lov_cl_internal.h revision 5dd16419919787eed5a3ade9f03a58ecfc9e8630
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36/*
37 * This file is part of Lustre, http://www.lustre.org/
38 * Lustre is a trademark of Sun Microsystems, Inc.
39 *
40 * Internal interfaces of LOV layer.
41 *
42 *   Author: Nikita Danilov <nikita.danilov@sun.com>
43 *   Author: Jinshan Xiong <jinshan.xiong@intel.com>
44 */
45
46#ifndef LOV_CL_INTERNAL_H
47#define LOV_CL_INTERNAL_H
48
49# include <linux/libcfs/libcfs.h>
50
51#include <obd.h>
52#include <cl_object.h>
53#include "lov_internal.h"
54
55/** \defgroup lov lov
56 * Logical object volume layer. This layer implements data striping (raid0).
57 *
58 * At the lov layer top-entity (object, page, lock, io) is connected to one or
59 * more sub-entities: top-object, representing a file is connected to a set of
60 * sub-objects, each representing a stripe, file-level top-lock is connected
61 * to a set of per-stripe sub-locks, top-page is connected to a (single)
62 * sub-page, and a top-level IO is connected to a set of (potentially
63 * concurrent) sub-IO's.
64 *
65 * Sub-object, sub-page, and sub-io have well-defined top-object and top-page
66 * respectively, while a single sub-lock can be part of multiple top-locks.
67 *
68 * Reference counting models are different for different types of entities:
69 *
70 *     - top-object keeps a reference to its sub-objects, and destroys them
71 *       when it is destroyed.
72 *
73 *     - top-page keeps a reference to its sub-page, and destroys it when it
74 *       is destroyed.
75 *
76 *     - sub-lock keep a reference to its top-locks. Top-lock keeps a
77 *       reference (and a hold, see cl_lock_hold()) on its sub-locks when it
78 *       actively using them (that is, in cl_lock_state::CLS_QUEUING,
79 *       cl_lock_state::CLS_ENQUEUED, cl_lock_state::CLS_HELD states). When
80 *       moving into cl_lock_state::CLS_CACHED state, top-lock releases a
81 *       hold. From this moment top-lock has only a 'weak' reference to its
82 *       sub-locks. This reference is protected by top-lock
83 *       cl_lock::cll_guard, and will be automatically cleared by the sub-lock
84 *       when the latter is destroyed. When a sub-lock is canceled, a
85 *       reference to it is removed from the top-lock array, and top-lock is
86 *       moved into CLS_NEW state. It is guaranteed that all sub-locks exist
87 *       while their top-lock is in CLS_HELD or CLS_CACHED states.
88 *
89 *     - IO's are not reference counted.
90 *
91 * To implement a connection between top and sub entities, lov layer is split
92 * into two pieces: lov ("upper half"), and lovsub ("bottom half"), both
93 * implementing full set of cl-interfaces. For example, top-object has vvp and
94 * lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is
95 * used to track child-parent relationship.
96 *
97 * @{
98 */
99
100struct lovsub_device;
101struct lovsub_object;
102struct lovsub_lock;
103
104enum lov_device_flags {
105	LOV_DEV_INITIALIZED = 1 << 0
106};
107
108/*
109 * Upper half.
110 */
111
112/**
113 * Resources that are used in memory-cleaning path, and whose allocation
114 * cannot fail even when memory is tight. They are preallocated in sufficient
115 * quantities in lov_device::ld_emerg[], and access to them is serialized
116 * lov_device::ld_mutex.
117 */
118struct lov_device_emerg {
119	/**
120	 * Page list used to submit IO when memory is in pressure.
121	 */
122	struct cl_page_list emrg_page_list;
123	/**
124	 * sub-io's shared by all threads accessing this device when memory is
125	 * too low to allocate sub-io's dynamically.
126	 */
127	struct cl_io	emrg_subio;
128	/**
129	 * Environments used by sub-io's in
130	 * lov_device_emerg::emrg_subio.
131	 */
132	struct lu_env      *emrg_env;
133	/**
134	 * Refchecks for lov_device_emerg::emrg_env.
135	 *
136	 * \see cl_env_get()
137	 */
138	int		 emrg_refcheck;
139};
140
141struct lov_device {
142	/*
143	 * XXX Locking of lov-private data is missing.
144	 */
145	struct cl_device	  ld_cl;
146	struct lov_obd	   *ld_lov;
147	/** size of lov_device::ld_target[] array */
148	__u32		     ld_target_nr;
149	struct lovsub_device    **ld_target;
150	__u32		     ld_flags;
151
152	/** Emergency resources used in memory-cleansing paths. */
153	struct lov_device_emerg **ld_emrg;
154	/**
155	 * Serializes access to lov_device::ld_emrg in low-memory
156	 * conditions.
157	 */
158	struct mutex		  ld_mutex;
159};
160
161/**
162 * Layout type.
163 */
164enum lov_layout_type {
165	LLT_EMPTY,	/** empty file without body (mknod + truncate) */
166	LLT_RAID0,	/** striped file */
167	LLT_RELEASED,	/** file with no objects (data in HSM) */
168	LLT_NR
169};
170
171/**
172 * lov-specific file state.
173 *
174 * lov object has particular layout type, determining how top-object is built
175 * on top of sub-objects. Layout type can change dynamically. When this
176 * happens, lov_object::lo_type_guard semaphore is taken in exclusive mode,
177 * all state pertaining to the old layout type is destroyed, and new state is
178 * constructed. All object methods take said semaphore in the shared mode,
179 * providing serialization against transition between layout types.
180 *
181 * To avoid multiple `if' or `switch' statements, selecting behavior for the
182 * current layout type, object methods perform double-dispatch, invoking
183 * function corresponding to the current layout type.
184 */
185struct lov_object {
186	struct cl_object       lo_cl;
187	/**
188	 * Serializes object operations with transitions between layout types.
189	 *
190	 * This semaphore is taken in shared mode by all object methods, and
191	 * is taken in exclusive mode when object type is changed.
192	 *
193	 * \see lov_object::lo_type
194	 */
195	struct rw_semaphore	lo_type_guard;
196	/**
197	 * Type of an object. Protected by lov_object::lo_type_guard.
198	 */
199	enum lov_layout_type	lo_type;
200	/**
201	 * True if layout is invalid. This bit is cleared when layout lock
202	 * is lost.
203	 */
204	bool			lo_layout_invalid;
205	/**
206	 * How many IOs are on going on this object. Layout can be changed
207	 * only if there is no active IO.
208	 */
209	atomic_t	       lo_active_ios;
210	/**
211	 * Waitq - wait for no one else is using lo_lsm
212	 */
213	wait_queue_head_t	       lo_waitq;
214	/**
215	 * Layout metadata. NULL if empty layout.
216	 */
217	struct lov_stripe_md  *lo_lsm;
218
219	union lov_layout_state {
220		struct lov_layout_raid0 {
221			unsigned	       lo_nr;
222			/**
223			 * When this is true, lov_object::lo_attr contains
224			 * valid up to date attributes for a top-level
225			 * object. This field is reset to 0 when attributes of
226			 * any sub-object change.
227			 */
228			int		       lo_attr_valid;
229			/**
230			 * Array of sub-objects. Allocated when top-object is
231			 * created (lov_init_raid0()).
232			 *
233			 * Top-object is a strict master of its sub-objects:
234			 * it is created before them, and outlives its
235			 * children (this later is necessary so that basic
236			 * functions like cl_object_top() always
237			 * work). Top-object keeps a reference on every
238			 * sub-object.
239			 *
240			 * When top-object is destroyed (lov_delete_raid0())
241			 * it releases its reference to a sub-object and waits
242			 * until the latter is finally destroyed.
243			 */
244			struct lovsub_object **lo_sub;
245			/**
246			 * protect lo_sub
247			 */
248			spinlock_t		lo_sub_lock;
249			/**
250			 * Cached object attribute, built from sub-object
251			 * attributes.
252			 */
253			struct cl_attr	 lo_attr;
254		} raid0;
255		struct lov_layout_state_empty {
256		} empty;
257		struct lov_layout_state_released {
258		} released;
259	} u;
260	/**
261	 * Thread that acquired lov_object::lo_type_guard in an exclusive
262	 * mode.
263	 */
264	task_t	    *lo_owner;
265};
266
267/**
268 * Flags that top-lock can set on each of its sub-locks.
269 */
270enum lov_sub_flags {
271	/** Top-lock acquired a hold (cl_lock_hold()) on a sub-lock. */
272	LSF_HELD = 1 << 0
273};
274
275/**
276 * State lov_lock keeps for each sub-lock.
277 */
278struct lov_lock_sub {
279	/** sub-lock itself */
280	struct lovsub_lock  *sub_lock;
281	/** An array of per-sub-lock flags, taken from enum lov_sub_flags */
282	unsigned	     sub_flags;
283	int		  sub_stripe;
284	struct cl_lock_descr sub_descr;
285	struct cl_lock_descr sub_got;
286};
287
288/**
289 * lov-specific lock state.
290 */
291struct lov_lock {
292	struct cl_lock_slice   lls_cl;
293	/** Number of sub-locks in this lock */
294	int		    lls_nr;
295	/**
296	 * Number of existing sub-locks.
297	 */
298	unsigned	       lls_nr_filled;
299	/**
300	 * Set when sub-lock was canceled, while top-lock was being
301	 * used, or unused.
302	 */
303	unsigned int	       lls_cancel_race:1;
304	/**
305	 * An array of sub-locks
306	 *
307	 * There are two issues with managing sub-locks:
308	 *
309	 *     - sub-locks are concurrently canceled, and
310	 *
311	 *     - sub-locks are shared with other top-locks.
312	 *
313	 * To manage cancellation, top-lock acquires a hold on a sublock
314	 * (lov_sublock_adopt()) when the latter is inserted into
315	 * lov_lock::lls_sub[]. This hold is released (lov_sublock_release())
316	 * when top-lock is going into CLS_CACHED state or destroyed. Hold
317	 * prevents sub-lock from cancellation.
318	 *
319	 * Sub-lock sharing means, among other things, that top-lock that is
320	 * in the process of creation (i.e., not yet inserted into lock list)
321	 * is already accessible to other threads once at least one of its
322	 * sub-locks is created, see lov_lock_sub_init().
323	 *
324	 * Sub-lock can be in one of the following states:
325	 *
326	 *     - doesn't exist, lov_lock::lls_sub[]::sub_lock == NULL. Such
327	 *       sub-lock was either never created (top-lock is in CLS_NEW
328	 *       state), or it was created, then canceled, then destroyed
329	 *       (lov_lock_unlink() cleared sub-lock pointer in the top-lock).
330	 *
331	 *     - sub-lock exists and is on
332	 *       hold. (lov_lock::lls_sub[]::sub_flags & LSF_HELD). This is a
333	 *       normal state of a sub-lock in CLS_HELD and CLS_CACHED states
334	 *       of a top-lock.
335	 *
336	 *     - sub-lock exists, but is not held by the top-lock. This
337	 *       happens after top-lock released a hold on sub-locks before
338	 *       going into cache (lov_lock_unuse()).
339	 *
340	 * \todo To support wide-striping, array has to be replaced with a set
341	 * of queues to avoid scanning.
342	 */
343	struct lov_lock_sub   *lls_sub;
344	/**
345	 * Original description with which lock was enqueued.
346	 */
347	struct cl_lock_descr   lls_orig;
348};
349
350struct lov_page {
351	struct cl_page_slice lps_cl;
352	int		  lps_invalid;
353};
354
355/*
356 * Bottom half.
357 */
358
359struct lovsub_device {
360	struct cl_device   acid_cl;
361	struct lov_device *acid_super;
362	int		acid_idx;
363	struct cl_device  *acid_next;
364};
365
366struct lovsub_object {
367	struct cl_object_header lso_header;
368	struct cl_object	lso_cl;
369	struct lov_object      *lso_super;
370	int		     lso_index;
371};
372
373/**
374 * A link between a top-lock and a sub-lock. Separate data-structure is
375 * necessary, because top-locks and sub-locks are in M:N relationship.
376 *
377 * \todo This can be optimized for a (by far) most frequent case of a single
378 * top-lock per sub-lock.
379 */
380struct lov_lock_link {
381	struct lov_lock *lll_super;
382	/** An index within parent lock. */
383	int	      lll_idx;
384	/**
385	 * A linkage into per sub-lock list of all corresponding top-locks,
386	 * hanging off lovsub_lock::lss_parents.
387	 */
388	struct list_head       lll_list;
389};
390
391/**
392 * Lock state at lovsub layer.
393 */
394struct lovsub_lock {
395	struct cl_lock_slice  lss_cl;
396	/**
397	 * List of top-locks that have given sub-lock as their part. Protected
398	 * by cl_lock::cll_guard mutex.
399	 */
400	struct list_head	    lss_parents;
401	/**
402	 * Top-lock that initiated current operation on this sub-lock. This is
403	 * only set during top-to-bottom lock operations like enqueue, and is
404	 * used to optimize state change notification. Protected by
405	 * cl_lock::cll_guard mutex.
406	 *
407	 * \see lovsub_lock_state_one().
408	 */
409	struct cl_lock       *lss_active;
410};
411
412/**
413 * Describe the environment settings for sublocks.
414 */
415struct lov_sublock_env {
416	const struct lu_env *lse_env;
417	struct cl_io	*lse_io;
418	struct lov_io_sub   *lse_sub;
419};
420
421struct lovsub_page {
422	struct cl_page_slice lsb_cl;
423};
424
425
426struct lov_thread_info {
427	struct cl_object_conf   lti_stripe_conf;
428	struct lu_fid	   lti_fid;
429	struct cl_lock_descr    lti_ldescr;
430	struct ost_lvb	  lti_lvb;
431	struct cl_2queue	lti_cl2q;
432	struct cl_lock_closure  lti_closure;
433	wait_queue_t	  lti_waiter;
434};
435
436/**
437 * State that lov_io maintains for every sub-io.
438 */
439struct lov_io_sub {
440	int		  sub_stripe;
441	/**
442	 * sub-io for a stripe. Ideally sub-io's can be stopped and resumed
443	 * independently, with lov acting as a scheduler to maximize overall
444	 * throughput.
445	 */
446	struct cl_io	*sub_io;
447	/**
448	 * Linkage into a list (hanging off lov_io::lis_active) of all
449	 * sub-io's active for the current IO iteration.
450	 */
451	struct list_head	   sub_linkage;
452	/**
453	 * true, iff cl_io_init() was successfully executed against
454	 * lov_io_sub::sub_io.
455	 */
456	int		  sub_io_initialized;
457	/**
458	 * True, iff lov_io_sub::sub_io and lov_io_sub::sub_env weren't
459	 * allocated, but borrowed from a per-device emergency pool.
460	 */
461	int		  sub_borrowed;
462	/**
463	 * environment, in which sub-io executes.
464	 */
465	struct lu_env *sub_env;
466	/**
467	 * environment's refcheck.
468	 *
469	 * \see cl_env_get()
470	 */
471	int		  sub_refcheck;
472	int		  sub_refcheck2;
473	int		  sub_reenter;
474	void		*sub_cookie;
475};
476
477/**
478 * IO state private for LOV.
479 */
480struct lov_io {
481	/** super-class */
482	struct cl_io_slice lis_cl;
483	/**
484	 * Pointer to the object slice. This is a duplicate of
485	 * lov_io::lis_cl::cis_object.
486	 */
487	struct lov_object *lis_object;
488	/**
489	 * Original end-of-io position for this IO, set by the upper layer as
490	 * cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this,
491	 * changes pos and count to fit IO into a single stripe and uses saved
492	 * value to determine when IO iterations have to stop.
493	 *
494	 * This is used only for CIT_READ and CIT_WRITE io's.
495	 */
496	loff_t	     lis_io_endpos;
497
498	/**
499	 * starting position within a file, for the current io loop iteration
500	 * (stripe), used by ci_io_loop().
501	 */
502	obd_off	    lis_pos;
503	/**
504	 * end position with in a file, for the current stripe io. This is
505	 * exclusive (i.e., next offset after last byte affected by io).
506	 */
507	obd_off	    lis_endpos;
508
509	int		lis_mem_frozen;
510	int		lis_stripe_count;
511	int		lis_active_subios;
512
513	/**
514	 * the index of ls_single_subio in ls_subios array
515	 */
516	int		lis_single_subio_index;
517	struct cl_io       lis_single_subio;
518
519	/**
520	 * size of ls_subios array, actually the highest stripe #
521	 */
522	int		lis_nr_subios;
523	struct lov_io_sub *lis_subs;
524	/**
525	 * List of active sub-io's.
526	 */
527	struct list_head	 lis_active;
528};
529
530struct lov_session {
531	struct lov_io	  ls_io;
532	struct lov_sublock_env ls_subenv;
533};
534
535/**
536 * State of transfer for lov.
537 */
538struct lov_req {
539	struct cl_req_slice lr_cl;
540};
541
542/**
543 * State of transfer for lovsub.
544 */
545struct lovsub_req {
546	struct cl_req_slice lsrq_cl;
547};
548
549extern struct lu_device_type lov_device_type;
550extern struct lu_device_type lovsub_device_type;
551
552extern struct lu_context_key lov_key;
553extern struct lu_context_key lov_session_key;
554
555extern struct kmem_cache *lov_lock_kmem;
556extern struct kmem_cache *lov_object_kmem;
557extern struct kmem_cache *lov_thread_kmem;
558extern struct kmem_cache *lov_session_kmem;
559extern struct kmem_cache *lov_req_kmem;
560
561extern struct kmem_cache *lovsub_lock_kmem;
562extern struct kmem_cache *lovsub_object_kmem;
563extern struct kmem_cache *lovsub_req_kmem;
564
565extern struct kmem_cache *lov_lock_link_kmem;
566
567int   lov_object_init     (const struct lu_env *env, struct lu_object *obj,
568			   const struct lu_object_conf *conf);
569int   lovsub_object_init  (const struct lu_env *env, struct lu_object *obj,
570			   const struct lu_object_conf *conf);
571int   lov_lock_init       (const struct lu_env *env, struct cl_object *obj,
572			   struct cl_lock *lock, const struct cl_io *io);
573int   lov_io_init	 (const struct lu_env *env, struct cl_object *obj,
574			   struct cl_io *io);
575int   lovsub_lock_init    (const struct lu_env *env, struct cl_object *obj,
576			   struct cl_lock *lock, const struct cl_io *io);
577
578int   lov_lock_init_raid0 (const struct lu_env *env, struct cl_object *obj,
579			   struct cl_lock *lock, const struct cl_io *io);
580int   lov_lock_init_empty (const struct lu_env *env, struct cl_object *obj,
581			   struct cl_lock *lock, const struct cl_io *io);
582int   lov_io_init_raid0   (const struct lu_env *env, struct cl_object *obj,
583			   struct cl_io *io);
584int   lov_io_init_empty   (const struct lu_env *env, struct cl_object *obj,
585			   struct cl_io *io);
586int   lov_io_init_released(const struct lu_env *env, struct cl_object *obj,
587			   struct cl_io *io);
588void  lov_lock_unlink     (const struct lu_env *env, struct lov_lock_link *link,
589			   struct lovsub_lock *sub);
590
591struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio,
592			       int stripe);
593void  lov_sub_put	     (struct lov_io_sub *sub);
594int   lov_sublock_modify  (const struct lu_env *env, struct lov_lock *lov,
595			   struct lovsub_lock *sublock,
596			   const struct cl_lock_descr *d, int idx);
597
598
599int   lov_page_init       (const struct lu_env *env, struct cl_object *ob,
600			   struct cl_page *page, struct page *vmpage);
601int   lovsub_page_init    (const struct lu_env *env, struct cl_object *ob,
602			   struct cl_page *page, struct page *vmpage);
603
604int   lov_page_init_empty (const struct lu_env *env,
605			   struct cl_object *obj,
606			   struct cl_page *page, struct page *vmpage);
607int   lov_page_init_raid0 (const struct lu_env *env,
608			   struct cl_object *obj,
609			   struct cl_page *page, struct page *vmpage);
610struct lu_object *lov_object_alloc   (const struct lu_env *env,
611				      const struct lu_object_header *hdr,
612				      struct lu_device *dev);
613struct lu_object *lovsub_object_alloc(const struct lu_env *env,
614				      const struct lu_object_header *hdr,
615				      struct lu_device *dev);
616
617struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
618					 struct lov_lock *lck,
619					 struct lovsub_lock *sub);
620struct lov_io_sub    *lov_page_subio    (const struct lu_env *env,
621					 struct lov_io *lio,
622					 const struct cl_page_slice *slice);
623
624void lov_lsm_decref(struct lov_object *lov, struct lov_stripe_md *lsm);
625struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov);
626
627#define lov_foreach_target(lov, var)		    \
628	for (var = 0; var < lov_targets_nr(lov); ++var)
629
630/*****************************************************************************
631 *
632 * Type conversions.
633 *
634 * Accessors.
635 *
636 */
637
638static inline struct lov_session *lov_env_session(const struct lu_env *env)
639{
640	struct lov_session *ses;
641
642	ses = lu_context_key_get(env->le_ses, &lov_session_key);
643	LASSERT(ses != NULL);
644	return ses;
645}
646
647static inline struct lov_io *lov_env_io(const struct lu_env *env)
648{
649	return &lov_env_session(env)->ls_io;
650}
651
652static inline int lov_is_object(const struct lu_object *obj)
653{
654	return obj->lo_dev->ld_type == &lov_device_type;
655}
656
657static inline int lovsub_is_object(const struct lu_object *obj)
658{
659	return obj->lo_dev->ld_type == &lovsub_device_type;
660}
661
662static inline struct lu_device *lov2lu_dev(struct lov_device *lov)
663{
664	return &lov->ld_cl.cd_lu_dev;
665}
666
667static inline struct lov_device *lu2lov_dev(const struct lu_device *d)
668{
669	LINVRNT(d->ld_type == &lov_device_type);
670	return container_of0(d, struct lov_device, ld_cl.cd_lu_dev);
671}
672
673static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub)
674{
675	return &lovsub->acid_cl;
676}
677
678static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub)
679{
680	return &lovsub2cl_dev(lovsub)->cd_lu_dev;
681}
682
683static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d)
684{
685	LINVRNT(d->ld_type == &lovsub_device_type);
686	return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev);
687}
688
689static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d)
690{
691	LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type);
692	return container_of0(d, struct lovsub_device, acid_cl);
693}
694
695static inline struct lu_object *lov2lu(struct lov_object *lov)
696{
697	return &lov->lo_cl.co_lu;
698}
699
700static inline struct cl_object *lov2cl(struct lov_object *lov)
701{
702	return &lov->lo_cl;
703}
704
705static inline struct lov_object *lu2lov(const struct lu_object *obj)
706{
707	LINVRNT(lov_is_object(obj));
708	return container_of0(obj, struct lov_object, lo_cl.co_lu);
709}
710
711static inline struct lov_object *cl2lov(const struct cl_object *obj)
712{
713	LINVRNT(lov_is_object(&obj->co_lu));
714	return container_of0(obj, struct lov_object, lo_cl);
715}
716
717static inline struct lu_object *lovsub2lu(struct lovsub_object *los)
718{
719	return &los->lso_cl.co_lu;
720}
721
722static inline struct cl_object *lovsub2cl(struct lovsub_object *los)
723{
724	return &los->lso_cl;
725}
726
727static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj)
728{
729	LINVRNT(lovsub_is_object(&obj->co_lu));
730	return container_of0(obj, struct lovsub_object, lso_cl);
731}
732
733static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj)
734{
735	LINVRNT(lovsub_is_object(obj));
736	return container_of0(obj, struct lovsub_object, lso_cl.co_lu);
737}
738
739static inline struct lovsub_lock *
740cl2lovsub_lock(const struct cl_lock_slice *slice)
741{
742	LINVRNT(lovsub_is_object(&slice->cls_obj->co_lu));
743	return container_of(slice, struct lovsub_lock, lss_cl);
744}
745
746static inline struct lovsub_lock *cl2sub_lock(const struct cl_lock *lock)
747{
748	const struct cl_lock_slice *slice;
749
750	slice = cl_lock_at(lock, &lovsub_device_type);
751	LASSERT(slice != NULL);
752	return cl2lovsub_lock(slice);
753}
754
755static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice)
756{
757	LINVRNT(lov_is_object(&slice->cls_obj->co_lu));
758	return container_of(slice, struct lov_lock, lls_cl);
759}
760
761static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice)
762{
763	LINVRNT(lov_is_object(&slice->cpl_obj->co_lu));
764	return container_of0(slice, struct lov_page, lps_cl);
765}
766
767static inline struct lov_req *cl2lov_req(const struct cl_req_slice *slice)
768{
769	return container_of0(slice, struct lov_req, lr_cl);
770}
771
772static inline struct lovsub_page *
773cl2lovsub_page(const struct cl_page_slice *slice)
774{
775	LINVRNT(lovsub_is_object(&slice->cpl_obj->co_lu));
776	return container_of0(slice, struct lovsub_page, lsb_cl);
777}
778
779static inline struct lovsub_req *cl2lovsub_req(const struct cl_req_slice *slice)
780{
781	return container_of0(slice, struct lovsub_req, lsrq_cl);
782}
783
784static inline struct cl_page *lov_sub_page(const struct cl_page_slice *slice)
785{
786	return slice->cpl_page->cp_child;
787}
788
789static inline struct lov_io *cl2lov_io(const struct lu_env *env,
790				const struct cl_io_slice *ios)
791{
792	struct lov_io *lio;
793
794	lio = container_of(ios, struct lov_io, lis_cl);
795	LASSERT(lio == lov_env_io(env));
796	return lio;
797}
798
799static inline int lov_targets_nr(const struct lov_device *lov)
800{
801	return lov->ld_lov->desc.ld_tgt_count;
802}
803
804static inline struct lov_thread_info *lov_env_info(const struct lu_env *env)
805{
806	struct lov_thread_info *info;
807
808	info = lu_context_key_get(&env->le_ctx, &lov_key);
809	LASSERT(info != NULL);
810	return info;
811}
812
813static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov)
814{
815	LASSERT(lov->lo_type == LLT_RAID0);
816	LASSERT(lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC ||
817		lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC_V3);
818	return &lov->u.raid0;
819}
820
821/** @} lov */
822
823#endif
824