spi-atmel.c revision 1676014ef974ce71a854e7f415e2bb52feb24868
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmaengine.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22#include <linux/platform_data/atmel.h>
23#include <linux/platform_data/dma-atmel.h>
24#include <linux/of.h>
25
26#include <linux/io.h>
27#include <linux/gpio.h>
28#include <linux/pinctrl/consumer.h>
29
30/* SPI register offsets */
31#define SPI_CR					0x0000
32#define SPI_MR					0x0004
33#define SPI_RDR					0x0008
34#define SPI_TDR					0x000c
35#define SPI_SR					0x0010
36#define SPI_IER					0x0014
37#define SPI_IDR					0x0018
38#define SPI_IMR					0x001c
39#define SPI_CSR0				0x0030
40#define SPI_CSR1				0x0034
41#define SPI_CSR2				0x0038
42#define SPI_CSR3				0x003c
43#define SPI_VERSION				0x00fc
44#define SPI_RPR					0x0100
45#define SPI_RCR					0x0104
46#define SPI_TPR					0x0108
47#define SPI_TCR					0x010c
48#define SPI_RNPR				0x0110
49#define SPI_RNCR				0x0114
50#define SPI_TNPR				0x0118
51#define SPI_TNCR				0x011c
52#define SPI_PTCR				0x0120
53#define SPI_PTSR				0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET			0
57#define SPI_SPIEN_SIZE				1
58#define SPI_SPIDIS_OFFSET			1
59#define SPI_SPIDIS_SIZE				1
60#define SPI_SWRST_OFFSET			7
61#define SPI_SWRST_SIZE				1
62#define SPI_LASTXFER_OFFSET			24
63#define SPI_LASTXFER_SIZE			1
64
65/* Bitfields in MR */
66#define SPI_MSTR_OFFSET				0
67#define SPI_MSTR_SIZE				1
68#define SPI_PS_OFFSET				1
69#define SPI_PS_SIZE				1
70#define SPI_PCSDEC_OFFSET			2
71#define SPI_PCSDEC_SIZE				1
72#define SPI_FDIV_OFFSET				3
73#define SPI_FDIV_SIZE				1
74#define SPI_MODFDIS_OFFSET			4
75#define SPI_MODFDIS_SIZE			1
76#define SPI_WDRBT_OFFSET			5
77#define SPI_WDRBT_SIZE				1
78#define SPI_LLB_OFFSET				7
79#define SPI_LLB_SIZE				1
80#define SPI_PCS_OFFSET				16
81#define SPI_PCS_SIZE				4
82#define SPI_DLYBCS_OFFSET			24
83#define SPI_DLYBCS_SIZE				8
84
85/* Bitfields in RDR */
86#define SPI_RD_OFFSET				0
87#define SPI_RD_SIZE				16
88
89/* Bitfields in TDR */
90#define SPI_TD_OFFSET				0
91#define SPI_TD_SIZE				16
92
93/* Bitfields in SR */
94#define SPI_RDRF_OFFSET				0
95#define SPI_RDRF_SIZE				1
96#define SPI_TDRE_OFFSET				1
97#define SPI_TDRE_SIZE				1
98#define SPI_MODF_OFFSET				2
99#define SPI_MODF_SIZE				1
100#define SPI_OVRES_OFFSET			3
101#define SPI_OVRES_SIZE				1
102#define SPI_ENDRX_OFFSET			4
103#define SPI_ENDRX_SIZE				1
104#define SPI_ENDTX_OFFSET			5
105#define SPI_ENDTX_SIZE				1
106#define SPI_RXBUFF_OFFSET			6
107#define SPI_RXBUFF_SIZE				1
108#define SPI_TXBUFE_OFFSET			7
109#define SPI_TXBUFE_SIZE				1
110#define SPI_NSSR_OFFSET				8
111#define SPI_NSSR_SIZE				1
112#define SPI_TXEMPTY_OFFSET			9
113#define SPI_TXEMPTY_SIZE			1
114#define SPI_SPIENS_OFFSET			16
115#define SPI_SPIENS_SIZE				1
116
117/* Bitfields in CSR0 */
118#define SPI_CPOL_OFFSET				0
119#define SPI_CPOL_SIZE				1
120#define SPI_NCPHA_OFFSET			1
121#define SPI_NCPHA_SIZE				1
122#define SPI_CSAAT_OFFSET			3
123#define SPI_CSAAT_SIZE				1
124#define SPI_BITS_OFFSET				4
125#define SPI_BITS_SIZE				4
126#define SPI_SCBR_OFFSET				8
127#define SPI_SCBR_SIZE				8
128#define SPI_DLYBS_OFFSET			16
129#define SPI_DLYBS_SIZE				8
130#define SPI_DLYBCT_OFFSET			24
131#define SPI_DLYBCT_SIZE				8
132
133/* Bitfields in RCR */
134#define SPI_RXCTR_OFFSET			0
135#define SPI_RXCTR_SIZE				16
136
137/* Bitfields in TCR */
138#define SPI_TXCTR_OFFSET			0
139#define SPI_TXCTR_SIZE				16
140
141/* Bitfields in RNCR */
142#define SPI_RXNCR_OFFSET			0
143#define SPI_RXNCR_SIZE				16
144
145/* Bitfields in TNCR */
146#define SPI_TXNCR_OFFSET			0
147#define SPI_TXNCR_SIZE				16
148
149/* Bitfields in PTCR */
150#define SPI_RXTEN_OFFSET			0
151#define SPI_RXTEN_SIZE				1
152#define SPI_RXTDIS_OFFSET			1
153#define SPI_RXTDIS_SIZE				1
154#define SPI_TXTEN_OFFSET			8
155#define SPI_TXTEN_SIZE				1
156#define SPI_TXTDIS_OFFSET			9
157#define SPI_TXTDIS_SIZE				1
158
159/* Constants for BITS */
160#define SPI_BITS_8_BPT				0
161#define SPI_BITS_9_BPT				1
162#define SPI_BITS_10_BPT				2
163#define SPI_BITS_11_BPT				3
164#define SPI_BITS_12_BPT				4
165#define SPI_BITS_13_BPT				5
166#define SPI_BITS_14_BPT				6
167#define SPI_BITS_15_BPT				7
168#define SPI_BITS_16_BPT				8
169
170/* Bit manipulation macros */
171#define SPI_BIT(name) \
172	(1 << SPI_##name##_OFFSET)
173#define SPI_BF(name, value) \
174	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175#define SPI_BFEXT(name, value) \
176	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177#define SPI_BFINS(name, value, old) \
178	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179	  | SPI_BF(name, value))
180
181/* Register access macros */
182#define spi_readl(port, reg) \
183	__raw_readl((port)->regs + SPI_##reg)
184#define spi_writel(port, reg, value) \
185	__raw_writel((value), (port)->regs + SPI_##reg)
186
187/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
189 */
190#define DMA_MIN_BYTES	16
191
192#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
193
194struct atmel_spi_dma {
195	struct dma_chan			*chan_rx;
196	struct dma_chan			*chan_tx;
197	struct scatterlist		sgrx;
198	struct scatterlist		sgtx;
199	struct dma_async_tx_descriptor	*data_desc_rx;
200	struct dma_async_tx_descriptor	*data_desc_tx;
201
202	struct at_dma_slave	dma_slave;
203};
204
205struct atmel_spi_caps {
206	bool	is_spi2;
207	bool	has_wdrbt;
208	bool	has_dma_support;
209};
210
211/*
212 * The core SPI transfer engine just talks to a register bank to set up
213 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
214 * framework provides the base clock, subdivided for each spi_device.
215 */
216struct atmel_spi {
217	spinlock_t		lock;
218	unsigned long		flags;
219
220	phys_addr_t		phybase;
221	void __iomem		*regs;
222	int			irq;
223	struct clk		*clk;
224	struct platform_device	*pdev;
225
226	struct spi_transfer	*current_transfer;
227	unsigned long		current_remaining_bytes;
228	int			done_status;
229
230	struct completion	xfer_completion;
231
232	/* scratch buffer */
233	void			*buffer;
234	dma_addr_t		buffer_dma;
235
236	struct atmel_spi_caps	caps;
237
238	bool			use_dma;
239	bool			use_pdc;
240	/* dmaengine data */
241	struct atmel_spi_dma	dma;
242
243	bool			keep_cs;
244	bool			cs_active;
245};
246
247/* Controller-specific per-slave state */
248struct atmel_spi_device {
249	unsigned int		npcs_pin;
250	u32			csr;
251};
252
253#define BUFFER_SIZE		PAGE_SIZE
254#define INVALID_DMA_ADDRESS	0xffffffff
255
256/*
257 * Version 2 of the SPI controller has
258 *  - CR.LASTXFER
259 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
260 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
261 *  - SPI_CSRx.CSAAT
262 *  - SPI_CSRx.SBCR allows faster clocking
263 */
264static bool atmel_spi_is_v2(struct atmel_spi *as)
265{
266	return as->caps.is_spi2;
267}
268
269/*
270 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
271 * they assume that spi slave device state will not change on deselect, so
272 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
273 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
274 * controllers have CSAAT and friends.
275 *
276 * Since the CSAAT functionality is a bit weird on newer controllers as
277 * well, we use GPIO to control nCSx pins on all controllers, updating
278 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
279 * support active-high chipselects despite the controller's belief that
280 * only active-low devices/systems exists.
281 *
282 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
283 * right when driven with GPIO.  ("Mode Fault does not allow more than one
284 * Master on Chip Select 0.")  No workaround exists for that ... so for
285 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
286 * and (c) will trigger that first erratum in some cases.
287 */
288
289static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
290{
291	struct atmel_spi_device *asd = spi->controller_state;
292	unsigned active = spi->mode & SPI_CS_HIGH;
293	u32 mr;
294
295	if (atmel_spi_is_v2(as)) {
296		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
297		/* For the low SPI version, there is a issue that PDC transfer
298		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
299		 */
300		spi_writel(as, CSR0, asd->csr);
301		if (as->caps.has_wdrbt) {
302			spi_writel(as, MR,
303					SPI_BF(PCS, ~(0x01 << spi->chip_select))
304					| SPI_BIT(WDRBT)
305					| SPI_BIT(MODFDIS)
306					| SPI_BIT(MSTR));
307		} else {
308			spi_writel(as, MR,
309					SPI_BF(PCS, ~(0x01 << spi->chip_select))
310					| SPI_BIT(MODFDIS)
311					| SPI_BIT(MSTR));
312		}
313
314		mr = spi_readl(as, MR);
315		gpio_set_value(asd->npcs_pin, active);
316	} else {
317		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
318		int i;
319		u32 csr;
320
321		/* Make sure clock polarity is correct */
322		for (i = 0; i < spi->master->num_chipselect; i++) {
323			csr = spi_readl(as, CSR0 + 4 * i);
324			if ((csr ^ cpol) & SPI_BIT(CPOL))
325				spi_writel(as, CSR0 + 4 * i,
326						csr ^ SPI_BIT(CPOL));
327		}
328
329		mr = spi_readl(as, MR);
330		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
331		if (spi->chip_select != 0)
332			gpio_set_value(asd->npcs_pin, active);
333		spi_writel(as, MR, mr);
334	}
335
336	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
337			asd->npcs_pin, active ? " (high)" : "",
338			mr);
339}
340
341static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
342{
343	struct atmel_spi_device *asd = spi->controller_state;
344	unsigned active = spi->mode & SPI_CS_HIGH;
345	u32 mr;
346
347	/* only deactivate *this* device; sometimes transfers to
348	 * another device may be active when this routine is called.
349	 */
350	mr = spi_readl(as, MR);
351	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
352		mr = SPI_BFINS(PCS, 0xf, mr);
353		spi_writel(as, MR, mr);
354	}
355
356	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
357			asd->npcs_pin, active ? " (low)" : "",
358			mr);
359
360	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
361		gpio_set_value(asd->npcs_pin, !active);
362}
363
364static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
365{
366	spin_lock_irqsave(&as->lock, as->flags);
367}
368
369static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
370{
371	spin_unlock_irqrestore(&as->lock, as->flags);
372}
373
374static inline bool atmel_spi_use_dma(struct atmel_spi *as,
375				struct spi_transfer *xfer)
376{
377	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
378}
379
380static int atmel_spi_dma_slave_config(struct atmel_spi *as,
381				struct dma_slave_config *slave_config,
382				u8 bits_per_word)
383{
384	int err = 0;
385
386	if (bits_per_word > 8) {
387		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
388		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
389	} else {
390		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
391		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
392	}
393
394	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
395	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
396	slave_config->src_maxburst = 1;
397	slave_config->dst_maxburst = 1;
398	slave_config->device_fc = false;
399
400	slave_config->direction = DMA_MEM_TO_DEV;
401	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
402		dev_err(&as->pdev->dev,
403			"failed to configure tx dma channel\n");
404		err = -EINVAL;
405	}
406
407	slave_config->direction = DMA_DEV_TO_MEM;
408	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
409		dev_err(&as->pdev->dev,
410			"failed to configure rx dma channel\n");
411		err = -EINVAL;
412	}
413
414	return err;
415}
416
417static bool filter(struct dma_chan *chan, void *pdata)
418{
419	struct atmel_spi_dma *sl_pdata = pdata;
420	struct at_dma_slave *sl;
421
422	if (!sl_pdata)
423		return false;
424
425	sl = &sl_pdata->dma_slave;
426	if (sl->dma_dev == chan->device->dev) {
427		chan->private = sl;
428		return true;
429	} else {
430		return false;
431	}
432}
433
434static int atmel_spi_configure_dma(struct atmel_spi *as)
435{
436	struct dma_slave_config	slave_config;
437	struct device *dev = &as->pdev->dev;
438	int err;
439
440	dma_cap_mask_t mask;
441	dma_cap_zero(mask);
442	dma_cap_set(DMA_SLAVE, mask);
443
444	as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
445							   &as->dma,
446							   dev, "tx");
447	if (!as->dma.chan_tx) {
448		dev_err(dev,
449			"DMA TX channel not available, SPI unable to use DMA\n");
450		err = -EBUSY;
451		goto error;
452	}
453
454	as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
455							   &as->dma,
456							   dev, "rx");
457
458	if (!as->dma.chan_rx) {
459		dev_err(dev,
460			"DMA RX channel not available, SPI unable to use DMA\n");
461		err = -EBUSY;
462		goto error;
463	}
464
465	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
466	if (err)
467		goto error;
468
469	dev_info(&as->pdev->dev,
470			"Using %s (tx) and %s (rx) for DMA transfers\n",
471			dma_chan_name(as->dma.chan_tx),
472			dma_chan_name(as->dma.chan_rx));
473	return 0;
474error:
475	if (as->dma.chan_rx)
476		dma_release_channel(as->dma.chan_rx);
477	if (as->dma.chan_tx)
478		dma_release_channel(as->dma.chan_tx);
479	return err;
480}
481
482static void atmel_spi_stop_dma(struct atmel_spi *as)
483{
484	if (as->dma.chan_rx)
485		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
486							DMA_TERMINATE_ALL, 0);
487	if (as->dma.chan_tx)
488		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
489							DMA_TERMINATE_ALL, 0);
490}
491
492static void atmel_spi_release_dma(struct atmel_spi *as)
493{
494	if (as->dma.chan_rx)
495		dma_release_channel(as->dma.chan_rx);
496	if (as->dma.chan_tx)
497		dma_release_channel(as->dma.chan_tx);
498}
499
500/* This function is called by the DMA driver from tasklet context */
501static void dma_callback(void *data)
502{
503	struct spi_master	*master = data;
504	struct atmel_spi	*as = spi_master_get_devdata(master);
505
506	complete(&as->xfer_completion);
507}
508
509/*
510 * Next transfer using PIO.
511 */
512static void atmel_spi_next_xfer_pio(struct spi_master *master,
513				struct spi_transfer *xfer)
514{
515	struct atmel_spi	*as = spi_master_get_devdata(master);
516	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
517
518	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
519
520	/* Make sure data is not remaining in RDR */
521	spi_readl(as, RDR);
522	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
523		spi_readl(as, RDR);
524		cpu_relax();
525	}
526
527	if (xfer->tx_buf) {
528		if (xfer->bits_per_word > 8)
529			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
530		else
531			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
532	} else {
533		spi_writel(as, TDR, 0);
534	}
535
536	dev_dbg(master->dev.parent,
537		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
538		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
539		xfer->bits_per_word);
540
541	/* Enable relevant interrupts */
542	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
543}
544
545/*
546 * Submit next transfer for DMA.
547 */
548static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
549				struct spi_transfer *xfer,
550				u32 *plen)
551{
552	struct atmel_spi	*as = spi_master_get_devdata(master);
553	struct dma_chan		*rxchan = as->dma.chan_rx;
554	struct dma_chan		*txchan = as->dma.chan_tx;
555	struct dma_async_tx_descriptor *rxdesc;
556	struct dma_async_tx_descriptor *txdesc;
557	struct dma_slave_config	slave_config;
558	dma_cookie_t		cookie;
559	u32	len = *plen;
560
561	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
562
563	/* Check that the channels are available */
564	if (!rxchan || !txchan)
565		return -ENODEV;
566
567	/* release lock for DMA operations */
568	atmel_spi_unlock(as);
569
570	/* prepare the RX dma transfer */
571	sg_init_table(&as->dma.sgrx, 1);
572	if (xfer->rx_buf) {
573		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
574	} else {
575		as->dma.sgrx.dma_address = as->buffer_dma;
576		if (len > BUFFER_SIZE)
577			len = BUFFER_SIZE;
578	}
579
580	/* prepare the TX dma transfer */
581	sg_init_table(&as->dma.sgtx, 1);
582	if (xfer->tx_buf) {
583		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
584	} else {
585		as->dma.sgtx.dma_address = as->buffer_dma;
586		if (len > BUFFER_SIZE)
587			len = BUFFER_SIZE;
588		memset(as->buffer, 0, len);
589	}
590
591	sg_dma_len(&as->dma.sgtx) = len;
592	sg_dma_len(&as->dma.sgrx) = len;
593
594	*plen = len;
595
596	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
597		goto err_exit;
598
599	/* Send both scatterlists */
600	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
601					&as->dma.sgrx,
602					1,
603					DMA_FROM_DEVICE,
604					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
605					NULL);
606	if (!rxdesc)
607		goto err_dma;
608
609	txdesc = txchan->device->device_prep_slave_sg(txchan,
610					&as->dma.sgtx,
611					1,
612					DMA_TO_DEVICE,
613					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
614					NULL);
615	if (!txdesc)
616		goto err_dma;
617
618	dev_dbg(master->dev.parent,
619		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
620		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
621		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
622
623	/* Enable relevant interrupts */
624	spi_writel(as, IER, SPI_BIT(OVRES));
625
626	/* Put the callback on the RX transfer only, that should finish last */
627	rxdesc->callback = dma_callback;
628	rxdesc->callback_param = master;
629
630	/* Submit and fire RX and TX with TX last so we're ready to read! */
631	cookie = rxdesc->tx_submit(rxdesc);
632	if (dma_submit_error(cookie))
633		goto err_dma;
634	cookie = txdesc->tx_submit(txdesc);
635	if (dma_submit_error(cookie))
636		goto err_dma;
637	rxchan->device->device_issue_pending(rxchan);
638	txchan->device->device_issue_pending(txchan);
639
640	/* take back lock */
641	atmel_spi_lock(as);
642	return 0;
643
644err_dma:
645	spi_writel(as, IDR, SPI_BIT(OVRES));
646	atmel_spi_stop_dma(as);
647err_exit:
648	atmel_spi_lock(as);
649	return -ENOMEM;
650}
651
652static void atmel_spi_next_xfer_data(struct spi_master *master,
653				struct spi_transfer *xfer,
654				dma_addr_t *tx_dma,
655				dma_addr_t *rx_dma,
656				u32 *plen)
657{
658	struct atmel_spi	*as = spi_master_get_devdata(master);
659	u32			len = *plen;
660
661	/* use scratch buffer only when rx or tx data is unspecified */
662	if (xfer->rx_buf)
663		*rx_dma = xfer->rx_dma + xfer->len - *plen;
664	else {
665		*rx_dma = as->buffer_dma;
666		if (len > BUFFER_SIZE)
667			len = BUFFER_SIZE;
668	}
669
670	if (xfer->tx_buf)
671		*tx_dma = xfer->tx_dma + xfer->len - *plen;
672	else {
673		*tx_dma = as->buffer_dma;
674		if (len > BUFFER_SIZE)
675			len = BUFFER_SIZE;
676		memset(as->buffer, 0, len);
677		dma_sync_single_for_device(&as->pdev->dev,
678				as->buffer_dma, len, DMA_TO_DEVICE);
679	}
680
681	*plen = len;
682}
683
684static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
685				    struct spi_device *spi,
686				    struct spi_transfer *xfer)
687{
688	u32			scbr, csr;
689	unsigned long		bus_hz;
690
691	/* v1 chips start out at half the peripheral bus speed. */
692	bus_hz = clk_get_rate(as->clk);
693	if (!atmel_spi_is_v2(as))
694		bus_hz /= 2;
695
696	/*
697	 * Calculate the lowest divider that satisfies the
698	 * constraint, assuming div32/fdiv/mbz == 0.
699	 */
700	if (xfer->speed_hz)
701		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
702	else
703		/*
704		 * This can happend if max_speed is null.
705		 * In this case, we set the lowest possible speed
706		 */
707		scbr = 0xff;
708
709	/*
710	 * If the resulting divider doesn't fit into the
711	 * register bitfield, we can't satisfy the constraint.
712	 */
713	if (scbr >= (1 << SPI_SCBR_SIZE)) {
714		dev_err(&spi->dev,
715			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
716			xfer->speed_hz, scbr, bus_hz/255);
717		return -EINVAL;
718	}
719	if (scbr == 0) {
720		dev_err(&spi->dev,
721			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
722			xfer->speed_hz, scbr, bus_hz);
723		return -EINVAL;
724	}
725	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
726	csr = SPI_BFINS(SCBR, scbr, csr);
727	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
728
729	return 0;
730}
731
732/*
733 * Submit next transfer for PDC.
734 * lock is held, spi irq is blocked
735 */
736static void atmel_spi_pdc_next_xfer(struct spi_master *master,
737					struct spi_message *msg,
738					struct spi_transfer *xfer)
739{
740	struct atmel_spi	*as = spi_master_get_devdata(master);
741	u32			len;
742	dma_addr_t		tx_dma, rx_dma;
743
744	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
745
746	len = as->current_remaining_bytes;
747	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
748	as->current_remaining_bytes -= len;
749
750	spi_writel(as, RPR, rx_dma);
751	spi_writel(as, TPR, tx_dma);
752
753	if (msg->spi->bits_per_word > 8)
754		len >>= 1;
755	spi_writel(as, RCR, len);
756	spi_writel(as, TCR, len);
757
758	dev_dbg(&msg->spi->dev,
759		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760		xfer, xfer->len, xfer->tx_buf,
761		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
762		(unsigned long long)xfer->rx_dma);
763
764	if (as->current_remaining_bytes) {
765		len = as->current_remaining_bytes;
766		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
767		as->current_remaining_bytes -= len;
768
769		spi_writel(as, RNPR, rx_dma);
770		spi_writel(as, TNPR, tx_dma);
771
772		if (msg->spi->bits_per_word > 8)
773			len >>= 1;
774		spi_writel(as, RNCR, len);
775		spi_writel(as, TNCR, len);
776
777		dev_dbg(&msg->spi->dev,
778			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
779			xfer, xfer->len, xfer->tx_buf,
780			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
781			(unsigned long long)xfer->rx_dma);
782	}
783
784	/* REVISIT: We're waiting for ENDRX before we start the next
785	 * transfer because we need to handle some difficult timing
786	 * issues otherwise. If we wait for ENDTX in one transfer and
787	 * then starts waiting for ENDRX in the next, it's difficult
788	 * to tell the difference between the ENDRX interrupt we're
789	 * actually waiting for and the ENDRX interrupt of the
790	 * previous transfer.
791	 *
792	 * It should be doable, though. Just not now...
793	 */
794	spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
795	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
796}
797
798/*
799 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
800 *  - The buffer is either valid for CPU access, else NULL
801 *  - If the buffer is valid, so is its DMA address
802 *
803 * This driver manages the dma address unless message->is_dma_mapped.
804 */
805static int
806atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
807{
808	struct device	*dev = &as->pdev->dev;
809
810	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
811	if (xfer->tx_buf) {
812		/* tx_buf is a const void* where we need a void * for the dma
813		 * mapping */
814		void *nonconst_tx = (void *)xfer->tx_buf;
815
816		xfer->tx_dma = dma_map_single(dev,
817				nonconst_tx, xfer->len,
818				DMA_TO_DEVICE);
819		if (dma_mapping_error(dev, xfer->tx_dma))
820			return -ENOMEM;
821	}
822	if (xfer->rx_buf) {
823		xfer->rx_dma = dma_map_single(dev,
824				xfer->rx_buf, xfer->len,
825				DMA_FROM_DEVICE);
826		if (dma_mapping_error(dev, xfer->rx_dma)) {
827			if (xfer->tx_buf)
828				dma_unmap_single(dev,
829						xfer->tx_dma, xfer->len,
830						DMA_TO_DEVICE);
831			return -ENOMEM;
832		}
833	}
834	return 0;
835}
836
837static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
838				     struct spi_transfer *xfer)
839{
840	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
841		dma_unmap_single(master->dev.parent, xfer->tx_dma,
842				 xfer->len, DMA_TO_DEVICE);
843	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
844		dma_unmap_single(master->dev.parent, xfer->rx_dma,
845				 xfer->len, DMA_FROM_DEVICE);
846}
847
848static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
849{
850	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
851}
852
853/* Called from IRQ
854 *
855 * Must update "current_remaining_bytes" to keep track of data
856 * to transfer.
857 */
858static void
859atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
860{
861	u8		*rxp;
862	u16		*rxp16;
863	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
864
865	if (xfer->rx_buf) {
866		if (xfer->bits_per_word > 8) {
867			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
868			*rxp16 = spi_readl(as, RDR);
869		} else {
870			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
871			*rxp = spi_readl(as, RDR);
872		}
873	} else {
874		spi_readl(as, RDR);
875	}
876	if (xfer->bits_per_word > 8) {
877		as->current_remaining_bytes -= 2;
878		if (as->current_remaining_bytes < 0)
879			as->current_remaining_bytes = 0;
880	} else {
881		as->current_remaining_bytes--;
882	}
883}
884
885/* Interrupt
886 *
887 * No need for locking in this Interrupt handler: done_status is the
888 * only information modified.
889 */
890static irqreturn_t
891atmel_spi_pio_interrupt(int irq, void *dev_id)
892{
893	struct spi_master	*master = dev_id;
894	struct atmel_spi	*as = spi_master_get_devdata(master);
895	u32			status, pending, imr;
896	struct spi_transfer	*xfer;
897	int			ret = IRQ_NONE;
898
899	imr = spi_readl(as, IMR);
900	status = spi_readl(as, SR);
901	pending = status & imr;
902
903	if (pending & SPI_BIT(OVRES)) {
904		ret = IRQ_HANDLED;
905		spi_writel(as, IDR, SPI_BIT(OVRES));
906		dev_warn(master->dev.parent, "overrun\n");
907
908		/*
909		 * When we get an overrun, we disregard the current
910		 * transfer. Data will not be copied back from any
911		 * bounce buffer and msg->actual_len will not be
912		 * updated with the last xfer.
913		 *
914		 * We will also not process any remaning transfers in
915		 * the message.
916		 */
917		as->done_status = -EIO;
918		smp_wmb();
919
920		/* Clear any overrun happening while cleaning up */
921		spi_readl(as, SR);
922
923		complete(&as->xfer_completion);
924
925	} else if (pending & SPI_BIT(RDRF)) {
926		atmel_spi_lock(as);
927
928		if (as->current_remaining_bytes) {
929			ret = IRQ_HANDLED;
930			xfer = as->current_transfer;
931			atmel_spi_pump_pio_data(as, xfer);
932			if (!as->current_remaining_bytes)
933				spi_writel(as, IDR, pending);
934
935			complete(&as->xfer_completion);
936		}
937
938		atmel_spi_unlock(as);
939	} else {
940		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
941		ret = IRQ_HANDLED;
942		spi_writel(as, IDR, pending);
943	}
944
945	return ret;
946}
947
948static irqreturn_t
949atmel_spi_pdc_interrupt(int irq, void *dev_id)
950{
951	struct spi_master	*master = dev_id;
952	struct atmel_spi	*as = spi_master_get_devdata(master);
953	u32			status, pending, imr;
954	int			ret = IRQ_NONE;
955
956	imr = spi_readl(as, IMR);
957	status = spi_readl(as, SR);
958	pending = status & imr;
959
960	if (pending & SPI_BIT(OVRES)) {
961
962		ret = IRQ_HANDLED;
963
964		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
965				     | SPI_BIT(OVRES)));
966
967		/* Clear any overrun happening while cleaning up */
968		spi_readl(as, SR);
969
970		as->done_status = -EIO;
971
972		complete(&as->xfer_completion);
973
974	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
975		ret = IRQ_HANDLED;
976
977		spi_writel(as, IDR, pending);
978
979		complete(&as->xfer_completion);
980	}
981
982	return ret;
983}
984
985static int atmel_spi_setup(struct spi_device *spi)
986{
987	struct atmel_spi	*as;
988	struct atmel_spi_device	*asd;
989	u32			csr;
990	unsigned int		bits = spi->bits_per_word;
991	unsigned int		npcs_pin;
992	int			ret;
993
994	as = spi_master_get_devdata(spi->master);
995
996	/* see notes above re chipselect */
997	if (!atmel_spi_is_v2(as)
998			&& spi->chip_select == 0
999			&& (spi->mode & SPI_CS_HIGH)) {
1000		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1001		return -EINVAL;
1002	}
1003
1004	csr = SPI_BF(BITS, bits - 8);
1005	if (spi->mode & SPI_CPOL)
1006		csr |= SPI_BIT(CPOL);
1007	if (!(spi->mode & SPI_CPHA))
1008		csr |= SPI_BIT(NCPHA);
1009
1010	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1011	 *
1012	 * DLYBCT would add delays between words, slowing down transfers.
1013	 * It could potentially be useful to cope with DMA bottlenecks, but
1014	 * in those cases it's probably best to just use a lower bitrate.
1015	 */
1016	csr |= SPI_BF(DLYBS, 0);
1017	csr |= SPI_BF(DLYBCT, 0);
1018
1019	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1020	npcs_pin = (unsigned int)spi->controller_data;
1021
1022	if (gpio_is_valid(spi->cs_gpio))
1023		npcs_pin = spi->cs_gpio;
1024
1025	asd = spi->controller_state;
1026	if (!asd) {
1027		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1028		if (!asd)
1029			return -ENOMEM;
1030
1031		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1032		if (ret) {
1033			kfree(asd);
1034			return ret;
1035		}
1036
1037		asd->npcs_pin = npcs_pin;
1038		spi->controller_state = asd;
1039		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1040	}
1041
1042	asd->csr = csr;
1043
1044	dev_dbg(&spi->dev,
1045		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1046		bits, spi->mode, spi->chip_select, csr);
1047
1048	if (!atmel_spi_is_v2(as))
1049		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1050
1051	return 0;
1052}
1053
1054static int atmel_spi_one_transfer(struct spi_master *master,
1055					struct spi_message *msg,
1056					struct spi_transfer *xfer)
1057{
1058	struct atmel_spi	*as;
1059	struct spi_device	*spi = msg->spi;
1060	u8			bits;
1061	u32			len;
1062	struct atmel_spi_device	*asd;
1063	int			timeout;
1064	int			ret;
1065
1066	as = spi_master_get_devdata(master);
1067
1068	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1069		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1070		return -EINVAL;
1071	}
1072
1073	if (xfer->bits_per_word) {
1074		asd = spi->controller_state;
1075		bits = (asd->csr >> 4) & 0xf;
1076		if (bits != xfer->bits_per_word - 8) {
1077			dev_dbg(&spi->dev,
1078			"you can't yet change bits_per_word in transfers\n");
1079			return -ENOPROTOOPT;
1080		}
1081	}
1082
1083	/*
1084	 * DMA map early, for performance (empties dcache ASAP) and
1085	 * better fault reporting.
1086	 */
1087	if ((!msg->is_dma_mapped)
1088		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1089		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1090			return -ENOMEM;
1091	}
1092
1093	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1094
1095	as->done_status = 0;
1096	as->current_transfer = xfer;
1097	as->current_remaining_bytes = xfer->len;
1098	while (as->current_remaining_bytes) {
1099		reinit_completion(&as->xfer_completion);
1100
1101		if (as->use_pdc) {
1102			atmel_spi_pdc_next_xfer(master, msg, xfer);
1103		} else if (atmel_spi_use_dma(as, xfer)) {
1104			len = as->current_remaining_bytes;
1105			ret = atmel_spi_next_xfer_dma_submit(master,
1106								xfer, &len);
1107			if (ret) {
1108				dev_err(&spi->dev,
1109					"unable to use DMA, fallback to PIO\n");
1110				atmel_spi_next_xfer_pio(master, xfer);
1111			} else {
1112				as->current_remaining_bytes -= len;
1113			}
1114		} else {
1115			atmel_spi_next_xfer_pio(master, xfer);
1116		}
1117
1118		/* interrupts are disabled, so free the lock for schedule */
1119		atmel_spi_unlock(as);
1120		ret = wait_for_completion_timeout(&as->xfer_completion,
1121							SPI_DMA_TIMEOUT);
1122		atmel_spi_lock(as);
1123		if (WARN_ON(ret == 0)) {
1124			dev_err(&spi->dev,
1125				"spi trasfer timeout, err %d\n", ret);
1126			as->done_status = -EIO;
1127		} else {
1128			ret = 0;
1129		}
1130
1131		if (as->done_status)
1132			break;
1133	}
1134
1135	if (as->done_status) {
1136		if (as->use_pdc) {
1137			dev_warn(master->dev.parent,
1138				"overrun (%u/%u remaining)\n",
1139				spi_readl(as, TCR), spi_readl(as, RCR));
1140
1141			/*
1142			 * Clean up DMA registers and make sure the data
1143			 * registers are empty.
1144			 */
1145			spi_writel(as, RNCR, 0);
1146			spi_writel(as, TNCR, 0);
1147			spi_writel(as, RCR, 0);
1148			spi_writel(as, TCR, 0);
1149			for (timeout = 1000; timeout; timeout--)
1150				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1151					break;
1152			if (!timeout)
1153				dev_warn(master->dev.parent,
1154					 "timeout waiting for TXEMPTY");
1155			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1156				spi_readl(as, RDR);
1157
1158			/* Clear any overrun happening while cleaning up */
1159			spi_readl(as, SR);
1160
1161		} else if (atmel_spi_use_dma(as, xfer)) {
1162			atmel_spi_stop_dma(as);
1163		}
1164
1165		if (!msg->is_dma_mapped
1166			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1167			atmel_spi_dma_unmap_xfer(master, xfer);
1168
1169		return 0;
1170
1171	} else {
1172		/* only update length if no error */
1173		msg->actual_length += xfer->len;
1174	}
1175
1176	if (!msg->is_dma_mapped
1177		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1178		atmel_spi_dma_unmap_xfer(master, xfer);
1179
1180	if (xfer->delay_usecs)
1181		udelay(xfer->delay_usecs);
1182
1183	if (xfer->cs_change) {
1184		if (list_is_last(&xfer->transfer_list,
1185				 &msg->transfers)) {
1186			as->keep_cs = true;
1187		} else {
1188			as->cs_active = !as->cs_active;
1189			if (as->cs_active)
1190				cs_activate(as, msg->spi);
1191			else
1192				cs_deactivate(as, msg->spi);
1193		}
1194	}
1195
1196	return 0;
1197}
1198
1199static int atmel_spi_transfer_one_message(struct spi_master *master,
1200						struct spi_message *msg)
1201{
1202	struct atmel_spi *as;
1203	struct spi_transfer *xfer;
1204	struct spi_device *spi = msg->spi;
1205	int ret = 0;
1206
1207	as = spi_master_get_devdata(master);
1208
1209	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1210					msg, dev_name(&spi->dev));
1211
1212	atmel_spi_lock(as);
1213	cs_activate(as, spi);
1214
1215	as->cs_active = true;
1216	as->keep_cs = false;
1217
1218	msg->status = 0;
1219	msg->actual_length = 0;
1220
1221	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1222		ret = atmel_spi_one_transfer(master, msg, xfer);
1223		if (ret)
1224			goto msg_done;
1225	}
1226
1227	if (as->use_pdc)
1228		atmel_spi_disable_pdc_transfer(as);
1229
1230	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1231		dev_dbg(&spi->dev,
1232			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1233			xfer, xfer->len,
1234			xfer->tx_buf, &xfer->tx_dma,
1235			xfer->rx_buf, &xfer->rx_dma);
1236	}
1237
1238msg_done:
1239	if (!as->keep_cs)
1240		cs_deactivate(as, msg->spi);
1241
1242	atmel_spi_unlock(as);
1243
1244	msg->status = as->done_status;
1245	spi_finalize_current_message(spi->master);
1246
1247	return ret;
1248}
1249
1250static void atmel_spi_cleanup(struct spi_device *spi)
1251{
1252	struct atmel_spi_device	*asd = spi->controller_state;
1253	unsigned		gpio = (unsigned) spi->controller_data;
1254
1255	if (!asd)
1256		return;
1257
1258	spi->controller_state = NULL;
1259	gpio_free(gpio);
1260	kfree(asd);
1261}
1262
1263static inline unsigned int atmel_get_version(struct atmel_spi *as)
1264{
1265	return spi_readl(as, VERSION) & 0x00000fff;
1266}
1267
1268static void atmel_get_caps(struct atmel_spi *as)
1269{
1270	unsigned int version;
1271
1272	version = atmel_get_version(as);
1273	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1274
1275	as->caps.is_spi2 = version > 0x121;
1276	as->caps.has_wdrbt = version >= 0x210;
1277	as->caps.has_dma_support = version >= 0x212;
1278}
1279
1280/*-------------------------------------------------------------------------*/
1281
1282static int atmel_spi_probe(struct platform_device *pdev)
1283{
1284	struct resource		*regs;
1285	int			irq;
1286	struct clk		*clk;
1287	int			ret;
1288	struct spi_master	*master;
1289	struct atmel_spi	*as;
1290
1291	/* Select default pin state */
1292	pinctrl_pm_select_default_state(&pdev->dev);
1293
1294	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1295	if (!regs)
1296		return -ENXIO;
1297
1298	irq = platform_get_irq(pdev, 0);
1299	if (irq < 0)
1300		return irq;
1301
1302	clk = devm_clk_get(&pdev->dev, "spi_clk");
1303	if (IS_ERR(clk))
1304		return PTR_ERR(clk);
1305
1306	/* setup spi core then atmel-specific driver state */
1307	ret = -ENOMEM;
1308	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1309	if (!master)
1310		goto out_free;
1311
1312	/* the spi->mode bits understood by this driver: */
1313	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1314	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1315	master->dev.of_node = pdev->dev.of_node;
1316	master->bus_num = pdev->id;
1317	master->num_chipselect = master->dev.of_node ? 0 : 4;
1318	master->setup = atmel_spi_setup;
1319	master->transfer_one_message = atmel_spi_transfer_one_message;
1320	master->cleanup = atmel_spi_cleanup;
1321	platform_set_drvdata(pdev, master);
1322
1323	as = spi_master_get_devdata(master);
1324
1325	/*
1326	 * Scratch buffer is used for throwaway rx and tx data.
1327	 * It's coherent to minimize dcache pollution.
1328	 */
1329	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1330					&as->buffer_dma, GFP_KERNEL);
1331	if (!as->buffer)
1332		goto out_free;
1333
1334	spin_lock_init(&as->lock);
1335
1336	as->pdev = pdev;
1337	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1338	if (IS_ERR(as->regs)) {
1339		ret = PTR_ERR(as->regs);
1340		goto out_free_buffer;
1341	}
1342	as->phybase = regs->start;
1343	as->irq = irq;
1344	as->clk = clk;
1345
1346	init_completion(&as->xfer_completion);
1347
1348	atmel_get_caps(as);
1349
1350	as->use_dma = false;
1351	as->use_pdc = false;
1352	if (as->caps.has_dma_support) {
1353		if (atmel_spi_configure_dma(as) == 0)
1354			as->use_dma = true;
1355	} else {
1356		as->use_pdc = true;
1357	}
1358
1359	if (as->caps.has_dma_support && !as->use_dma)
1360		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1361
1362	if (as->use_pdc) {
1363		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1364					0, dev_name(&pdev->dev), master);
1365	} else {
1366		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1367					0, dev_name(&pdev->dev), master);
1368	}
1369	if (ret)
1370		goto out_unmap_regs;
1371
1372	/* Initialize the hardware */
1373	ret = clk_prepare_enable(clk);
1374	if (ret)
1375		goto out_free_irq;
1376	spi_writel(as, CR, SPI_BIT(SWRST));
1377	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1378	if (as->caps.has_wdrbt) {
1379		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1380				| SPI_BIT(MSTR));
1381	} else {
1382		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1383	}
1384
1385	if (as->use_pdc)
1386		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1387	spi_writel(as, CR, SPI_BIT(SPIEN));
1388
1389	/* go! */
1390	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1391			(unsigned long)regs->start, irq);
1392
1393	ret = devm_spi_register_master(&pdev->dev, master);
1394	if (ret)
1395		goto out_free_dma;
1396
1397	return 0;
1398
1399out_free_dma:
1400	if (as->use_dma)
1401		atmel_spi_release_dma(as);
1402
1403	spi_writel(as, CR, SPI_BIT(SWRST));
1404	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1405	clk_disable_unprepare(clk);
1406out_free_irq:
1407out_unmap_regs:
1408out_free_buffer:
1409	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1410			as->buffer_dma);
1411out_free:
1412	spi_master_put(master);
1413	return ret;
1414}
1415
1416static int atmel_spi_remove(struct platform_device *pdev)
1417{
1418	struct spi_master	*master = platform_get_drvdata(pdev);
1419	struct atmel_spi	*as = spi_master_get_devdata(master);
1420
1421	/* reset the hardware and block queue progress */
1422	spin_lock_irq(&as->lock);
1423	if (as->use_dma) {
1424		atmel_spi_stop_dma(as);
1425		atmel_spi_release_dma(as);
1426	}
1427
1428	spi_writel(as, CR, SPI_BIT(SWRST));
1429	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1430	spi_readl(as, SR);
1431	spin_unlock_irq(&as->lock);
1432
1433	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1434			as->buffer_dma);
1435
1436	clk_disable_unprepare(as->clk);
1437
1438	return 0;
1439}
1440
1441#ifdef CONFIG_PM_SLEEP
1442static int atmel_spi_suspend(struct device *dev)
1443{
1444	struct spi_master	*master = dev_get_drvdata(dev);
1445	struct atmel_spi	*as = spi_master_get_devdata(master);
1446	int ret;
1447
1448	/* Stop the queue running */
1449	ret = spi_master_suspend(master);
1450	if (ret) {
1451		dev_warn(dev, "cannot suspend master\n");
1452		return ret;
1453	}
1454
1455	clk_disable_unprepare(as->clk);
1456
1457	pinctrl_pm_select_sleep_state(dev);
1458
1459	return 0;
1460}
1461
1462static int atmel_spi_resume(struct device *dev)
1463{
1464	struct spi_master	*master = dev_get_drvdata(dev);
1465	struct atmel_spi	*as = spi_master_get_devdata(master);
1466	int ret;
1467
1468	pinctrl_pm_select_default_state(dev);
1469
1470	clk_prepare_enable(as->clk);
1471
1472	/* Start the queue running */
1473	ret = spi_master_resume(master);
1474	if (ret)
1475		dev_err(dev, "problem starting queue (%d)\n", ret);
1476
1477	return ret;
1478}
1479
1480static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1481
1482#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1483#else
1484#define ATMEL_SPI_PM_OPS	NULL
1485#endif
1486
1487#if defined(CONFIG_OF)
1488static const struct of_device_id atmel_spi_dt_ids[] = {
1489	{ .compatible = "atmel,at91rm9200-spi" },
1490	{ /* sentinel */ }
1491};
1492
1493MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1494#endif
1495
1496static struct platform_driver atmel_spi_driver = {
1497	.driver		= {
1498		.name	= "atmel_spi",
1499		.owner	= THIS_MODULE,
1500		.pm	= ATMEL_SPI_PM_OPS,
1501		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1502	},
1503	.probe		= atmel_spi_probe,
1504	.remove		= atmel_spi_remove,
1505};
1506module_platform_driver(atmel_spi_driver);
1507
1508MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1509MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1510MODULE_LICENSE("GPL");
1511MODULE_ALIAS("platform:atmel_spi");
1512