spi-atmel.c revision 850a5b670af6293fcb1852af57567d19150ff638
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/clk.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22#include <linux/platform_data/atmel.h>
23#include <linux/of.h>
24
25#include <asm/io.h>
26#include <asm/gpio.h>
27#include <mach/cpu.h>
28
29/* SPI register offsets */
30#define SPI_CR					0x0000
31#define SPI_MR					0x0004
32#define SPI_RDR					0x0008
33#define SPI_TDR					0x000c
34#define SPI_SR					0x0010
35#define SPI_IER					0x0014
36#define SPI_IDR					0x0018
37#define SPI_IMR					0x001c
38#define SPI_CSR0				0x0030
39#define SPI_CSR1				0x0034
40#define SPI_CSR2				0x0038
41#define SPI_CSR3				0x003c
42#define SPI_RPR					0x0100
43#define SPI_RCR					0x0104
44#define SPI_TPR					0x0108
45#define SPI_TCR					0x010c
46#define SPI_RNPR				0x0110
47#define SPI_RNCR				0x0114
48#define SPI_TNPR				0x0118
49#define SPI_TNCR				0x011c
50#define SPI_PTCR				0x0120
51#define SPI_PTSR				0x0124
52
53/* Bitfields in CR */
54#define SPI_SPIEN_OFFSET			0
55#define SPI_SPIEN_SIZE				1
56#define SPI_SPIDIS_OFFSET			1
57#define SPI_SPIDIS_SIZE				1
58#define SPI_SWRST_OFFSET			7
59#define SPI_SWRST_SIZE				1
60#define SPI_LASTXFER_OFFSET			24
61#define SPI_LASTXFER_SIZE			1
62
63/* Bitfields in MR */
64#define SPI_MSTR_OFFSET				0
65#define SPI_MSTR_SIZE				1
66#define SPI_PS_OFFSET				1
67#define SPI_PS_SIZE				1
68#define SPI_PCSDEC_OFFSET			2
69#define SPI_PCSDEC_SIZE				1
70#define SPI_FDIV_OFFSET				3
71#define SPI_FDIV_SIZE				1
72#define SPI_MODFDIS_OFFSET			4
73#define SPI_MODFDIS_SIZE			1
74#define SPI_LLB_OFFSET				7
75#define SPI_LLB_SIZE				1
76#define SPI_PCS_OFFSET				16
77#define SPI_PCS_SIZE				4
78#define SPI_DLYBCS_OFFSET			24
79#define SPI_DLYBCS_SIZE				8
80
81/* Bitfields in RDR */
82#define SPI_RD_OFFSET				0
83#define SPI_RD_SIZE				16
84
85/* Bitfields in TDR */
86#define SPI_TD_OFFSET				0
87#define SPI_TD_SIZE				16
88
89/* Bitfields in SR */
90#define SPI_RDRF_OFFSET				0
91#define SPI_RDRF_SIZE				1
92#define SPI_TDRE_OFFSET				1
93#define SPI_TDRE_SIZE				1
94#define SPI_MODF_OFFSET				2
95#define SPI_MODF_SIZE				1
96#define SPI_OVRES_OFFSET			3
97#define SPI_OVRES_SIZE				1
98#define SPI_ENDRX_OFFSET			4
99#define SPI_ENDRX_SIZE				1
100#define SPI_ENDTX_OFFSET			5
101#define SPI_ENDTX_SIZE				1
102#define SPI_RXBUFF_OFFSET			6
103#define SPI_RXBUFF_SIZE				1
104#define SPI_TXBUFE_OFFSET			7
105#define SPI_TXBUFE_SIZE				1
106#define SPI_NSSR_OFFSET				8
107#define SPI_NSSR_SIZE				1
108#define SPI_TXEMPTY_OFFSET			9
109#define SPI_TXEMPTY_SIZE			1
110#define SPI_SPIENS_OFFSET			16
111#define SPI_SPIENS_SIZE				1
112
113/* Bitfields in CSR0 */
114#define SPI_CPOL_OFFSET				0
115#define SPI_CPOL_SIZE				1
116#define SPI_NCPHA_OFFSET			1
117#define SPI_NCPHA_SIZE				1
118#define SPI_CSAAT_OFFSET			3
119#define SPI_CSAAT_SIZE				1
120#define SPI_BITS_OFFSET				4
121#define SPI_BITS_SIZE				4
122#define SPI_SCBR_OFFSET				8
123#define SPI_SCBR_SIZE				8
124#define SPI_DLYBS_OFFSET			16
125#define SPI_DLYBS_SIZE				8
126#define SPI_DLYBCT_OFFSET			24
127#define SPI_DLYBCT_SIZE				8
128
129/* Bitfields in RCR */
130#define SPI_RXCTR_OFFSET			0
131#define SPI_RXCTR_SIZE				16
132
133/* Bitfields in TCR */
134#define SPI_TXCTR_OFFSET			0
135#define SPI_TXCTR_SIZE				16
136
137/* Bitfields in RNCR */
138#define SPI_RXNCR_OFFSET			0
139#define SPI_RXNCR_SIZE				16
140
141/* Bitfields in TNCR */
142#define SPI_TXNCR_OFFSET			0
143#define SPI_TXNCR_SIZE				16
144
145/* Bitfields in PTCR */
146#define SPI_RXTEN_OFFSET			0
147#define SPI_RXTEN_SIZE				1
148#define SPI_RXTDIS_OFFSET			1
149#define SPI_RXTDIS_SIZE				1
150#define SPI_TXTEN_OFFSET			8
151#define SPI_TXTEN_SIZE				1
152#define SPI_TXTDIS_OFFSET			9
153#define SPI_TXTDIS_SIZE				1
154
155/* Constants for BITS */
156#define SPI_BITS_8_BPT				0
157#define SPI_BITS_9_BPT				1
158#define SPI_BITS_10_BPT				2
159#define SPI_BITS_11_BPT				3
160#define SPI_BITS_12_BPT				4
161#define SPI_BITS_13_BPT				5
162#define SPI_BITS_14_BPT				6
163#define SPI_BITS_15_BPT				7
164#define SPI_BITS_16_BPT				8
165
166/* Bit manipulation macros */
167#define SPI_BIT(name) \
168	(1 << SPI_##name##_OFFSET)
169#define SPI_BF(name,value) \
170	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
171#define SPI_BFEXT(name,value) \
172	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
173#define SPI_BFINS(name,value,old) \
174	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
175	  | SPI_BF(name,value))
176
177/* Register access macros */
178#define spi_readl(port,reg) \
179	__raw_readl((port)->regs + SPI_##reg)
180#define spi_writel(port,reg,value) \
181	__raw_writel((value), (port)->regs + SPI_##reg)
182
183
184/*
185 * The core SPI transfer engine just talks to a register bank to set up
186 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
187 * framework provides the base clock, subdivided for each spi_device.
188 */
189struct atmel_spi {
190	spinlock_t		lock;
191
192	void __iomem		*regs;
193	int			irq;
194	struct clk		*clk;
195	struct platform_device	*pdev;
196	struct spi_device	*stay;
197
198	u8			stopping;
199	struct list_head	queue;
200	struct spi_transfer	*current_transfer;
201	unsigned long		current_remaining_bytes;
202	struct spi_transfer	*next_transfer;
203	unsigned long		next_remaining_bytes;
204
205	void			*buffer;
206	dma_addr_t		buffer_dma;
207};
208
209/* Controller-specific per-slave state */
210struct atmel_spi_device {
211	unsigned int		npcs_pin;
212	u32			csr;
213};
214
215#define BUFFER_SIZE		PAGE_SIZE
216#define INVALID_DMA_ADDRESS	0xffffffff
217
218/*
219 * Version 2 of the SPI controller has
220 *  - CR.LASTXFER
221 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
222 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
223 *  - SPI_CSRx.CSAAT
224 *  - SPI_CSRx.SBCR allows faster clocking
225 *
226 * We can determine the controller version by reading the VERSION
227 * register, but I haven't checked that it exists on all chips, and
228 * this is cheaper anyway.
229 */
230static bool atmel_spi_is_v2(void)
231{
232	return !cpu_is_at91rm9200();
233}
234
235/*
236 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
237 * they assume that spi slave device state will not change on deselect, so
238 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
239 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
240 * controllers have CSAAT and friends.
241 *
242 * Since the CSAAT functionality is a bit weird on newer controllers as
243 * well, we use GPIO to control nCSx pins on all controllers, updating
244 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
245 * support active-high chipselects despite the controller's belief that
246 * only active-low devices/systems exists.
247 *
248 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
249 * right when driven with GPIO.  ("Mode Fault does not allow more than one
250 * Master on Chip Select 0.")  No workaround exists for that ... so for
251 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
252 * and (c) will trigger that first erratum in some cases.
253 *
254 * TODO: Test if the atmel_spi_is_v2() branch below works on
255 * AT91RM9200 if we use some other register than CSR0. However, don't
256 * do this unconditionally since AP7000 has an errata where the BITS
257 * field in CSR0 overrides all other CSRs.
258 */
259
260static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
261{
262	struct atmel_spi_device *asd = spi->controller_state;
263	unsigned active = spi->mode & SPI_CS_HIGH;
264	u32 mr;
265
266	if (atmel_spi_is_v2()) {
267		/*
268		 * Always use CSR0. This ensures that the clock
269		 * switches to the correct idle polarity before we
270		 * toggle the CS.
271		 */
272		spi_writel(as, CSR0, asd->csr);
273		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
274				| SPI_BIT(MSTR));
275		mr = spi_readl(as, MR);
276		gpio_set_value(asd->npcs_pin, active);
277	} else {
278		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
279		int i;
280		u32 csr;
281
282		/* Make sure clock polarity is correct */
283		for (i = 0; i < spi->master->num_chipselect; i++) {
284			csr = spi_readl(as, CSR0 + 4 * i);
285			if ((csr ^ cpol) & SPI_BIT(CPOL))
286				spi_writel(as, CSR0 + 4 * i,
287						csr ^ SPI_BIT(CPOL));
288		}
289
290		mr = spi_readl(as, MR);
291		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
292		if (spi->chip_select != 0)
293			gpio_set_value(asd->npcs_pin, active);
294		spi_writel(as, MR, mr);
295	}
296
297	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
298			asd->npcs_pin, active ? " (high)" : "",
299			mr);
300}
301
302static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
303{
304	struct atmel_spi_device *asd = spi->controller_state;
305	unsigned active = spi->mode & SPI_CS_HIGH;
306	u32 mr;
307
308	/* only deactivate *this* device; sometimes transfers to
309	 * another device may be active when this routine is called.
310	 */
311	mr = spi_readl(as, MR);
312	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
313		mr = SPI_BFINS(PCS, 0xf, mr);
314		spi_writel(as, MR, mr);
315	}
316
317	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
318			asd->npcs_pin, active ? " (low)" : "",
319			mr);
320
321	if (atmel_spi_is_v2() || spi->chip_select != 0)
322		gpio_set_value(asd->npcs_pin, !active);
323}
324
325static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
326					struct spi_transfer *xfer)
327{
328	return msg->transfers.prev == &xfer->transfer_list;
329}
330
331static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
332{
333	return xfer->delay_usecs == 0 && !xfer->cs_change;
334}
335
336static void atmel_spi_next_xfer_data(struct spi_master *master,
337				struct spi_transfer *xfer,
338				dma_addr_t *tx_dma,
339				dma_addr_t *rx_dma,
340				u32 *plen)
341{
342	struct atmel_spi	*as = spi_master_get_devdata(master);
343	u32			len = *plen;
344
345	/* use scratch buffer only when rx or tx data is unspecified */
346	if (xfer->rx_buf)
347		*rx_dma = xfer->rx_dma + xfer->len - *plen;
348	else {
349		*rx_dma = as->buffer_dma;
350		if (len > BUFFER_SIZE)
351			len = BUFFER_SIZE;
352	}
353	if (xfer->tx_buf)
354		*tx_dma = xfer->tx_dma + xfer->len - *plen;
355	else {
356		*tx_dma = as->buffer_dma;
357		if (len > BUFFER_SIZE)
358			len = BUFFER_SIZE;
359		memset(as->buffer, 0, len);
360		dma_sync_single_for_device(&as->pdev->dev,
361				as->buffer_dma, len, DMA_TO_DEVICE);
362	}
363
364	*plen = len;
365}
366
367/*
368 * Submit next transfer for DMA.
369 * lock is held, spi irq is blocked
370 */
371static void atmel_spi_next_xfer(struct spi_master *master,
372				struct spi_message *msg)
373{
374	struct atmel_spi	*as = spi_master_get_devdata(master);
375	struct spi_transfer	*xfer;
376	u32			len, remaining;
377	u32			ieval;
378	dma_addr_t		tx_dma, rx_dma;
379
380	if (!as->current_transfer)
381		xfer = list_entry(msg->transfers.next,
382				struct spi_transfer, transfer_list);
383	else if (!as->next_transfer)
384		xfer = list_entry(as->current_transfer->transfer_list.next,
385				struct spi_transfer, transfer_list);
386	else
387		xfer = NULL;
388
389	if (xfer) {
390		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
391
392		len = xfer->len;
393		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
394		remaining = xfer->len - len;
395
396		spi_writel(as, RPR, rx_dma);
397		spi_writel(as, TPR, tx_dma);
398
399		if (msg->spi->bits_per_word > 8)
400			len >>= 1;
401		spi_writel(as, RCR, len);
402		spi_writel(as, TCR, len);
403
404		dev_dbg(&msg->spi->dev,
405			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
406			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
407			xfer->rx_buf, xfer->rx_dma);
408	} else {
409		xfer = as->next_transfer;
410		remaining = as->next_remaining_bytes;
411	}
412
413	as->current_transfer = xfer;
414	as->current_remaining_bytes = remaining;
415
416	if (remaining > 0)
417		len = remaining;
418	else if (!atmel_spi_xfer_is_last(msg, xfer)
419			&& atmel_spi_xfer_can_be_chained(xfer)) {
420		xfer = list_entry(xfer->transfer_list.next,
421				struct spi_transfer, transfer_list);
422		len = xfer->len;
423	} else
424		xfer = NULL;
425
426	as->next_transfer = xfer;
427
428	if (xfer) {
429		u32	total;
430
431		total = len;
432		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
433		as->next_remaining_bytes = total - len;
434
435		spi_writel(as, RNPR, rx_dma);
436		spi_writel(as, TNPR, tx_dma);
437
438		if (msg->spi->bits_per_word > 8)
439			len >>= 1;
440		spi_writel(as, RNCR, len);
441		spi_writel(as, TNCR, len);
442
443		dev_dbg(&msg->spi->dev,
444			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
445			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
446			xfer->rx_buf, xfer->rx_dma);
447		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
448	} else {
449		spi_writel(as, RNCR, 0);
450		spi_writel(as, TNCR, 0);
451		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
452	}
453
454	/* REVISIT: We're waiting for ENDRX before we start the next
455	 * transfer because we need to handle some difficult timing
456	 * issues otherwise. If we wait for ENDTX in one transfer and
457	 * then starts waiting for ENDRX in the next, it's difficult
458	 * to tell the difference between the ENDRX interrupt we're
459	 * actually waiting for and the ENDRX interrupt of the
460	 * previous transfer.
461	 *
462	 * It should be doable, though. Just not now...
463	 */
464	spi_writel(as, IER, ieval);
465	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
466}
467
468static void atmel_spi_next_message(struct spi_master *master)
469{
470	struct atmel_spi	*as = spi_master_get_devdata(master);
471	struct spi_message	*msg;
472	struct spi_device	*spi;
473
474	BUG_ON(as->current_transfer);
475
476	msg = list_entry(as->queue.next, struct spi_message, queue);
477	spi = msg->spi;
478
479	dev_dbg(master->dev.parent, "start message %p for %s\n",
480			msg, dev_name(&spi->dev));
481
482	/* select chip if it's not still active */
483	if (as->stay) {
484		if (as->stay != spi) {
485			cs_deactivate(as, as->stay);
486			cs_activate(as, spi);
487		}
488		as->stay = NULL;
489	} else
490		cs_activate(as, spi);
491
492	atmel_spi_next_xfer(master, msg);
493}
494
495/*
496 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
497 *  - The buffer is either valid for CPU access, else NULL
498 *  - If the buffer is valid, so is its DMA address
499 *
500 * This driver manages the dma address unless message->is_dma_mapped.
501 */
502static int
503atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
504{
505	struct device	*dev = &as->pdev->dev;
506
507	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
508	if (xfer->tx_buf) {
509		/* tx_buf is a const void* where we need a void * for the dma
510		 * mapping */
511		void *nonconst_tx = (void *)xfer->tx_buf;
512
513		xfer->tx_dma = dma_map_single(dev,
514				nonconst_tx, xfer->len,
515				DMA_TO_DEVICE);
516		if (dma_mapping_error(dev, xfer->tx_dma))
517			return -ENOMEM;
518	}
519	if (xfer->rx_buf) {
520		xfer->rx_dma = dma_map_single(dev,
521				xfer->rx_buf, xfer->len,
522				DMA_FROM_DEVICE);
523		if (dma_mapping_error(dev, xfer->rx_dma)) {
524			if (xfer->tx_buf)
525				dma_unmap_single(dev,
526						xfer->tx_dma, xfer->len,
527						DMA_TO_DEVICE);
528			return -ENOMEM;
529		}
530	}
531	return 0;
532}
533
534static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
535				     struct spi_transfer *xfer)
536{
537	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
538		dma_unmap_single(master->dev.parent, xfer->tx_dma,
539				 xfer->len, DMA_TO_DEVICE);
540	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
541		dma_unmap_single(master->dev.parent, xfer->rx_dma,
542				 xfer->len, DMA_FROM_DEVICE);
543}
544
545static void
546atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
547		struct spi_message *msg, int status, int stay)
548{
549	if (!stay || status < 0)
550		cs_deactivate(as, msg->spi);
551	else
552		as->stay = msg->spi;
553
554	list_del(&msg->queue);
555	msg->status = status;
556
557	dev_dbg(master->dev.parent,
558		"xfer complete: %u bytes transferred\n",
559		msg->actual_length);
560
561	spin_unlock(&as->lock);
562	msg->complete(msg->context);
563	spin_lock(&as->lock);
564
565	as->current_transfer = NULL;
566	as->next_transfer = NULL;
567
568	/* continue if needed */
569	if (list_empty(&as->queue) || as->stopping)
570		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
571	else
572		atmel_spi_next_message(master);
573}
574
575static irqreturn_t
576atmel_spi_interrupt(int irq, void *dev_id)
577{
578	struct spi_master	*master = dev_id;
579	struct atmel_spi	*as = spi_master_get_devdata(master);
580	struct spi_message	*msg;
581	struct spi_transfer	*xfer;
582	u32			status, pending, imr;
583	int			ret = IRQ_NONE;
584
585	spin_lock(&as->lock);
586
587	xfer = as->current_transfer;
588	msg = list_entry(as->queue.next, struct spi_message, queue);
589
590	imr = spi_readl(as, IMR);
591	status = spi_readl(as, SR);
592	pending = status & imr;
593
594	if (pending & SPI_BIT(OVRES)) {
595		int timeout;
596
597		ret = IRQ_HANDLED;
598
599		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
600				     | SPI_BIT(OVRES)));
601
602		/*
603		 * When we get an overrun, we disregard the current
604		 * transfer. Data will not be copied back from any
605		 * bounce buffer and msg->actual_len will not be
606		 * updated with the last xfer.
607		 *
608		 * We will also not process any remaning transfers in
609		 * the message.
610		 *
611		 * First, stop the transfer and unmap the DMA buffers.
612		 */
613		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
614		if (!msg->is_dma_mapped)
615			atmel_spi_dma_unmap_xfer(master, xfer);
616
617		/* REVISIT: udelay in irq is unfriendly */
618		if (xfer->delay_usecs)
619			udelay(xfer->delay_usecs);
620
621		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
622			 spi_readl(as, TCR), spi_readl(as, RCR));
623
624		/*
625		 * Clean up DMA registers and make sure the data
626		 * registers are empty.
627		 */
628		spi_writel(as, RNCR, 0);
629		spi_writel(as, TNCR, 0);
630		spi_writel(as, RCR, 0);
631		spi_writel(as, TCR, 0);
632		for (timeout = 1000; timeout; timeout--)
633			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
634				break;
635		if (!timeout)
636			dev_warn(master->dev.parent,
637				 "timeout waiting for TXEMPTY");
638		while (spi_readl(as, SR) & SPI_BIT(RDRF))
639			spi_readl(as, RDR);
640
641		/* Clear any overrun happening while cleaning up */
642		spi_readl(as, SR);
643
644		atmel_spi_msg_done(master, as, msg, -EIO, 0);
645	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
646		ret = IRQ_HANDLED;
647
648		spi_writel(as, IDR, pending);
649
650		if (as->current_remaining_bytes == 0) {
651			msg->actual_length += xfer->len;
652
653			if (!msg->is_dma_mapped)
654				atmel_spi_dma_unmap_xfer(master, xfer);
655
656			/* REVISIT: udelay in irq is unfriendly */
657			if (xfer->delay_usecs)
658				udelay(xfer->delay_usecs);
659
660			if (atmel_spi_xfer_is_last(msg, xfer)) {
661				/* report completed message */
662				atmel_spi_msg_done(master, as, msg, 0,
663						xfer->cs_change);
664			} else {
665				if (xfer->cs_change) {
666					cs_deactivate(as, msg->spi);
667					udelay(1);
668					cs_activate(as, msg->spi);
669				}
670
671				/*
672				 * Not done yet. Submit the next transfer.
673				 *
674				 * FIXME handle protocol options for xfer
675				 */
676				atmel_spi_next_xfer(master, msg);
677			}
678		} else {
679			/*
680			 * Keep going, we still have data to send in
681			 * the current transfer.
682			 */
683			atmel_spi_next_xfer(master, msg);
684		}
685	}
686
687	spin_unlock(&as->lock);
688
689	return ret;
690}
691
692static int atmel_spi_setup(struct spi_device *spi)
693{
694	struct atmel_spi	*as;
695	struct atmel_spi_device	*asd;
696	u32			scbr, csr;
697	unsigned int		bits = spi->bits_per_word;
698	unsigned long		bus_hz;
699	unsigned int		npcs_pin;
700	int			ret;
701
702	as = spi_master_get_devdata(spi->master);
703
704	if (as->stopping)
705		return -ESHUTDOWN;
706
707	if (spi->chip_select > spi->master->num_chipselect) {
708		dev_dbg(&spi->dev,
709				"setup: invalid chipselect %u (%u defined)\n",
710				spi->chip_select, spi->master->num_chipselect);
711		return -EINVAL;
712	}
713
714	if (bits < 8 || bits > 16) {
715		dev_dbg(&spi->dev,
716				"setup: invalid bits_per_word %u (8 to 16)\n",
717				bits);
718		return -EINVAL;
719	}
720
721	/* see notes above re chipselect */
722	if (!atmel_spi_is_v2()
723			&& spi->chip_select == 0
724			&& (spi->mode & SPI_CS_HIGH)) {
725		dev_dbg(&spi->dev, "setup: can't be active-high\n");
726		return -EINVAL;
727	}
728
729	/* v1 chips start out at half the peripheral bus speed. */
730	bus_hz = clk_get_rate(as->clk);
731	if (!atmel_spi_is_v2())
732		bus_hz /= 2;
733
734	if (spi->max_speed_hz) {
735		/*
736		 * Calculate the lowest divider that satisfies the
737		 * constraint, assuming div32/fdiv/mbz == 0.
738		 */
739		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
740
741		/*
742		 * If the resulting divider doesn't fit into the
743		 * register bitfield, we can't satisfy the constraint.
744		 */
745		if (scbr >= (1 << SPI_SCBR_SIZE)) {
746			dev_dbg(&spi->dev,
747				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
748				spi->max_speed_hz, scbr, bus_hz/255);
749			return -EINVAL;
750		}
751	} else
752		/* speed zero means "as slow as possible" */
753		scbr = 0xff;
754
755	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
756	if (spi->mode & SPI_CPOL)
757		csr |= SPI_BIT(CPOL);
758	if (!(spi->mode & SPI_CPHA))
759		csr |= SPI_BIT(NCPHA);
760
761	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
762	 *
763	 * DLYBCT would add delays between words, slowing down transfers.
764	 * It could potentially be useful to cope with DMA bottlenecks, but
765	 * in those cases it's probably best to just use a lower bitrate.
766	 */
767	csr |= SPI_BF(DLYBS, 0);
768	csr |= SPI_BF(DLYBCT, 0);
769
770	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
771	npcs_pin = (unsigned int)spi->controller_data;
772
773	if (gpio_is_valid(spi->cs_gpio))
774		npcs_pin = spi->cs_gpio;
775
776	asd = spi->controller_state;
777	if (!asd) {
778		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
779		if (!asd)
780			return -ENOMEM;
781
782		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
783		if (ret) {
784			kfree(asd);
785			return ret;
786		}
787
788		asd->npcs_pin = npcs_pin;
789		spi->controller_state = asd;
790		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
791	} else {
792		unsigned long		flags;
793
794		spin_lock_irqsave(&as->lock, flags);
795		if (as->stay == spi)
796			as->stay = NULL;
797		cs_deactivate(as, spi);
798		spin_unlock_irqrestore(&as->lock, flags);
799	}
800
801	asd->csr = csr;
802
803	dev_dbg(&spi->dev,
804		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
805		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
806
807	if (!atmel_spi_is_v2())
808		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
809
810	return 0;
811}
812
813static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
814{
815	struct atmel_spi	*as;
816	struct spi_transfer	*xfer;
817	unsigned long		flags;
818	struct device		*controller = spi->master->dev.parent;
819	u8			bits;
820	struct atmel_spi_device	*asd;
821
822	as = spi_master_get_devdata(spi->master);
823
824	dev_dbg(controller, "new message %p submitted for %s\n",
825			msg, dev_name(&spi->dev));
826
827	if (unlikely(list_empty(&msg->transfers)))
828		return -EINVAL;
829
830	if (as->stopping)
831		return -ESHUTDOWN;
832
833	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
834		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
835			dev_dbg(&spi->dev, "missing rx or tx buf\n");
836			return -EINVAL;
837		}
838
839		if (xfer->bits_per_word) {
840			asd = spi->controller_state;
841			bits = (asd->csr >> 4) & 0xf;
842			if (bits != xfer->bits_per_word - 8) {
843				dev_dbg(&spi->dev, "you can't yet change "
844					 "bits_per_word in transfers\n");
845				return -ENOPROTOOPT;
846			}
847		}
848
849		/* FIXME implement these protocol options!! */
850		if (xfer->speed_hz) {
851			dev_dbg(&spi->dev, "no protocol options yet\n");
852			return -ENOPROTOOPT;
853		}
854
855		/*
856		 * DMA map early, for performance (empties dcache ASAP) and
857		 * better fault reporting.  This is a DMA-only driver.
858		 *
859		 * NOTE that if dma_unmap_single() ever starts to do work on
860		 * platforms supported by this driver, we would need to clean
861		 * up mappings for previously-mapped transfers.
862		 */
863		if (!msg->is_dma_mapped) {
864			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
865				return -ENOMEM;
866		}
867	}
868
869#ifdef VERBOSE
870	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871		dev_dbg(controller,
872			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
873			xfer, xfer->len,
874			xfer->tx_buf, xfer->tx_dma,
875			xfer->rx_buf, xfer->rx_dma);
876	}
877#endif
878
879	msg->status = -EINPROGRESS;
880	msg->actual_length = 0;
881
882	spin_lock_irqsave(&as->lock, flags);
883	list_add_tail(&msg->queue, &as->queue);
884	if (!as->current_transfer)
885		atmel_spi_next_message(spi->master);
886	spin_unlock_irqrestore(&as->lock, flags);
887
888	return 0;
889}
890
891static void atmel_spi_cleanup(struct spi_device *spi)
892{
893	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
894	struct atmel_spi_device	*asd = spi->controller_state;
895	unsigned		gpio = (unsigned) spi->controller_data;
896	unsigned long		flags;
897
898	if (!asd)
899		return;
900
901	spin_lock_irqsave(&as->lock, flags);
902	if (as->stay == spi) {
903		as->stay = NULL;
904		cs_deactivate(as, spi);
905	}
906	spin_unlock_irqrestore(&as->lock, flags);
907
908	spi->controller_state = NULL;
909	gpio_free(gpio);
910	kfree(asd);
911}
912
913/*-------------------------------------------------------------------------*/
914
915static int atmel_spi_probe(struct platform_device *pdev)
916{
917	struct resource		*regs;
918	int			irq;
919	struct clk		*clk;
920	int			ret;
921	struct spi_master	*master;
922	struct atmel_spi	*as;
923
924	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
925	if (!regs)
926		return -ENXIO;
927
928	irq = platform_get_irq(pdev, 0);
929	if (irq < 0)
930		return irq;
931
932	clk = clk_get(&pdev->dev, "spi_clk");
933	if (IS_ERR(clk))
934		return PTR_ERR(clk);
935
936	/* setup spi core then atmel-specific driver state */
937	ret = -ENOMEM;
938	master = spi_alloc_master(&pdev->dev, sizeof *as);
939	if (!master)
940		goto out_free;
941
942	/* the spi->mode bits understood by this driver: */
943	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
944
945	master->dev.of_node = pdev->dev.of_node;
946	master->bus_num = pdev->id;
947	master->num_chipselect = master->dev.of_node ? 0 : 4;
948	master->setup = atmel_spi_setup;
949	master->transfer = atmel_spi_transfer;
950	master->cleanup = atmel_spi_cleanup;
951	platform_set_drvdata(pdev, master);
952
953	as = spi_master_get_devdata(master);
954
955	/*
956	 * Scratch buffer is used for throwaway rx and tx data.
957	 * It's coherent to minimize dcache pollution.
958	 */
959	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
960					&as->buffer_dma, GFP_KERNEL);
961	if (!as->buffer)
962		goto out_free;
963
964	spin_lock_init(&as->lock);
965	INIT_LIST_HEAD(&as->queue);
966	as->pdev = pdev;
967	as->regs = ioremap(regs->start, resource_size(regs));
968	if (!as->regs)
969		goto out_free_buffer;
970	as->irq = irq;
971	as->clk = clk;
972
973	ret = request_irq(irq, atmel_spi_interrupt, 0,
974			dev_name(&pdev->dev), master);
975	if (ret)
976		goto out_unmap_regs;
977
978	/* Initialize the hardware */
979	clk_enable(clk);
980	spi_writel(as, CR, SPI_BIT(SWRST));
981	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
982	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
983	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
984	spi_writel(as, CR, SPI_BIT(SPIEN));
985
986	/* go! */
987	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
988			(unsigned long)regs->start, irq);
989
990	ret = spi_register_master(master);
991	if (ret)
992		goto out_reset_hw;
993
994	return 0;
995
996out_reset_hw:
997	spi_writel(as, CR, SPI_BIT(SWRST));
998	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
999	clk_disable(clk);
1000	free_irq(irq, master);
1001out_unmap_regs:
1002	iounmap(as->regs);
1003out_free_buffer:
1004	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1005			as->buffer_dma);
1006out_free:
1007	clk_put(clk);
1008	spi_master_put(master);
1009	return ret;
1010}
1011
1012static int atmel_spi_remove(struct platform_device *pdev)
1013{
1014	struct spi_master	*master = platform_get_drvdata(pdev);
1015	struct atmel_spi	*as = spi_master_get_devdata(master);
1016	struct spi_message	*msg;
1017
1018	/* reset the hardware and block queue progress */
1019	spin_lock_irq(&as->lock);
1020	as->stopping = 1;
1021	spi_writel(as, CR, SPI_BIT(SWRST));
1022	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1023	spi_readl(as, SR);
1024	spin_unlock_irq(&as->lock);
1025
1026	/* Terminate remaining queued transfers */
1027	list_for_each_entry(msg, &as->queue, queue) {
1028		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1029		 * but we shouldn't depend on that...
1030		 */
1031		msg->status = -ESHUTDOWN;
1032		msg->complete(msg->context);
1033	}
1034
1035	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1036			as->buffer_dma);
1037
1038	clk_disable(as->clk);
1039	clk_put(as->clk);
1040	free_irq(as->irq, master);
1041	iounmap(as->regs);
1042
1043	spi_unregister_master(master);
1044
1045	return 0;
1046}
1047
1048#ifdef	CONFIG_PM
1049
1050static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1051{
1052	struct spi_master	*master = platform_get_drvdata(pdev);
1053	struct atmel_spi	*as = spi_master_get_devdata(master);
1054
1055	clk_disable(as->clk);
1056	return 0;
1057}
1058
1059static int atmel_spi_resume(struct platform_device *pdev)
1060{
1061	struct spi_master	*master = platform_get_drvdata(pdev);
1062	struct atmel_spi	*as = spi_master_get_devdata(master);
1063
1064	clk_enable(as->clk);
1065	return 0;
1066}
1067
1068#else
1069#define	atmel_spi_suspend	NULL
1070#define	atmel_spi_resume	NULL
1071#endif
1072
1073#if defined(CONFIG_OF)
1074static const struct of_device_id atmel_spi_dt_ids[] = {
1075	{ .compatible = "atmel,at91rm9200-spi" },
1076	{ /* sentinel */ }
1077};
1078
1079MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1080#endif
1081
1082static struct platform_driver atmel_spi_driver = {
1083	.driver		= {
1084		.name	= "atmel_spi",
1085		.owner	= THIS_MODULE,
1086		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1087	},
1088	.suspend	= atmel_spi_suspend,
1089	.resume		= atmel_spi_resume,
1090	.probe		= atmel_spi_probe,
1091	.remove		= __exit_p(atmel_spi_remove),
1092};
1093module_platform_driver(atmel_spi_driver);
1094
1095MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1096MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1097MODULE_LICENSE("GPL");
1098MODULE_ALIAS("platform:atmel_spi");
1099