1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING.  If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 *  comminit.c
27 *
28 * Abstract: This supports the initialization of the host adapter commuication interface.
29 *    This is a platform dependent module for the pci cyclone board.
30 *
31 */
32
33#include <linux/kernel.h>
34#include <linux/init.h>
35#include <linux/types.h>
36#include <linux/pci.h>
37#include <linux/spinlock.h>
38#include <linux/slab.h>
39#include <linux/blkdev.h>
40#include <linux/completion.h>
41#include <linux/mm.h>
42#include <scsi/scsi_host.h>
43
44#include "aacraid.h"
45
46struct aac_common aac_config = {
47	.irq_mod = 1
48};
49
50static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
51{
52	unsigned char *base;
53	unsigned long size, align;
54	const unsigned long fibsize = 4096;
55	const unsigned long printfbufsiz = 256;
56	unsigned long host_rrq_size = 0;
57	struct aac_init *init;
58	dma_addr_t phys;
59	unsigned long aac_max_hostphysmempages;
60
61	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
62	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2)
63		host_rrq_size = (dev->scsi_host_ptr->can_queue
64			+ AAC_NUM_MGT_FIB) * sizeof(u32);
65	size = fibsize + sizeof(struct aac_init) + commsize +
66			commalign + printfbufsiz + host_rrq_size;
67
68	base = pci_alloc_consistent(dev->pdev, size, &phys);
69
70	if(base == NULL)
71	{
72		printk(KERN_ERR "aacraid: unable to create mapping.\n");
73		return 0;
74	}
75	dev->comm_addr = (void *)base;
76	dev->comm_phys = phys;
77	dev->comm_size = size;
78
79	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
80	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
81		dev->host_rrq = (u32 *)(base + fibsize);
82		dev->host_rrq_pa = phys + fibsize;
83		memset(dev->host_rrq, 0, host_rrq_size);
84	}
85
86	dev->init = (struct aac_init *)(base + fibsize + host_rrq_size);
87	dev->init_pa = phys + fibsize + host_rrq_size;
88
89	init = dev->init;
90
91	init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
92	if (dev->max_fib_size != sizeof(struct hw_fib))
93		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
94	init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
95	init->fsrev = cpu_to_le32(dev->fsrev);
96
97	/*
98	 *	Adapter Fibs are the first thing allocated so that they
99	 *	start page aligned
100	 */
101	dev->aif_base_va = (struct hw_fib *)base;
102
103	init->AdapterFibsVirtualAddress = 0;
104	init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
105	init->AdapterFibsSize = cpu_to_le32(fibsize);
106	init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
107	/*
108	 * number of 4k pages of host physical memory. The aacraid fw needs
109	 * this number to be less than 4gb worth of pages. New firmware doesn't
110	 * have any issues with the mapping system, but older Firmware did, and
111	 * had *troubles* dealing with the math overloading past 32 bits, thus
112	 * we must limit this field.
113	 */
114	aac_max_hostphysmempages = dma_get_required_mask(&dev->pdev->dev) >> 12;
115	if (aac_max_hostphysmempages < AAC_MAX_HOSTPHYSMEMPAGES)
116		init->HostPhysMemPages = cpu_to_le32(aac_max_hostphysmempages);
117	else
118		init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
119
120	init->InitFlags = cpu_to_le32(INITFLAGS_DRIVER_USES_UTC_TIME |
121		INITFLAGS_DRIVER_SUPPORTS_PM);
122	init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
123	init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
124	init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
125	init->MaxNumAif = cpu_to_le32(dev->max_num_aif);
126
127	if (dev->comm_interface == AAC_COMM_MESSAGE) {
128		init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED);
129		dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n"));
130	} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
131		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_6);
132		init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED |
133			INITFLAGS_NEW_COMM_TYPE1_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED);
134		init->HostRRQ_AddrHigh = cpu_to_le32((u32)((u64)dev->host_rrq_pa >> 32));
135		init->HostRRQ_AddrLow = cpu_to_le32((u32)(dev->host_rrq_pa & 0xffffffff));
136		dprintk((KERN_WARNING"aacraid: New Comm Interface type1 enabled\n"));
137	} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
138		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_7);
139		init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED |
140			INITFLAGS_NEW_COMM_TYPE2_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED);
141		init->HostRRQ_AddrHigh = cpu_to_le32((u32)((u64)dev->host_rrq_pa >> 32));
142		init->HostRRQ_AddrLow = cpu_to_le32((u32)(dev->host_rrq_pa & 0xffffffff));
143		init->MiniPortRevision = cpu_to_le32(0L);		/* number of MSI-X */
144		dprintk((KERN_WARNING"aacraid: New Comm Interface type2 enabled\n"));
145	}
146
147	/*
148	 * Increment the base address by the amount already used
149	 */
150	base = base + fibsize + host_rrq_size + sizeof(struct aac_init);
151	phys = (dma_addr_t)((ulong)phys + fibsize + host_rrq_size +
152		sizeof(struct aac_init));
153
154	/*
155	 *	Align the beginning of Headers to commalign
156	 */
157	align = (commalign - ((uintptr_t)(base) & (commalign - 1)));
158	base = base + align;
159	phys = phys + align;
160	/*
161	 *	Fill in addresses of the Comm Area Headers and Queues
162	 */
163	*commaddr = base;
164	init->CommHeaderAddress = cpu_to_le32((u32)phys);
165	/*
166	 *	Increment the base address by the size of the CommArea
167	 */
168	base = base + commsize;
169	phys = phys + commsize;
170	/*
171	 *	 Place the Printf buffer area after the Fast I/O comm area.
172	 */
173	dev->printfbuf = (void *)base;
174	init->printfbuf = cpu_to_le32(phys);
175	init->printfbufsiz = cpu_to_le32(printfbufsiz);
176	memset(base, 0, printfbufsiz);
177	return 1;
178}
179
180static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
181{
182	q->numpending = 0;
183	q->dev = dev;
184	init_waitqueue_head(&q->cmdready);
185	INIT_LIST_HEAD(&q->cmdq);
186	init_waitqueue_head(&q->qfull);
187	spin_lock_init(&q->lockdata);
188	q->lock = &q->lockdata;
189	q->headers.producer = (__le32 *)mem;
190	q->headers.consumer = (__le32 *)(mem+1);
191	*(q->headers.producer) = cpu_to_le32(qsize);
192	*(q->headers.consumer) = cpu_to_le32(qsize);
193	q->entries = qsize;
194}
195
196/**
197 *	aac_send_shutdown		-	shutdown an adapter
198 *	@dev: Adapter to shutdown
199 *
200 *	This routine will send a VM_CloseAll (shutdown) request to the adapter.
201 */
202
203int aac_send_shutdown(struct aac_dev * dev)
204{
205	struct fib * fibctx;
206	struct aac_close *cmd;
207	int status;
208
209	fibctx = aac_fib_alloc(dev);
210	if (!fibctx)
211		return -ENOMEM;
212	aac_fib_init(fibctx);
213
214	cmd = (struct aac_close *) fib_data(fibctx);
215
216	cmd->command = cpu_to_le32(VM_CloseAll);
217	cmd->cid = cpu_to_le32(0xfffffffe);
218
219	status = aac_fib_send(ContainerCommand,
220			  fibctx,
221			  sizeof(struct aac_close),
222			  FsaNormal,
223			  -2 /* Timeout silently */, 1,
224			  NULL, NULL);
225
226	if (status >= 0)
227		aac_fib_complete(fibctx);
228	/* FIB should be freed only after getting the response from the F/W */
229	if (status != -ERESTARTSYS)
230		aac_fib_free(fibctx);
231	return status;
232}
233
234/**
235 *	aac_comm_init	-	Initialise FSA data structures
236 *	@dev:	Adapter to initialise
237 *
238 *	Initializes the data structures that are required for the FSA commuication
239 *	interface to operate.
240 *	Returns
241 *		1 - if we were able to init the commuication interface.
242 *		0 - If there were errors initing. This is a fatal error.
243 */
244
245static int aac_comm_init(struct aac_dev * dev)
246{
247	unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
248	unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
249	u32 *headers;
250	struct aac_entry * queues;
251	unsigned long size;
252	struct aac_queue_block * comm = dev->queues;
253	/*
254	 *	Now allocate and initialize the zone structures used as our
255	 *	pool of FIB context records.  The size of the zone is based
256	 *	on the system memory size.  We also initialize the mutex used
257	 *	to protect the zone.
258	 */
259	spin_lock_init(&dev->fib_lock);
260
261	/*
262	 *	Allocate the physically contiguous space for the commuication
263	 *	queue headers.
264	 */
265
266	size = hdrsize + queuesize;
267
268	if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
269		return -ENOMEM;
270
271	queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
272
273	/* Adapter to Host normal priority Command queue */
274	comm->queue[HostNormCmdQueue].base = queues;
275	aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
276	queues += HOST_NORM_CMD_ENTRIES;
277	headers += 2;
278
279	/* Adapter to Host high priority command queue */
280	comm->queue[HostHighCmdQueue].base = queues;
281	aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
282
283	queues += HOST_HIGH_CMD_ENTRIES;
284	headers +=2;
285
286	/* Host to adapter normal priority command queue */
287	comm->queue[AdapNormCmdQueue].base = queues;
288	aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
289
290	queues += ADAP_NORM_CMD_ENTRIES;
291	headers += 2;
292
293	/* host to adapter high priority command queue */
294	comm->queue[AdapHighCmdQueue].base = queues;
295	aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
296
297	queues += ADAP_HIGH_CMD_ENTRIES;
298	headers += 2;
299
300	/* adapter to host normal priority response queue */
301	comm->queue[HostNormRespQueue].base = queues;
302	aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
303	queues += HOST_NORM_RESP_ENTRIES;
304	headers += 2;
305
306	/* adapter to host high priority response queue */
307	comm->queue[HostHighRespQueue].base = queues;
308	aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
309
310	queues += HOST_HIGH_RESP_ENTRIES;
311	headers += 2;
312
313	/* host to adapter normal priority response queue */
314	comm->queue[AdapNormRespQueue].base = queues;
315	aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
316
317	queues += ADAP_NORM_RESP_ENTRIES;
318	headers += 2;
319
320	/* host to adapter high priority response queue */
321	comm->queue[AdapHighRespQueue].base = queues;
322	aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
323
324	comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
325	comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
326	comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
327	comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
328
329	return 0;
330}
331
332struct aac_dev *aac_init_adapter(struct aac_dev *dev)
333{
334	u32 status[5];
335	struct Scsi_Host * host = dev->scsi_host_ptr;
336	extern int aac_sync_mode;
337
338	/*
339	 *	Check the preferred comm settings, defaults from template.
340	 */
341	dev->management_fib_count = 0;
342	spin_lock_init(&dev->manage_lock);
343	spin_lock_init(&dev->sync_lock);
344	dev->max_fib_size = sizeof(struct hw_fib);
345	dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
346		- sizeof(struct aac_fibhdr)
347		- sizeof(struct aac_write) + sizeof(struct sgentry))
348			/ sizeof(struct sgentry);
349	dev->comm_interface = AAC_COMM_PRODUCER;
350	dev->raw_io_interface = dev->raw_io_64 = 0;
351
352	if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
353		0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
354	 		(status[0] == 0x00000001)) {
355		if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_64))
356			dev->raw_io_64 = 1;
357		dev->sync_mode = aac_sync_mode;
358		if (dev->a_ops.adapter_comm &&
359			(status[1] & le32_to_cpu(AAC_OPT_NEW_COMM))) {
360				dev->comm_interface = AAC_COMM_MESSAGE;
361				dev->raw_io_interface = 1;
362			if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE1))) {
363				/* driver supports TYPE1 (Tupelo) */
364				dev->comm_interface = AAC_COMM_MESSAGE_TYPE1;
365			} else if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE2))) {
366				/* driver supports TYPE2 (Denali) */
367				dev->comm_interface = AAC_COMM_MESSAGE_TYPE2;
368			} else if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE4)) ||
369				  (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE3))) {
370				/* driver doesn't TYPE3 and TYPE4 */
371				/* switch to sync. mode */
372				dev->comm_interface = AAC_COMM_MESSAGE_TYPE2;
373				dev->sync_mode = 1;
374			}
375		}
376		if ((dev->comm_interface == AAC_COMM_MESSAGE) &&
377		    (status[2] > dev->base_size)) {
378			aac_adapter_ioremap(dev, 0);
379			dev->base_size = status[2];
380			if (aac_adapter_ioremap(dev, status[2])) {
381				/* remap failed, go back ... */
382				dev->comm_interface = AAC_COMM_PRODUCER;
383				if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) {
384					printk(KERN_WARNING
385					  "aacraid: unable to map adapter.\n");
386					return NULL;
387				}
388			}
389		}
390	}
391	if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
392	  0, 0, 0, 0, 0, 0,
393	  status+0, status+1, status+2, status+3, status+4))
394	 && (status[0] == 0x00000001)) {
395		/*
396		 *	status[1] >> 16		maximum command size in KB
397		 *	status[1] & 0xFFFF	maximum FIB size
398		 *	status[2] >> 16		maximum SG elements to driver
399		 *	status[2] & 0xFFFF	maximum SG elements from driver
400		 *	status[3] & 0xFFFF	maximum number FIBs outstanding
401		 */
402		host->max_sectors = (status[1] >> 16) << 1;
403		/* Multiple of 32 for PMC */
404		dev->max_fib_size = status[1] & 0xFFE0;
405		host->sg_tablesize = status[2] >> 16;
406		dev->sg_tablesize = status[2] & 0xFFFF;
407		if (dev->pdev->device == PMC_DEVICE_S7 ||
408		    dev->pdev->device == PMC_DEVICE_S8 ||
409		    dev->pdev->device == PMC_DEVICE_S9)
410			host->can_queue = ((status[3] >> 16) ? (status[3] >> 16) :
411				(status[3] & 0xFFFF)) - AAC_NUM_MGT_FIB;
412		else
413			host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
414		dev->max_num_aif = status[4] & 0xFFFF;
415		/*
416		 *	NOTE:
417		 *	All these overrides are based on a fixed internal
418		 *	knowledge and understanding of existing adapters,
419		 *	acbsize should be set with caution.
420		 */
421		if (acbsize == 512) {
422			host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
423			dev->max_fib_size = 512;
424			dev->sg_tablesize = host->sg_tablesize
425			  = (512 - sizeof(struct aac_fibhdr)
426			    - sizeof(struct aac_write) + sizeof(struct sgentry))
427			     / sizeof(struct sgentry);
428			host->can_queue = AAC_NUM_IO_FIB;
429		} else if (acbsize == 2048) {
430			host->max_sectors = 512;
431			dev->max_fib_size = 2048;
432			host->sg_tablesize = 65;
433			dev->sg_tablesize = 81;
434			host->can_queue = 512 - AAC_NUM_MGT_FIB;
435		} else if (acbsize == 4096) {
436			host->max_sectors = 1024;
437			dev->max_fib_size = 4096;
438			host->sg_tablesize = 129;
439			dev->sg_tablesize = 166;
440			host->can_queue = 256 - AAC_NUM_MGT_FIB;
441		} else if (acbsize == 8192) {
442			host->max_sectors = 2048;
443			dev->max_fib_size = 8192;
444			host->sg_tablesize = 257;
445			dev->sg_tablesize = 337;
446			host->can_queue = 128 - AAC_NUM_MGT_FIB;
447		} else if (acbsize > 0) {
448			printk("Illegal acbsize=%d ignored\n", acbsize);
449		}
450	}
451	{
452
453		if (numacb > 0) {
454			if (numacb < host->can_queue)
455				host->can_queue = numacb;
456			else
457				printk("numacb=%d ignored\n", numacb);
458		}
459	}
460
461	if (host->can_queue > AAC_NUM_IO_FIB)
462		host->can_queue = AAC_NUM_IO_FIB;
463
464	/*
465	 *	Ok now init the communication subsystem
466	 */
467
468	dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
469	if (dev->queues == NULL) {
470		printk(KERN_ERR "Error could not allocate comm region.\n");
471		return NULL;
472	}
473
474	if (aac_comm_init(dev)<0){
475		kfree(dev->queues);
476		return NULL;
477	}
478	/*
479	 *	Initialize the list of fibs
480	 */
481	if (aac_fib_setup(dev) < 0) {
482		kfree(dev->queues);
483		return NULL;
484	}
485
486	INIT_LIST_HEAD(&dev->fib_list);
487	INIT_LIST_HEAD(&dev->sync_fib_list);
488
489	return dev;
490}
491
492
493