rw.c revision 23f14e79ace301c1e46b52344ce02e72254c57b6
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/llite/rw.c
37 *
38 * Lustre Lite I/O page cache routines shared by different kernel revs
39 */
40
41#include <linux/kernel.h>
42#include <linux/mm.h>
43#include <linux/string.h>
44#include <linux/stat.h>
45#include <linux/errno.h>
46#include <linux/unistd.h>
47#include <linux/writeback.h>
48#include <asm/uaccess.h>
49
50#include <linux/fs.h>
51#include <linux/pagemap.h>
52/* current_is_kswapd() */
53#include <linux/swap.h>
54
55#define DEBUG_SUBSYSTEM S_LLITE
56
57#include <lustre_lite.h>
58#include <obd_cksum.h>
59#include "llite_internal.h"
60#include <linux/lustre_compat25.h>
61
62/**
63 * Finalizes cl-data before exiting typical address_space operation. Dual to
64 * ll_cl_init().
65 */
66static void ll_cl_fini(struct ll_cl_context *lcc)
67{
68	struct lu_env  *env  = lcc->lcc_env;
69	struct cl_io   *io   = lcc->lcc_io;
70	struct cl_page *page = lcc->lcc_page;
71
72	LASSERT(lcc->lcc_cookie == current);
73	LASSERT(env != NULL);
74
75	if (page != NULL) {
76		lu_ref_del(&page->cp_reference, "cl_io", io);
77		cl_page_put(env, page);
78	}
79
80	if (io && lcc->lcc_created) {
81		cl_io_end(env, io);
82		cl_io_unlock(env, io);
83		cl_io_iter_fini(env, io);
84		cl_io_fini(env, io);
85	}
86	cl_env_put(env, &lcc->lcc_refcheck);
87}
88
89/**
90 * Initializes common cl-data at the typical address_space operation entry
91 * point.
92 */
93static struct ll_cl_context *ll_cl_init(struct file *file,
94					struct page *vmpage, int create)
95{
96	struct ll_cl_context *lcc;
97	struct lu_env    *env;
98	struct cl_io     *io;
99	struct cl_object *clob;
100	struct ccc_io    *cio;
101
102	int refcheck;
103	int result = 0;
104
105	clob = ll_i2info(vmpage->mapping->host)->lli_clob;
106	LASSERT(clob != NULL);
107
108	env = cl_env_get(&refcheck);
109	if (IS_ERR(env))
110		return ERR_CAST(env);
111
112	lcc = &vvp_env_info(env)->vti_io_ctx;
113	memset(lcc, 0, sizeof(*lcc));
114	lcc->lcc_env = env;
115	lcc->lcc_refcheck = refcheck;
116	lcc->lcc_cookie = current;
117
118	cio = ccc_env_io(env);
119	io = cio->cui_cl.cis_io;
120	if (io == NULL && create) {
121		struct inode *inode = vmpage->mapping->host;
122		loff_t pos;
123
124		if (mutex_trylock(&inode->i_mutex)) {
125			mutex_unlock(&(inode)->i_mutex);
126
127			/* this is too bad. Someone is trying to write the
128			 * page w/o holding inode mutex. This means we can
129			 * add dirty pages into cache during truncate */
130			CERROR("Proc %s is dirting page w/o inode lock, this"
131			       "will break truncate.\n", current->comm);
132			dump_stack();
133			LBUG();
134			return ERR_PTR(-EIO);
135		}
136
137		/*
138		 * Loop-back driver calls ->prepare_write() and ->sendfile()
139		 * methods directly, bypassing file system ->write() operation,
140		 * so cl_io has to be created here.
141		 */
142		io = ccc_env_thread_io(env);
143		ll_io_init(io, file, 1);
144
145		/* No lock at all for this kind of IO - we can't do it because
146		 * we have held page lock, it would cause deadlock.
147		 * XXX: This causes poor performance to loop device - One page
148		 *      per RPC.
149		 *      In order to get better performance, users should use
150		 *      lloop driver instead.
151		 */
152		io->ci_lockreq = CILR_NEVER;
153
154		pos = (vmpage->index << PAGE_CACHE_SHIFT);
155
156		/* Create a temp IO to serve write. */
157		result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
158		if (result == 0) {
159			cio->cui_fd = LUSTRE_FPRIVATE(file);
160			cio->cui_iov = NULL;
161			cio->cui_nrsegs = 0;
162			result = cl_io_iter_init(env, io);
163			if (result == 0) {
164				result = cl_io_lock(env, io);
165				if (result == 0)
166					result = cl_io_start(env, io);
167			}
168		} else
169			result = io->ci_result;
170		lcc->lcc_created = 1;
171	}
172
173	lcc->lcc_io = io;
174	if (io == NULL)
175		result = -EIO;
176	if (result == 0) {
177		struct cl_page   *page;
178
179		LASSERT(io != NULL);
180		LASSERT(io->ci_state == CIS_IO_GOING);
181		LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
182		page = cl_page_find(env, clob, vmpage->index, vmpage,
183				    CPT_CACHEABLE);
184		if (!IS_ERR(page)) {
185			lcc->lcc_page = page;
186			lu_ref_add(&page->cp_reference, "cl_io", io);
187			result = 0;
188		} else
189			result = PTR_ERR(page);
190	}
191	if (result) {
192		ll_cl_fini(lcc);
193		lcc = ERR_PTR(result);
194	}
195
196	CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
197	       vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
198	       env, io);
199	return lcc;
200}
201
202static struct ll_cl_context *ll_cl_get(void)
203{
204	struct ll_cl_context *lcc;
205	struct lu_env *env;
206	int refcheck;
207
208	env = cl_env_get(&refcheck);
209	LASSERT(!IS_ERR(env));
210	lcc = &vvp_env_info(env)->vti_io_ctx;
211	LASSERT(env == lcc->lcc_env);
212	LASSERT(current == lcc->lcc_cookie);
213	cl_env_put(env, &refcheck);
214
215	/* env has got in ll_cl_init, so it is still usable. */
216	return lcc;
217}
218
219/**
220 * ->prepare_write() address space operation called by generic_file_write()
221 * for every page during write.
222 */
223int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
224		     unsigned to)
225{
226	struct ll_cl_context *lcc;
227	int result;
228
229	lcc = ll_cl_init(file, vmpage, 1);
230	if (!IS_ERR(lcc)) {
231		struct lu_env  *env = lcc->lcc_env;
232		struct cl_io   *io  = lcc->lcc_io;
233		struct cl_page *page = lcc->lcc_page;
234
235		cl_page_assume(env, io, page);
236
237		result = cl_io_prepare_write(env, io, page, from, to);
238		if (result == 0) {
239			/*
240			 * Add a reference, so that page is not evicted from
241			 * the cache until ->commit_write() is called.
242			 */
243			cl_page_get(page);
244			lu_ref_add(&page->cp_reference, "prepare_write",
245				   current);
246		} else {
247			cl_page_unassume(env, io, page);
248			ll_cl_fini(lcc);
249		}
250		/* returning 0 in prepare assumes commit must be called
251		 * afterwards */
252	} else {
253		result = PTR_ERR(lcc);
254	}
255	RETURN(result);
256}
257
258int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
259		    unsigned to)
260{
261	struct ll_cl_context *lcc;
262	struct lu_env    *env;
263	struct cl_io     *io;
264	struct cl_page   *page;
265	int result = 0;
266
267	lcc  = ll_cl_get();
268	env  = lcc->lcc_env;
269	page = lcc->lcc_page;
270	io   = lcc->lcc_io;
271
272	LASSERT(cl_page_is_owned(page, io));
273	LASSERT(from <= to);
274	if (from != to) /* handle short write case. */
275		result = cl_io_commit_write(env, io, page, from, to);
276	if (cl_page_is_owned(page, io))
277		cl_page_unassume(env, io, page);
278
279	/*
280	 * Release reference acquired by ll_prepare_write().
281	 */
282	lu_ref_del(&page->cp_reference, "prepare_write", current);
283	cl_page_put(env, page);
284	ll_cl_fini(lcc);
285	RETURN(result);
286}
287
288struct obd_capa *cl_capa_lookup(struct inode *inode, enum cl_req_type crt)
289{
290	__u64 opc;
291
292	opc = crt == CRT_WRITE ? CAPA_OPC_OSS_WRITE : CAPA_OPC_OSS_RW;
293	return ll_osscapa_get(inode, opc);
294}
295
296static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
297
298/**
299 * Get readahead pages from the filesystem readahead pool of the client for a
300 * thread.
301 *
302 * /param sbi superblock for filesystem readahead state ll_ra_info
303 * /param ria per-thread readahead state
304 * /param pages number of pages requested for readahead for the thread.
305 *
306 * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
307 * It should work well if the ra_max_pages is much greater than the single
308 * file's read-ahead window, and not too many threads contending for
309 * these readahead pages.
310 *
311 * TODO: There may be a 'global sync problem' if many threads are trying
312 * to get an ra budget that is larger than the remaining readahead pages
313 * and reach here at exactly the same time. They will compute /a ret to
314 * consume the remaining pages, but will fail at atomic_add_return() and
315 * get a zero ra window, although there is still ra space remaining. - Jay */
316
317static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
318				     struct ra_io_arg *ria,
319				     unsigned long pages)
320{
321	struct ll_ra_info *ra = &sbi->ll_ra_info;
322	long ret;
323
324	/* If read-ahead pages left are less than 1M, do not do read-ahead,
325	 * otherwise it will form small read RPC(< 1M), which hurt server
326	 * performance a lot. */
327	ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
328	if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages))
329		GOTO(out, ret = 0);
330
331	/* If the non-strided (ria_pages == 0) readahead window
332	 * (ria_start + ret) has grown across an RPC boundary, then trim
333	 * readahead size by the amount beyond the RPC so it ends on an
334	 * RPC boundary. If the readahead window is already ending on
335	 * an RPC boundary (beyond_rpc == 0), or smaller than a full
336	 * RPC (beyond_rpc < ret) the readahead size is unchanged.
337	 * The (beyond_rpc != 0) check is skipped since the conditional
338	 * branch is more expensive than subtracting zero from the result.
339	 *
340	 * Strided read is left unaligned to avoid small fragments beyond
341	 * the RPC boundary from needing an extra read RPC. */
342	if (ria->ria_pages == 0) {
343		long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
344		if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
345			ret -= beyond_rpc;
346	}
347
348	if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
349		atomic_sub(ret, &ra->ra_cur_pages);
350		ret = 0;
351	}
352
353out:
354	RETURN(ret);
355}
356
357void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
358{
359	struct ll_ra_info *ra = &sbi->ll_ra_info;
360	atomic_sub(len, &ra->ra_cur_pages);
361}
362
363static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
364{
365	LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
366	lprocfs_counter_incr(sbi->ll_ra_stats, which);
367}
368
369void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
370{
371	struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
372	ll_ra_stats_inc_sbi(sbi, which);
373}
374
375#define RAS_CDEBUG(ras) \
376	CDEBUG(D_READA,						      \
377	       "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu"    \
378	       "csr %lu sf %lu sp %lu sl %lu \n",			    \
379	       ras->ras_last_readpage, ras->ras_consecutive_requests,	\
380	       ras->ras_consecutive_pages, ras->ras_window_start,	    \
381	       ras->ras_window_len, ras->ras_next_readahead,		 \
382	       ras->ras_requests, ras->ras_request_index,		    \
383	       ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
384	       ras->ras_stride_pages, ras->ras_stride_length)
385
386static int index_in_window(unsigned long index, unsigned long point,
387			   unsigned long before, unsigned long after)
388{
389	unsigned long start = point - before, end = point + after;
390
391	if (start > point)
392	       start = 0;
393	if (end < point)
394	       end = ~0;
395
396	return start <= index && index <= end;
397}
398
399static struct ll_readahead_state *ll_ras_get(struct file *f)
400{
401	struct ll_file_data       *fd;
402
403	fd = LUSTRE_FPRIVATE(f);
404	return &fd->fd_ras;
405}
406
407void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
408{
409	struct ll_readahead_state *ras;
410
411	ras = ll_ras_get(f);
412
413	spin_lock(&ras->ras_lock);
414	ras->ras_requests++;
415	ras->ras_request_index = 0;
416	ras->ras_consecutive_requests++;
417	rar->lrr_reader = current;
418
419	list_add(&rar->lrr_linkage, &ras->ras_read_beads);
420	spin_unlock(&ras->ras_lock);
421}
422
423void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
424{
425	struct ll_readahead_state *ras;
426
427	ras = ll_ras_get(f);
428
429	spin_lock(&ras->ras_lock);
430	list_del_init(&rar->lrr_linkage);
431	spin_unlock(&ras->ras_lock);
432}
433
434static struct ll_ra_read *ll_ra_read_get_locked(struct ll_readahead_state *ras)
435{
436	struct ll_ra_read *scan;
437
438	list_for_each_entry(scan, &ras->ras_read_beads, lrr_linkage) {
439		if (scan->lrr_reader == current)
440			return scan;
441	}
442	return NULL;
443}
444
445struct ll_ra_read *ll_ra_read_get(struct file *f)
446{
447	struct ll_readahead_state *ras;
448	struct ll_ra_read	 *bead;
449
450	ras = ll_ras_get(f);
451
452	spin_lock(&ras->ras_lock);
453	bead = ll_ra_read_get_locked(ras);
454	spin_unlock(&ras->ras_lock);
455	return bead;
456}
457
458static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
459			      struct cl_page_list *queue, struct cl_page *page,
460			      struct page *vmpage)
461{
462	struct ccc_page *cp;
463	int	      rc;
464
465	rc = 0;
466	cl_page_assume(env, io, page);
467	lu_ref_add(&page->cp_reference, "ra", current);
468	cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
469	if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
470		rc = cl_page_is_under_lock(env, io, page);
471		if (rc == -EBUSY) {
472			cp->cpg_defer_uptodate = 1;
473			cp->cpg_ra_used = 0;
474			cl_page_list_add(queue, page);
475			rc = 1;
476		} else {
477			cl_page_delete(env, page);
478			rc = -ENOLCK;
479		}
480	} else {
481		/* skip completed pages */
482		cl_page_unassume(env, io, page);
483	}
484	lu_ref_del(&page->cp_reference, "ra", current);
485	cl_page_put(env, page);
486	RETURN(rc);
487}
488
489/**
490 * Initiates read-ahead of a page with given index.
491 *
492 * \retval     +ve: page was added to \a queue.
493 *
494 * \retval -ENOLCK: there is no extent lock for this part of a file, stop
495 *		  read-ahead.
496 *
497 * \retval  -ve, 0: page wasn't added to \a queue for other reason.
498 */
499static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
500			      struct cl_page_list *queue,
501			      pgoff_t index, struct address_space *mapping)
502{
503	struct page      *vmpage;
504	struct cl_object *clob  = ll_i2info(mapping->host)->lli_clob;
505	struct cl_page   *page;
506	enum ra_stat      which = _NR_RA_STAT; /* keep gcc happy */
507	unsigned int      gfp_mask;
508	int	       rc    = 0;
509	const char       *msg   = NULL;
510
511	gfp_mask = GFP_HIGHUSER & ~__GFP_WAIT;
512#ifdef __GFP_NOWARN
513	gfp_mask |= __GFP_NOWARN;
514#endif
515	vmpage = grab_cache_page_nowait(mapping, index);
516	if (vmpage != NULL) {
517		/* Check if vmpage was truncated or reclaimed */
518		if (vmpage->mapping == mapping) {
519			page = cl_page_find(env, clob, vmpage->index,
520					    vmpage, CPT_CACHEABLE);
521			if (!IS_ERR(page)) {
522				rc = cl_read_ahead_page(env, io, queue,
523							page, vmpage);
524				if (rc == -ENOLCK) {
525					which = RA_STAT_FAILED_MATCH;
526					msg   = "lock match failed";
527				}
528			} else {
529				which = RA_STAT_FAILED_GRAB_PAGE;
530				msg   = "cl_page_find failed";
531			}
532		} else {
533			which = RA_STAT_WRONG_GRAB_PAGE;
534			msg   = "g_c_p_n returned invalid page";
535		}
536		if (rc != 1)
537			unlock_page(vmpage);
538		page_cache_release(vmpage);
539	} else {
540		which = RA_STAT_FAILED_GRAB_PAGE;
541		msg   = "g_c_p_n failed";
542	}
543	if (msg != NULL) {
544		ll_ra_stats_inc(mapping, which);
545		CDEBUG(D_READA, "%s\n", msg);
546	}
547	RETURN(rc);
548}
549
550#define RIA_DEBUG(ria)						       \
551	CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n",       \
552	ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
553	ria->ria_pages)
554
555/* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
556 * know what the actual RPC size is.  If this needs to change, it makes more
557 * sense to tune the i_blkbits value for the file based on the OSTs it is
558 * striped over, rather than having a constant value for all files here. */
559
560/* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
561 * Temprarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
562 * by default, this should be adjusted corresponding with max_read_ahead_mb
563 * and max_read_ahead_per_file_mb otherwise the readahead budget can be used
564 * up quickly which will affect read performance siginificantly. See LU-2816 */
565#define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
566
567static inline int stride_io_mode(struct ll_readahead_state *ras)
568{
569	return ras->ras_consecutive_stride_requests > 1;
570}
571/* The function calculates how much pages will be read in
572 * [off, off + length], in such stride IO area,
573 * stride_offset = st_off, stride_lengh = st_len,
574 * stride_pages = st_pgs
575 *
576 *   |------------------|*****|------------------|*****|------------|*****|....
577 * st_off
578 *   |--- st_pgs     ---|
579 *   |-----     st_len   -----|
580 *
581 *	      How many pages it should read in such pattern
582 *	      |-------------------------------------------------------------|
583 *	      off
584 *	      |<------		  length		      ------->|
585 *
586 *	  =   |<----->|  +  |-------------------------------------| +   |---|
587 *	     start_left		 st_pgs * i		    end_left
588 */
589static unsigned long
590stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
591		unsigned long off, unsigned long length)
592{
593	__u64 start = off > st_off ? off - st_off : 0;
594	__u64 end = off + length > st_off ? off + length - st_off : 0;
595	unsigned long start_left = 0;
596	unsigned long end_left = 0;
597	unsigned long pg_count;
598
599	if (st_len == 0 || length == 0 || end == 0)
600		return length;
601
602	start_left = do_div(start, st_len);
603	if (start_left < st_pgs)
604		start_left = st_pgs - start_left;
605	else
606		start_left = 0;
607
608	end_left = do_div(end, st_len);
609	if (end_left > st_pgs)
610		end_left = st_pgs;
611
612	CDEBUG(D_READA, "start "LPU64", end "LPU64" start_left %lu end_left %lu \n",
613	       start, end, start_left, end_left);
614
615	if (start == end)
616		pg_count = end_left - (st_pgs - start_left);
617	else
618		pg_count = start_left + st_pgs * (end - start - 1) + end_left;
619
620	CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu"
621	       "pgcount %lu\n", st_off, st_len, st_pgs, off, length, pg_count);
622
623	return pg_count;
624}
625
626static int ria_page_count(struct ra_io_arg *ria)
627{
628	__u64 length = ria->ria_end >= ria->ria_start ?
629		       ria->ria_end - ria->ria_start + 1 : 0;
630
631	return stride_pg_count(ria->ria_stoff, ria->ria_length,
632			       ria->ria_pages, ria->ria_start,
633			       length);
634}
635
636/*Check whether the index is in the defined ra-window */
637static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
638{
639	/* If ria_length == ria_pages, it means non-stride I/O mode,
640	 * idx should always inside read-ahead window in this case
641	 * For stride I/O mode, just check whether the idx is inside
642	 * the ria_pages. */
643	return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
644	       (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
645		ria->ria_length < ria->ria_pages);
646}
647
648static int ll_read_ahead_pages(const struct lu_env *env,
649			       struct cl_io *io, struct cl_page_list *queue,
650			       struct ra_io_arg *ria,
651			       unsigned long *reserved_pages,
652			       struct address_space *mapping,
653			       unsigned long *ra_end)
654{
655	int rc, count = 0, stride_ria;
656	unsigned long page_idx;
657
658	LASSERT(ria != NULL);
659	RIA_DEBUG(ria);
660
661	stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
662	for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
663			*reserved_pages > 0; page_idx++) {
664		if (ras_inside_ra_window(page_idx, ria)) {
665			/* If the page is inside the read-ahead window*/
666			rc = ll_read_ahead_page(env, io, queue,
667						page_idx, mapping);
668			if (rc == 1) {
669				(*reserved_pages)--;
670				count ++;
671			} else if (rc == -ENOLCK)
672				break;
673		} else if (stride_ria) {
674			/* If it is not in the read-ahead window, and it is
675			 * read-ahead mode, then check whether it should skip
676			 * the stride gap */
677			pgoff_t offset;
678			/* FIXME: This assertion only is valid when it is for
679			 * forward read-ahead, it will be fixed when backward
680			 * read-ahead is implemented */
681			LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu"
682				"rs %lu re %lu ro %lu rl %lu rp %lu\n", page_idx,
683				ria->ria_start, ria->ria_end, ria->ria_stoff,
684				ria->ria_length, ria->ria_pages);
685			offset = page_idx - ria->ria_stoff;
686			offset = offset % (ria->ria_length);
687			if (offset > ria->ria_pages) {
688				page_idx += ria->ria_length - offset;
689				CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
690				       ria->ria_length - offset);
691				continue;
692			}
693		}
694	}
695	*ra_end = page_idx;
696	return count;
697}
698
699int ll_readahead(const struct lu_env *env, struct cl_io *io,
700		 struct ll_readahead_state *ras, struct address_space *mapping,
701		 struct cl_page_list *queue, int flags)
702{
703	struct vvp_io *vio = vvp_env_io(env);
704	struct vvp_thread_info *vti = vvp_env_info(env);
705	struct cl_attr *attr = ccc_env_thread_attr(env);
706	unsigned long start = 0, end = 0, reserved;
707	unsigned long ra_end, len;
708	struct inode *inode;
709	struct ll_ra_read *bead;
710	struct ra_io_arg *ria = &vti->vti_ria;
711	struct ll_inode_info *lli;
712	struct cl_object *clob;
713	int ret = 0;
714	__u64 kms;
715
716	inode = mapping->host;
717	lli = ll_i2info(inode);
718	clob = lli->lli_clob;
719
720	memset(ria, 0, sizeof *ria);
721
722	cl_object_attr_lock(clob);
723	ret = cl_object_attr_get(env, clob, attr);
724	cl_object_attr_unlock(clob);
725
726	if (ret != 0)
727		RETURN(ret);
728	kms = attr->cat_kms;
729	if (kms == 0) {
730		ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
731		RETURN(0);
732	}
733
734	spin_lock(&ras->ras_lock);
735	if (vio->cui_ra_window_set)
736		bead = &vio->cui_bead;
737	else
738		bead = NULL;
739
740	/* Enlarge the RA window to encompass the full read */
741	if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
742	    bead->lrr_start + bead->lrr_count) {
743		ras->ras_window_len = bead->lrr_start + bead->lrr_count -
744				      ras->ras_window_start;
745	}
746	/* Reserve a part of the read-ahead window that we'll be issuing */
747	if (ras->ras_window_len) {
748		start = ras->ras_next_readahead;
749		end = ras->ras_window_start + ras->ras_window_len - 1;
750	}
751	if (end != 0) {
752		unsigned long rpc_boundary;
753		/*
754		 * Align RA window to an optimal boundary.
755		 *
756		 * XXX This would be better to align to cl_max_pages_per_rpc
757		 * instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
758		 * be aligned to the RAID stripe size in the future and that
759		 * is more important than the RPC size.
760		 */
761		/* Note: we only trim the RPC, instead of extending the RPC
762		 * to the boundary, so to avoid reading too much pages during
763		 * random reading. */
764		rpc_boundary = ((end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1)));
765		if (rpc_boundary > 0)
766			rpc_boundary--;
767
768		if (rpc_boundary  > start)
769			end = rpc_boundary;
770
771		/* Truncate RA window to end of file */
772		end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
773
774		ras->ras_next_readahead = max(end, end + 1);
775		RAS_CDEBUG(ras);
776	}
777	ria->ria_start = start;
778	ria->ria_end = end;
779	/* If stride I/O mode is detected, get stride window*/
780	if (stride_io_mode(ras)) {
781		ria->ria_stoff = ras->ras_stride_offset;
782		ria->ria_length = ras->ras_stride_length;
783		ria->ria_pages = ras->ras_stride_pages;
784	}
785	spin_unlock(&ras->ras_lock);
786
787	if (end == 0) {
788		ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
789		RETURN(0);
790	}
791	len = ria_page_count(ria);
792	if (len == 0)
793		RETURN(0);
794
795	reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
796	if (reserved < len)
797		ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
798
799	CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
800	       atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
801	       ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
802
803	ret = ll_read_ahead_pages(env, io, queue,
804				  ria, &reserved, mapping, &ra_end);
805
806	LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
807	if (reserved != 0)
808		ll_ra_count_put(ll_i2sbi(inode), reserved);
809
810	if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
811		ll_ra_stats_inc(mapping, RA_STAT_EOF);
812
813	/* if we didn't get to the end of the region we reserved from
814	 * the ras we need to go back and update the ras so that the
815	 * next read-ahead tries from where we left off.  we only do so
816	 * if the region we failed to issue read-ahead on is still ahead
817	 * of the app and behind the next index to start read-ahead from */
818	CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
819	       ra_end, end, ria->ria_end);
820
821	if (ra_end != end + 1) {
822		spin_lock(&ras->ras_lock);
823		if (ra_end < ras->ras_next_readahead &&
824		    index_in_window(ra_end, ras->ras_window_start, 0,
825				    ras->ras_window_len)) {
826			ras->ras_next_readahead = ra_end;
827			RAS_CDEBUG(ras);
828		}
829		spin_unlock(&ras->ras_lock);
830	}
831
832	RETURN(ret);
833}
834
835static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
836			  unsigned long index)
837{
838	ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
839}
840
841/* called with the ras_lock held or from places where it doesn't matter */
842static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
843		      unsigned long index)
844{
845	ras->ras_last_readpage = index;
846	ras->ras_consecutive_requests = 0;
847	ras->ras_consecutive_pages = 0;
848	ras->ras_window_len = 0;
849	ras_set_start(inode, ras, index);
850	ras->ras_next_readahead = max(ras->ras_window_start, index);
851
852	RAS_CDEBUG(ras);
853}
854
855/* called with the ras_lock held or from places where it doesn't matter */
856static void ras_stride_reset(struct ll_readahead_state *ras)
857{
858	ras->ras_consecutive_stride_requests = 0;
859	ras->ras_stride_length = 0;
860	ras->ras_stride_pages = 0;
861	RAS_CDEBUG(ras);
862}
863
864void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
865{
866	spin_lock_init(&ras->ras_lock);
867	ras_reset(inode, ras, 0);
868	ras->ras_requests = 0;
869	INIT_LIST_HEAD(&ras->ras_read_beads);
870}
871
872/*
873 * Check whether the read request is in the stride window.
874 * If it is in the stride window, return 1, otherwise return 0.
875 */
876static int index_in_stride_window(struct ll_readahead_state *ras,
877				  unsigned long index)
878{
879	unsigned long stride_gap;
880
881	if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
882	    ras->ras_stride_pages == ras->ras_stride_length)
883		return 0;
884
885	stride_gap = index - ras->ras_last_readpage - 1;
886
887	/* If it is contiguous read */
888	if (stride_gap == 0)
889		return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
890
891	/* Otherwise check the stride by itself */
892	return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
893		ras->ras_consecutive_pages == ras->ras_stride_pages;
894}
895
896static void ras_update_stride_detector(struct ll_readahead_state *ras,
897				       unsigned long index)
898{
899	unsigned long stride_gap = index - ras->ras_last_readpage - 1;
900
901	if (!stride_io_mode(ras) && (stride_gap != 0 ||
902	     ras->ras_consecutive_stride_requests == 0)) {
903		ras->ras_stride_pages = ras->ras_consecutive_pages;
904		ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
905	}
906	LASSERT(ras->ras_request_index == 0);
907	LASSERT(ras->ras_consecutive_stride_requests == 0);
908
909	if (index <= ras->ras_last_readpage) {
910		/*Reset stride window for forward read*/
911		ras_stride_reset(ras);
912		return;
913	}
914
915	ras->ras_stride_pages = ras->ras_consecutive_pages;
916	ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
917
918	RAS_CDEBUG(ras);
919	return;
920}
921
922static unsigned long
923stride_page_count(struct ll_readahead_state *ras, unsigned long len)
924{
925	return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
926			       ras->ras_stride_pages, ras->ras_stride_offset,
927			       len);
928}
929
930/* Stride Read-ahead window will be increased inc_len according to
931 * stride I/O pattern */
932static void ras_stride_increase_window(struct ll_readahead_state *ras,
933				       struct ll_ra_info *ra,
934				       unsigned long inc_len)
935{
936	unsigned long left, step, window_len;
937	unsigned long stride_len;
938
939	LASSERT(ras->ras_stride_length > 0);
940	LASSERTF(ras->ras_window_start + ras->ras_window_len
941		 >= ras->ras_stride_offset, "window_start %lu, window_len %lu"
942		 " stride_offset %lu\n", ras->ras_window_start,
943		 ras->ras_window_len, ras->ras_stride_offset);
944
945	stride_len = ras->ras_window_start + ras->ras_window_len -
946		     ras->ras_stride_offset;
947
948	left = stride_len % ras->ras_stride_length;
949	window_len = ras->ras_window_len - left;
950
951	if (left < ras->ras_stride_pages)
952		left += inc_len;
953	else
954		left = ras->ras_stride_pages + inc_len;
955
956	LASSERT(ras->ras_stride_pages != 0);
957
958	step = left / ras->ras_stride_pages;
959	left %= ras->ras_stride_pages;
960
961	window_len += step * ras->ras_stride_length + left;
962
963	if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
964		ras->ras_window_len = window_len;
965
966	RAS_CDEBUG(ras);
967}
968
969static void ras_increase_window(struct inode *inode,
970				struct ll_readahead_state *ras,
971				struct ll_ra_info *ra)
972{
973	/* The stretch of ra-window should be aligned with max rpc_size
974	 * but current clio architecture does not support retrieve such
975	 * information from lower layer. FIXME later
976	 */
977	if (stride_io_mode(ras))
978		ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
979	else
980		ras->ras_window_len = min(ras->ras_window_len +
981					  RAS_INCREASE_STEP(inode),
982					  ra->ra_max_pages_per_file);
983}
984
985void ras_update(struct ll_sb_info *sbi, struct inode *inode,
986		struct ll_readahead_state *ras, unsigned long index,
987		unsigned hit)
988{
989	struct ll_ra_info *ra = &sbi->ll_ra_info;
990	int zero = 0, stride_detect = 0, ra_miss = 0;
991
992	spin_lock(&ras->ras_lock);
993
994	ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
995
996	/* reset the read-ahead window in two cases.  First when the app seeks
997	 * or reads to some other part of the file.  Secondly if we get a
998	 * read-ahead miss that we think we've previously issued.  This can
999	 * be a symptom of there being so many read-ahead pages that the VM is
1000	 * reclaiming it before we get to it. */
1001	if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
1002		zero = 1;
1003		ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
1004	} else if (!hit && ras->ras_window_len &&
1005		   index < ras->ras_next_readahead &&
1006		   index_in_window(index, ras->ras_window_start, 0,
1007				   ras->ras_window_len)) {
1008		ra_miss = 1;
1009		ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
1010	}
1011
1012	/* On the second access to a file smaller than the tunable
1013	 * ra_max_read_ahead_whole_pages trigger RA on all pages in the
1014	 * file up to ra_max_pages_per_file.  This is simply a best effort
1015	 * and only occurs once per open file.  Normal RA behavior is reverted
1016	 * to for subsequent IO.  The mmap case does not increment
1017	 * ras_requests and thus can never trigger this behavior. */
1018	if (ras->ras_requests == 2 && !ras->ras_request_index) {
1019		__u64 kms_pages;
1020
1021		kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1022			    PAGE_CACHE_SHIFT;
1023
1024		CDEBUG(D_READA, "kmsp "LPU64" mwp %lu mp %lu\n", kms_pages,
1025		       ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
1026
1027		if (kms_pages &&
1028		    kms_pages <= ra->ra_max_read_ahead_whole_pages) {
1029			ras->ras_window_start = 0;
1030			ras->ras_last_readpage = 0;
1031			ras->ras_next_readahead = 0;
1032			ras->ras_window_len = min(ra->ra_max_pages_per_file,
1033				ra->ra_max_read_ahead_whole_pages);
1034			GOTO(out_unlock, 0);
1035		}
1036	}
1037	if (zero) {
1038		/* check whether it is in stride I/O mode*/
1039		if (!index_in_stride_window(ras, index)) {
1040			if (ras->ras_consecutive_stride_requests == 0 &&
1041			    ras->ras_request_index == 0) {
1042				ras_update_stride_detector(ras, index);
1043				ras->ras_consecutive_stride_requests++;
1044			} else {
1045				ras_stride_reset(ras);
1046			}
1047			ras_reset(inode, ras, index);
1048			ras->ras_consecutive_pages++;
1049			GOTO(out_unlock, 0);
1050		} else {
1051			ras->ras_consecutive_pages = 0;
1052			ras->ras_consecutive_requests = 0;
1053			if (++ras->ras_consecutive_stride_requests > 1)
1054				stride_detect = 1;
1055			RAS_CDEBUG(ras);
1056		}
1057	} else {
1058		if (ra_miss) {
1059			if (index_in_stride_window(ras, index) &&
1060			    stride_io_mode(ras)) {
1061				/*If stride-RA hit cache miss, the stride dector
1062				 *will not be reset to avoid the overhead of
1063				 *redetecting read-ahead mode */
1064				if (index != ras->ras_last_readpage + 1)
1065					ras->ras_consecutive_pages = 0;
1066				ras_reset(inode, ras, index);
1067				RAS_CDEBUG(ras);
1068			} else {
1069				/* Reset both stride window and normal RA
1070				 * window */
1071				ras_reset(inode, ras, index);
1072				ras->ras_consecutive_pages++;
1073				ras_stride_reset(ras);
1074				GOTO(out_unlock, 0);
1075			}
1076		} else if (stride_io_mode(ras)) {
1077			/* If this is contiguous read but in stride I/O mode
1078			 * currently, check whether stride step still is valid,
1079			 * if invalid, it will reset the stride ra window*/
1080			if (!index_in_stride_window(ras, index)) {
1081				/* Shrink stride read-ahead window to be zero */
1082				ras_stride_reset(ras);
1083				ras->ras_window_len = 0;
1084				ras->ras_next_readahead = index;
1085			}
1086		}
1087	}
1088	ras->ras_consecutive_pages++;
1089	ras->ras_last_readpage = index;
1090	ras_set_start(inode, ras, index);
1091
1092	if (stride_io_mode(ras))
1093		/* Since stride readahead is sentivite to the offset
1094		 * of read-ahead, so we use original offset here,
1095		 * instead of ras_window_start, which is RPC aligned */
1096		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1097	else
1098		ras->ras_next_readahead = max(ras->ras_window_start,
1099					      ras->ras_next_readahead);
1100	RAS_CDEBUG(ras);
1101
1102	/* Trigger RA in the mmap case where ras_consecutive_requests
1103	 * is not incremented and thus can't be used to trigger RA */
1104	if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
1105		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1106		GOTO(out_unlock, 0);
1107	}
1108
1109	/* Initially reset the stride window offset to next_readahead*/
1110	if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
1111		/**
1112		 * Once stride IO mode is detected, next_readahead should be
1113		 * reset to make sure next_readahead > stride offset
1114		 */
1115		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1116		ras->ras_stride_offset = index;
1117		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1118	}
1119
1120	/* The initial ras_window_len is set to the request size.  To avoid
1121	 * uselessly reading and discarding pages for random IO the window is
1122	 * only increased once per consecutive request received. */
1123	if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
1124	    !ras->ras_request_index)
1125		ras_increase_window(inode, ras, ra);
1126out_unlock:
1127	RAS_CDEBUG(ras);
1128	ras->ras_request_index++;
1129	spin_unlock(&ras->ras_lock);
1130	return;
1131}
1132
1133int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1134{
1135	struct inode	       *inode = vmpage->mapping->host;
1136	struct ll_inode_info   *lli   = ll_i2info(inode);
1137	struct lu_env	  *env;
1138	struct cl_io	   *io;
1139	struct cl_page	 *page;
1140	struct cl_object       *clob;
1141	struct cl_env_nest      nest;
1142	bool redirtied = false;
1143	bool unlocked = false;
1144	int result;
1145
1146	LASSERT(PageLocked(vmpage));
1147	LASSERT(!PageWriteback(vmpage));
1148
1149	LASSERT(ll_i2dtexp(inode) != NULL);
1150
1151	env = cl_env_nested_get(&nest);
1152	if (IS_ERR(env))
1153		GOTO(out, result = PTR_ERR(env));
1154
1155	clob  = ll_i2info(inode)->lli_clob;
1156	LASSERT(clob != NULL);
1157
1158	io = ccc_env_thread_io(env);
1159	io->ci_obj = clob;
1160	io->ci_ignore_layout = 1;
1161	result = cl_io_init(env, io, CIT_MISC, clob);
1162	if (result == 0) {
1163		page = cl_page_find(env, clob, vmpage->index,
1164				    vmpage, CPT_CACHEABLE);
1165		if (!IS_ERR(page)) {
1166			lu_ref_add(&page->cp_reference, "writepage",
1167				   current);
1168			cl_page_assume(env, io, page);
1169			result = cl_page_flush(env, io, page);
1170			if (result != 0) {
1171				/*
1172				 * Re-dirty page on error so it retries write,
1173				 * but not in case when IO has actually
1174				 * occurred and completed with an error.
1175				 */
1176				if (!PageError(vmpage)) {
1177					redirty_page_for_writepage(wbc, vmpage);
1178					result = 0;
1179					redirtied = true;
1180				}
1181			}
1182			cl_page_disown(env, io, page);
1183			unlocked = true;
1184			lu_ref_del(&page->cp_reference,
1185				   "writepage", current);
1186			cl_page_put(env, page);
1187		} else {
1188			result = PTR_ERR(page);
1189		}
1190	}
1191	cl_io_fini(env, io);
1192
1193	if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1194		loff_t offset = cl_offset(clob, vmpage->index);
1195
1196		/* Flush page failed because the extent is being written out.
1197		 * Wait for the write of extent to be finished to avoid
1198		 * breaking kernel which assumes ->writepage should mark
1199		 * PageWriteback or clean the page. */
1200		result = cl_sync_file_range(inode, offset,
1201					    offset + PAGE_CACHE_SIZE - 1,
1202					    CL_FSYNC_LOCAL, 1);
1203		if (result > 0) {
1204			/* actually we may have written more than one page.
1205			 * decreasing this page because the caller will count
1206			 * it. */
1207			wbc->nr_to_write -= result - 1;
1208			result = 0;
1209		}
1210	}
1211
1212	cl_env_nested_put(&nest, env);
1213	GOTO(out, result);
1214
1215out:
1216	if (result < 0) {
1217		if (!lli->lli_async_rc)
1218			lli->lli_async_rc = result;
1219		SetPageError(vmpage);
1220		if (!unlocked)
1221			unlock_page(vmpage);
1222	}
1223	return result;
1224}
1225
1226int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1227{
1228	struct inode *inode = mapping->host;
1229	struct ll_sb_info *sbi = ll_i2sbi(inode);
1230	loff_t start;
1231	loff_t end;
1232	enum cl_fsync_mode mode;
1233	int range_whole = 0;
1234	int result;
1235	int ignore_layout = 0;
1236
1237	if (wbc->range_cyclic) {
1238		start = mapping->writeback_index << PAGE_CACHE_SHIFT;
1239		end = OBD_OBJECT_EOF;
1240	} else {
1241		start = wbc->range_start;
1242		end = wbc->range_end;
1243		if (end == LLONG_MAX) {
1244			end = OBD_OBJECT_EOF;
1245			range_whole = start == 0;
1246		}
1247	}
1248
1249	mode = CL_FSYNC_NONE;
1250	if (wbc->sync_mode == WB_SYNC_ALL)
1251		mode = CL_FSYNC_LOCAL;
1252
1253	if (sbi->ll_umounting)
1254		/* if the mountpoint is being umounted, all pages have to be
1255		 * evicted to avoid hitting LBUG when truncate_inode_pages()
1256		 * is called later on. */
1257		ignore_layout = 1;
1258	result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
1259	if (result > 0) {
1260		wbc->nr_to_write -= result;
1261		result = 0;
1262	 }
1263
1264	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1265		if (end == OBD_OBJECT_EOF)
1266			end = i_size_read(inode);
1267		mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
1268	}
1269	RETURN(result);
1270}
1271
1272int ll_readpage(struct file *file, struct page *vmpage)
1273{
1274	struct ll_cl_context *lcc;
1275	int result;
1276
1277	lcc = ll_cl_init(file, vmpage, 0);
1278	if (!IS_ERR(lcc)) {
1279		struct lu_env  *env  = lcc->lcc_env;
1280		struct cl_io   *io   = lcc->lcc_io;
1281		struct cl_page *page = lcc->lcc_page;
1282
1283		LASSERT(page->cp_type == CPT_CACHEABLE);
1284		if (likely(!PageUptodate(vmpage))) {
1285			cl_page_assume(env, io, page);
1286			result = cl_io_read_page(env, io, page);
1287		} else {
1288			/* Page from a non-object file. */
1289			unlock_page(vmpage);
1290			result = 0;
1291		}
1292		ll_cl_fini(lcc);
1293	} else {
1294		unlock_page(vmpage);
1295		result = PTR_ERR(lcc);
1296	}
1297	RETURN(result);
1298}
1299