spi-atmel.c revision ec60dd37e1d907d0524fa4c5806ecf24b16ea712
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/init.h>
13#include <linux/clk.h>
14#include <linux/module.h>
15#include <linux/platform_device.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/dmaengine.h>
19#include <linux/err.h>
20#include <linux/interrupt.h>
21#include <linux/spi/spi.h>
22#include <linux/slab.h>
23#include <linux/platform_data/atmel.h>
24#include <linux/platform_data/dma-atmel.h>
25#include <linux/of.h>
26
27#include <linux/io.h>
28#include <linux/gpio.h>
29
30/* SPI register offsets */
31#define SPI_CR					0x0000
32#define SPI_MR					0x0004
33#define SPI_RDR					0x0008
34#define SPI_TDR					0x000c
35#define SPI_SR					0x0010
36#define SPI_IER					0x0014
37#define SPI_IDR					0x0018
38#define SPI_IMR					0x001c
39#define SPI_CSR0				0x0030
40#define SPI_CSR1				0x0034
41#define SPI_CSR2				0x0038
42#define SPI_CSR3				0x003c
43#define SPI_VERSION				0x00fc
44#define SPI_RPR					0x0100
45#define SPI_RCR					0x0104
46#define SPI_TPR					0x0108
47#define SPI_TCR					0x010c
48#define SPI_RNPR				0x0110
49#define SPI_RNCR				0x0114
50#define SPI_TNPR				0x0118
51#define SPI_TNCR				0x011c
52#define SPI_PTCR				0x0120
53#define SPI_PTSR				0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET			0
57#define SPI_SPIEN_SIZE				1
58#define SPI_SPIDIS_OFFSET			1
59#define SPI_SPIDIS_SIZE				1
60#define SPI_SWRST_OFFSET			7
61#define SPI_SWRST_SIZE				1
62#define SPI_LASTXFER_OFFSET			24
63#define SPI_LASTXFER_SIZE			1
64
65/* Bitfields in MR */
66#define SPI_MSTR_OFFSET				0
67#define SPI_MSTR_SIZE				1
68#define SPI_PS_OFFSET				1
69#define SPI_PS_SIZE				1
70#define SPI_PCSDEC_OFFSET			2
71#define SPI_PCSDEC_SIZE				1
72#define SPI_FDIV_OFFSET				3
73#define SPI_FDIV_SIZE				1
74#define SPI_MODFDIS_OFFSET			4
75#define SPI_MODFDIS_SIZE			1
76#define SPI_WDRBT_OFFSET			5
77#define SPI_WDRBT_SIZE				1
78#define SPI_LLB_OFFSET				7
79#define SPI_LLB_SIZE				1
80#define SPI_PCS_OFFSET				16
81#define SPI_PCS_SIZE				4
82#define SPI_DLYBCS_OFFSET			24
83#define SPI_DLYBCS_SIZE				8
84
85/* Bitfields in RDR */
86#define SPI_RD_OFFSET				0
87#define SPI_RD_SIZE				16
88
89/* Bitfields in TDR */
90#define SPI_TD_OFFSET				0
91#define SPI_TD_SIZE				16
92
93/* Bitfields in SR */
94#define SPI_RDRF_OFFSET				0
95#define SPI_RDRF_SIZE				1
96#define SPI_TDRE_OFFSET				1
97#define SPI_TDRE_SIZE				1
98#define SPI_MODF_OFFSET				2
99#define SPI_MODF_SIZE				1
100#define SPI_OVRES_OFFSET			3
101#define SPI_OVRES_SIZE				1
102#define SPI_ENDRX_OFFSET			4
103#define SPI_ENDRX_SIZE				1
104#define SPI_ENDTX_OFFSET			5
105#define SPI_ENDTX_SIZE				1
106#define SPI_RXBUFF_OFFSET			6
107#define SPI_RXBUFF_SIZE				1
108#define SPI_TXBUFE_OFFSET			7
109#define SPI_TXBUFE_SIZE				1
110#define SPI_NSSR_OFFSET				8
111#define SPI_NSSR_SIZE				1
112#define SPI_TXEMPTY_OFFSET			9
113#define SPI_TXEMPTY_SIZE			1
114#define SPI_SPIENS_OFFSET			16
115#define SPI_SPIENS_SIZE				1
116
117/* Bitfields in CSR0 */
118#define SPI_CPOL_OFFSET				0
119#define SPI_CPOL_SIZE				1
120#define SPI_NCPHA_OFFSET			1
121#define SPI_NCPHA_SIZE				1
122#define SPI_CSAAT_OFFSET			3
123#define SPI_CSAAT_SIZE				1
124#define SPI_BITS_OFFSET				4
125#define SPI_BITS_SIZE				4
126#define SPI_SCBR_OFFSET				8
127#define SPI_SCBR_SIZE				8
128#define SPI_DLYBS_OFFSET			16
129#define SPI_DLYBS_SIZE				8
130#define SPI_DLYBCT_OFFSET			24
131#define SPI_DLYBCT_SIZE				8
132
133/* Bitfields in RCR */
134#define SPI_RXCTR_OFFSET			0
135#define SPI_RXCTR_SIZE				16
136
137/* Bitfields in TCR */
138#define SPI_TXCTR_OFFSET			0
139#define SPI_TXCTR_SIZE				16
140
141/* Bitfields in RNCR */
142#define SPI_RXNCR_OFFSET			0
143#define SPI_RXNCR_SIZE				16
144
145/* Bitfields in TNCR */
146#define SPI_TXNCR_OFFSET			0
147#define SPI_TXNCR_SIZE				16
148
149/* Bitfields in PTCR */
150#define SPI_RXTEN_OFFSET			0
151#define SPI_RXTEN_SIZE				1
152#define SPI_RXTDIS_OFFSET			1
153#define SPI_RXTDIS_SIZE				1
154#define SPI_TXTEN_OFFSET			8
155#define SPI_TXTEN_SIZE				1
156#define SPI_TXTDIS_OFFSET			9
157#define SPI_TXTDIS_SIZE				1
158
159/* Constants for BITS */
160#define SPI_BITS_8_BPT				0
161#define SPI_BITS_9_BPT				1
162#define SPI_BITS_10_BPT				2
163#define SPI_BITS_11_BPT				3
164#define SPI_BITS_12_BPT				4
165#define SPI_BITS_13_BPT				5
166#define SPI_BITS_14_BPT				6
167#define SPI_BITS_15_BPT				7
168#define SPI_BITS_16_BPT				8
169
170/* Bit manipulation macros */
171#define SPI_BIT(name) \
172	(1 << SPI_##name##_OFFSET)
173#define SPI_BF(name,value) \
174	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175#define SPI_BFEXT(name,value) \
176	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177#define SPI_BFINS(name,value,old) \
178	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179	  | SPI_BF(name,value))
180
181/* Register access macros */
182#define spi_readl(port,reg) \
183	__raw_readl((port)->regs + SPI_##reg)
184#define spi_writel(port,reg,value) \
185	__raw_writel((value), (port)->regs + SPI_##reg)
186
187/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188 * cache operations; better heuristics consider wordsize and bitrate.
189 */
190#define DMA_MIN_BYTES	16
191
192struct atmel_spi_dma {
193	struct dma_chan			*chan_rx;
194	struct dma_chan			*chan_tx;
195	struct scatterlist		sgrx;
196	struct scatterlist		sgtx;
197	struct dma_async_tx_descriptor	*data_desc_rx;
198	struct dma_async_tx_descriptor	*data_desc_tx;
199
200	struct at_dma_slave	dma_slave;
201};
202
203struct atmel_spi_caps {
204	bool	is_spi2;
205	bool	has_wdrbt;
206	bool	has_dma_support;
207};
208
209/*
210 * The core SPI transfer engine just talks to a register bank to set up
211 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
212 * framework provides the base clock, subdivided for each spi_device.
213 */
214struct atmel_spi {
215	spinlock_t		lock;
216	unsigned long		flags;
217
218	phys_addr_t		phybase;
219	void __iomem		*regs;
220	int			irq;
221	struct clk		*clk;
222	struct platform_device	*pdev;
223	struct spi_device	*stay;
224
225	u8			stopping;
226	struct list_head	queue;
227	struct tasklet_struct	tasklet;
228	struct spi_transfer	*current_transfer;
229	unsigned long		current_remaining_bytes;
230	struct spi_transfer	*next_transfer;
231	unsigned long		next_remaining_bytes;
232	int			done_status;
233
234	/* scratch buffer */
235	void			*buffer;
236	dma_addr_t		buffer_dma;
237
238	struct atmel_spi_caps	caps;
239
240	bool			use_dma;
241	bool			use_pdc;
242	/* dmaengine data */
243	struct atmel_spi_dma	dma;
244};
245
246/* Controller-specific per-slave state */
247struct atmel_spi_device {
248	unsigned int		npcs_pin;
249	u32			csr;
250};
251
252#define BUFFER_SIZE		PAGE_SIZE
253#define INVALID_DMA_ADDRESS	0xffffffff
254
255/*
256 * Version 2 of the SPI controller has
257 *  - CR.LASTXFER
258 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260 *  - SPI_CSRx.CSAAT
261 *  - SPI_CSRx.SBCR allows faster clocking
262 */
263static bool atmel_spi_is_v2(struct atmel_spi *as)
264{
265	return as->caps.is_spi2;
266}
267
268/*
269 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270 * they assume that spi slave device state will not change on deselect, so
271 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
272 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
273 * controllers have CSAAT and friends.
274 *
275 * Since the CSAAT functionality is a bit weird on newer controllers as
276 * well, we use GPIO to control nCSx pins on all controllers, updating
277 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
278 * support active-high chipselects despite the controller's belief that
279 * only active-low devices/systems exists.
280 *
281 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282 * right when driven with GPIO.  ("Mode Fault does not allow more than one
283 * Master on Chip Select 0.")  No workaround exists for that ... so for
284 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285 * and (c) will trigger that first erratum in some cases.
286 */
287
288static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289{
290	struct atmel_spi_device *asd = spi->controller_state;
291	unsigned active = spi->mode & SPI_CS_HIGH;
292	u32 mr;
293
294	if (atmel_spi_is_v2(as)) {
295		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296		/* For the low SPI version, there is a issue that PDC transfer
297		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298		 */
299		spi_writel(as, CSR0, asd->csr);
300		if (as->caps.has_wdrbt) {
301			spi_writel(as, MR,
302					SPI_BF(PCS, ~(0x01 << spi->chip_select))
303					| SPI_BIT(WDRBT)
304					| SPI_BIT(MODFDIS)
305					| SPI_BIT(MSTR));
306		} else {
307			spi_writel(as, MR,
308					SPI_BF(PCS, ~(0x01 << spi->chip_select))
309					| SPI_BIT(MODFDIS)
310					| SPI_BIT(MSTR));
311		}
312
313		mr = spi_readl(as, MR);
314		gpio_set_value(asd->npcs_pin, active);
315	} else {
316		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317		int i;
318		u32 csr;
319
320		/* Make sure clock polarity is correct */
321		for (i = 0; i < spi->master->num_chipselect; i++) {
322			csr = spi_readl(as, CSR0 + 4 * i);
323			if ((csr ^ cpol) & SPI_BIT(CPOL))
324				spi_writel(as, CSR0 + 4 * i,
325						csr ^ SPI_BIT(CPOL));
326		}
327
328		mr = spi_readl(as, MR);
329		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330		if (spi->chip_select != 0)
331			gpio_set_value(asd->npcs_pin, active);
332		spi_writel(as, MR, mr);
333	}
334
335	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336			asd->npcs_pin, active ? " (high)" : "",
337			mr);
338}
339
340static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341{
342	struct atmel_spi_device *asd = spi->controller_state;
343	unsigned active = spi->mode & SPI_CS_HIGH;
344	u32 mr;
345
346	/* only deactivate *this* device; sometimes transfers to
347	 * another device may be active when this routine is called.
348	 */
349	mr = spi_readl(as, MR);
350	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351		mr = SPI_BFINS(PCS, 0xf, mr);
352		spi_writel(as, MR, mr);
353	}
354
355	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356			asd->npcs_pin, active ? " (low)" : "",
357			mr);
358
359	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360		gpio_set_value(asd->npcs_pin, !active);
361}
362
363static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
364{
365	spin_lock_irqsave(&as->lock, as->flags);
366}
367
368static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
369{
370	spin_unlock_irqrestore(&as->lock, as->flags);
371}
372
373static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374				struct spi_transfer *xfer)
375{
376	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377}
378
379static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380					struct spi_transfer *xfer)
381{
382	return msg->transfers.prev == &xfer->transfer_list;
383}
384
385static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386{
387	return xfer->delay_usecs == 0 && !xfer->cs_change;
388}
389
390static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391				struct dma_slave_config *slave_config,
392				u8 bits_per_word)
393{
394	int err = 0;
395
396	if (bits_per_word > 8) {
397		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399	} else {
400		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402	}
403
404	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406	slave_config->src_maxburst = 1;
407	slave_config->dst_maxburst = 1;
408	slave_config->device_fc = false;
409
410	slave_config->direction = DMA_MEM_TO_DEV;
411	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412		dev_err(&as->pdev->dev,
413			"failed to configure tx dma channel\n");
414		err = -EINVAL;
415	}
416
417	slave_config->direction = DMA_DEV_TO_MEM;
418	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419		dev_err(&as->pdev->dev,
420			"failed to configure rx dma channel\n");
421		err = -EINVAL;
422	}
423
424	return err;
425}
426
427static bool filter(struct dma_chan *chan, void *pdata)
428{
429	struct atmel_spi_dma *sl_pdata = pdata;
430	struct at_dma_slave *sl;
431
432	if (!sl_pdata)
433		return false;
434
435	sl = &sl_pdata->dma_slave;
436	if (sl->dma_dev == chan->device->dev) {
437		chan->private = sl;
438		return true;
439	} else {
440		return false;
441	}
442}
443
444static int atmel_spi_configure_dma(struct atmel_spi *as)
445{
446	struct dma_slave_config	slave_config;
447	struct device *dev = &as->pdev->dev;
448	int err;
449
450	dma_cap_mask_t mask;
451	dma_cap_zero(mask);
452	dma_cap_set(DMA_SLAVE, mask);
453
454	as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
455							   &as->dma,
456							   dev, "tx");
457	if (!as->dma.chan_tx) {
458		dev_err(dev,
459			"DMA TX channel not available, SPI unable to use DMA\n");
460		err = -EBUSY;
461		goto error;
462	}
463
464	as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
465							   &as->dma,
466							   dev, "rx");
467
468	if (!as->dma.chan_rx) {
469		dev_err(dev,
470			"DMA RX channel not available, SPI unable to use DMA\n");
471		err = -EBUSY;
472		goto error;
473	}
474
475	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
476	if (err)
477		goto error;
478
479	dev_info(&as->pdev->dev,
480			"Using %s (tx) and %s (rx) for DMA transfers\n",
481			dma_chan_name(as->dma.chan_tx),
482			dma_chan_name(as->dma.chan_rx));
483	return 0;
484error:
485	if (as->dma.chan_rx)
486		dma_release_channel(as->dma.chan_rx);
487	if (as->dma.chan_tx)
488		dma_release_channel(as->dma.chan_tx);
489	return err;
490}
491
492static void atmel_spi_stop_dma(struct atmel_spi *as)
493{
494	if (as->dma.chan_rx)
495		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
496							DMA_TERMINATE_ALL, 0);
497	if (as->dma.chan_tx)
498		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
499							DMA_TERMINATE_ALL, 0);
500}
501
502static void atmel_spi_release_dma(struct atmel_spi *as)
503{
504	if (as->dma.chan_rx)
505		dma_release_channel(as->dma.chan_rx);
506	if (as->dma.chan_tx)
507		dma_release_channel(as->dma.chan_tx);
508}
509
510/* This function is called by the DMA driver from tasklet context */
511static void dma_callback(void *data)
512{
513	struct spi_master	*master = data;
514	struct atmel_spi	*as = spi_master_get_devdata(master);
515
516	/* trigger SPI tasklet */
517	tasklet_schedule(&as->tasklet);
518}
519
520/*
521 * Next transfer using PIO.
522 * lock is held, spi tasklet is blocked
523 */
524static void atmel_spi_next_xfer_pio(struct spi_master *master,
525				struct spi_transfer *xfer)
526{
527	struct atmel_spi	*as = spi_master_get_devdata(master);
528
529	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
530
531	as->current_remaining_bytes = xfer->len;
532
533	/* Make sure data is not remaining in RDR */
534	spi_readl(as, RDR);
535	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
536		spi_readl(as, RDR);
537		cpu_relax();
538	}
539
540	if (xfer->tx_buf)
541		if (xfer->bits_per_word > 8)
542			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf));
543		else
544			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
545	else
546		spi_writel(as, TDR, 0);
547
548	dev_dbg(master->dev.parent,
549		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
550		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
551		xfer->bits_per_word);
552
553	/* Enable relevant interrupts */
554	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
555}
556
557/*
558 * Submit next transfer for DMA.
559 * lock is held, spi tasklet is blocked
560 */
561static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
562				struct spi_transfer *xfer,
563				u32 *plen)
564{
565	struct atmel_spi	*as = spi_master_get_devdata(master);
566	struct dma_chan		*rxchan = as->dma.chan_rx;
567	struct dma_chan		*txchan = as->dma.chan_tx;
568	struct dma_async_tx_descriptor *rxdesc;
569	struct dma_async_tx_descriptor *txdesc;
570	struct dma_slave_config	slave_config;
571	dma_cookie_t		cookie;
572	u32	len = *plen;
573
574	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
575
576	/* Check that the channels are available */
577	if (!rxchan || !txchan)
578		return -ENODEV;
579
580	/* release lock for DMA operations */
581	atmel_spi_unlock(as);
582
583	/* prepare the RX dma transfer */
584	sg_init_table(&as->dma.sgrx, 1);
585	if (xfer->rx_buf) {
586		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
587	} else {
588		as->dma.sgrx.dma_address = as->buffer_dma;
589		if (len > BUFFER_SIZE)
590			len = BUFFER_SIZE;
591	}
592
593	/* prepare the TX dma transfer */
594	sg_init_table(&as->dma.sgtx, 1);
595	if (xfer->tx_buf) {
596		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
597	} else {
598		as->dma.sgtx.dma_address = as->buffer_dma;
599		if (len > BUFFER_SIZE)
600			len = BUFFER_SIZE;
601		memset(as->buffer, 0, len);
602	}
603
604	sg_dma_len(&as->dma.sgtx) = len;
605	sg_dma_len(&as->dma.sgrx) = len;
606
607	*plen = len;
608
609	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
610		goto err_exit;
611
612	/* Send both scatterlists */
613	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
614					&as->dma.sgrx,
615					1,
616					DMA_FROM_DEVICE,
617					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
618					NULL);
619	if (!rxdesc)
620		goto err_dma;
621
622	txdesc = txchan->device->device_prep_slave_sg(txchan,
623					&as->dma.sgtx,
624					1,
625					DMA_TO_DEVICE,
626					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
627					NULL);
628	if (!txdesc)
629		goto err_dma;
630
631	dev_dbg(master->dev.parent,
632		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
633		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
634		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
635
636	/* Enable relevant interrupts */
637	spi_writel(as, IER, SPI_BIT(OVRES));
638
639	/* Put the callback on the RX transfer only, that should finish last */
640	rxdesc->callback = dma_callback;
641	rxdesc->callback_param = master;
642
643	/* Submit and fire RX and TX with TX last so we're ready to read! */
644	cookie = rxdesc->tx_submit(rxdesc);
645	if (dma_submit_error(cookie))
646		goto err_dma;
647	cookie = txdesc->tx_submit(txdesc);
648	if (dma_submit_error(cookie))
649		goto err_dma;
650	rxchan->device->device_issue_pending(rxchan);
651	txchan->device->device_issue_pending(txchan);
652
653	/* take back lock */
654	atmel_spi_lock(as);
655	return 0;
656
657err_dma:
658	spi_writel(as, IDR, SPI_BIT(OVRES));
659	atmel_spi_stop_dma(as);
660err_exit:
661	atmel_spi_lock(as);
662	return -ENOMEM;
663}
664
665static void atmel_spi_next_xfer_data(struct spi_master *master,
666				struct spi_transfer *xfer,
667				dma_addr_t *tx_dma,
668				dma_addr_t *rx_dma,
669				u32 *plen)
670{
671	struct atmel_spi	*as = spi_master_get_devdata(master);
672	u32			len = *plen;
673
674	/* use scratch buffer only when rx or tx data is unspecified */
675	if (xfer->rx_buf)
676		*rx_dma = xfer->rx_dma + xfer->len - *plen;
677	else {
678		*rx_dma = as->buffer_dma;
679		if (len > BUFFER_SIZE)
680			len = BUFFER_SIZE;
681	}
682
683	if (xfer->tx_buf)
684		*tx_dma = xfer->tx_dma + xfer->len - *plen;
685	else {
686		*tx_dma = as->buffer_dma;
687		if (len > BUFFER_SIZE)
688			len = BUFFER_SIZE;
689		memset(as->buffer, 0, len);
690		dma_sync_single_for_device(&as->pdev->dev,
691				as->buffer_dma, len, DMA_TO_DEVICE);
692	}
693
694	*plen = len;
695}
696
697/*
698 * Submit next transfer for PDC.
699 * lock is held, spi irq is blocked
700 */
701static void atmel_spi_pdc_next_xfer(struct spi_master *master,
702				struct spi_message *msg)
703{
704	struct atmel_spi	*as = spi_master_get_devdata(master);
705	struct spi_transfer	*xfer;
706	u32			len, remaining;
707	u32			ieval;
708	dma_addr_t		tx_dma, rx_dma;
709
710	if (!as->current_transfer)
711		xfer = list_entry(msg->transfers.next,
712				struct spi_transfer, transfer_list);
713	else if (!as->next_transfer)
714		xfer = list_entry(as->current_transfer->transfer_list.next,
715				struct spi_transfer, transfer_list);
716	else
717		xfer = NULL;
718
719	if (xfer) {
720		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
721
722		len = xfer->len;
723		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
724		remaining = xfer->len - len;
725
726		spi_writel(as, RPR, rx_dma);
727		spi_writel(as, TPR, tx_dma);
728
729		if (msg->spi->bits_per_word > 8)
730			len >>= 1;
731		spi_writel(as, RCR, len);
732		spi_writel(as, TCR, len);
733
734		dev_dbg(&msg->spi->dev,
735			"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
736			xfer, xfer->len, xfer->tx_buf,
737			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
738			(unsigned long long)xfer->rx_dma);
739	} else {
740		xfer = as->next_transfer;
741		remaining = as->next_remaining_bytes;
742	}
743
744	as->current_transfer = xfer;
745	as->current_remaining_bytes = remaining;
746
747	if (remaining > 0)
748		len = remaining;
749	else if (!atmel_spi_xfer_is_last(msg, xfer)
750			&& atmel_spi_xfer_can_be_chained(xfer)) {
751		xfer = list_entry(xfer->transfer_list.next,
752				struct spi_transfer, transfer_list);
753		len = xfer->len;
754	} else
755		xfer = NULL;
756
757	as->next_transfer = xfer;
758
759	if (xfer) {
760		u32	total;
761
762		total = len;
763		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
764		as->next_remaining_bytes = total - len;
765
766		spi_writel(as, RNPR, rx_dma);
767		spi_writel(as, TNPR, tx_dma);
768
769		if (msg->spi->bits_per_word > 8)
770			len >>= 1;
771		spi_writel(as, RNCR, len);
772		spi_writel(as, TNCR, len);
773
774		dev_dbg(&msg->spi->dev,
775			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
776			xfer, xfer->len, xfer->tx_buf,
777			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
778			(unsigned long long)xfer->rx_dma);
779		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
780	} else {
781		spi_writel(as, RNCR, 0);
782		spi_writel(as, TNCR, 0);
783		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
784	}
785
786	/* REVISIT: We're waiting for ENDRX before we start the next
787	 * transfer because we need to handle some difficult timing
788	 * issues otherwise. If we wait for ENDTX in one transfer and
789	 * then starts waiting for ENDRX in the next, it's difficult
790	 * to tell the difference between the ENDRX interrupt we're
791	 * actually waiting for and the ENDRX interrupt of the
792	 * previous transfer.
793	 *
794	 * It should be doable, though. Just not now...
795	 */
796	spi_writel(as, IER, ieval);
797	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
798}
799
800/*
801 * Choose way to submit next transfer and start it.
802 * lock is held, spi tasklet is blocked
803 */
804static void atmel_spi_dma_next_xfer(struct spi_master *master,
805				struct spi_message *msg)
806{
807	struct atmel_spi	*as = spi_master_get_devdata(master);
808	struct spi_transfer	*xfer;
809	u32	remaining, len;
810
811	remaining = as->current_remaining_bytes;
812	if (remaining) {
813		xfer = as->current_transfer;
814		len = remaining;
815	} else {
816		if (!as->current_transfer)
817			xfer = list_entry(msg->transfers.next,
818				struct spi_transfer, transfer_list);
819		else
820			xfer = list_entry(
821				as->current_transfer->transfer_list.next,
822					struct spi_transfer, transfer_list);
823
824		as->current_transfer = xfer;
825		len = xfer->len;
826	}
827
828	if (atmel_spi_use_dma(as, xfer)) {
829		u32 total = len;
830		if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
831			as->current_remaining_bytes = total - len;
832			return;
833		} else {
834			dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
835		}
836	}
837
838	/* use PIO if error appened using DMA */
839	atmel_spi_next_xfer_pio(master, xfer);
840}
841
842static void atmel_spi_next_message(struct spi_master *master)
843{
844	struct atmel_spi	*as = spi_master_get_devdata(master);
845	struct spi_message	*msg;
846	struct spi_device	*spi;
847
848	BUG_ON(as->current_transfer);
849
850	msg = list_entry(as->queue.next, struct spi_message, queue);
851	spi = msg->spi;
852
853	dev_dbg(master->dev.parent, "start message %p for %s\n",
854			msg, dev_name(&spi->dev));
855
856	/* select chip if it's not still active */
857	if (as->stay) {
858		if (as->stay != spi) {
859			cs_deactivate(as, as->stay);
860			cs_activate(as, spi);
861		}
862		as->stay = NULL;
863	} else
864		cs_activate(as, spi);
865
866	if (as->use_pdc)
867		atmel_spi_pdc_next_xfer(master, msg);
868	else
869		atmel_spi_dma_next_xfer(master, msg);
870}
871
872/*
873 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
874 *  - The buffer is either valid for CPU access, else NULL
875 *  - If the buffer is valid, so is its DMA address
876 *
877 * This driver manages the dma address unless message->is_dma_mapped.
878 */
879static int
880atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
881{
882	struct device	*dev = &as->pdev->dev;
883
884	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
885	if (xfer->tx_buf) {
886		/* tx_buf is a const void* where we need a void * for the dma
887		 * mapping */
888		void *nonconst_tx = (void *)xfer->tx_buf;
889
890		xfer->tx_dma = dma_map_single(dev,
891				nonconst_tx, xfer->len,
892				DMA_TO_DEVICE);
893		if (dma_mapping_error(dev, xfer->tx_dma))
894			return -ENOMEM;
895	}
896	if (xfer->rx_buf) {
897		xfer->rx_dma = dma_map_single(dev,
898				xfer->rx_buf, xfer->len,
899				DMA_FROM_DEVICE);
900		if (dma_mapping_error(dev, xfer->rx_dma)) {
901			if (xfer->tx_buf)
902				dma_unmap_single(dev,
903						xfer->tx_dma, xfer->len,
904						DMA_TO_DEVICE);
905			return -ENOMEM;
906		}
907	}
908	return 0;
909}
910
911static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
912				     struct spi_transfer *xfer)
913{
914	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
915		dma_unmap_single(master->dev.parent, xfer->tx_dma,
916				 xfer->len, DMA_TO_DEVICE);
917	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
918		dma_unmap_single(master->dev.parent, xfer->rx_dma,
919				 xfer->len, DMA_FROM_DEVICE);
920}
921
922static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
923{
924	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
925}
926
927static void
928atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
929		struct spi_message *msg, int stay)
930{
931	if (!stay || as->done_status < 0)
932		cs_deactivate(as, msg->spi);
933	else
934		as->stay = msg->spi;
935
936	list_del(&msg->queue);
937	msg->status = as->done_status;
938
939	dev_dbg(master->dev.parent,
940		"xfer complete: %u bytes transferred\n",
941		msg->actual_length);
942
943	atmel_spi_unlock(as);
944	msg->complete(msg->context);
945	atmel_spi_lock(as);
946
947	as->current_transfer = NULL;
948	as->next_transfer = NULL;
949	as->done_status = 0;
950
951	/* continue if needed */
952	if (list_empty(&as->queue) || as->stopping) {
953		if (as->use_pdc)
954			atmel_spi_disable_pdc_transfer(as);
955	} else {
956		atmel_spi_next_message(master);
957	}
958}
959
960/* Called from IRQ
961 * lock is held
962 *
963 * Must update "current_remaining_bytes" to keep track of data
964 * to transfer.
965 */
966static void
967atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
968{
969	u8		*txp;
970	u8		*rxp;
971	u16		*txp16;
972	u16		*rxp16;
973	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
974
975	if (xfer->rx_buf) {
976		if (xfer->bits_per_word > 8) {
977			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
978			*rxp16 = spi_readl(as, RDR);
979		} else {
980			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
981			*rxp = spi_readl(as, RDR);
982		}
983	} else {
984		spi_readl(as, RDR);
985	}
986	if (xfer->bits_per_word > 8) {
987		as->current_remaining_bytes -= 2;
988		if (as->current_remaining_bytes < 0)
989			as->current_remaining_bytes = 0;
990	} else {
991		as->current_remaining_bytes--;
992	}
993
994	if (as->current_remaining_bytes) {
995		if (xfer->tx_buf) {
996			if (xfer->bits_per_word > 8) {
997				txp16 = (u16 *)(((u8 *)xfer->tx_buf)
998							+ xfer_pos + 2);
999				spi_writel(as, TDR, *txp16);
1000			} else {
1001				txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
1002				spi_writel(as, TDR, *txp);
1003			}
1004		} else {
1005			spi_writel(as, TDR, 0);
1006		}
1007	}
1008}
1009
1010/* Tasklet
1011 * Called from DMA callback + pio transfer and overrun IRQ.
1012 */
1013static void atmel_spi_tasklet_func(unsigned long data)
1014{
1015	struct spi_master	*master = (struct spi_master *)data;
1016	struct atmel_spi	*as = spi_master_get_devdata(master);
1017	struct spi_message	*msg;
1018	struct spi_transfer	*xfer;
1019
1020	dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
1021
1022	atmel_spi_lock(as);
1023
1024	xfer = as->current_transfer;
1025
1026	if (xfer == NULL)
1027		/* already been there */
1028		goto tasklet_out;
1029
1030	msg = list_entry(as->queue.next, struct spi_message, queue);
1031
1032	if (as->current_remaining_bytes == 0) {
1033		if (as->done_status < 0) {
1034			/* error happened (overrun) */
1035			if (atmel_spi_use_dma(as, xfer))
1036				atmel_spi_stop_dma(as);
1037		} else {
1038			/* only update length if no error */
1039			msg->actual_length += xfer->len;
1040		}
1041
1042		if (atmel_spi_use_dma(as, xfer))
1043			if (!msg->is_dma_mapped)
1044				atmel_spi_dma_unmap_xfer(master, xfer);
1045
1046		if (xfer->delay_usecs)
1047			udelay(xfer->delay_usecs);
1048
1049		if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1050			/* report completed (or erroneous) message */
1051			atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1052		} else {
1053			if (xfer->cs_change) {
1054				cs_deactivate(as, msg->spi);
1055				udelay(1);
1056				cs_activate(as, msg->spi);
1057			}
1058
1059			/*
1060			 * Not done yet. Submit the next transfer.
1061			 *
1062			 * FIXME handle protocol options for xfer
1063			 */
1064			atmel_spi_dma_next_xfer(master, msg);
1065		}
1066	} else {
1067		/*
1068		 * Keep going, we still have data to send in
1069		 * the current transfer.
1070		 */
1071		atmel_spi_dma_next_xfer(master, msg);
1072	}
1073
1074tasklet_out:
1075	atmel_spi_unlock(as);
1076}
1077
1078/* Interrupt
1079 *
1080 * No need for locking in this Interrupt handler: done_status is the
1081 * only information modified. What we need is the update of this field
1082 * before tasklet runs. This is ensured by using barrier.
1083 */
1084static irqreturn_t
1085atmel_spi_pio_interrupt(int irq, void *dev_id)
1086{
1087	struct spi_master	*master = dev_id;
1088	struct atmel_spi	*as = spi_master_get_devdata(master);
1089	u32			status, pending, imr;
1090	struct spi_transfer	*xfer;
1091	int			ret = IRQ_NONE;
1092
1093	imr = spi_readl(as, IMR);
1094	status = spi_readl(as, SR);
1095	pending = status & imr;
1096
1097	if (pending & SPI_BIT(OVRES)) {
1098		ret = IRQ_HANDLED;
1099		spi_writel(as, IDR, SPI_BIT(OVRES));
1100		dev_warn(master->dev.parent, "overrun\n");
1101
1102		/*
1103		 * When we get an overrun, we disregard the current
1104		 * transfer. Data will not be copied back from any
1105		 * bounce buffer and msg->actual_len will not be
1106		 * updated with the last xfer.
1107		 *
1108		 * We will also not process any remaning transfers in
1109		 * the message.
1110		 *
1111		 * All actions are done in tasklet with done_status indication
1112		 */
1113		as->done_status = -EIO;
1114		smp_wmb();
1115
1116		/* Clear any overrun happening while cleaning up */
1117		spi_readl(as, SR);
1118
1119		tasklet_schedule(&as->tasklet);
1120
1121	} else if (pending & SPI_BIT(RDRF)) {
1122		atmel_spi_lock(as);
1123
1124		if (as->current_remaining_bytes) {
1125			ret = IRQ_HANDLED;
1126			xfer = as->current_transfer;
1127			atmel_spi_pump_pio_data(as, xfer);
1128			if (!as->current_remaining_bytes) {
1129				/* no more data to xfer, kick tasklet */
1130				spi_writel(as, IDR, pending);
1131				tasklet_schedule(&as->tasklet);
1132			}
1133		}
1134
1135		atmel_spi_unlock(as);
1136	} else {
1137		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1138		ret = IRQ_HANDLED;
1139		spi_writel(as, IDR, pending);
1140	}
1141
1142	return ret;
1143}
1144
1145static irqreturn_t
1146atmel_spi_pdc_interrupt(int irq, void *dev_id)
1147{
1148	struct spi_master	*master = dev_id;
1149	struct atmel_spi	*as = spi_master_get_devdata(master);
1150	struct spi_message	*msg;
1151	struct spi_transfer	*xfer;
1152	u32			status, pending, imr;
1153	int			ret = IRQ_NONE;
1154
1155	atmel_spi_lock(as);
1156
1157	xfer = as->current_transfer;
1158	msg = list_entry(as->queue.next, struct spi_message, queue);
1159
1160	imr = spi_readl(as, IMR);
1161	status = spi_readl(as, SR);
1162	pending = status & imr;
1163
1164	if (pending & SPI_BIT(OVRES)) {
1165		int timeout;
1166
1167		ret = IRQ_HANDLED;
1168
1169		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1170				     | SPI_BIT(OVRES)));
1171
1172		/*
1173		 * When we get an overrun, we disregard the current
1174		 * transfer. Data will not be copied back from any
1175		 * bounce buffer and msg->actual_len will not be
1176		 * updated with the last xfer.
1177		 *
1178		 * We will also not process any remaning transfers in
1179		 * the message.
1180		 *
1181		 * First, stop the transfer and unmap the DMA buffers.
1182		 */
1183		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1184		if (!msg->is_dma_mapped)
1185			atmel_spi_dma_unmap_xfer(master, xfer);
1186
1187		/* REVISIT: udelay in irq is unfriendly */
1188		if (xfer->delay_usecs)
1189			udelay(xfer->delay_usecs);
1190
1191		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1192			 spi_readl(as, TCR), spi_readl(as, RCR));
1193
1194		/*
1195		 * Clean up DMA registers and make sure the data
1196		 * registers are empty.
1197		 */
1198		spi_writel(as, RNCR, 0);
1199		spi_writel(as, TNCR, 0);
1200		spi_writel(as, RCR, 0);
1201		spi_writel(as, TCR, 0);
1202		for (timeout = 1000; timeout; timeout--)
1203			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1204				break;
1205		if (!timeout)
1206			dev_warn(master->dev.parent,
1207				 "timeout waiting for TXEMPTY");
1208		while (spi_readl(as, SR) & SPI_BIT(RDRF))
1209			spi_readl(as, RDR);
1210
1211		/* Clear any overrun happening while cleaning up */
1212		spi_readl(as, SR);
1213
1214		as->done_status = -EIO;
1215		atmel_spi_msg_done(master, as, msg, 0);
1216	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1217		ret = IRQ_HANDLED;
1218
1219		spi_writel(as, IDR, pending);
1220
1221		if (as->current_remaining_bytes == 0) {
1222			msg->actual_length += xfer->len;
1223
1224			if (!msg->is_dma_mapped)
1225				atmel_spi_dma_unmap_xfer(master, xfer);
1226
1227			/* REVISIT: udelay in irq is unfriendly */
1228			if (xfer->delay_usecs)
1229				udelay(xfer->delay_usecs);
1230
1231			if (atmel_spi_xfer_is_last(msg, xfer)) {
1232				/* report completed message */
1233				atmel_spi_msg_done(master, as, msg,
1234						xfer->cs_change);
1235			} else {
1236				if (xfer->cs_change) {
1237					cs_deactivate(as, msg->spi);
1238					udelay(1);
1239					cs_activate(as, msg->spi);
1240				}
1241
1242				/*
1243				 * Not done yet. Submit the next transfer.
1244				 *
1245				 * FIXME handle protocol options for xfer
1246				 */
1247				atmel_spi_pdc_next_xfer(master, msg);
1248			}
1249		} else {
1250			/*
1251			 * Keep going, we still have data to send in
1252			 * the current transfer.
1253			 */
1254			atmel_spi_pdc_next_xfer(master, msg);
1255		}
1256	}
1257
1258	atmel_spi_unlock(as);
1259
1260	return ret;
1261}
1262
1263static int atmel_spi_setup(struct spi_device *spi)
1264{
1265	struct atmel_spi	*as;
1266	struct atmel_spi_device	*asd;
1267	u32			scbr, csr;
1268	unsigned int		bits = spi->bits_per_word;
1269	unsigned long		bus_hz;
1270	unsigned int		npcs_pin;
1271	int			ret;
1272
1273	as = spi_master_get_devdata(spi->master);
1274
1275	if (as->stopping)
1276		return -ESHUTDOWN;
1277
1278	if (spi->chip_select > spi->master->num_chipselect) {
1279		dev_dbg(&spi->dev,
1280				"setup: invalid chipselect %u (%u defined)\n",
1281				spi->chip_select, spi->master->num_chipselect);
1282		return -EINVAL;
1283	}
1284
1285	/* see notes above re chipselect */
1286	if (!atmel_spi_is_v2(as)
1287			&& spi->chip_select == 0
1288			&& (spi->mode & SPI_CS_HIGH)) {
1289		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1290		return -EINVAL;
1291	}
1292
1293	/* v1 chips start out at half the peripheral bus speed. */
1294	bus_hz = clk_get_rate(as->clk);
1295	if (!atmel_spi_is_v2(as))
1296		bus_hz /= 2;
1297
1298	if (spi->max_speed_hz) {
1299		/*
1300		 * Calculate the lowest divider that satisfies the
1301		 * constraint, assuming div32/fdiv/mbz == 0.
1302		 */
1303		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1304
1305		/*
1306		 * If the resulting divider doesn't fit into the
1307		 * register bitfield, we can't satisfy the constraint.
1308		 */
1309		if (scbr >= (1 << SPI_SCBR_SIZE)) {
1310			dev_dbg(&spi->dev,
1311				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1312				spi->max_speed_hz, scbr, bus_hz/255);
1313			return -EINVAL;
1314		}
1315	} else
1316		/* speed zero means "as slow as possible" */
1317		scbr = 0xff;
1318
1319	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1320	if (spi->mode & SPI_CPOL)
1321		csr |= SPI_BIT(CPOL);
1322	if (!(spi->mode & SPI_CPHA))
1323		csr |= SPI_BIT(NCPHA);
1324
1325	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1326	 *
1327	 * DLYBCT would add delays between words, slowing down transfers.
1328	 * It could potentially be useful to cope with DMA bottlenecks, but
1329	 * in those cases it's probably best to just use a lower bitrate.
1330	 */
1331	csr |= SPI_BF(DLYBS, 0);
1332	csr |= SPI_BF(DLYBCT, 0);
1333
1334	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1335	npcs_pin = (unsigned int)spi->controller_data;
1336
1337	if (gpio_is_valid(spi->cs_gpio))
1338		npcs_pin = spi->cs_gpio;
1339
1340	asd = spi->controller_state;
1341	if (!asd) {
1342		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1343		if (!asd)
1344			return -ENOMEM;
1345
1346		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1347		if (ret) {
1348			kfree(asd);
1349			return ret;
1350		}
1351
1352		asd->npcs_pin = npcs_pin;
1353		spi->controller_state = asd;
1354		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1355	} else {
1356		atmel_spi_lock(as);
1357		if (as->stay == spi)
1358			as->stay = NULL;
1359		cs_deactivate(as, spi);
1360		atmel_spi_unlock(as);
1361	}
1362
1363	asd->csr = csr;
1364
1365	dev_dbg(&spi->dev,
1366		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1367		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1368
1369	if (!atmel_spi_is_v2(as))
1370		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1371
1372	return 0;
1373}
1374
1375static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1376{
1377	struct atmel_spi	*as;
1378	struct spi_transfer	*xfer;
1379	struct device		*controller = spi->master->dev.parent;
1380	u8			bits;
1381	struct atmel_spi_device	*asd;
1382
1383	as = spi_master_get_devdata(spi->master);
1384
1385	dev_dbg(controller, "new message %p submitted for %s\n",
1386			msg, dev_name(&spi->dev));
1387
1388	if (unlikely(list_empty(&msg->transfers)))
1389		return -EINVAL;
1390
1391	if (as->stopping)
1392		return -ESHUTDOWN;
1393
1394	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1395		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1396			dev_dbg(&spi->dev, "missing rx or tx buf\n");
1397			return -EINVAL;
1398		}
1399
1400		if (xfer->bits_per_word) {
1401			asd = spi->controller_state;
1402			bits = (asd->csr >> 4) & 0xf;
1403			if (bits != xfer->bits_per_word - 8) {
1404				dev_dbg(&spi->dev, "you can't yet change "
1405					 "bits_per_word in transfers\n");
1406				return -ENOPROTOOPT;
1407			}
1408		}
1409
1410		if (xfer->bits_per_word > 8) {
1411			if (xfer->len % 2) {
1412				dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n");
1413				return -EINVAL;
1414			}
1415		}
1416
1417		/* FIXME implement these protocol options!! */
1418		if (xfer->speed_hz < spi->max_speed_hz) {
1419			dev_dbg(&spi->dev, "can't change speed in transfer\n");
1420			return -ENOPROTOOPT;
1421		}
1422
1423		/*
1424		 * DMA map early, for performance (empties dcache ASAP) and
1425		 * better fault reporting.
1426		 */
1427		if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1428			|| as->use_pdc)) {
1429			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1430				return -ENOMEM;
1431		}
1432	}
1433
1434#ifdef VERBOSE
1435	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1436		dev_dbg(controller,
1437			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1438			xfer, xfer->len,
1439			xfer->tx_buf, xfer->tx_dma,
1440			xfer->rx_buf, xfer->rx_dma);
1441	}
1442#endif
1443
1444	msg->status = -EINPROGRESS;
1445	msg->actual_length = 0;
1446
1447	atmel_spi_lock(as);
1448	list_add_tail(&msg->queue, &as->queue);
1449	if (!as->current_transfer)
1450		atmel_spi_next_message(spi->master);
1451	atmel_spi_unlock(as);
1452
1453	return 0;
1454}
1455
1456static void atmel_spi_cleanup(struct spi_device *spi)
1457{
1458	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
1459	struct atmel_spi_device	*asd = spi->controller_state;
1460	unsigned		gpio = (unsigned) spi->controller_data;
1461
1462	if (!asd)
1463		return;
1464
1465	atmel_spi_lock(as);
1466	if (as->stay == spi) {
1467		as->stay = NULL;
1468		cs_deactivate(as, spi);
1469	}
1470	atmel_spi_unlock(as);
1471
1472	spi->controller_state = NULL;
1473	gpio_free(gpio);
1474	kfree(asd);
1475}
1476
1477static inline unsigned int atmel_get_version(struct atmel_spi *as)
1478{
1479	return spi_readl(as, VERSION) & 0x00000fff;
1480}
1481
1482static void atmel_get_caps(struct atmel_spi *as)
1483{
1484	unsigned int version;
1485
1486	version = atmel_get_version(as);
1487	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1488
1489	as->caps.is_spi2 = version > 0x121;
1490	as->caps.has_wdrbt = version >= 0x210;
1491	as->caps.has_dma_support = version >= 0x212;
1492}
1493
1494/*-------------------------------------------------------------------------*/
1495
1496static int atmel_spi_probe(struct platform_device *pdev)
1497{
1498	struct resource		*regs;
1499	int			irq;
1500	struct clk		*clk;
1501	int			ret;
1502	struct spi_master	*master;
1503	struct atmel_spi	*as;
1504
1505	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1506	if (!regs)
1507		return -ENXIO;
1508
1509	irq = platform_get_irq(pdev, 0);
1510	if (irq < 0)
1511		return irq;
1512
1513	clk = clk_get(&pdev->dev, "spi_clk");
1514	if (IS_ERR(clk))
1515		return PTR_ERR(clk);
1516
1517	/* setup spi core then atmel-specific driver state */
1518	ret = -ENOMEM;
1519	master = spi_alloc_master(&pdev->dev, sizeof *as);
1520	if (!master)
1521		goto out_free;
1522
1523	/* the spi->mode bits understood by this driver: */
1524	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1525	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1526	master->dev.of_node = pdev->dev.of_node;
1527	master->bus_num = pdev->id;
1528	master->num_chipselect = master->dev.of_node ? 0 : 4;
1529	master->setup = atmel_spi_setup;
1530	master->transfer = atmel_spi_transfer;
1531	master->cleanup = atmel_spi_cleanup;
1532	platform_set_drvdata(pdev, master);
1533
1534	as = spi_master_get_devdata(master);
1535
1536	/*
1537	 * Scratch buffer is used for throwaway rx and tx data.
1538	 * It's coherent to minimize dcache pollution.
1539	 */
1540	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1541					&as->buffer_dma, GFP_KERNEL);
1542	if (!as->buffer)
1543		goto out_free;
1544
1545	spin_lock_init(&as->lock);
1546	INIT_LIST_HEAD(&as->queue);
1547
1548	as->pdev = pdev;
1549	as->regs = ioremap(regs->start, resource_size(regs));
1550	if (!as->regs)
1551		goto out_free_buffer;
1552	as->phybase = regs->start;
1553	as->irq = irq;
1554	as->clk = clk;
1555
1556	atmel_get_caps(as);
1557
1558	as->use_dma = false;
1559	as->use_pdc = false;
1560	if (as->caps.has_dma_support) {
1561		if (atmel_spi_configure_dma(as) == 0)
1562			as->use_dma = true;
1563	} else {
1564		as->use_pdc = true;
1565	}
1566
1567	if (as->caps.has_dma_support && !as->use_dma)
1568		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1569
1570	if (as->use_pdc) {
1571		ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1572					dev_name(&pdev->dev), master);
1573	} else {
1574		tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1575					(unsigned long)master);
1576
1577		ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1578					dev_name(&pdev->dev), master);
1579	}
1580	if (ret)
1581		goto out_unmap_regs;
1582
1583	/* Initialize the hardware */
1584	ret = clk_prepare_enable(clk);
1585	if (ret)
1586		goto out_unmap_regs;
1587	spi_writel(as, CR, SPI_BIT(SWRST));
1588	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1589	if (as->caps.has_wdrbt) {
1590		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1591				| SPI_BIT(MSTR));
1592	} else {
1593		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1594	}
1595
1596	if (as->use_pdc)
1597		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1598	spi_writel(as, CR, SPI_BIT(SPIEN));
1599
1600	/* go! */
1601	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1602			(unsigned long)regs->start, irq);
1603
1604	ret = spi_register_master(master);
1605	if (ret)
1606		goto out_free_dma;
1607
1608	return 0;
1609
1610out_free_dma:
1611	if (as->use_dma)
1612		atmel_spi_release_dma(as);
1613
1614	spi_writel(as, CR, SPI_BIT(SWRST));
1615	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1616	clk_disable_unprepare(clk);
1617	free_irq(irq, master);
1618out_unmap_regs:
1619	iounmap(as->regs);
1620out_free_buffer:
1621	if (!as->use_pdc)
1622		tasklet_kill(&as->tasklet);
1623	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1624			as->buffer_dma);
1625out_free:
1626	clk_put(clk);
1627	spi_master_put(master);
1628	return ret;
1629}
1630
1631static int atmel_spi_remove(struct platform_device *pdev)
1632{
1633	struct spi_master	*master = platform_get_drvdata(pdev);
1634	struct atmel_spi	*as = spi_master_get_devdata(master);
1635	struct spi_message	*msg;
1636	struct spi_transfer	*xfer;
1637
1638	/* reset the hardware and block queue progress */
1639	spin_lock_irq(&as->lock);
1640	as->stopping = 1;
1641	if (as->use_dma) {
1642		atmel_spi_stop_dma(as);
1643		atmel_spi_release_dma(as);
1644	}
1645
1646	spi_writel(as, CR, SPI_BIT(SWRST));
1647	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1648	spi_readl(as, SR);
1649	spin_unlock_irq(&as->lock);
1650
1651	/* Terminate remaining queued transfers */
1652	list_for_each_entry(msg, &as->queue, queue) {
1653		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1654			if (!msg->is_dma_mapped
1655				&& (atmel_spi_use_dma(as, xfer)
1656					|| as->use_pdc))
1657				atmel_spi_dma_unmap_xfer(master, xfer);
1658		}
1659		msg->status = -ESHUTDOWN;
1660		msg->complete(msg->context);
1661	}
1662
1663	if (!as->use_pdc)
1664		tasklet_kill(&as->tasklet);
1665	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1666			as->buffer_dma);
1667
1668	clk_disable_unprepare(as->clk);
1669	clk_put(as->clk);
1670	free_irq(as->irq, master);
1671	iounmap(as->regs);
1672
1673	spi_unregister_master(master);
1674
1675	return 0;
1676}
1677
1678#ifdef CONFIG_PM_SLEEP
1679static int atmel_spi_suspend(struct device *dev)
1680{
1681	struct spi_master	*master = dev_get_drvdata(dev);
1682	struct atmel_spi	*as = spi_master_get_devdata(master);
1683
1684	clk_disable_unprepare(as->clk);
1685	return 0;
1686}
1687
1688static int atmel_spi_resume(struct device *dev)
1689{
1690	struct spi_master	*master = dev_get_drvdata(dev);
1691	struct atmel_spi	*as = spi_master_get_devdata(master);
1692
1693	clk_prepare_enable(as->clk);
1694	return 0;
1695}
1696
1697static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
1698
1699#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1700#else
1701#define ATMEL_SPI_PM_OPS	NULL
1702#endif
1703
1704#if defined(CONFIG_OF)
1705static const struct of_device_id atmel_spi_dt_ids[] = {
1706	{ .compatible = "atmel,at91rm9200-spi" },
1707	{ /* sentinel */ }
1708};
1709
1710MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1711#endif
1712
1713static struct platform_driver atmel_spi_driver = {
1714	.driver		= {
1715		.name	= "atmel_spi",
1716		.owner	= THIS_MODULE,
1717		.pm	= ATMEL_SPI_PM_OPS,
1718		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1719	},
1720	.probe		= atmel_spi_probe,
1721	.remove		= atmel_spi_remove,
1722};
1723module_platform_driver(atmel_spi_driver);
1724
1725MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1726MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1727MODULE_LICENSE("GPL");
1728MODULE_ALIAS("platform:atmel_spi");
1729