rw.c revision 65fb55d19421b9862beea398063816d2cb047907
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/llite/rw.c
37 *
38 * Lustre Lite I/O page cache routines shared by different kernel revs
39 */
40
41#include <linux/kernel.h>
42#include <linux/mm.h>
43#include <linux/string.h>
44#include <linux/stat.h>
45#include <linux/errno.h>
46#include <linux/unistd.h>
47#include <linux/writeback.h>
48#include <asm/uaccess.h>
49
50#include <linux/fs.h>
51#include <linux/stat.h>
52#include <asm/uaccess.h>
53#include <linux/mm.h>
54#include <linux/pagemap.h>
55/* current_is_kswapd() */
56#include <linux/swap.h>
57
58#define DEBUG_SUBSYSTEM S_LLITE
59
60#include <lustre_lite.h>
61#include <obd_cksum.h>
62#include "llite_internal.h"
63#include <linux/lustre_compat25.h>
64
65/**
66 * Finalizes cl-data before exiting typical address_space operation. Dual to
67 * ll_cl_init().
68 */
69static void ll_cl_fini(struct ll_cl_context *lcc)
70{
71	struct lu_env  *env  = lcc->lcc_env;
72	struct cl_io   *io   = lcc->lcc_io;
73	struct cl_page *page = lcc->lcc_page;
74
75	LASSERT(lcc->lcc_cookie == current);
76	LASSERT(env != NULL);
77
78	if (page != NULL) {
79		lu_ref_del(&page->cp_reference, "cl_io", io);
80		cl_page_put(env, page);
81	}
82
83	if (io && lcc->lcc_created) {
84		cl_io_end(env, io);
85		cl_io_unlock(env, io);
86		cl_io_iter_fini(env, io);
87		cl_io_fini(env, io);
88	}
89	cl_env_put(env, &lcc->lcc_refcheck);
90}
91
92/**
93 * Initializes common cl-data at the typical address_space operation entry
94 * point.
95 */
96static struct ll_cl_context *ll_cl_init(struct file *file,
97					struct page *vmpage, int create)
98{
99	struct ll_cl_context *lcc;
100	struct lu_env    *env;
101	struct cl_io     *io;
102	struct cl_object *clob;
103	struct ccc_io    *cio;
104
105	int refcheck;
106	int result = 0;
107
108	clob = ll_i2info(vmpage->mapping->host)->lli_clob;
109	LASSERT(clob != NULL);
110
111	env = cl_env_get(&refcheck);
112	if (IS_ERR(env))
113		return ERR_PTR(PTR_ERR(env));
114
115	lcc = &vvp_env_info(env)->vti_io_ctx;
116	memset(lcc, 0, sizeof(*lcc));
117	lcc->lcc_env = env;
118	lcc->lcc_refcheck = refcheck;
119	lcc->lcc_cookie = current;
120
121	cio = ccc_env_io(env);
122	io = cio->cui_cl.cis_io;
123	if (io == NULL && create) {
124		struct inode *inode = vmpage->mapping->host;
125		loff_t pos;
126
127		if (mutex_trylock(&inode->i_mutex)) {
128			mutex_unlock(&(inode)->i_mutex);
129
130			/* this is too bad. Someone is trying to write the
131			 * page w/o holding inode mutex. This means we can
132			 * add dirty pages into cache during truncate */
133			CERROR("Proc %s is dirting page w/o inode lock, this"
134			       "will break truncate.\n", current->comm);
135			libcfs_debug_dumpstack(NULL);
136			LBUG();
137			return ERR_PTR(-EIO);
138		}
139
140		/*
141		 * Loop-back driver calls ->prepare_write() and ->sendfile()
142		 * methods directly, bypassing file system ->write() operation,
143		 * so cl_io has to be created here.
144		 */
145		io = ccc_env_thread_io(env);
146		ll_io_init(io, file, 1);
147
148		/* No lock at all for this kind of IO - we can't do it because
149		 * we have held page lock, it would cause deadlock.
150		 * XXX: This causes poor performance to loop device - One page
151		 *      per RPC.
152		 *      In order to get better performance, users should use
153		 *      lloop driver instead.
154		 */
155		io->ci_lockreq = CILR_NEVER;
156
157		pos = (vmpage->index << PAGE_CACHE_SHIFT);
158
159		/* Create a temp IO to serve write. */
160		result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
161		if (result == 0) {
162			cio->cui_fd = LUSTRE_FPRIVATE(file);
163			cio->cui_iov = NULL;
164			cio->cui_nrsegs = 0;
165			result = cl_io_iter_init(env, io);
166			if (result == 0) {
167				result = cl_io_lock(env, io);
168				if (result == 0)
169					result = cl_io_start(env, io);
170			}
171		} else
172			result = io->ci_result;
173		lcc->lcc_created = 1;
174	}
175
176	lcc->lcc_io = io;
177	if (io == NULL)
178		result = -EIO;
179	if (result == 0) {
180		struct cl_page   *page;
181
182		LASSERT(io != NULL);
183		LASSERT(io->ci_state == CIS_IO_GOING);
184		LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
185		page = cl_page_find(env, clob, vmpage->index, vmpage,
186				    CPT_CACHEABLE);
187		if (!IS_ERR(page)) {
188			lcc->lcc_page = page;
189			lu_ref_add(&page->cp_reference, "cl_io", io);
190			result = 0;
191		} else
192			result = PTR_ERR(page);
193	}
194	if (result) {
195		ll_cl_fini(lcc);
196		lcc = ERR_PTR(result);
197	}
198
199	CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
200	       vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
201	       env, io);
202	return lcc;
203}
204
205static struct ll_cl_context *ll_cl_get(void)
206{
207	struct ll_cl_context *lcc;
208	struct lu_env *env;
209	int refcheck;
210
211	env = cl_env_get(&refcheck);
212	LASSERT(!IS_ERR(env));
213	lcc = &vvp_env_info(env)->vti_io_ctx;
214	LASSERT(env == lcc->lcc_env);
215	LASSERT(current == lcc->lcc_cookie);
216	cl_env_put(env, &refcheck);
217
218	/* env has got in ll_cl_init, so it is still usable. */
219	return lcc;
220}
221
222/**
223 * ->prepare_write() address space operation called by generic_file_write()
224 * for every page during write.
225 */
226int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
227		     unsigned to)
228{
229	struct ll_cl_context *lcc;
230	int result;
231	ENTRY;
232
233	lcc = ll_cl_init(file, vmpage, 1);
234	if (!IS_ERR(lcc)) {
235		struct lu_env  *env = lcc->lcc_env;
236		struct cl_io   *io  = lcc->lcc_io;
237		struct cl_page *page = lcc->lcc_page;
238
239		cl_page_assume(env, io, page);
240
241		result = cl_io_prepare_write(env, io, page, from, to);
242		if (result == 0) {
243			/*
244			 * Add a reference, so that page is not evicted from
245			 * the cache until ->commit_write() is called.
246			 */
247			cl_page_get(page);
248			lu_ref_add(&page->cp_reference, "prepare_write",
249				   current);
250		} else {
251			cl_page_unassume(env, io, page);
252			ll_cl_fini(lcc);
253		}
254		/* returning 0 in prepare assumes commit must be called
255		 * afterwards */
256	} else {
257		result = PTR_ERR(lcc);
258	}
259	RETURN(result);
260}
261
262int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
263		    unsigned to)
264{
265	struct ll_cl_context *lcc;
266	struct lu_env    *env;
267	struct cl_io     *io;
268	struct cl_page   *page;
269	int result = 0;
270	ENTRY;
271
272	lcc  = ll_cl_get();
273	env  = lcc->lcc_env;
274	page = lcc->lcc_page;
275	io   = lcc->lcc_io;
276
277	LASSERT(cl_page_is_owned(page, io));
278	LASSERT(from <= to);
279	if (from != to) /* handle short write case. */
280		result = cl_io_commit_write(env, io, page, from, to);
281	if (cl_page_is_owned(page, io))
282		cl_page_unassume(env, io, page);
283
284	/*
285	 * Release reference acquired by ll_prepare_write().
286	 */
287	lu_ref_del(&page->cp_reference, "prepare_write", current);
288	cl_page_put(env, page);
289	ll_cl_fini(lcc);
290	RETURN(result);
291}
292
293struct obd_capa *cl_capa_lookup(struct inode *inode, enum cl_req_type crt)
294{
295	__u64 opc;
296
297	opc = crt == CRT_WRITE ? CAPA_OPC_OSS_WRITE : CAPA_OPC_OSS_RW;
298	return ll_osscapa_get(inode, opc);
299}
300
301static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
302
303/**
304 * Get readahead pages from the filesystem readahead pool of the client for a
305 * thread.
306 *
307 * /param sbi superblock for filesystem readahead state ll_ra_info
308 * /param ria per-thread readahead state
309 * /param pages number of pages requested for readahead for the thread.
310 *
311 * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
312 * It should work well if the ra_max_pages is much greater than the single
313 * file's read-ahead window, and not too many threads contending for
314 * these readahead pages.
315 *
316 * TODO: There may be a 'global sync problem' if many threads are trying
317 * to get an ra budget that is larger than the remaining readahead pages
318 * and reach here at exactly the same time. They will compute /a ret to
319 * consume the remaining pages, but will fail at atomic_add_return() and
320 * get a zero ra window, although there is still ra space remaining. - Jay */
321
322static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
323				     struct ra_io_arg *ria,
324				     unsigned long pages)
325{
326	struct ll_ra_info *ra = &sbi->ll_ra_info;
327	long ret;
328	ENTRY;
329
330	/* If read-ahead pages left are less than 1M, do not do read-ahead,
331	 * otherwise it will form small read RPC(< 1M), which hurt server
332	 * performance a lot. */
333	ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
334	if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages))
335		GOTO(out, ret = 0);
336
337	/* If the non-strided (ria_pages == 0) readahead window
338	 * (ria_start + ret) has grown across an RPC boundary, then trim
339	 * readahead size by the amount beyond the RPC so it ends on an
340	 * RPC boundary. If the readahead window is already ending on
341	 * an RPC boundary (beyond_rpc == 0), or smaller than a full
342	 * RPC (beyond_rpc < ret) the readahead size is unchanged.
343	 * The (beyond_rpc != 0) check is skipped since the conditional
344	 * branch is more expensive than subtracting zero from the result.
345	 *
346	 * Strided read is left unaligned to avoid small fragments beyond
347	 * the RPC boundary from needing an extra read RPC. */
348	if (ria->ria_pages == 0) {
349		long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
350		if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
351			ret -= beyond_rpc;
352	}
353
354	if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
355		atomic_sub(ret, &ra->ra_cur_pages);
356		ret = 0;
357	}
358
359out:
360	RETURN(ret);
361}
362
363void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
364{
365	struct ll_ra_info *ra = &sbi->ll_ra_info;
366	atomic_sub(len, &ra->ra_cur_pages);
367}
368
369static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
370{
371	LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
372	lprocfs_counter_incr(sbi->ll_ra_stats, which);
373}
374
375void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
376{
377	struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
378	ll_ra_stats_inc_sbi(sbi, which);
379}
380
381#define RAS_CDEBUG(ras) \
382	CDEBUG(D_READA,						      \
383	       "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu"    \
384	       "csr %lu sf %lu sp %lu sl %lu \n",			    \
385	       ras->ras_last_readpage, ras->ras_consecutive_requests,	\
386	       ras->ras_consecutive_pages, ras->ras_window_start,	    \
387	       ras->ras_window_len, ras->ras_next_readahead,		 \
388	       ras->ras_requests, ras->ras_request_index,		    \
389	       ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
390	       ras->ras_stride_pages, ras->ras_stride_length)
391
392static int index_in_window(unsigned long index, unsigned long point,
393			   unsigned long before, unsigned long after)
394{
395	unsigned long start = point - before, end = point + after;
396
397	if (start > point)
398	       start = 0;
399	if (end < point)
400	       end = ~0;
401
402	return start <= index && index <= end;
403}
404
405static struct ll_readahead_state *ll_ras_get(struct file *f)
406{
407	struct ll_file_data       *fd;
408
409	fd = LUSTRE_FPRIVATE(f);
410	return &fd->fd_ras;
411}
412
413void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
414{
415	struct ll_readahead_state *ras;
416
417	ras = ll_ras_get(f);
418
419	spin_lock(&ras->ras_lock);
420	ras->ras_requests++;
421	ras->ras_request_index = 0;
422	ras->ras_consecutive_requests++;
423	rar->lrr_reader = current;
424
425	list_add(&rar->lrr_linkage, &ras->ras_read_beads);
426	spin_unlock(&ras->ras_lock);
427}
428
429void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
430{
431	struct ll_readahead_state *ras;
432
433	ras = ll_ras_get(f);
434
435	spin_lock(&ras->ras_lock);
436	list_del_init(&rar->lrr_linkage);
437	spin_unlock(&ras->ras_lock);
438}
439
440static struct ll_ra_read *ll_ra_read_get_locked(struct ll_readahead_state *ras)
441{
442	struct ll_ra_read *scan;
443
444	list_for_each_entry(scan, &ras->ras_read_beads, lrr_linkage) {
445		if (scan->lrr_reader == current)
446			return scan;
447	}
448	return NULL;
449}
450
451struct ll_ra_read *ll_ra_read_get(struct file *f)
452{
453	struct ll_readahead_state *ras;
454	struct ll_ra_read	 *bead;
455
456	ras = ll_ras_get(f);
457
458	spin_lock(&ras->ras_lock);
459	bead = ll_ra_read_get_locked(ras);
460	spin_unlock(&ras->ras_lock);
461	return bead;
462}
463
464static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
465			      struct cl_page_list *queue, struct cl_page *page,
466			      struct page *vmpage)
467{
468	struct ccc_page *cp;
469	int	      rc;
470
471	ENTRY;
472
473	rc = 0;
474	cl_page_assume(env, io, page);
475	lu_ref_add(&page->cp_reference, "ra", current);
476	cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
477	if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
478		rc = cl_page_is_under_lock(env, io, page);
479		if (rc == -EBUSY) {
480			cp->cpg_defer_uptodate = 1;
481			cp->cpg_ra_used = 0;
482			cl_page_list_add(queue, page);
483			rc = 1;
484		} else {
485			cl_page_delete(env, page);
486			rc = -ENOLCK;
487		}
488	} else {
489		/* skip completed pages */
490		cl_page_unassume(env, io, page);
491	}
492	lu_ref_del(&page->cp_reference, "ra", current);
493	cl_page_put(env, page);
494	RETURN(rc);
495}
496
497/**
498 * Initiates read-ahead of a page with given index.
499 *
500 * \retval     +ve: page was added to \a queue.
501 *
502 * \retval -ENOLCK: there is no extent lock for this part of a file, stop
503 *		  read-ahead.
504 *
505 * \retval  -ve, 0: page wasn't added to \a queue for other reason.
506 */
507static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
508			      struct cl_page_list *queue,
509			      pgoff_t index, struct address_space *mapping)
510{
511	struct page      *vmpage;
512	struct cl_object *clob  = ll_i2info(mapping->host)->lli_clob;
513	struct cl_page   *page;
514	enum ra_stat      which = _NR_RA_STAT; /* keep gcc happy */
515	unsigned int      gfp_mask;
516	int	       rc    = 0;
517	const char       *msg   = NULL;
518
519	ENTRY;
520
521	gfp_mask = GFP_HIGHUSER & ~__GFP_WAIT;
522#ifdef __GFP_NOWARN
523	gfp_mask |= __GFP_NOWARN;
524#endif
525	vmpage = grab_cache_page_nowait(mapping, index);
526	if (vmpage != NULL) {
527		/* Check if vmpage was truncated or reclaimed */
528		if (vmpage->mapping == mapping) {
529			page = cl_page_find(env, clob, vmpage->index,
530					    vmpage, CPT_CACHEABLE);
531			if (!IS_ERR(page)) {
532				rc = cl_read_ahead_page(env, io, queue,
533							page, vmpage);
534				if (rc == -ENOLCK) {
535					which = RA_STAT_FAILED_MATCH;
536					msg   = "lock match failed";
537				}
538			} else {
539				which = RA_STAT_FAILED_GRAB_PAGE;
540				msg   = "cl_page_find failed";
541			}
542		} else {
543			which = RA_STAT_WRONG_GRAB_PAGE;
544			msg   = "g_c_p_n returned invalid page";
545		}
546		if (rc != 1)
547			unlock_page(vmpage);
548		page_cache_release(vmpage);
549	} else {
550		which = RA_STAT_FAILED_GRAB_PAGE;
551		msg   = "g_c_p_n failed";
552	}
553	if (msg != NULL) {
554		ll_ra_stats_inc(mapping, which);
555		CDEBUG(D_READA, "%s\n", msg);
556	}
557	RETURN(rc);
558}
559
560#define RIA_DEBUG(ria)						       \
561	CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n",       \
562	ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
563	ria->ria_pages)
564
565/* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
566 * know what the actual RPC size is.  If this needs to change, it makes more
567 * sense to tune the i_blkbits value for the file based on the OSTs it is
568 * striped over, rather than having a constant value for all files here. */
569
570/* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
571 * Temprarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
572 * by default, this should be adjusted corresponding with max_read_ahead_mb
573 * and max_read_ahead_per_file_mb otherwise the readahead budget can be used
574 * up quickly which will affect read performance siginificantly. See LU-2816 */
575#define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
576
577static inline int stride_io_mode(struct ll_readahead_state *ras)
578{
579	return ras->ras_consecutive_stride_requests > 1;
580}
581/* The function calculates how much pages will be read in
582 * [off, off + length], in such stride IO area,
583 * stride_offset = st_off, stride_lengh = st_len,
584 * stride_pages = st_pgs
585 *
586 *   |------------------|*****|------------------|*****|------------|*****|....
587 * st_off
588 *   |--- st_pgs     ---|
589 *   |-----     st_len   -----|
590 *
591 *	      How many pages it should read in such pattern
592 *	      |-------------------------------------------------------------|
593 *	      off
594 *	      |<------		  length		      ------->|
595 *
596 *	  =   |<----->|  +  |-------------------------------------| +   |---|
597 *	     start_left		 st_pgs * i		    end_left
598 */
599static unsigned long
600stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
601		unsigned long off, unsigned long length)
602{
603	__u64 start = off > st_off ? off - st_off : 0;
604	__u64 end = off + length > st_off ? off + length - st_off : 0;
605	unsigned long start_left = 0;
606	unsigned long end_left = 0;
607	unsigned long pg_count;
608
609	if (st_len == 0 || length == 0 || end == 0)
610		return length;
611
612	start_left = do_div(start, st_len);
613	if (start_left < st_pgs)
614		start_left = st_pgs - start_left;
615	else
616		start_left = 0;
617
618	end_left = do_div(end, st_len);
619	if (end_left > st_pgs)
620		end_left = st_pgs;
621
622	CDEBUG(D_READA, "start "LPU64", end "LPU64" start_left %lu end_left %lu \n",
623	       start, end, start_left, end_left);
624
625	if (start == end)
626		pg_count = end_left - (st_pgs - start_left);
627	else
628		pg_count = start_left + st_pgs * (end - start - 1) + end_left;
629
630	CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu"
631	       "pgcount %lu\n", st_off, st_len, st_pgs, off, length, pg_count);
632
633	return pg_count;
634}
635
636static int ria_page_count(struct ra_io_arg *ria)
637{
638	__u64 length = ria->ria_end >= ria->ria_start ?
639		       ria->ria_end - ria->ria_start + 1 : 0;
640
641	return stride_pg_count(ria->ria_stoff, ria->ria_length,
642			       ria->ria_pages, ria->ria_start,
643			       length);
644}
645
646/*Check whether the index is in the defined ra-window */
647static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
648{
649	/* If ria_length == ria_pages, it means non-stride I/O mode,
650	 * idx should always inside read-ahead window in this case
651	 * For stride I/O mode, just check whether the idx is inside
652	 * the ria_pages. */
653	return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
654	       (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
655		ria->ria_length < ria->ria_pages);
656}
657
658static int ll_read_ahead_pages(const struct lu_env *env,
659			       struct cl_io *io, struct cl_page_list *queue,
660			       struct ra_io_arg *ria,
661			       unsigned long *reserved_pages,
662			       struct address_space *mapping,
663			       unsigned long *ra_end)
664{
665	int rc, count = 0, stride_ria;
666	unsigned long page_idx;
667
668	LASSERT(ria != NULL);
669	RIA_DEBUG(ria);
670
671	stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
672	for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
673			*reserved_pages > 0; page_idx++) {
674		if (ras_inside_ra_window(page_idx, ria)) {
675			/* If the page is inside the read-ahead window*/
676			rc = ll_read_ahead_page(env, io, queue,
677						page_idx, mapping);
678			if (rc == 1) {
679				(*reserved_pages)--;
680				count ++;
681			} else if (rc == -ENOLCK)
682				break;
683		} else if (stride_ria) {
684			/* If it is not in the read-ahead window, and it is
685			 * read-ahead mode, then check whether it should skip
686			 * the stride gap */
687			pgoff_t offset;
688			/* FIXME: This assertion only is valid when it is for
689			 * forward read-ahead, it will be fixed when backward
690			 * read-ahead is implemented */
691			LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu"
692				"rs %lu re %lu ro %lu rl %lu rp %lu\n", page_idx,
693				ria->ria_start, ria->ria_end, ria->ria_stoff,
694				ria->ria_length, ria->ria_pages);
695			offset = page_idx - ria->ria_stoff;
696			offset = offset % (ria->ria_length);
697			if (offset > ria->ria_pages) {
698				page_idx += ria->ria_length - offset;
699				CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
700				       ria->ria_length - offset);
701				continue;
702			}
703		}
704	}
705	*ra_end = page_idx;
706	return count;
707}
708
709int ll_readahead(const struct lu_env *env, struct cl_io *io,
710		 struct ll_readahead_state *ras, struct address_space *mapping,
711		 struct cl_page_list *queue, int flags)
712{
713	struct vvp_io *vio = vvp_env_io(env);
714	struct vvp_thread_info *vti = vvp_env_info(env);
715	struct cl_attr *attr = ccc_env_thread_attr(env);
716	unsigned long start = 0, end = 0, reserved;
717	unsigned long ra_end, len;
718	struct inode *inode;
719	struct ll_ra_read *bead;
720	struct ra_io_arg *ria = &vti->vti_ria;
721	struct ll_inode_info *lli;
722	struct cl_object *clob;
723	int ret = 0;
724	__u64 kms;
725	ENTRY;
726
727	inode = mapping->host;
728	lli = ll_i2info(inode);
729	clob = lli->lli_clob;
730
731	memset(ria, 0, sizeof *ria);
732
733	cl_object_attr_lock(clob);
734	ret = cl_object_attr_get(env, clob, attr);
735	cl_object_attr_unlock(clob);
736
737	if (ret != 0)
738		RETURN(ret);
739	kms = attr->cat_kms;
740	if (kms == 0) {
741		ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
742		RETURN(0);
743	}
744
745	spin_lock(&ras->ras_lock);
746	if (vio->cui_ra_window_set)
747		bead = &vio->cui_bead;
748	else
749		bead = NULL;
750
751	/* Enlarge the RA window to encompass the full read */
752	if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
753	    bead->lrr_start + bead->lrr_count) {
754		ras->ras_window_len = bead->lrr_start + bead->lrr_count -
755				      ras->ras_window_start;
756	}
757	/* Reserve a part of the read-ahead window that we'll be issuing */
758	if (ras->ras_window_len) {
759		start = ras->ras_next_readahead;
760		end = ras->ras_window_start + ras->ras_window_len - 1;
761	}
762	if (end != 0) {
763		unsigned long rpc_boundary;
764		/*
765		 * Align RA window to an optimal boundary.
766		 *
767		 * XXX This would be better to align to cl_max_pages_per_rpc
768		 * instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
769		 * be aligned to the RAID stripe size in the future and that
770		 * is more important than the RPC size.
771		 */
772		/* Note: we only trim the RPC, instead of extending the RPC
773		 * to the boundary, so to avoid reading too much pages during
774		 * random reading. */
775		rpc_boundary = ((end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1)));
776		if (rpc_boundary > 0)
777			rpc_boundary--;
778
779		if (rpc_boundary  > start)
780			end = rpc_boundary;
781
782		/* Truncate RA window to end of file */
783		end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
784
785		ras->ras_next_readahead = max(end, end + 1);
786		RAS_CDEBUG(ras);
787	}
788	ria->ria_start = start;
789	ria->ria_end = end;
790	/* If stride I/O mode is detected, get stride window*/
791	if (stride_io_mode(ras)) {
792		ria->ria_stoff = ras->ras_stride_offset;
793		ria->ria_length = ras->ras_stride_length;
794		ria->ria_pages = ras->ras_stride_pages;
795	}
796	spin_unlock(&ras->ras_lock);
797
798	if (end == 0) {
799		ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
800		RETURN(0);
801	}
802	len = ria_page_count(ria);
803	if (len == 0)
804		RETURN(0);
805
806	reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
807	if (reserved < len)
808		ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
809
810	CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
811	       atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
812	       ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
813
814	ret = ll_read_ahead_pages(env, io, queue,
815				  ria, &reserved, mapping, &ra_end);
816
817	LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
818	if (reserved != 0)
819		ll_ra_count_put(ll_i2sbi(inode), reserved);
820
821	if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
822		ll_ra_stats_inc(mapping, RA_STAT_EOF);
823
824	/* if we didn't get to the end of the region we reserved from
825	 * the ras we need to go back and update the ras so that the
826	 * next read-ahead tries from where we left off.  we only do so
827	 * if the region we failed to issue read-ahead on is still ahead
828	 * of the app and behind the next index to start read-ahead from */
829	CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
830	       ra_end, end, ria->ria_end);
831
832	if (ra_end != end + 1) {
833		spin_lock(&ras->ras_lock);
834		if (ra_end < ras->ras_next_readahead &&
835		    index_in_window(ra_end, ras->ras_window_start, 0,
836				    ras->ras_window_len)) {
837			ras->ras_next_readahead = ra_end;
838			RAS_CDEBUG(ras);
839		}
840		spin_unlock(&ras->ras_lock);
841	}
842
843	RETURN(ret);
844}
845
846static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
847			  unsigned long index)
848{
849	ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
850}
851
852/* called with the ras_lock held or from places where it doesn't matter */
853static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
854		      unsigned long index)
855{
856	ras->ras_last_readpage = index;
857	ras->ras_consecutive_requests = 0;
858	ras->ras_consecutive_pages = 0;
859	ras->ras_window_len = 0;
860	ras_set_start(inode, ras, index);
861	ras->ras_next_readahead = max(ras->ras_window_start, index);
862
863	RAS_CDEBUG(ras);
864}
865
866/* called with the ras_lock held or from places where it doesn't matter */
867static void ras_stride_reset(struct ll_readahead_state *ras)
868{
869	ras->ras_consecutive_stride_requests = 0;
870	ras->ras_stride_length = 0;
871	ras->ras_stride_pages = 0;
872	RAS_CDEBUG(ras);
873}
874
875void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
876{
877	spin_lock_init(&ras->ras_lock);
878	ras_reset(inode, ras, 0);
879	ras->ras_requests = 0;
880	INIT_LIST_HEAD(&ras->ras_read_beads);
881}
882
883/*
884 * Check whether the read request is in the stride window.
885 * If it is in the stride window, return 1, otherwise return 0.
886 */
887static int index_in_stride_window(struct ll_readahead_state *ras,
888				  unsigned long index)
889{
890	unsigned long stride_gap;
891
892	if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
893	    ras->ras_stride_pages == ras->ras_stride_length)
894		return 0;
895
896	stride_gap = index - ras->ras_last_readpage - 1;
897
898	/* If it is contiguous read */
899	if (stride_gap == 0)
900		return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
901
902	/* Otherwise check the stride by itself */
903	return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
904		ras->ras_consecutive_pages == ras->ras_stride_pages;
905}
906
907static void ras_update_stride_detector(struct ll_readahead_state *ras,
908				       unsigned long index)
909{
910	unsigned long stride_gap = index - ras->ras_last_readpage - 1;
911
912	if (!stride_io_mode(ras) && (stride_gap != 0 ||
913	     ras->ras_consecutive_stride_requests == 0)) {
914		ras->ras_stride_pages = ras->ras_consecutive_pages;
915		ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
916	}
917	LASSERT(ras->ras_request_index == 0);
918	LASSERT(ras->ras_consecutive_stride_requests == 0);
919
920	if (index <= ras->ras_last_readpage) {
921		/*Reset stride window for forward read*/
922		ras_stride_reset(ras);
923		return;
924	}
925
926	ras->ras_stride_pages = ras->ras_consecutive_pages;
927	ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
928
929	RAS_CDEBUG(ras);
930	return;
931}
932
933static unsigned long
934stride_page_count(struct ll_readahead_state *ras, unsigned long len)
935{
936	return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
937			       ras->ras_stride_pages, ras->ras_stride_offset,
938			       len);
939}
940
941/* Stride Read-ahead window will be increased inc_len according to
942 * stride I/O pattern */
943static void ras_stride_increase_window(struct ll_readahead_state *ras,
944				       struct ll_ra_info *ra,
945				       unsigned long inc_len)
946{
947	unsigned long left, step, window_len;
948	unsigned long stride_len;
949
950	LASSERT(ras->ras_stride_length > 0);
951	LASSERTF(ras->ras_window_start + ras->ras_window_len
952		 >= ras->ras_stride_offset, "window_start %lu, window_len %lu"
953		 " stride_offset %lu\n", ras->ras_window_start,
954		 ras->ras_window_len, ras->ras_stride_offset);
955
956	stride_len = ras->ras_window_start + ras->ras_window_len -
957		     ras->ras_stride_offset;
958
959	left = stride_len % ras->ras_stride_length;
960	window_len = ras->ras_window_len - left;
961
962	if (left < ras->ras_stride_pages)
963		left += inc_len;
964	else
965		left = ras->ras_stride_pages + inc_len;
966
967	LASSERT(ras->ras_stride_pages != 0);
968
969	step = left / ras->ras_stride_pages;
970	left %= ras->ras_stride_pages;
971
972	window_len += step * ras->ras_stride_length + left;
973
974	if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
975		ras->ras_window_len = window_len;
976
977	RAS_CDEBUG(ras);
978}
979
980static void ras_increase_window(struct inode *inode,
981				struct ll_readahead_state *ras,
982				struct ll_ra_info *ra)
983{
984	/* The stretch of ra-window should be aligned with max rpc_size
985	 * but current clio architecture does not support retrieve such
986	 * information from lower layer. FIXME later
987	 */
988	if (stride_io_mode(ras))
989		ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
990	else
991		ras->ras_window_len = min(ras->ras_window_len +
992					  RAS_INCREASE_STEP(inode),
993					  ra->ra_max_pages_per_file);
994}
995
996void ras_update(struct ll_sb_info *sbi, struct inode *inode,
997		struct ll_readahead_state *ras, unsigned long index,
998		unsigned hit)
999{
1000	struct ll_ra_info *ra = &sbi->ll_ra_info;
1001	int zero = 0, stride_detect = 0, ra_miss = 0;
1002	ENTRY;
1003
1004	spin_lock(&ras->ras_lock);
1005
1006	ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
1007
1008	/* reset the read-ahead window in two cases.  First when the app seeks
1009	 * or reads to some other part of the file.  Secondly if we get a
1010	 * read-ahead miss that we think we've previously issued.  This can
1011	 * be a symptom of there being so many read-ahead pages that the VM is
1012	 * reclaiming it before we get to it. */
1013	if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
1014		zero = 1;
1015		ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
1016	} else if (!hit && ras->ras_window_len &&
1017		   index < ras->ras_next_readahead &&
1018		   index_in_window(index, ras->ras_window_start, 0,
1019				   ras->ras_window_len)) {
1020		ra_miss = 1;
1021		ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
1022	}
1023
1024	/* On the second access to a file smaller than the tunable
1025	 * ra_max_read_ahead_whole_pages trigger RA on all pages in the
1026	 * file up to ra_max_pages_per_file.  This is simply a best effort
1027	 * and only occurs once per open file.  Normal RA behavior is reverted
1028	 * to for subsequent IO.  The mmap case does not increment
1029	 * ras_requests and thus can never trigger this behavior. */
1030	if (ras->ras_requests == 2 && !ras->ras_request_index) {
1031		__u64 kms_pages;
1032
1033		kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1034			    PAGE_CACHE_SHIFT;
1035
1036		CDEBUG(D_READA, "kmsp "LPU64" mwp %lu mp %lu\n", kms_pages,
1037		       ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
1038
1039		if (kms_pages &&
1040		    kms_pages <= ra->ra_max_read_ahead_whole_pages) {
1041			ras->ras_window_start = 0;
1042			ras->ras_last_readpage = 0;
1043			ras->ras_next_readahead = 0;
1044			ras->ras_window_len = min(ra->ra_max_pages_per_file,
1045				ra->ra_max_read_ahead_whole_pages);
1046			GOTO(out_unlock, 0);
1047		}
1048	}
1049	if (zero) {
1050		/* check whether it is in stride I/O mode*/
1051		if (!index_in_stride_window(ras, index)) {
1052			if (ras->ras_consecutive_stride_requests == 0 &&
1053			    ras->ras_request_index == 0) {
1054				ras_update_stride_detector(ras, index);
1055				ras->ras_consecutive_stride_requests++;
1056			} else {
1057				ras_stride_reset(ras);
1058			}
1059			ras_reset(inode, ras, index);
1060			ras->ras_consecutive_pages++;
1061			GOTO(out_unlock, 0);
1062		} else {
1063			ras->ras_consecutive_pages = 0;
1064			ras->ras_consecutive_requests = 0;
1065			if (++ras->ras_consecutive_stride_requests > 1)
1066				stride_detect = 1;
1067			RAS_CDEBUG(ras);
1068		}
1069	} else {
1070		if (ra_miss) {
1071			if (index_in_stride_window(ras, index) &&
1072			    stride_io_mode(ras)) {
1073				/*If stride-RA hit cache miss, the stride dector
1074				 *will not be reset to avoid the overhead of
1075				 *redetecting read-ahead mode */
1076				if (index != ras->ras_last_readpage + 1)
1077					ras->ras_consecutive_pages = 0;
1078				ras_reset(inode, ras, index);
1079				RAS_CDEBUG(ras);
1080			} else {
1081				/* Reset both stride window and normal RA
1082				 * window */
1083				ras_reset(inode, ras, index);
1084				ras->ras_consecutive_pages++;
1085				ras_stride_reset(ras);
1086				GOTO(out_unlock, 0);
1087			}
1088		} else if (stride_io_mode(ras)) {
1089			/* If this is contiguous read but in stride I/O mode
1090			 * currently, check whether stride step still is valid,
1091			 * if invalid, it will reset the stride ra window*/
1092			if (!index_in_stride_window(ras, index)) {
1093				/* Shrink stride read-ahead window to be zero */
1094				ras_stride_reset(ras);
1095				ras->ras_window_len = 0;
1096				ras->ras_next_readahead = index;
1097			}
1098		}
1099	}
1100	ras->ras_consecutive_pages++;
1101	ras->ras_last_readpage = index;
1102	ras_set_start(inode, ras, index);
1103
1104	if (stride_io_mode(ras))
1105		/* Since stride readahead is sentivite to the offset
1106		 * of read-ahead, so we use original offset here,
1107		 * instead of ras_window_start, which is RPC aligned */
1108		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1109	else
1110		ras->ras_next_readahead = max(ras->ras_window_start,
1111					      ras->ras_next_readahead);
1112	RAS_CDEBUG(ras);
1113
1114	/* Trigger RA in the mmap case where ras_consecutive_requests
1115	 * is not incremented and thus can't be used to trigger RA */
1116	if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
1117		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1118		GOTO(out_unlock, 0);
1119	}
1120
1121	/* Initially reset the stride window offset to next_readahead*/
1122	if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
1123		/**
1124		 * Once stride IO mode is detected, next_readahead should be
1125		 * reset to make sure next_readahead > stride offset
1126		 */
1127		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1128		ras->ras_stride_offset = index;
1129		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1130	}
1131
1132	/* The initial ras_window_len is set to the request size.  To avoid
1133	 * uselessly reading and discarding pages for random IO the window is
1134	 * only increased once per consecutive request received. */
1135	if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
1136	    !ras->ras_request_index)
1137		ras_increase_window(inode, ras, ra);
1138	EXIT;
1139out_unlock:
1140	RAS_CDEBUG(ras);
1141	ras->ras_request_index++;
1142	spin_unlock(&ras->ras_lock);
1143	return;
1144}
1145
1146int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1147{
1148	struct inode	       *inode = vmpage->mapping->host;
1149	struct ll_inode_info   *lli   = ll_i2info(inode);
1150	struct lu_env	  *env;
1151	struct cl_io	   *io;
1152	struct cl_page	 *page;
1153	struct cl_object       *clob;
1154	struct cl_env_nest      nest;
1155	bool redirtied = false;
1156	bool unlocked = false;
1157	int result;
1158	ENTRY;
1159
1160	LASSERT(PageLocked(vmpage));
1161	LASSERT(!PageWriteback(vmpage));
1162
1163	LASSERT(ll_i2dtexp(inode) != NULL);
1164
1165	env = cl_env_nested_get(&nest);
1166	if (IS_ERR(env))
1167		GOTO(out, result = PTR_ERR(env));
1168
1169	clob  = ll_i2info(inode)->lli_clob;
1170	LASSERT(clob != NULL);
1171
1172	io = ccc_env_thread_io(env);
1173	io->ci_obj = clob;
1174	io->ci_ignore_layout = 1;
1175	result = cl_io_init(env, io, CIT_MISC, clob);
1176	if (result == 0) {
1177		page = cl_page_find(env, clob, vmpage->index,
1178				    vmpage, CPT_CACHEABLE);
1179		if (!IS_ERR(page)) {
1180			lu_ref_add(&page->cp_reference, "writepage",
1181				   current);
1182			cl_page_assume(env, io, page);
1183			result = cl_page_flush(env, io, page);
1184			if (result != 0) {
1185				/*
1186				 * Re-dirty page on error so it retries write,
1187				 * but not in case when IO has actually
1188				 * occurred and completed with an error.
1189				 */
1190				if (!PageError(vmpage)) {
1191					redirty_page_for_writepage(wbc, vmpage);
1192					result = 0;
1193					redirtied = true;
1194				}
1195			}
1196			cl_page_disown(env, io, page);
1197			unlocked = true;
1198			lu_ref_del(&page->cp_reference,
1199				   "writepage", current);
1200			cl_page_put(env, page);
1201		} else {
1202			result = PTR_ERR(page);
1203		}
1204	}
1205	cl_io_fini(env, io);
1206
1207	if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1208		loff_t offset = cl_offset(clob, vmpage->index);
1209
1210		/* Flush page failed because the extent is being written out.
1211		 * Wait for the write of extent to be finished to avoid
1212		 * breaking kernel which assumes ->writepage should mark
1213		 * PageWriteback or clean the page. */
1214		result = cl_sync_file_range(inode, offset,
1215					    offset + PAGE_CACHE_SIZE - 1,
1216					    CL_FSYNC_LOCAL, 1);
1217		if (result > 0) {
1218			/* actually we may have written more than one page.
1219			 * decreasing this page because the caller will count
1220			 * it. */
1221			wbc->nr_to_write -= result - 1;
1222			result = 0;
1223		}
1224	}
1225
1226	cl_env_nested_put(&nest, env);
1227	GOTO(out, result);
1228
1229out:
1230	if (result < 0) {
1231		if (!lli->lli_async_rc)
1232			lli->lli_async_rc = result;
1233		SetPageError(vmpage);
1234		if (!unlocked)
1235			unlock_page(vmpage);
1236	}
1237	return result;
1238}
1239
1240int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1241{
1242	struct inode *inode = mapping->host;
1243	struct ll_sb_info *sbi = ll_i2sbi(inode);
1244	loff_t start;
1245	loff_t end;
1246	enum cl_fsync_mode mode;
1247	int range_whole = 0;
1248	int result;
1249	int ignore_layout = 0;
1250	ENTRY;
1251
1252	if (wbc->range_cyclic) {
1253		start = mapping->writeback_index << PAGE_CACHE_SHIFT;
1254		end = OBD_OBJECT_EOF;
1255	} else {
1256		start = wbc->range_start;
1257		end = wbc->range_end;
1258		if (end == LLONG_MAX) {
1259			end = OBD_OBJECT_EOF;
1260			range_whole = start == 0;
1261		}
1262	}
1263
1264	mode = CL_FSYNC_NONE;
1265	if (wbc->sync_mode == WB_SYNC_ALL)
1266		mode = CL_FSYNC_LOCAL;
1267
1268	if (sbi->ll_umounting)
1269		/* if the mountpoint is being umounted, all pages have to be
1270		 * evicted to avoid hitting LBUG when truncate_inode_pages()
1271		 * is called later on. */
1272		ignore_layout = 1;
1273	result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
1274	if (result > 0) {
1275		wbc->nr_to_write -= result;
1276		result = 0;
1277	 }
1278
1279	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1280		if (end == OBD_OBJECT_EOF)
1281			end = i_size_read(inode);
1282		mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
1283	}
1284	RETURN(result);
1285}
1286
1287int ll_readpage(struct file *file, struct page *vmpage)
1288{
1289	struct ll_cl_context *lcc;
1290	int result;
1291	ENTRY;
1292
1293	lcc = ll_cl_init(file, vmpage, 0);
1294	if (!IS_ERR(lcc)) {
1295		struct lu_env  *env  = lcc->lcc_env;
1296		struct cl_io   *io   = lcc->lcc_io;
1297		struct cl_page *page = lcc->lcc_page;
1298
1299		LASSERT(page->cp_type == CPT_CACHEABLE);
1300		if (likely(!PageUptodate(vmpage))) {
1301			cl_page_assume(env, io, page);
1302			result = cl_io_read_page(env, io, page);
1303		} else {
1304			/* Page from a non-object file. */
1305			unlock_page(vmpage);
1306			result = 0;
1307		}
1308		ll_cl_fini(lcc);
1309	} else {
1310		unlock_page(vmpage);
1311		result = PTR_ERR(lcc);
1312	}
1313	RETURN(result);
1314}
1315