 */
58#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
59#define DS1305_ALM_DISABLE	0x80
60
61#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
62#define DS1305_ALM1(r)		(0x0b + (r))
63
64
65/* three control registers */
66#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
67
68#define DS1305_CONTROL		0x0f		/* register addresses */
69#	define DS1305_nEOSC		0x80	/* low enables oscillator */
70#	define DS1305_WP		0x40	/* write protect */
71#	define DS1305_INTCN		0x04	/* clear == only int0 used */
72#	define DS1306_1HZ		0x04	/* enable 1Hz output */
73#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
74#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
75#define DS1305_STATUS		0x10
76/* status has just AEIx bits, mirrored as IRQFx */
77#define DS1305_TRICKLE		0x11
78/* trickle bits are defined in <linux/spi/ds1305.h> */
79
80/* a bunch of NVRAM */
81#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
82
83#define DS1305_NVRAM		0x20		/* register addresses */
84
85
86struct ds1305 {
87	struct spi_device	*spi;
88	struct rtc_device	*rtc;
89
90	struct work_struct	work;
91
92	unsigned long		flags;
93#define FLAG_EXITING	0
94
95	bool			hr12;
96	u8			ctrl[DS1305_CONTROL_LEN];
97};
98
99
100/*----------------------------------------------------------------------*/
101
102/*
103 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
104 * software (like a bootloader) which may require it.
105 */
106
107static unsigned bcd2hour(u8 bcd)
108{
109	if (bcd & DS1305_HR_12) {
110		unsigned	hour = 0;
111
112		bcd &= ~DS1305_HR_12;
113		if (bcd & DS1305_HR_PM) {
114			hour = 12;
115			bcd &= ~DS1305_HR_PM;
116		}
117		hour += bcd2bin(bcd);
118		return hour - 1;
119	}
120	return bcd2bin(bcd);
121}
122
123static u8 hour2bcd(bool hr12, int hour)
124{
125	if (hr12) {
126		hour++;
127		if (hour <= 12)
128			return DS1305_HR_12 | bin2bcd(hour);
129		hour -= 12;
130		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
131	}
132	return bin2bcd(hour);
133}
134
135/*----------------------------------------------------------------------*/
136
137/*
138 * Interface to RTC framework
139 */
140
141#ifdef CONFIG_RTC_INTF_DEV
142
143/*
144 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
145 */
146static int ds1305_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
147{
148	struct ds1305	*ds1305 = dev_get_drvdata(dev);
149	u8		buf[2];
150	int		status = -ENOIOCTLCMD;
151
152	buf[0] = DS1305_WRITE | DS1305_CONTROL;
153	buf[1] = ds1305->ctrl[0];
154
155	switch (cmd) {
156	case RTC_AIE_OFF:
157		status = 0;
158		if (!(buf[1] & DS1305_AEI0))
159			goto done;
160		buf[1] &= ~DS1305_AEI0;
161		break;
162
163	case RTC_AIE_ON:
164		status = 0;
165		if (ds1305->ctrl[0] & DS1305_AEI0)
166			goto done;
167		buf[1] |= DS1305_AEI0;
168		break;
169	}
170	if (status == 0) {
171		status = spi_write_then_read(ds1305->spi, buf, sizeof buf,
172				NULL, 0);
173		if (status >= 0)
174			ds1305->ctrl[0] = buf[1];
175	}
176
177done:
178	return status;
179}
180
181#else
182#define ds1305_ioctl	NULL
183#endif
184
185/*
186 * Get/set of date and time is pretty normal.
187 */
188
189static int ds1305_get_time(struct device *dev, struct rtc_time *time)
190{
191	struct ds1305	*ds1305 = dev_get_drvdata(dev);
192	u8		addr = DS1305_SEC;
193	u8		buf[DS1305_RTC_LEN];
194	int		status;
195
196	/* Use write-then-read to get all the date/time registers
197	 * since dma from stack is nonportable
198	 */
199	status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
200			buf, sizeof buf);
201	if (status < 0)
202		return status;
203
204	dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
205		"read", buf[0], buf[1], buf[2], buf[3],
206		buf[4], buf[5], buf[6]);
207
208	/* Decode the registers */
209	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
210	time->tm_min = bcd2bin(buf[DS1305_MIN]);
211	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
212	time->tm_wday = buf[DS1305_WDAY] - 1;
213	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
214	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
215	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
216
217	dev_vdbg(dev, "%s secs=%d, mins=%d, "
218		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
219		"read", time->tm_sec, time->tm_min,
220		time->tm_hour, time->tm_mday,
221		time->tm_mon, time->tm_year, time->tm_wday);
222
223	/* Time may not be set */
224	return rtc_valid_tm(time);
225}
226
227static int ds1305_set_time(struct device *dev, struct rtc_time *time)
228{
229	struct ds1305	*ds1305 = dev_get_drvdata(dev);
230	u8		buf[1 + DS1305_RTC_LEN];
231	u8		*bp = buf;
232
233	dev_vdbg(dev, "%s secs=%d, mins=%d, "
234		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
235		"write", time->tm_sec, time->tm_min,
236		time->tm_hour, time->tm_mday,
237		time->tm_mon, time->tm_year, time->tm_wday);
238
239	/* Write registers starting at the first time/date address. */
240	*bp++ = DS1305_WRITE | DS1305_SEC;
241
242	*bp++ = bin2bcd(time->tm_sec);
243	*bp++ = bin2bcd(time->tm_min);
244	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
245	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
246	*bp++ = bin2bcd(time->tm_mday);
247	*bp++ = bin2bcd(time->tm_mon + 1);
248	*bp++ = bin2bcd(time->tm_year - 100);
249
250	dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
251		"write", buf[1], buf[2], buf[3],
252		buf[4], buf[5], buf[6], buf[7]);
253
254	/* use write-then-read since dma from stack is nonportable */
255	return spi_write_then_read(ds1305->spi, buf, sizeof buf,
256			NULL, 0);
257}
258
259/*
260 * Get/set of alarm is a bit funky:
261 *
262 * - First there's the inherent raciness of getting the (partitioned)
263 *   status of an alarm that could trigger while we're reading parts
264 *   of that status.
265 *
266 * - Second there's its limited range (we could increase it a bit by
267 *   relying on WDAY), which means it will easily roll over.
268 *
269 * - Third there's the choice of two alarms and alarm signals.
270 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
271 *   that's the only real option for DS1306 runtime alarms, and is
272 *   natural on DS1305.
273 *
274 * - Fourth, there's also ALM1, and a second interrupt signal:
275 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
276 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
277 *       and it won't work when VCC1 is active.
278 *
279 *   So to be most general, we should probably set both alarms to the
280 *   same value, letting ALM1 be the wakeup event source on DS1306
281 *   and handling several wiring options on DS1305.
282 *
283 * - Fifth, we support the polled mode (as well as possible; why not?)
284 *   even when no interrupt line is wired to an IRQ.
285 */
286
287/*
288 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
289 */
290static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
291{
292	struct ds1305	*ds1305 = dev_get_drvdata(dev);
293	struct spi_device *spi = ds1305->spi;
294	u8		addr;
295	int		status;
296	u8		buf[DS1305_ALM_LEN];
297
298	/* Refresh control register cache BEFORE reading ALM0 registers,
299	 * since reading alarm registers acks any pending IRQ.  That
300	 * makes returning "pending" status a bit of a lie, but that bit
301	 * of EFI status is at best fragile anyway (given IRQ handlers).
302	 */
303	addr = DS1305_CONTROL;
304	status = spi_write_then_read(spi, &addr, sizeof addr,
305			ds1305->ctrl, sizeof ds1305->ctrl);
306	if (status < 0)
307		return status;
308
309	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
310	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
311
312	/* get and check ALM0 registers */
313	addr = DS1305_ALM0(DS1305_SEC);
314	status = spi_write_then_read(spi, &addr, sizeof addr,
315			buf, sizeof buf);
316	if (status < 0)
317		return status;
318
319	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
320		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
321		buf[DS1305_HOUR], buf[DS1305_WDAY]);
322
323	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
324			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
325			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
326		return -EIO;
327
328	/* Stuff these values into alm->time and let RTC framework code
329	 * fill in the rest ... and also handle rollover to tomorrow when
330	 * that's needed.
331	 */
332	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
333	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
334	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
335	alm->time.tm_mday = -1;
336	alm->time.tm_mon = -1;
337	alm->time.tm_year = -1;
338	/* next three fields are unused by Linux */
339	alm->time.tm_wday = -1;
340	alm->time.tm_mday = -1;
341	alm->time.tm_isdst = -1;
342
343	return 0;
344}
345
346/*
347 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
348 */
349static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
350{
351	struct ds1305	*ds1305 = dev_get_drvdata(dev);
352	struct spi_device *spi = ds1305->spi;
353	unsigned long	now, later;
354	struct rtc_time	tm;
355	int		status;
356	u8		buf[1 + DS1305_ALM_LEN];
357
358	/* convert desired alarm to time_t */
359	status = rtc_tm_to_time(&alm->time, &later);
360	if (status < 0)
361		return status;
362
363	/* Read current time as time_t */
364	status = ds1305_get_time(dev, &tm);
365	if (status < 0)
366		return status;
367	status = rtc_tm_to_time(&tm, &now);
368	if (status < 0)
369		return status;
370
371	/* make sure alarm fires within the next 24 hours */
372	if (later <= now)
373		return -EINVAL;
374	if ((later - now) > 24 * 60 * 60)
375		return -EDOM;
376
377	/* disable alarm if needed */
378	if (ds1305->ctrl[0] & DS1305_AEI0) {
379		ds1305->ctrl[0] &= ~DS1305_AEI0;
380
381		buf[0] = DS1305_WRITE | DS1305_CONTROL;
382		buf[1] = ds1305->ctrl[0];
383		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
384		if (status < 0)
385			return status;
386	}
387
388	/* write alarm */
389	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
390	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
391	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
392	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
393	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
394
395	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
396		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
397		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
398
399	status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
400	if (status < 0)
401		return status;
402
403	/* enable alarm if requested */
404	if (alm->enabled) {
405		ds1305->ctrl[0] |= DS1305_AEI0;
406
407		buf[0] = DS1305_WRITE | DS1305_CONTROL;
408		buf[1] = ds1305->ctrl[0];
409		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
410	}
411
412	return status;
413}
414
415#ifdef CONFIG_PROC_FS
416
417static int ds1305_proc(struct device *dev, struct seq_file *seq)
418{
419	struct ds1305	*ds1305 = dev_get_drvdata(dev);
420	char		*diodes = "no";
421	char		*resistors = "";
422
423	/* ctrl[2] is treated as read-only; no locking needed */
424	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
425		switch (ds1305->ctrl[2] & 0x0c) {
426		case DS1305_TRICKLE_DS2:
427			diodes = "2 diodes, ";
428			break;
429		case DS1305_TRICKLE_DS1:
430			diodes = "1 diode, ";
431			break;
432		default:
433			goto done;
434		}
435		switch (ds1305->ctrl[2] & 0x03) {
436		case DS1305_TRICKLE_2K:
437			resistors = "2k Ohm";
438			break;
439		case DS1305_TRICKLE_4K:
440			resistors = "4k Ohm";
441			break;
442		case DS1305_TRICKLE_8K:
443			resistors = "8k Ohm";
444			break;
445		default:
446			diodes = "no";
447			break;
448		}
449	}
450
451done:
452	return seq_printf(seq,
453			"trickle_charge\t: %s%s\n",
454			diodes, resistors);
455}
456
457#else
458#define ds1305_proc	NULL
459#endif
460
461static const struct rtc_class_ops ds1305_ops = {
462	.ioctl		= ds1305_ioctl,
463	.read_time	= ds1305_get_time,
464	.set_time	= ds1305_set_time,
465	.read_alarm	= ds1305_get_alarm,
466	.set_alarm	= ds1305_set_alarm,
467	.proc		= ds1305_proc,
468};
469
470static void ds1305_work(struct work_struct *work)
471{
472	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
473	struct mutex	*lock = &ds1305->rtc->ops_lock;
474	struct spi_device *spi = ds1305->spi;
475	u8		buf[3];
476	int		status;
477
478	/* lock to protect ds1305->ctrl */
479	mutex_lock(lock);
480
481	/* Disable the IRQ, and clear its status ... for now, we "know"
482	 * that if more than one alarm is active, they're in sync.
483	 * Note that reading ALM data registers also clears IRQ status.
484	 */
485	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
486	ds1305->ctrl[1] = 0;
487
488	buf[0] = DS1305_WRITE | DS1305_CONTROL;
489	buf[1] = ds1305->ctrl[0];
490	buf[2] = 0;
491
492	status = spi_write_then_read(spi, buf, sizeof buf,
493			NULL, 0);
494	if (status < 0)
495		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
496
497	mutex_unlock(lock);
498
499	if (!test_bit(FLAG_EXITING, &ds1305->flags))
500		enable_irq(spi->irq);
501
502	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
503}
504
505/*
506 * This "real" IRQ handler hands off to a workqueue mostly to allow
507 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
508 * I/O requests in IRQ context (to clear the IRQ status).
509 */
510static irqreturn_t ds1305_irq(int irq, void *p)
511{
512	struct ds1305		*ds1305 = p;
513
514	disable_irq(irq);
515	schedule_work(&ds1305->work);
516	return IRQ_HANDLED;
517}
518
519/*----------------------------------------------------------------------*/
520
521/*
522 * Interface for NVRAM
523 */
524
525static void msg_init(struct spi_message *m, struct spi_transfer *x,
526		u8 *addr, size_t count, char *tx, char *rx)
527{
528	spi_message_init(m);
529	memset(x, 0, 2 * sizeof(*x));
530
531	x->tx_buf = addr;
532	x->len = 1;
533	spi_message_add_tail(x, m);
534
535	x++;
536
537	x->tx_buf = tx;
538	x->rx_buf = rx;
539	x->len = count;
540	spi_message_add_tail(x, m);
541}
542
543static ssize_t
544ds1305_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
545		char *buf, loff_t off, size_t count)
546{
547	struct spi_device	*spi;
548	u8			addr;
549	struct spi_message	m;
550	struct spi_transfer	x[2];
551	int			status;
552
553	spi = container_of(kobj, struct spi_device, dev.kobj);
554
555	if (unlikely(off >= DS1305_NVRAM_LEN))
556		return 0;
557	if (count >= DS1305_NVRAM_LEN)
558		count = DS1305_NVRAM_LEN;
559	if ((off + count) > DS1305_NVRAM_LEN)
560		count = DS1305_NVRAM_LEN - off;
561	if (unlikely(!count))
562		return count;
563
564	addr = DS1305_NVRAM + off;
565	msg_init(&m, x, &addr, count, NULL, buf);
566
567	status = spi_sync(spi, &m);
568	if (status < 0)
569		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
570	return (status < 0) ? status : count;
571}
572
573static ssize_t
574ds1305_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
575		char *buf, loff_t off, size_t count)
576{
577	struct spi_device	*spi;
578	u8			addr;
579	struct spi_message	m;
580	struct spi_transfer	x[2];
581	int			status;
582
583	spi = container_of(kobj, struct spi_device, dev.kobj);
584
585	if (unlikely(off >= DS1305_NVRAM_LEN))
586		return -EFBIG;
587	if (count >= DS1305_NVRAM_LEN)
588		count = DS1305_NVRAM_LEN;
589	if ((off + count) > DS1305_NVRAM_LEN)
590		count = DS1305_NVRAM_LEN - off;
591	if (unlikely(!count))
592		return count;
593
594	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
595	msg_init(&m, x, &addr, count, buf, NULL);
596
597	status = spi_sync(spi, &m);
598	if (status < 0)
599		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
600	return (status < 0) ? status : count;
601}
602
603static struct bin_attribute nvram = {
604	.attr.name	= "nvram",
605	.attr.mode	= S_IRUGO | S_IWUSR,
606	.read		= ds1305_nvram_read,
607	.write		= ds1305_nvram_write,
608	.size		= DS1305_NVRAM_LEN,
609};
610
611/*----------------------------------------------------------------------*/
612
613/*
614 * Interface to SPI stack
615 */
616
617static int __devinit ds1305_probe(struct spi_device *spi)
618{
619	struct ds1305			*ds1305;
620	struct rtc_device		*rtc;
621	int				status;
622	u8				addr, value;
623	struct ds1305_platform_data	*pdata = spi->dev.platform_data;
624	bool				write_ctrl = false;
625
626	/* Sanity check board setup data.  This may be hooked up
627	 * in 3wire mode, but we don't care.  Note that unless
628	 * there's an inverter in place, this needs SPI_CS_HIGH!
629	 */
630	if ((spi->bits_per_word && spi->bits_per_word != 8)
631			|| (spi->max_speed_hz > 2000000)
632			|| !(spi->mode & SPI_CPHA))
633		return -EINVAL;
634
635	/* set up driver data */
636	ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
637	if (!ds1305)
638		return -ENOMEM;
639	ds1305->spi = spi;
640	spi_set_drvdata(spi, ds1305);
641
642	/* read and cache control registers */
643	addr = DS1305_CONTROL;
644	status = spi_write_then_read(spi, &addr, sizeof addr,
645			ds1305->ctrl, sizeof ds1305->ctrl);
646	if (status < 0) {
647		dev_dbg(&spi->dev, "can't %s, %d\n",
648				"read", status);
649		goto fail0;
650	}
651
652	dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
653			"read", ds1305->ctrl[0],
654			ds1305->ctrl[1], ds1305->ctrl[2]);
655
656	/* Sanity check register values ... partially compensating for the
657	 * fact that SPI has no device handshake.  A pullup on MISO would
658	 * make these tests fail; but not all systems will have one.  If
659	 * some register is neither 0x00 nor 0xff, a chip is likely there.
660	 */
661	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
662		dev_dbg(&spi->dev, "RTC chip is not present\n");
663		status = -ENODEV;
664		goto fail0;
665	}
666	if (ds1305->ctrl[2] == 0)
667		dev_dbg(&spi->dev, "chip may not be present\n");
668
669	/* enable writes if needed ... if we were paranoid it would
670	 * make sense to enable them only when absolutely necessary.
671	 */
672	if (ds1305->ctrl[0] & DS1305_WP) {
673		u8		buf[2];
674
675		ds1305->ctrl[0] &= ~DS1305_WP;
676
677		buf[0] = DS1305_WRITE | DS1305_CONTROL;
678		buf[1] = ds1305->ctrl[0];
679		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
680
681		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
682		if (status < 0)
683			goto fail0;
684	}
685
686	/* on DS1305, maybe start oscillator; like most low power
687	 * oscillators, it may take a second to stabilize
688	 */
689	if (ds1305->ctrl[0] & DS1305_nEOSC) {
690		ds1305->ctrl[0] &= ~DS1305_nEOSC;
691		write_ctrl = true;
692		dev_warn(&spi->dev, "SET TIME!\n");
693	}
694
695	/* ack any pending IRQs */
696	if (ds1305->ctrl[1]) {
697		ds1305->ctrl[1] = 0;
698		write_ctrl = true;
699	}
700
701	/* this may need one-time (re)init */
702	if (pdata) {
703		/* maybe enable trickle charge */
704		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
705			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
706						| pdata->trickle;
707			write_ctrl = true;
708		}
709
710		/* on DS1306, configure 1 Hz signal */
711		if (pdata->is_ds1306) {
712			if (pdata->en_1hz) {
713				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
714					ds1305->ctrl[0] |= DS1306_1HZ;
715					write_ctrl = true;
716				}
717			} else {
718				if (ds1305->ctrl[0] & DS1306_1HZ) {
719					ds1305->ctrl[0] &= ~DS1306_1HZ;
720					write_ctrl = true;
721				}
722			}
723		}
724	}
725
726	if (write_ctrl) {
727		u8		buf[4];
728
729		buf[0] = DS1305_WRITE | DS1305_CONTROL;
730		buf[1] = ds1305->ctrl[0];
731		buf[2] = ds1305->ctrl[1];
732		buf[3] = ds1305->ctrl[2];
733		status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
734		if (status < 0) {
735			dev_dbg(&spi->dev, "can't %s, %d\n",
736					"write", status);
737			goto fail0;
738		}
739
740		dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
741				"write", ds1305->ctrl[0],
742				ds1305->ctrl[1], ds1305->ctrl[2]);
743	}
744
745	/* see if non-Linux software set up AM/PM mode */
746	addr = DS1305_HOUR;
747	status = spi_write_then_read(spi, &addr, sizeof addr,
748				&value, sizeof value);
749	if (status < 0) {
750		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
751		goto fail0;
752	}
753
754	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
755	if (ds1305->hr12)
756		dev_dbg(&spi->dev, "AM/PM\n");
757
758	/* register RTC ... from here on, ds1305->ctrl needs locking */
759	rtc = rtc_device_register("ds1305", &spi->dev,
760			&ds1305_ops, THIS_MODULE);
761	if (IS_ERR(rtc)) {
762		status = PTR_ERR(rtc);
763		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
764		goto fail0;
765	}
766	ds1305->rtc = rtc;
767
768	/* Maybe set up alarm IRQ; be ready to handle it triggering right
769	 * away.  NOTE that we don't share this.  The signal is active low,
770	 * and we can't ack it before a SPI message delay.  We temporarily
771	 * disable the IRQ until it's acked, which lets us work with more
772	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
773	 */
774	if (spi->irq) {
775		INIT_WORK(&ds1305->work, ds1305_work);
776		status = request_irq(spi->irq, ds1305_irq,
777				0, dev_name(&rtc->dev), ds1305);
778		if (status < 0) {
779			dev_dbg(&spi->dev, "request_irq %d --> %d\n",
780					spi->irq, status);
781			goto fail1;
782		}
783	}
784
785	/* export NVRAM */
786	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
787	if (status < 0) {
788		dev_dbg(&spi->dev, "register nvram --> %d\n", status);
789		goto fail2;
790	}
791
792	return 0;
793
794fail2:
795	free_irq(spi->irq, ds1305);
796fail1:
797	rtc_device_unregister(rtc);
798fail0:
799	kfree(ds1305);
800	return status;
801}
802
803static int __devexit ds1305_remove(struct spi_device *spi)
804{
805	struct ds1305	*ds1305 = spi_get_drvdata(spi);
806
807	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
808
809	/* carefully shut down irq and workqueue, if present */
810	if (spi->irq) {
811		set_bit(FLAG_EXITING, &ds1305->flags);
812		free_irq(spi->irq, ds1305);
813		flush_scheduled_work();
814	}
815
816	rtc_device_unregister(ds1305->rtc);
817	spi_set_drvdata(spi, NULL);
818	kfree(ds1305);
819	return 0;
820}
821
822static struct spi_driver ds1305_driver = {
823	.driver.name	= "rtc-ds1305",
824	.driver.owner	= THIS_MODULE,
825	.probe		= ds1305_probe,
826	.remove		= __devexit_p(ds1305_remove),
827	/* REVISIT add suspend/resume */
828};
829
830static int __init ds1305_init(void)
831{
832	return spi_register_driver(&ds1305_driver);
833}
834module_init(ds1305_init);
835
836static void __exit ds1305_exit(void)
837{
838	spi_unregister_driver(&ds1305_driver);
839}
840module_exit(ds1305_exit);
841
842MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
843MODULE_LICENSE("GPL");
844