card.c revision ee61fde2074fbcc7575e52206aba67853e0e56cc
1/*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: card.c
20 * Purpose: Provide functions to setup NIC operation mode
21 * Functions:
22 *      s_vSafeResetTx - Rest Tx
23 *      vnt_set_rspinf - Set RSPINF
24 *      vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
25 *      vnt_update_top_rates - Update BasicTopRate
26 *      vnt_add_basic_rate - Add to BasicRateSet
27 *      CARDbSetBasicRate - Set Basic Tx Rate
28 *      vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
29 *      CARDvSetLoopbackMode - Set Loopback mode
30 *      CARDbSoftwareReset - Sortware reset NIC
31 *      vnt_get_tsf_offset - Calculate TSFOffset
32 *      vnt_get_current_tsf - Read Current NIC TSF counter
33 *      vnt_get_next_tbtt - Calculate Next Beacon TSF counter
34 *      vnt_reset_next_tbtt - Set NIC Beacon time
35 *      vnt_update_next_tbtt - Sync. NIC Beacon time
36 *      vnt_radio_power_off - Turn Off NIC Radio Power
37 *      vnt_radio_power_on - Turn On NIC Radio Power
38 *      CARDbSetWEPMode - Set NIC Wep mode
39 *      CARDbSetTxPower - Set NIC tx power
40 *
41 * Revision History:
42 *      06-10-2003 Bryan YC Fan:  Re-write codes to support VT3253 spec.
43 *      08-26-2003 Kyle Hsu:      Modify the definition type of dwIoBase.
44 *      09-01-2003 Bryan YC Fan:  Add vnt_update_ifs().
45 *
46 */
47
48#include "device.h"
49#include "tmacro.h"
50#include "card.h"
51#include "baseband.h"
52#include "mac.h"
53#include "desc.h"
54#include "rf.h"
55#include "power.h"
56#include "key.h"
57#include "rc4.h"
58#include "country.h"
59#include "datarate.h"
60#include "usbpipe.h"
61
62//const u16 cwRXBCNTSFOff[MAX_RATE] =
63//{17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3};
64
65static const u16 cwRXBCNTSFOff[MAX_RATE] =
66{192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3};
67
68/*
69 * Description: Set NIC media channel
70 *
71 * Parameters:
72 *  In:
73 *      pDevice             - The adapter to be set
74 *      connection_channel  - Channel to be set
75 *  Out:
76 *      none
77 */
78void vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
79{
80
81	if (priv->byBBType == BB_TYPE_11A) {
82		if ((connection_channel < (CB_MAX_CHANNEL_24G + 1)) ||
83					(connection_channel > CB_MAX_CHANNEL))
84			connection_channel = (CB_MAX_CHANNEL_24G + 1);
85	} else {
86		if ((connection_channel > CB_MAX_CHANNEL_24G) ||
87						(connection_channel == 0))
88			connection_channel = 1;
89	}
90
91	/* clear NAV */
92	vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
93
94	/* Set Channel[7] = 0 to tell H/W channel is changing now. */
95	vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL, 0xb0);
96
97	vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNLE,
98					connection_channel, 0, 0, NULL);
99
100	if (priv->byBBType == BB_TYPE_11A) {
101		priv->byCurPwr = 0xff;
102		vnt_rf_set_txpower(priv,
103			priv->abyOFDMAPwrTbl[connection_channel-15], RATE_54M);
104	} else if (priv->byBBType == BB_TYPE_11G) {
105		priv->byCurPwr = 0xff;
106		vnt_rf_set_txpower(priv,
107			priv->abyOFDMPwrTbl[connection_channel-1], RATE_54M);
108	} else {
109		priv->byCurPwr = 0xff;
110		vnt_rf_set_txpower(priv,
111			priv->abyCCKPwrTbl[connection_channel-1], RATE_1M);
112	}
113
114	vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
115		(u8)(connection_channel|0x80));
116}
117
118/*
119 * Description: Get CCK mode basic rate
120 *
121 * Parameters:
122 *  In:
123 *      priv		- The adapter to be set
124 *      rate_idx	- Receiving data rate
125 *  Out:
126 *      none
127 *
128 * Return Value: response Control frame rate
129 *
130 */
131static u16 vnt_get_cck_rate(struct vnt_private *priv, u16 rate_idx)
132{
133	u16 ui = rate_idx;
134
135	while (ui > RATE_1M) {
136		if (priv->wBasicRate & (1 << ui))
137			return ui;
138		ui--;
139	}
140
141	return RATE_1M;
142}
143
144/*
145 * Description: Get OFDM mode basic rate
146 *
147 * Parameters:
148 *  In:
149 *      priv		- The adapter to be set
150 *      rate_idx	- Receiving data rate
151 *  Out:
152 *      none
153 *
154 * Return Value: response Control frame rate
155 *
156 */
157static u16 vnt_get_ofdm_rate(struct vnt_private *priv, u16 rate_idx)
158{
159	u16 ui = rate_idx;
160
161	dev_dbg(&priv->usb->dev, "%s basic rate: %d\n",
162					__func__,  priv->wBasicRate);
163
164	if (!vnt_ofdm_min_rate(priv)) {
165		dev_dbg(&priv->usb->dev, "%s (NO OFDM) %d\n",
166						__func__, rate_idx);
167		if (rate_idx > RATE_24M)
168			rate_idx = RATE_24M;
169		return rate_idx;
170	}
171
172	while (ui > RATE_11M) {
173		if (priv->wBasicRate & (1 << ui)) {
174			dev_dbg(&priv->usb->dev, "%s rate: %d\n",
175							__func__, ui);
176			return ui;
177		}
178		ui--;
179	}
180
181	dev_dbg(&priv->usb->dev, "%s basic rate: 24M\n", __func__);
182
183	return RATE_24M;
184}
185
186/*
187 * Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
188 *
189 * Parameters:
190 * In:
191 *	rate	- Tx Rate
192 *	bb_type	- Tx Packet type
193 * Out:
194 *	tx_rate	- pointer to RSPINF TxRate field
195 *	rsv_time- pointer to RSPINF RsvTime field
196 *
197 * Return Value: none
198 *
199 */
200static void vnt_calculate_ofdm_rate(u16 rate, u8 bb_type,
201					u8 *tx_rate, u8 *rsv_time)
202{
203
204	switch (rate) {
205	case RATE_6M:
206		if (bb_type == BB_TYPE_11A) {
207			*tx_rate = 0x9b;
208			*rsv_time = 24;
209		} else {
210			*tx_rate = 0x8b;
211			*rsv_time = 30;
212		}
213			break;
214	case RATE_9M:
215		if (bb_type == BB_TYPE_11A) {
216			*tx_rate = 0x9f;
217			*rsv_time = 16;
218		} else {
219			*tx_rate = 0x8f;
220			*rsv_time = 22;
221		}
222		break;
223	case RATE_12M:
224		if (bb_type == BB_TYPE_11A) {
225			*tx_rate = 0x9a;
226			*rsv_time = 12;
227		} else {
228			*tx_rate = 0x8a;
229			*rsv_time = 18;
230		}
231		break;
232	case RATE_18M:
233		if (bb_type == BB_TYPE_11A) {
234			*tx_rate = 0x9e;
235			*rsv_time = 8;
236		} else {
237			*tx_rate = 0x8e;
238			*rsv_time = 14;
239		}
240		break;
241	case RATE_36M:
242		if (bb_type == BB_TYPE_11A) {
243			*tx_rate = 0x9d;
244			*rsv_time = 4;
245		} else {
246			*tx_rate = 0x8d;
247			*rsv_time = 10;
248		}
249		break;
250	case RATE_48M:
251		if (bb_type == BB_TYPE_11A) {
252			*tx_rate = 0x98;
253			*rsv_time = 4;
254		} else {
255			*tx_rate = 0x88;
256			*rsv_time = 10;
257		}
258		break;
259	case RATE_54M:
260		if (bb_type == BB_TYPE_11A) {
261			*tx_rate = 0x9c;
262			*rsv_time = 4;
263		} else {
264			*tx_rate = 0x8c;
265			*rsv_time = 10;
266		}
267		break;
268	case RATE_24M:
269	default:
270		if (bb_type == BB_TYPE_11A) {
271			*tx_rate = 0x99;
272			*rsv_time = 8;
273		} else {
274			*tx_rate = 0x89;
275			*rsv_time = 14;
276		}
277		break;
278	}
279}
280
281/*
282 * Description: Set RSPINF
283 *
284 * Parameters:
285 *  In:
286 *      pDevice             - The adapter to be set
287 *  Out:
288 *      none
289 *
290 * Return Value: None.
291 *
292 */
293
294void vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
295{
296	struct vnt_phy_field phy[4];
297	u8 tx_rate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
298	u8 rsv_time[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
299	u8 data[34];
300	int i;
301
302	/*RSPINF_b_1*/
303	vnt_get_phy_field(priv, 14,
304		vnt_get_cck_rate(priv, RATE_1M), PK_TYPE_11B, &phy[0]);
305
306	/*RSPINF_b_2*/
307	vnt_get_phy_field(priv, 14,
308		vnt_get_cck_rate(priv, RATE_2M), PK_TYPE_11B, &phy[1]);
309
310	/*RSPINF_b_5*/
311	vnt_get_phy_field(priv, 14,
312		vnt_get_cck_rate(priv, RATE_5M), PK_TYPE_11B, &phy[2]);
313
314	/*RSPINF_b_11*/
315	vnt_get_phy_field(priv, 14,
316		vnt_get_cck_rate(priv, RATE_11M), PK_TYPE_11B, &phy[3]);
317
318
319	/*RSPINF_a_6*/
320	vnt_calculate_ofdm_rate(RATE_6M, bb_type, &tx_rate[0], &rsv_time[0]);
321
322	/*RSPINF_a_9*/
323	vnt_calculate_ofdm_rate(RATE_9M, bb_type, &tx_rate[1], &rsv_time[1]);
324
325	/*RSPINF_a_12*/
326	vnt_calculate_ofdm_rate(RATE_12M, bb_type, &tx_rate[2], &rsv_time[2]);
327
328	/*RSPINF_a_18*/
329	vnt_calculate_ofdm_rate(RATE_18M, bb_type, &tx_rate[3], &rsv_time[3]);
330
331	/*RSPINF_a_24*/
332	vnt_calculate_ofdm_rate(RATE_24M, bb_type, &tx_rate[4], &rsv_time[4]);
333
334	/*RSPINF_a_36*/
335	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_36M),
336					bb_type, &tx_rate[5], &rsv_time[5]);
337
338	/*RSPINF_a_48*/
339	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_48M),
340					bb_type, &tx_rate[6], &rsv_time[6]);
341
342	/*RSPINF_a_54*/
343	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
344					bb_type, &tx_rate[7], &rsv_time[7]);
345
346	/*RSPINF_a_72*/
347	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
348					bb_type, &tx_rate[8], &rsv_time[8]);
349
350	put_unaligned(phy[0].len, (u16 *)&data[0]);
351	data[2] = phy[0].signal;
352	data[3] = phy[0].service;
353
354	put_unaligned(phy[1].len, (u16 *)&data[4]);
355	data[6] = phy[1].signal;
356	data[7] = phy[1].service;
357
358	put_unaligned(phy[2].len, (u16 *)&data[8]);
359	data[10] = phy[2].signal;
360	data[11] = phy[2].service;
361
362	put_unaligned(phy[3].len, (u16 *)&data[12]);
363	data[14] = phy[3].signal;
364	data[15] = phy[3].service;
365
366	for (i = 0; i < 9; i++) {
367		data[16 + i * 2] = tx_rate[i];
368		data[16 + i * 2 + 1] = rsv_time[i];
369	}
370
371	vnt_control_out(priv, MESSAGE_TYPE_WRITE,
372		MAC_REG_RSPINF_B_1, MESSAGE_REQUEST_MACREG, 34, &data[0]);
373}
374
375/*
376 * Description: Update IFS
377 *
378 * Parameters:
379 *  In:
380 *	priv - The adapter to be set
381 * Out:
382 *	none
383 *
384 * Return Value: None.
385 *
386 */
387void vnt_update_ifs(struct vnt_private *priv)
388{
389	u8 max_min = 0;
390	u8 data[4];
391
392	if (priv->byPacketType == PK_TYPE_11A) {
393		priv->uSlot = C_SLOT_SHORT;
394		priv->uSIFS = C_SIFS_A;
395		priv->uDIFS = C_SIFS_A + 2 * C_SLOT_SHORT;
396		priv->uCwMin = C_CWMIN_A;
397		max_min = 4;
398	} else if (priv->byPacketType == PK_TYPE_11B) {
399		priv->uSlot = C_SLOT_LONG;
400		priv->uSIFS = C_SIFS_BG;
401		priv->uDIFS = C_SIFS_BG + 2 * C_SLOT_LONG;
402		priv->uCwMin = C_CWMIN_B;
403		max_min = 5;
404	} else {/* PK_TYPE_11GA & PK_TYPE_11GB */
405		bool ofdm_rate = false;
406		unsigned int ii = 0;
407
408		priv->uSIFS = C_SIFS_BG;
409
410		if (priv->bShortSlotTime)
411			priv->uSlot = C_SLOT_SHORT;
412		else
413			priv->uSlot = C_SLOT_LONG;
414
415		priv->uDIFS = C_SIFS_BG + 2 * priv->uSlot;
416
417		for (ii = RATE_54M; ii >= RATE_6M; ii--) {
418			if (priv->wBasicRate & ((u32)(0x1 << ii))) {
419				ofdm_rate = true;
420				break;
421			}
422		}
423
424		if (ofdm_rate == true) {
425			priv->uCwMin = C_CWMIN_A;
426			max_min = 4;
427		} else {
428			priv->uCwMin = C_CWMIN_B;
429			max_min = 5;
430			}
431	}
432
433	priv->uCwMax = C_CWMAX;
434	priv->uEIFS = C_EIFS;
435
436	data[0] = (u8)priv->uSIFS;
437	data[1] = (u8)priv->uDIFS;
438	data[2] = (u8)priv->uEIFS;
439	data[3] = (u8)priv->uSlot;
440
441	vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
442		MESSAGE_REQUEST_MACREG, 4, &data[0]);
443
444	max_min |= 0xa0;
445
446	vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
447		MESSAGE_REQUEST_MACREG, 1, &max_min);
448}
449
450void vnt_update_top_rates(struct vnt_private *priv)
451{
452	u8 top_ofdm = RATE_24M, top_cck = RATE_1M;
453	u8 i;
454
455	/*Determines the highest basic rate.*/
456	for (i = RATE_54M; i >= RATE_6M; i--) {
457		if (priv->wBasicRate & (u16)(1 << i)) {
458			top_ofdm = i;
459			break;
460		}
461	}
462
463	priv->byTopOFDMBasicRate = top_ofdm;
464
465	for (i = RATE_11M;; i--) {
466		if (priv->wBasicRate & (u16)(1 << i)) {
467			top_cck = i;
468			break;
469		}
470		if (i == RATE_1M)
471			break;
472	}
473
474	priv->byTopCCKBasicRate = top_cck;
475 }
476
477/*
478 * Description: Set NIC Tx Basic Rate
479 *
480 * Parameters:
481 *  In:
482 *      pDevice         - The adapter to be set
483 *      wBasicRate      - Basic Rate to be set
484 *  Out:
485 *      none
486 *
487 * Return Value: true if succeeded; false if failed.
488 *
489 */
490void vnt_add_basic_rate(struct vnt_private *priv, u16 rate_idx)
491{
492
493	priv->wBasicRate |= (1 << rate_idx);
494
495	/*Determines the highest basic rate.*/
496	vnt_update_top_rates(priv);
497}
498
499int vnt_ofdm_min_rate(struct vnt_private *priv)
500{
501	int ii;
502
503	for (ii = RATE_54M; ii >= RATE_6M; ii--) {
504		if ((priv->wBasicRate) & ((u16)(1 << ii)))
505			return true;
506	}
507
508	return false;
509}
510
511u8 vnt_get_pkt_type(struct vnt_private *priv)
512{
513
514	if (priv->byBBType == BB_TYPE_11A || priv->byBBType == BB_TYPE_11B)
515		return (u8)priv->byBBType;
516	else if (vnt_ofdm_min_rate(priv))
517		return PK_TYPE_11GA;
518	else
519		return PK_TYPE_11GB;
520}
521
522/*
523 * Description: Calculate TSF offset of two TSF input
524 *              Get TSF Offset from RxBCN's TSF and local TSF
525 *
526 * Parameters:
527 *  In:
528 *      rx_rate	- rx rate.
529 *      tsf1	- Rx BCN's TSF
530 *      tsf2	- Local TSF
531 *  Out:
532 *      none
533 *
534 * Return Value: TSF Offset value
535 *
536 */
537u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
538{
539	u64 tsf_offset = 0;
540	u16 rx_bcn_offset = 0;
541
542	rx_bcn_offset = cwRXBCNTSFOff[rx_rate % MAX_RATE];
543
544	tsf2 += (u64)rx_bcn_offset;
545
546	tsf_offset = tsf1 - tsf2;
547
548	return tsf_offset;
549}
550
551/*
552 * Description: Sync. TSF counter to BSS
553 *              Get TSF offset and write to HW
554 *
555 * Parameters:
556 *  In:
557 *      priv		- The adapter to be sync.
558 *      time_stamp	- Rx BCN's TSF
559 *      local_tsf	- Local TSF
560 *  Out:
561 *      none
562 *
563 * Return Value: none
564 *
565 */
566void vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
567		u64 time_stamp, u64 local_tsf)
568{
569	u64 tsf_offset = 0;
570	u8 data[8];
571
572	tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
573
574	data[0] = (u8)tsf_offset;
575	data[1] = (u8)(tsf_offset >> 8);
576	data[2] = (u8)(tsf_offset >> 16);
577	data[3] = (u8)(tsf_offset >> 24);
578	data[4] = (u8)(tsf_offset >> 32);
579	data[5] = (u8)(tsf_offset >> 40);
580	data[6] = (u8)(tsf_offset >> 48);
581	data[7] = (u8)(tsf_offset >> 56);
582
583	vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
584		MESSAGE_REQUEST_TSF, 0, 8, data);
585}
586/*
587 * Description: Read NIC TSF counter
588 *              Get local TSF counter
589 *
590 * Parameters:
591 *  In:
592 *	priv		- The adapter to be read
593 *  Out:
594 *	current_tsf	- Current TSF counter
595 *
596 * Return Value: true if success; otherwise false
597 *
598 */
599bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
600{
601
602	*current_tsf = priv->qwCurrTSF;
603
604	return true;
605}
606
607/*
608 * Description: Clear NIC TSF counter
609 *              Clear local TSF counter
610 *
611 * Parameters:
612 *  In:
613 *      priv	- The adapter to be read
614 *
615 * Return Value: true if success; otherwise false
616 *
617 */
618bool vnt_clear_current_tsf(struct vnt_private *priv)
619{
620
621	vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
622
623	priv->qwCurrTSF = 0;
624
625	return true;
626}
627
628/*
629 * Description: Read NIC TSF counter
630 *              Get NEXTTBTT from adjusted TSF and Beacon Interval
631 *
632 * Parameters:
633 *  In:
634 *      tsf		- Current TSF counter
635 *      beacon_interval - Beacon Interval
636 *  Out:
637 *      tsf		- Current TSF counter
638 *
639 * Return Value: TSF value of next Beacon
640 *
641 */
642u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
643{
644	u32 beacon_int;
645
646	beacon_int = beacon_interval * 1024;
647
648	/* Next TBTT =
649	*	((local_current_TSF / beacon_interval) + 1) * beacon_interval
650	*/
651	if (beacon_int) {
652		do_div(tsf, beacon_int);
653		tsf += 1;
654		tsf *= beacon_int;
655	}
656
657	return tsf;
658}
659
660/*
661 * Description: Set NIC TSF counter for first Beacon time
662 *              Get NEXTTBTT from adjusted TSF and Beacon Interval
663 *
664 * Parameters:
665 *  In:
666 *      dwIoBase        - IO Base
667 *	beacon_interval - Beacon Interval
668 *  Out:
669 *      none
670 *
671 * Return Value: none
672 *
673 */
674void vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
675{
676	u64 next_tbtt = 0;
677	u8 data[8];
678
679	vnt_clear_current_tsf(priv);
680
681	next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
682
683	data[0] = (u8)next_tbtt;
684	data[1] = (u8)(next_tbtt >> 8);
685	data[2] = (u8)(next_tbtt >> 16);
686	data[3] = (u8)(next_tbtt >> 24);
687	data[4] = (u8)(next_tbtt >> 32);
688	data[5] = (u8)(next_tbtt >> 40);
689	data[6] = (u8)(next_tbtt >> 48);
690	data[7] = (u8)(next_tbtt >> 56);
691
692	vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
693		MESSAGE_REQUEST_TBTT, 0, 8, data);
694
695	return;
696}
697
698/*
699 * Description: Sync NIC TSF counter for Beacon time
700 *              Get NEXTTBTT and write to HW
701 *
702 * Parameters:
703 *  In:
704 *	priv		- The adapter to be set
705 *      tsf		- Current TSF counter
706 *      beacon_interval - Beacon Interval
707 *  Out:
708 *      none
709 *
710 * Return Value: none
711 *
712 */
713void vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
714			u16 beacon_interval)
715{
716	u8 data[8];
717
718	tsf = vnt_get_next_tbtt(tsf, beacon_interval);
719
720	data[0] = (u8)tsf;
721	data[1] = (u8)(tsf >> 8);
722	data[2] = (u8)(tsf >> 16);
723	data[3] = (u8)(tsf >> 24);
724	data[4] = (u8)(tsf >> 32);
725	data[5] = (u8)(tsf >> 40);
726	data[6] = (u8)(tsf >> 48);
727	data[7] = (u8)(tsf >> 56);
728
729	vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
730		MESSAGE_REQUEST_TBTT, 0, 8, data);
731
732	dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
733
734	return;
735}
736
737/*
738 * Description: Turn off Radio power
739 *
740 * Parameters:
741 *  In:
742 *      priv         - The adapter to be turned off
743 *  Out:
744 *      none
745 *
746 * Return Value: true if success; otherwise false
747 *
748 */
749int vnt_radio_power_off(struct vnt_private *priv)
750{
751	int ret = true;
752
753	priv->bRadioOff = true;
754
755	switch (priv->byRFType) {
756	case RF_AL2230:
757	case RF_AL2230S:
758	case RF_AIROHA7230:
759	case RF_VT3226:
760	case RF_VT3226D0:
761	case RF_VT3342A0:
762		vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
763				(SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
764		break;
765	}
766
767	vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
768
769	BBvSetDeepSleep(priv);
770
771	return ret;
772}
773
774/*
775 * Description: Turn on Radio power
776 *
777 * Parameters:
778 *  In:
779 *      priv         - The adapter to be turned on
780 *  Out:
781 *      none
782 *
783 * Return Value: true if success; otherwise false
784 *
785 */
786int vnt_radio_power_on(struct vnt_private *priv)
787{
788	int ret = true;
789
790	if (priv->bHWRadioOff == true || priv->bRadioControlOff == true)
791		return false;
792
793	priv->bRadioOff = false;
794
795	BBvExitDeepSleep(priv);
796
797	vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
798
799	switch (priv->byRFType) {
800	case RF_AL2230:
801	case RF_AL2230S:
802	case RF_AIROHA7230:
803	case RF_VT3226:
804	case RF_VT3226D0:
805	case RF_VT3342A0:
806		vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
807			(SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
808		break;
809	}
810
811	return ret;
812}
813
814void vnt_set_bss_mode(struct vnt_private *priv)
815{
816	if (priv->byRFType == RF_AIROHA7230 && priv->byBBType == BB_TYPE_11A)
817		vnt_mac_set_bb_type(priv, BB_TYPE_11G);
818	else
819		vnt_mac_set_bb_type(priv, priv->byBBType);
820
821	priv->byPacketType = vnt_get_pkt_type(priv);
822
823	if (priv->byBBType == BB_TYPE_11A)
824		vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
825	else if (priv->byBBType == BB_TYPE_11B)
826		vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
827	else if (priv->byBBType == BB_TYPE_11G)
828		vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
829
830	vnt_update_ifs(priv);
831	vnt_set_rspinf(priv, (u8)priv->byBBType);
832
833	if (priv->byBBType == BB_TYPE_11A) {
834		if (priv->byRFType == RF_AIROHA7230) {
835			priv->abyBBVGA[0] = 0x20;
836
837			vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
838						0xe7, priv->abyBBVGA[0]);
839		}
840
841		priv->abyBBVGA[2] = 0x10;
842		priv->abyBBVGA[3] = 0x10;
843	} else {
844		if (priv->byRFType == RF_AIROHA7230) {
845			priv->abyBBVGA[0] = 0x1c;
846
847			vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
848						0xe7, priv->abyBBVGA[0]);
849		}
850
851		priv->abyBBVGA[2] = 0x0;
852		priv->abyBBVGA[3] = 0x0;
853	}
854}
855