lov_cl_internal.h revision 21aef7d9d654416b8167ad8047a628d3968a97da
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36/*
37 * This file is part of Lustre, http://www.lustre.org/
38 * Lustre is a trademark of Sun Microsystems, Inc.
39 *
40 * Internal interfaces of LOV layer.
41 *
42 *   Author: Nikita Danilov <nikita.danilov@sun.com>
43 *   Author: Jinshan Xiong <jinshan.xiong@intel.com>
44 */
45
46#ifndef LOV_CL_INTERNAL_H
47#define LOV_CL_INTERNAL_H
48
49#include "../../include/linux/libcfs/libcfs.h"
50
51#include "../include/obd.h"
52#include "../include/cl_object.h"
53#include "lov_internal.h"
54
55/** \defgroup lov lov
56 * Logical object volume layer. This layer implements data striping (raid0).
57 *
58 * At the lov layer top-entity (object, page, lock, io) is connected to one or
59 * more sub-entities: top-object, representing a file is connected to a set of
60 * sub-objects, each representing a stripe, file-level top-lock is connected
61 * to a set of per-stripe sub-locks, top-page is connected to a (single)
62 * sub-page, and a top-level IO is connected to a set of (potentially
63 * concurrent) sub-IO's.
64 *
65 * Sub-object, sub-page, and sub-io have well-defined top-object and top-page
66 * respectively, while a single sub-lock can be part of multiple top-locks.
67 *
68 * Reference counting models are different for different types of entities:
69 *
70 *     - top-object keeps a reference to its sub-objects, and destroys them
71 *       when it is destroyed.
72 *
73 *     - top-page keeps a reference to its sub-page, and destroys it when it
74 *       is destroyed.
75 *
76 *     - sub-lock keep a reference to its top-locks. Top-lock keeps a
77 *       reference (and a hold, see cl_lock_hold()) on its sub-locks when it
78 *       actively using them (that is, in cl_lock_state::CLS_QUEUING,
79 *       cl_lock_state::CLS_ENQUEUED, cl_lock_state::CLS_HELD states). When
80 *       moving into cl_lock_state::CLS_CACHED state, top-lock releases a
81 *       hold. From this moment top-lock has only a 'weak' reference to its
82 *       sub-locks. This reference is protected by top-lock
83 *       cl_lock::cll_guard, and will be automatically cleared by the sub-lock
84 *       when the latter is destroyed. When a sub-lock is canceled, a
85 *       reference to it is removed from the top-lock array, and top-lock is
86 *       moved into CLS_NEW state. It is guaranteed that all sub-locks exist
87 *       while their top-lock is in CLS_HELD or CLS_CACHED states.
88 *
89 *     - IO's are not reference counted.
90 *
91 * To implement a connection between top and sub entities, lov layer is split
92 * into two pieces: lov ("upper half"), and lovsub ("bottom half"), both
93 * implementing full set of cl-interfaces. For example, top-object has vvp and
94 * lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is
95 * used to track child-parent relationship.
96 *
97 * @{
98 */
99
100struct lovsub_device;
101struct lovsub_object;
102struct lovsub_lock;
103
104enum lov_device_flags {
105	LOV_DEV_INITIALIZED = 1 << 0
106};
107
108/*
109 * Upper half.
110 */
111
112/**
113 * Resources that are used in memory-cleaning path, and whose allocation
114 * cannot fail even when memory is tight. They are preallocated in sufficient
115 * quantities in lov_device::ld_emerg[], and access to them is serialized
116 * lov_device::ld_mutex.
117 */
118struct lov_device_emerg {
119	/**
120	 * Page list used to submit IO when memory is in pressure.
121	 */
122	struct cl_page_list emrg_page_list;
123	/**
124	 * sub-io's shared by all threads accessing this device when memory is
125	 * too low to allocate sub-io's dynamically.
126	 */
127	struct cl_io	emrg_subio;
128	/**
129	 * Environments used by sub-io's in
130	 * lov_device_emerg::emrg_subio.
131	 */
132	struct lu_env      *emrg_env;
133	/**
134	 * Refchecks for lov_device_emerg::emrg_env.
135	 *
136	 * \see cl_env_get()
137	 */
138	int		 emrg_refcheck;
139};
140
141struct lov_device {
142	/*
143	 * XXX Locking of lov-private data is missing.
144	 */
145	struct cl_device	  ld_cl;
146	struct lov_obd	   *ld_lov;
147	/** size of lov_device::ld_target[] array */
148	__u32		     ld_target_nr;
149	struct lovsub_device    **ld_target;
150	__u32		     ld_flags;
151
152	/** Emergency resources used in memory-cleansing paths. */
153	struct lov_device_emerg **ld_emrg;
154	/**
155	 * Serializes access to lov_device::ld_emrg in low-memory
156	 * conditions.
157	 */
158	struct mutex		  ld_mutex;
159};
160
161/**
162 * Layout type.
163 */
164enum lov_layout_type {
165	LLT_EMPTY,	/** empty file without body (mknod + truncate) */
166	LLT_RAID0,	/** striped file */
167	LLT_RELEASED,	/** file with no objects (data in HSM) */
168	LLT_NR
169};
170
171static inline char *llt2str(enum lov_layout_type llt)
172{
173	switch (llt) {
174	case LLT_EMPTY:
175		return "EMPTY";
176	case LLT_RAID0:
177		return "RAID0";
178	case LLT_RELEASED:
179		return "RELEASED";
180	case LLT_NR:
181		LBUG();
182	}
183	LBUG();
184	return "";
185}
186
187/**
188 * lov-specific file state.
189 *
190 * lov object has particular layout type, determining how top-object is built
191 * on top of sub-objects. Layout type can change dynamically. When this
192 * happens, lov_object::lo_type_guard semaphore is taken in exclusive mode,
193 * all state pertaining to the old layout type is destroyed, and new state is
194 * constructed. All object methods take said semaphore in the shared mode,
195 * providing serialization against transition between layout types.
196 *
197 * To avoid multiple `if' or `switch' statements, selecting behavior for the
198 * current layout type, object methods perform double-dispatch, invoking
199 * function corresponding to the current layout type.
200 */
201struct lov_object {
202	struct cl_object       lo_cl;
203	/**
204	 * Serializes object operations with transitions between layout types.
205	 *
206	 * This semaphore is taken in shared mode by all object methods, and
207	 * is taken in exclusive mode when object type is changed.
208	 *
209	 * \see lov_object::lo_type
210	 */
211	struct rw_semaphore	lo_type_guard;
212	/**
213	 * Type of an object. Protected by lov_object::lo_type_guard.
214	 */
215	enum lov_layout_type	lo_type;
216	/**
217	 * True if layout is invalid. This bit is cleared when layout lock
218	 * is lost.
219	 */
220	bool			lo_layout_invalid;
221	/**
222	 * How many IOs are on going on this object. Layout can be changed
223	 * only if there is no active IO.
224	 */
225	atomic_t	       lo_active_ios;
226	/**
227	 * Waitq - wait for no one else is using lo_lsm
228	 */
229	wait_queue_head_t	       lo_waitq;
230	/**
231	 * Layout metadata. NULL if empty layout.
232	 */
233	struct lov_stripe_md  *lo_lsm;
234
235	union lov_layout_state {
236		struct lov_layout_raid0 {
237			unsigned	       lo_nr;
238			/**
239			 * When this is true, lov_object::lo_attr contains
240			 * valid up to date attributes for a top-level
241			 * object. This field is reset to 0 when attributes of
242			 * any sub-object change.
243			 */
244			int		       lo_attr_valid;
245			/**
246			 * Array of sub-objects. Allocated when top-object is
247			 * created (lov_init_raid0()).
248			 *
249			 * Top-object is a strict master of its sub-objects:
250			 * it is created before them, and outlives its
251			 * children (this later is necessary so that basic
252			 * functions like cl_object_top() always
253			 * work). Top-object keeps a reference on every
254			 * sub-object.
255			 *
256			 * When top-object is destroyed (lov_delete_raid0())
257			 * it releases its reference to a sub-object and waits
258			 * until the latter is finally destroyed.
259			 */
260			struct lovsub_object **lo_sub;
261			/**
262			 * protect lo_sub
263			 */
264			spinlock_t		lo_sub_lock;
265			/**
266			 * Cached object attribute, built from sub-object
267			 * attributes.
268			 */
269			struct cl_attr	 lo_attr;
270		} raid0;
271		struct lov_layout_state_empty {
272		} empty;
273		struct lov_layout_state_released {
274		} released;
275	} u;
276	/**
277	 * Thread that acquired lov_object::lo_type_guard in an exclusive
278	 * mode.
279	 */
280	struct task_struct	*lo_owner;
281};
282
283/**
284 * Flags that top-lock can set on each of its sub-locks.
285 */
286enum lov_sub_flags {
287	/** Top-lock acquired a hold (cl_lock_hold()) on a sub-lock. */
288	LSF_HELD = 1 << 0
289};
290
291/**
292 * State lov_lock keeps for each sub-lock.
293 */
294struct lov_lock_sub {
295	/** sub-lock itself */
296	struct lovsub_lock  *sub_lock;
297	/** An array of per-sub-lock flags, taken from enum lov_sub_flags */
298	unsigned	     sub_flags;
299	int		  sub_stripe;
300	struct cl_lock_descr sub_descr;
301	struct cl_lock_descr sub_got;
302};
303
304/**
305 * lov-specific lock state.
306 */
307struct lov_lock {
308	struct cl_lock_slice   lls_cl;
309	/** Number of sub-locks in this lock */
310	int		    lls_nr;
311	/**
312	 * Number of existing sub-locks.
313	 */
314	unsigned	       lls_nr_filled;
315	/**
316	 * Set when sub-lock was canceled, while top-lock was being
317	 * used, or unused.
318	 */
319	unsigned int	       lls_cancel_race:1;
320	/**
321	 * An array of sub-locks
322	 *
323	 * There are two issues with managing sub-locks:
324	 *
325	 *     - sub-locks are concurrently canceled, and
326	 *
327	 *     - sub-locks are shared with other top-locks.
328	 *
329	 * To manage cancellation, top-lock acquires a hold on a sublock
330	 * (lov_sublock_adopt()) when the latter is inserted into
331	 * lov_lock::lls_sub[]. This hold is released (lov_sublock_release())
332	 * when top-lock is going into CLS_CACHED state or destroyed. Hold
333	 * prevents sub-lock from cancellation.
334	 *
335	 * Sub-lock sharing means, among other things, that top-lock that is
336	 * in the process of creation (i.e., not yet inserted into lock list)
337	 * is already accessible to other threads once at least one of its
338	 * sub-locks is created, see lov_lock_sub_init().
339	 *
340	 * Sub-lock can be in one of the following states:
341	 *
342	 *     - doesn't exist, lov_lock::lls_sub[]::sub_lock == NULL. Such
343	 *       sub-lock was either never created (top-lock is in CLS_NEW
344	 *       state), or it was created, then canceled, then destroyed
345	 *       (lov_lock_unlink() cleared sub-lock pointer in the top-lock).
346	 *
347	 *     - sub-lock exists and is on
348	 *       hold. (lov_lock::lls_sub[]::sub_flags & LSF_HELD). This is a
349	 *       normal state of a sub-lock in CLS_HELD and CLS_CACHED states
350	 *       of a top-lock.
351	 *
352	 *     - sub-lock exists, but is not held by the top-lock. This
353	 *       happens after top-lock released a hold on sub-locks before
354	 *       going into cache (lov_lock_unuse()).
355	 *
356	 * \todo To support wide-striping, array has to be replaced with a set
357	 * of queues to avoid scanning.
358	 */
359	struct lov_lock_sub   *lls_sub;
360	/**
361	 * Original description with which lock was enqueued.
362	 */
363	struct cl_lock_descr   lls_orig;
364};
365
366struct lov_page {
367	struct cl_page_slice lps_cl;
368	int		  lps_invalid;
369};
370
371/*
372 * Bottom half.
373 */
374
375struct lovsub_device {
376	struct cl_device   acid_cl;
377	struct lov_device *acid_super;
378	int		acid_idx;
379	struct cl_device  *acid_next;
380};
381
382struct lovsub_object {
383	struct cl_object_header lso_header;
384	struct cl_object	lso_cl;
385	struct lov_object      *lso_super;
386	int		     lso_index;
387};
388
389/**
390 * A link between a top-lock and a sub-lock. Separate data-structure is
391 * necessary, because top-locks and sub-locks are in M:N relationship.
392 *
393 * \todo This can be optimized for a (by far) most frequent case of a single
394 * top-lock per sub-lock.
395 */
396struct lov_lock_link {
397	struct lov_lock *lll_super;
398	/** An index within parent lock. */
399	int	      lll_idx;
400	/**
401	 * A linkage into per sub-lock list of all corresponding top-locks,
402	 * hanging off lovsub_lock::lss_parents.
403	 */
404	struct list_head       lll_list;
405};
406
407/**
408 * Lock state at lovsub layer.
409 */
410struct lovsub_lock {
411	struct cl_lock_slice  lss_cl;
412	/**
413	 * List of top-locks that have given sub-lock as their part. Protected
414	 * by cl_lock::cll_guard mutex.
415	 */
416	struct list_head	    lss_parents;
417	/**
418	 * Top-lock that initiated current operation on this sub-lock. This is
419	 * only set during top-to-bottom lock operations like enqueue, and is
420	 * used to optimize state change notification. Protected by
421	 * cl_lock::cll_guard mutex.
422	 *
423	 * \see lovsub_lock_state_one().
424	 */
425	struct cl_lock       *lss_active;
426};
427
428/**
429 * Describe the environment settings for sublocks.
430 */
431struct lov_sublock_env {
432	const struct lu_env *lse_env;
433	struct cl_io	*lse_io;
434	struct lov_io_sub   *lse_sub;
435};
436
437struct lovsub_page {
438	struct cl_page_slice lsb_cl;
439};
440
441
442struct lov_thread_info {
443	struct cl_object_conf   lti_stripe_conf;
444	struct lu_fid	   lti_fid;
445	struct cl_lock_descr    lti_ldescr;
446	struct ost_lvb	  lti_lvb;
447	struct cl_2queue	lti_cl2q;
448	struct cl_lock_closure  lti_closure;
449	wait_queue_t	  lti_waiter;
450};
451
452/**
453 * State that lov_io maintains for every sub-io.
454 */
455struct lov_io_sub {
456	int		  sub_stripe;
457	/**
458	 * sub-io for a stripe. Ideally sub-io's can be stopped and resumed
459	 * independently, with lov acting as a scheduler to maximize overall
460	 * throughput.
461	 */
462	struct cl_io	*sub_io;
463	/**
464	 * Linkage into a list (hanging off lov_io::lis_active) of all
465	 * sub-io's active for the current IO iteration.
466	 */
467	struct list_head	   sub_linkage;
468	/**
469	 * true, iff cl_io_init() was successfully executed against
470	 * lov_io_sub::sub_io.
471	 */
472	int		  sub_io_initialized;
473	/**
474	 * True, iff lov_io_sub::sub_io and lov_io_sub::sub_env weren't
475	 * allocated, but borrowed from a per-device emergency pool.
476	 */
477	int		  sub_borrowed;
478	/**
479	 * environment, in which sub-io executes.
480	 */
481	struct lu_env *sub_env;
482	/**
483	 * environment's refcheck.
484	 *
485	 * \see cl_env_get()
486	 */
487	int		  sub_refcheck;
488	int		  sub_refcheck2;
489	int		  sub_reenter;
490	void		*sub_cookie;
491};
492
493/**
494 * IO state private for LOV.
495 */
496struct lov_io {
497	/** super-class */
498	struct cl_io_slice lis_cl;
499	/**
500	 * Pointer to the object slice. This is a duplicate of
501	 * lov_io::lis_cl::cis_object.
502	 */
503	struct lov_object *lis_object;
504	/**
505	 * Original end-of-io position for this IO, set by the upper layer as
506	 * cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this,
507	 * changes pos and count to fit IO into a single stripe and uses saved
508	 * value to determine when IO iterations have to stop.
509	 *
510	 * This is used only for CIT_READ and CIT_WRITE io's.
511	 */
512	loff_t	     lis_io_endpos;
513
514	/**
515	 * starting position within a file, for the current io loop iteration
516	 * (stripe), used by ci_io_loop().
517	 */
518	u64	    lis_pos;
519	/**
520	 * end position with in a file, for the current stripe io. This is
521	 * exclusive (i.e., next offset after last byte affected by io).
522	 */
523	u64	    lis_endpos;
524
525	int		lis_mem_frozen;
526	int		lis_stripe_count;
527	int		lis_active_subios;
528
529	/**
530	 * the index of ls_single_subio in ls_subios array
531	 */
532	int		lis_single_subio_index;
533	struct cl_io       lis_single_subio;
534
535	/**
536	 * size of ls_subios array, actually the highest stripe #
537	 */
538	int		lis_nr_subios;
539	struct lov_io_sub *lis_subs;
540	/**
541	 * List of active sub-io's.
542	 */
543	struct list_head	 lis_active;
544};
545
546struct lov_session {
547	struct lov_io	  ls_io;
548	struct lov_sublock_env ls_subenv;
549};
550
551/**
552 * State of transfer for lov.
553 */
554struct lov_req {
555	struct cl_req_slice lr_cl;
556};
557
558/**
559 * State of transfer for lovsub.
560 */
561struct lovsub_req {
562	struct cl_req_slice lsrq_cl;
563};
564
565extern struct lu_device_type lov_device_type;
566extern struct lu_device_type lovsub_device_type;
567
568extern struct lu_context_key lov_key;
569extern struct lu_context_key lov_session_key;
570
571extern struct kmem_cache *lov_lock_kmem;
572extern struct kmem_cache *lov_object_kmem;
573extern struct kmem_cache *lov_thread_kmem;
574extern struct kmem_cache *lov_session_kmem;
575extern struct kmem_cache *lov_req_kmem;
576
577extern struct kmem_cache *lovsub_lock_kmem;
578extern struct kmem_cache *lovsub_object_kmem;
579extern struct kmem_cache *lovsub_req_kmem;
580
581extern struct kmem_cache *lov_lock_link_kmem;
582
583int   lov_object_init(const struct lu_env *env, struct lu_object *obj,
584			   const struct lu_object_conf *conf);
585int   lovsub_object_init(const struct lu_env *env, struct lu_object *obj,
586			   const struct lu_object_conf *conf);
587int   lov_lock_init(const struct lu_env *env, struct cl_object *obj,
588			   struct cl_lock *lock, const struct cl_io *io);
589int   lov_io_init(const struct lu_env *env, struct cl_object *obj,
590			   struct cl_io *io);
591int   lovsub_lock_init(const struct lu_env *env, struct cl_object *obj,
592			   struct cl_lock *lock, const struct cl_io *io);
593
594int   lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
595			   struct cl_lock *lock, const struct cl_io *io);
596int   lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
597			   struct cl_lock *lock, const struct cl_io *io);
598int   lov_io_init_raid0(const struct lu_env *env, struct cl_object *obj,
599			   struct cl_io *io);
600int   lov_io_init_empty(const struct lu_env *env, struct cl_object *obj,
601			   struct cl_io *io);
602int   lov_io_init_released(const struct lu_env *env, struct cl_object *obj,
603			   struct cl_io *io);
604void  lov_lock_unlink(const struct lu_env *env, struct lov_lock_link *link,
605			   struct lovsub_lock *sub);
606
607struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio,
608			       int stripe);
609void  lov_sub_put(struct lov_io_sub *sub);
610int   lov_sublock_modify(const struct lu_env *env, struct lov_lock *lov,
611			   struct lovsub_lock *sublock,
612			   const struct cl_lock_descr *d, int idx);
613
614
615int   lov_page_init(const struct lu_env *env, struct cl_object *ob,
616			   struct cl_page *page, struct page *vmpage);
617int   lovsub_page_init(const struct lu_env *env, struct cl_object *ob,
618			   struct cl_page *page, struct page *vmpage);
619
620int   lov_page_init_empty(const struct lu_env *env,
621			   struct cl_object *obj,
622			   struct cl_page *page, struct page *vmpage);
623int   lov_page_init_raid0(const struct lu_env *env,
624			   struct cl_object *obj,
625			   struct cl_page *page, struct page *vmpage);
626struct lu_object *lov_object_alloc(const struct lu_env *env,
627				      const struct lu_object_header *hdr,
628				      struct lu_device *dev);
629struct lu_object *lovsub_object_alloc(const struct lu_env *env,
630				      const struct lu_object_header *hdr,
631				      struct lu_device *dev);
632
633struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
634					 struct lov_lock *lck,
635					 struct lovsub_lock *sub);
636struct lov_io_sub    *lov_page_subio(const struct lu_env *env,
637					 struct lov_io *lio,
638					 const struct cl_page_slice *slice);
639
640void lov_lsm_decref(struct lov_object *lov, struct lov_stripe_md *lsm);
641struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov);
642
643#define lov_foreach_target(lov, var)		    \
644	for (var = 0; var < lov_targets_nr(lov); ++var)
645
646/*****************************************************************************
647 *
648 * Type conversions.
649 *
650 * Accessors.
651 *
652 */
653
654static inline struct lov_session *lov_env_session(const struct lu_env *env)
655{
656	struct lov_session *ses;
657
658	ses = lu_context_key_get(env->le_ses, &lov_session_key);
659	LASSERT(ses != NULL);
660	return ses;
661}
662
663static inline struct lov_io *lov_env_io(const struct lu_env *env)
664{
665	return &lov_env_session(env)->ls_io;
666}
667
668static inline int lov_is_object(const struct lu_object *obj)
669{
670	return obj->lo_dev->ld_type == &lov_device_type;
671}
672
673static inline int lovsub_is_object(const struct lu_object *obj)
674{
675	return obj->lo_dev->ld_type == &lovsub_device_type;
676}
677
678static inline struct lu_device *lov2lu_dev(struct lov_device *lov)
679{
680	return &lov->ld_cl.cd_lu_dev;
681}
682
683static inline struct lov_device *lu2lov_dev(const struct lu_device *d)
684{
685	LINVRNT(d->ld_type == &lov_device_type);
686	return container_of0(d, struct lov_device, ld_cl.cd_lu_dev);
687}
688
689static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub)
690{
691	return &lovsub->acid_cl;
692}
693
694static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub)
695{
696	return &lovsub2cl_dev(lovsub)->cd_lu_dev;
697}
698
699static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d)
700{
701	LINVRNT(d->ld_type == &lovsub_device_type);
702	return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev);
703}
704
705static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d)
706{
707	LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type);
708	return container_of0(d, struct lovsub_device, acid_cl);
709}
710
711static inline struct lu_object *lov2lu(struct lov_object *lov)
712{
713	return &lov->lo_cl.co_lu;
714}
715
716static inline struct cl_object *lov2cl(struct lov_object *lov)
717{
718	return &lov->lo_cl;
719}
720
721static inline struct lov_object *lu2lov(const struct lu_object *obj)
722{
723	LINVRNT(lov_is_object(obj));
724	return container_of0(obj, struct lov_object, lo_cl.co_lu);
725}
726
727static inline struct lov_object *cl2lov(const struct cl_object *obj)
728{
729	LINVRNT(lov_is_object(&obj->co_lu));
730	return container_of0(obj, struct lov_object, lo_cl);
731}
732
733static inline struct lu_object *lovsub2lu(struct lovsub_object *los)
734{
735	return &los->lso_cl.co_lu;
736}
737
738static inline struct cl_object *lovsub2cl(struct lovsub_object *los)
739{
740	return &los->lso_cl;
741}
742
743static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj)
744{
745	LINVRNT(lovsub_is_object(&obj->co_lu));
746	return container_of0(obj, struct lovsub_object, lso_cl);
747}
748
749static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj)
750{
751	LINVRNT(lovsub_is_object(obj));
752	return container_of0(obj, struct lovsub_object, lso_cl.co_lu);
753}
754
755static inline struct lovsub_lock *
756cl2lovsub_lock(const struct cl_lock_slice *slice)
757{
758	LINVRNT(lovsub_is_object(&slice->cls_obj->co_lu));
759	return container_of(slice, struct lovsub_lock, lss_cl);
760}
761
762static inline struct lovsub_lock *cl2sub_lock(const struct cl_lock *lock)
763{
764	const struct cl_lock_slice *slice;
765
766	slice = cl_lock_at(lock, &lovsub_device_type);
767	LASSERT(slice != NULL);
768	return cl2lovsub_lock(slice);
769}
770
771static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice)
772{
773	LINVRNT(lov_is_object(&slice->cls_obj->co_lu));
774	return container_of(slice, struct lov_lock, lls_cl);
775}
776
777static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice)
778{
779	LINVRNT(lov_is_object(&slice->cpl_obj->co_lu));
780	return container_of0(slice, struct lov_page, lps_cl);
781}
782
783static inline struct lov_req *cl2lov_req(const struct cl_req_slice *slice)
784{
785	return container_of0(slice, struct lov_req, lr_cl);
786}
787
788static inline struct lovsub_page *
789cl2lovsub_page(const struct cl_page_slice *slice)
790{
791	LINVRNT(lovsub_is_object(&slice->cpl_obj->co_lu));
792	return container_of0(slice, struct lovsub_page, lsb_cl);
793}
794
795static inline struct lovsub_req *cl2lovsub_req(const struct cl_req_slice *slice)
796{
797	return container_of0(slice, struct lovsub_req, lsrq_cl);
798}
799
800static inline struct cl_page *lov_sub_page(const struct cl_page_slice *slice)
801{
802	return slice->cpl_page->cp_child;
803}
804
805static inline struct lov_io *cl2lov_io(const struct lu_env *env,
806				const struct cl_io_slice *ios)
807{
808	struct lov_io *lio;
809
810	lio = container_of(ios, struct lov_io, lis_cl);
811	LASSERT(lio == lov_env_io(env));
812	return lio;
813}
814
815static inline int lov_targets_nr(const struct lov_device *lov)
816{
817	return lov->ld_lov->desc.ld_tgt_count;
818}
819
820static inline struct lov_thread_info *lov_env_info(const struct lu_env *env)
821{
822	struct lov_thread_info *info;
823
824	info = lu_context_key_get(&env->le_ctx, &lov_key);
825	LASSERT(info != NULL);
826	return info;
827}
828
829static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov)
830{
831	LASSERT(lov->lo_type == LLT_RAID0);
832	LASSERT(lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC ||
833		lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC_V3);
834	return &lov->u.raid0;
835}
836
837/** @} lov */
838
839#endif
840