spi-bcm2835.c revision 78e39523b8c9721250b54b7fd930aeced56cf511
1/*
2 * Driver for Broadcom BCM2835 SPI Controllers
3 *
4 * Copyright (C) 2012 Chris Boot
5 * Copyright (C) 2013 Stephen Warren
6 *
7 * This driver is inspired by:
8 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
9 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 */
25
26#include <linux/clk.h>
27#include <linux/completion.h>
28#include <linux/delay.h>
29#include <linux/err.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/kernel.h>
33#include <linux/module.h>
34#include <linux/of.h>
35#include <linux/of_irq.h>
36#include <linux/of_device.h>
37#include <linux/spi/spi.h>
38
39/* SPI register offsets */
40#define BCM2835_SPI_CS			0x00
41#define BCM2835_SPI_FIFO		0x04
42#define BCM2835_SPI_CLK			0x08
43#define BCM2835_SPI_DLEN		0x0c
44#define BCM2835_SPI_LTOH		0x10
45#define BCM2835_SPI_DC			0x14
46
47/* Bitfields in CS */
48#define BCM2835_SPI_CS_LEN_LONG		0x02000000
49#define BCM2835_SPI_CS_DMA_LEN		0x01000000
50#define BCM2835_SPI_CS_CSPOL2		0x00800000
51#define BCM2835_SPI_CS_CSPOL1		0x00400000
52#define BCM2835_SPI_CS_CSPOL0		0x00200000
53#define BCM2835_SPI_CS_RXF		0x00100000
54#define BCM2835_SPI_CS_RXR		0x00080000
55#define BCM2835_SPI_CS_TXD		0x00040000
56#define BCM2835_SPI_CS_RXD		0x00020000
57#define BCM2835_SPI_CS_DONE		0x00010000
58#define BCM2835_SPI_CS_LEN		0x00002000
59#define BCM2835_SPI_CS_REN		0x00001000
60#define BCM2835_SPI_CS_ADCS		0x00000800
61#define BCM2835_SPI_CS_INTR		0x00000400
62#define BCM2835_SPI_CS_INTD		0x00000200
63#define BCM2835_SPI_CS_DMAEN		0x00000100
64#define BCM2835_SPI_CS_TA		0x00000080
65#define BCM2835_SPI_CS_CSPOL		0x00000040
66#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
67#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
68#define BCM2835_SPI_CS_CPOL		0x00000008
69#define BCM2835_SPI_CS_CPHA		0x00000004
70#define BCM2835_SPI_CS_CS_10		0x00000002
71#define BCM2835_SPI_CS_CS_01		0x00000001
72
73#define BCM2835_SPI_TIMEOUT_MS	30000
74#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS)
75
76#define DRV_NAME	"spi-bcm2835"
77
78struct bcm2835_spi {
79	void __iomem *regs;
80	struct clk *clk;
81	int irq;
82	struct completion done;
83	const u8 *tx_buf;
84	u8 *rx_buf;
85	int len;
86};
87
88static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
89{
90	return readl(bs->regs + reg);
91}
92
93static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
94{
95	writel(val, bs->regs + reg);
96}
97
98static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs, int len)
99{
100	u8 byte;
101
102	while (len--) {
103		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
104		if (bs->rx_buf)
105			*bs->rx_buf++ = byte;
106	}
107}
108
109static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs, int len)
110{
111	u8 byte;
112
113	if (len > bs->len)
114		len = bs->len;
115
116	while (len--) {
117		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
118		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
119		bs->len--;
120	}
121}
122
123static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
124{
125	struct spi_master *master = dev_id;
126	struct bcm2835_spi *bs = spi_master_get_devdata(master);
127	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
128
129	/*
130	 * RXR - RX needs Reading. This means 12 (or more) bytes have been
131	 * transmitted and hence 12 (or more) bytes have been received.
132	 *
133	 * The FIFO is 16-bytes deep. We check for this interrupt to keep the
134	 * FIFO full; we have a 4-byte-time buffer for IRQ latency. We check
135	 * this before DONE (TX empty) just in case we delayed processing this
136	 * interrupt for some reason.
137	 *
138	 * We only check for this case if we have more bytes to TX; at the end
139	 * of the transfer, we ignore this pipelining optimization, and let
140	 * bcm2835_spi_finish_transfer() drain the RX FIFO.
141	 */
142	if (bs->len && (cs & BCM2835_SPI_CS_RXR)) {
143		/* Read 12 bytes of data */
144		bcm2835_rd_fifo(bs, 12);
145
146		/* Write up to 12 bytes */
147		bcm2835_wr_fifo(bs, 12);
148
149		/*
150		 * We must have written something to the TX FIFO due to the
151		 * bs->len check above, so cannot be DONE. Hence, return
152		 * early. Note that DONE could also be set if we serviced an
153		 * RXR interrupt really late.
154		 */
155		return IRQ_HANDLED;
156	}
157
158	/*
159	 * DONE - TX empty. This occurs when we first enable the transfer
160	 * since we do not pre-fill the TX FIFO. At any other time, given that
161	 * we refill the TX FIFO above based on RXR, and hence ignore DONE if
162	 * RXR is set, DONE really does mean end-of-transfer.
163	 */
164	if (cs & BCM2835_SPI_CS_DONE) {
165		if (bs->len) { /* First interrupt in a transfer */
166			bcm2835_wr_fifo(bs, 16);
167		} else { /* Transfer complete */
168			/* Disable SPI interrupts */
169			cs &= ~(BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD);
170			bcm2835_wr(bs, BCM2835_SPI_CS, cs);
171
172			/*
173			 * Wake up bcm2835_spi_transfer_one(), which will call
174			 * bcm2835_spi_finish_transfer(), to drain the RX FIFO.
175			 */
176			complete(&bs->done);
177		}
178
179		return IRQ_HANDLED;
180	}
181
182	return IRQ_NONE;
183}
184
185static int bcm2835_spi_start_transfer(struct spi_device *spi,
186		struct spi_transfer *tfr)
187{
188	struct bcm2835_spi *bs = spi_master_get_devdata(spi->master);
189	unsigned long spi_hz, clk_hz, cdiv;
190	u32 cs = BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
191
192	spi_hz = tfr->speed_hz;
193	clk_hz = clk_get_rate(bs->clk);
194
195	if (spi_hz >= clk_hz / 2) {
196		cdiv = 2; /* clk_hz/2 is the fastest we can go */
197	} else if (spi_hz) {
198		/* CDIV must be a power of two */
199		cdiv = roundup_pow_of_two(DIV_ROUND_UP(clk_hz, spi_hz));
200
201		if (cdiv >= 65536)
202			cdiv = 0; /* 0 is the slowest we can go */
203	} else
204		cdiv = 0; /* 0 is the slowest we can go */
205
206	if (spi->mode & SPI_CPOL)
207		cs |= BCM2835_SPI_CS_CPOL;
208	if (spi->mode & SPI_CPHA)
209		cs |= BCM2835_SPI_CS_CPHA;
210
211	if (!(spi->mode & SPI_NO_CS)) {
212		if (spi->mode & SPI_CS_HIGH) {
213			cs |= BCM2835_SPI_CS_CSPOL;
214			cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
215		}
216
217		cs |= spi->chip_select;
218	}
219
220	reinit_completion(&bs->done);
221	bs->tx_buf = tfr->tx_buf;
222	bs->rx_buf = tfr->rx_buf;
223	bs->len = tfr->len;
224
225	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
226	/*
227	 * Enable the HW block. This will immediately trigger a DONE (TX
228	 * empty) interrupt, upon which we will fill the TX FIFO with the
229	 * first TX bytes. Pre-filling the TX FIFO here to avoid the
230	 * interrupt doesn't work:-(
231	 */
232	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
233
234	return 0;
235}
236
237static int bcm2835_spi_finish_transfer(struct spi_device *spi,
238		struct spi_transfer *tfr, bool cs_change)
239{
240	struct bcm2835_spi *bs = spi_master_get_devdata(spi->master);
241	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
242
243	/* Drain RX FIFO */
244	while (cs & BCM2835_SPI_CS_RXD) {
245		bcm2835_rd_fifo(bs, 1);
246		cs = bcm2835_rd(bs, BCM2835_SPI_CS);
247	}
248
249	if (tfr->delay_usecs)
250		udelay(tfr->delay_usecs);
251
252	if (cs_change)
253		/* Clear TA flag */
254		bcm2835_wr(bs, BCM2835_SPI_CS, cs & ~BCM2835_SPI_CS_TA);
255
256	return 0;
257}
258
259static int bcm2835_spi_transfer_one(struct spi_master *master,
260		struct spi_message *mesg)
261{
262	struct bcm2835_spi *bs = spi_master_get_devdata(master);
263	struct spi_transfer *tfr;
264	struct spi_device *spi = mesg->spi;
265	int err = 0;
266	unsigned int timeout;
267	bool cs_change;
268
269	list_for_each_entry(tfr, &mesg->transfers, transfer_list) {
270		err = bcm2835_spi_start_transfer(spi, tfr);
271		if (err)
272			goto out;
273
274		timeout = wait_for_completion_timeout(&bs->done,
275				msecs_to_jiffies(BCM2835_SPI_TIMEOUT_MS));
276		if (!timeout) {
277			err = -ETIMEDOUT;
278			goto out;
279		}
280
281		cs_change = tfr->cs_change ||
282			list_is_last(&tfr->transfer_list, &mesg->transfers);
283
284		err = bcm2835_spi_finish_transfer(spi, tfr, cs_change);
285		if (err)
286			goto out;
287
288		mesg->actual_length += (tfr->len - bs->len);
289	}
290
291out:
292	/* Clear FIFOs, and disable the HW block */
293	bcm2835_wr(bs, BCM2835_SPI_CS,
294		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
295	mesg->status = err;
296	spi_finalize_current_message(master);
297
298	return 0;
299}
300
301static int bcm2835_spi_probe(struct platform_device *pdev)
302{
303	struct spi_master *master;
304	struct bcm2835_spi *bs;
305	struct resource *res;
306	int err;
307
308	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
309	if (!master) {
310		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
311		return -ENOMEM;
312	}
313
314	platform_set_drvdata(pdev, master);
315
316	master->mode_bits = BCM2835_SPI_MODE_BITS;
317	master->bits_per_word_mask = SPI_BPW_MASK(8);
318	master->num_chipselect = 3;
319	master->transfer_one_message = bcm2835_spi_transfer_one;
320	master->dev.of_node = pdev->dev.of_node;
321
322	bs = spi_master_get_devdata(master);
323
324	init_completion(&bs->done);
325
326	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
327	bs->regs = devm_ioremap_resource(&pdev->dev, res);
328	if (IS_ERR(bs->regs)) {
329		err = PTR_ERR(bs->regs);
330		goto out_master_put;
331	}
332
333	bs->clk = devm_clk_get(&pdev->dev, NULL);
334	if (IS_ERR(bs->clk)) {
335		err = PTR_ERR(bs->clk);
336		dev_err(&pdev->dev, "could not get clk: %d\n", err);
337		goto out_master_put;
338	}
339
340	bs->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
341	if (bs->irq <= 0) {
342		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
343		err = bs->irq ? bs->irq : -ENODEV;
344		goto out_master_put;
345	}
346
347	clk_prepare_enable(bs->clk);
348
349	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
350				dev_name(&pdev->dev), master);
351	if (err) {
352		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
353		goto out_clk_disable;
354	}
355
356	/* initialise the hardware */
357	bcm2835_wr(bs, BCM2835_SPI_CS,
358		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
359
360	err = devm_spi_register_master(&pdev->dev, master);
361	if (err) {
362		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
363		goto out_clk_disable;
364	}
365
366	return 0;
367
368out_clk_disable:
369	clk_disable_unprepare(bs->clk);
370out_master_put:
371	spi_master_put(master);
372	return err;
373}
374
375static int bcm2835_spi_remove(struct platform_device *pdev)
376{
377	struct spi_master *master = platform_get_drvdata(pdev);
378	struct bcm2835_spi *bs = spi_master_get_devdata(master);
379
380	/* Clear FIFOs, and disable the HW block */
381	bcm2835_wr(bs, BCM2835_SPI_CS,
382		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
383
384	clk_disable_unprepare(bs->clk);
385
386	return 0;
387}
388
389static const struct of_device_id bcm2835_spi_match[] = {
390	{ .compatible = "brcm,bcm2835-spi", },
391	{}
392};
393MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
394
395static struct platform_driver bcm2835_spi_driver = {
396	.driver		= {
397		.name		= DRV_NAME,
398		.owner		= THIS_MODULE,
399		.of_match_table	= bcm2835_spi_match,
400	},
401	.probe		= bcm2835_spi_probe,
402	.remove		= bcm2835_spi_remove,
403};
404module_platform_driver(bcm2835_spi_driver);
405
406MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
407MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
408MODULE_LICENSE("GPL v2");
409