crypto.c revision bce83697c5fe84a7a5d38c96fbbe43b4bc028c3e
1/*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
4 *
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
27 *
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
30 *
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
37 *
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
40 *
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 *             am learning a lot...
43 *
44 *             Conveniently, some data structures that need to be
45 *             funneled through AES are...16 bytes in size!
46 */
47
48#include <linux/crypto.h>
49#include <linux/module.h>
50#include <linux/err.h>
51#include <linux/uwb.h>
52#include <linux/usb/wusb.h>
53#include <linux/scatterlist.h>
54#include <linux/uwb/debug.h>
55
56static int debug_crypto_verify = 0;
57
58module_param(debug_crypto_verify, int, 0);
59MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
60
61/*
62 * Block of data, as understood by AES-CCM
63 *
64 * The code assumes this structure is nothing but a 16 byte array
65 * (packed in a struct to avoid common mess ups that I usually do with
66 * arrays and enforcing type checking).
67 */
68struct aes_ccm_block {
69	u8 data[16];
70} __attribute__((packed));
71
72/*
73 * Counter-mode Blocks (WUSB1.0[6.4])
74 *
75 * According to CCM (or so it seems), for the purpose of calculating
76 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
77 * ... BN.
78 *
79 * B0 contains flags, the CCM nonce and l(m).
80 *
81 * B1 contains l(a), the MAC header, the encryption offset and padding.
82 *
83 * If EO is nonzero, additional blocks are built from payload bytes
84 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
85 * padding is not xmitted.
86 */
87
88/* WUSB1.0[T6.4] */
89struct aes_ccm_b0 {
90	u8 flags;	/* 0x59, per CCM spec */
91	struct aes_ccm_nonce ccm_nonce;
92	__be16 lm;
93} __attribute__((packed));
94
95/* WUSB1.0[T6.5] */
96struct aes_ccm_b1 {
97	__be16 la;
98	u8 mac_header[10];
99	__le16 eo;
100	u8 security_reserved;	/* This is always zero */
101	u8 padding;		/* 0 */
102} __attribute__((packed));
103
104/*
105 * Encryption Blocks (WUSB1.0[6.4.4])
106 *
107 * CCM uses Ax blocks to generate a keystream with which the MIC and
108 * the message's payload are encoded. A0 always encrypts/decrypts the
109 * MIC. Ax (x>0) are used for the sucesive payload blocks.
110 *
111 * The x is the counter, and is increased for each block.
112 */
113struct aes_ccm_a {
114	u8 flags;	/* 0x01, per CCM spec */
115	struct aes_ccm_nonce ccm_nonce;
116	__be16 counter;	/* Value of x */
117} __attribute__((packed));
118
119static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
120			 size_t size)
121{
122	u8 *bo = _bo;
123	const u8 *bi1 = _bi1, *bi2 = _bi2;
124	size_t itr;
125	for (itr = 0; itr < size; itr++)
126		bo[itr] = bi1[itr] ^ bi2[itr];
127}
128
129/*
130 * CC-MAC function WUSB1.0[6.5]
131 *
132 * Take a data string and produce the encrypted CBC Counter-mode MIC
133 *
134 * Note the names for most function arguments are made to (more or
135 * less) match those used in the pseudo-function definition given in
136 * WUSB1.0[6.5].
137 *
138 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
139 *
140 * @tfm_aes: AES cipher handle (initialized)
141 *
142 * @mic: buffer for placing the computed MIC (Message Integrity
143 *       Code). This is exactly 8 bytes, and we expect the buffer to
144 *       be at least eight bytes in length.
145 *
146 * @key: 128 bit symmetric key
147 *
148 * @n: CCM nonce
149 *
150 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
151 *     we use exactly 14 bytes).
152 *
153 * @b: data stream to be processed; cannot be a global or const local
154 *     (will confuse the scatterlists)
155 *
156 * @blen: size of b...
157 *
158 * Still not very clear how this is done, but looks like this: we
159 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
160 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
161 * take the payload and divide it in blocks (16 bytes), xor them with
162 * the previous crypto result (16 bytes) and crypt it, repeat the next
163 * block with the output of the previous one, rinse wash (I guess this
164 * is what AES CBC mode means...but I truly have no idea). So we use
165 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
166 * Vector) is 16 bytes and is set to zero, so
167 *
168 * See rfc3610. Linux crypto has a CBC implementation, but the
169 * documentation is scarce, to say the least, and the example code is
170 * so intricated that is difficult to understand how things work. Most
171 * of this is guess work -- bite me.
172 *
173 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
174 *     using the 14 bytes of @a to fill up
175 *     b1.{mac_header,e0,security_reserved,padding}.
176 *
177 * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
178 *       l(m) is orthogonal, they bear no relationship, so it is not
179 *       in conflict with the parameter's relation that
180 *       WUSB1.0[6.4.2]) defines.
181 *
182 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
183 *       first errata released on 2005/07.
184 *
185 * NOTE: we need to clean IV to zero at each invocation to make sure
186 *       we start with a fresh empty Initial Vector, so that the CBC
187 *       works ok.
188 *
189 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
190 *       what sg[4] is for. Maybe there is a smarter way to do this.
191 */
192static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
193			struct crypto_cipher *tfm_aes, void *mic,
194			const struct aes_ccm_nonce *n,
195			const struct aes_ccm_label *a, const void *b,
196			size_t blen)
197{
198	int result = 0;
199	struct blkcipher_desc desc;
200	struct aes_ccm_b0 b0;
201	struct aes_ccm_b1 b1;
202	struct aes_ccm_a ax;
203	struct scatterlist sg[4], sg_dst;
204	void *iv, *dst_buf;
205	size_t ivsize, dst_size;
206	const u8 bzero[16] = { 0 };
207	size_t zero_padding;
208
209	/*
210	 * These checks should be compile time optimized out
211	 * ensure @a fills b1's mac_header and following fields
212	 */
213	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
214	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
215	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
216	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
217
218	result = -ENOMEM;
219	zero_padding = sizeof(struct aes_ccm_block)
220		- blen % sizeof(struct aes_ccm_block);
221	zero_padding = blen % sizeof(struct aes_ccm_block);
222	if (zero_padding)
223		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
224	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
225	dst_buf = kzalloc(dst_size, GFP_KERNEL);
226	if (dst_buf == NULL) {
227		printk(KERN_ERR "E: can't alloc destination buffer\n");
228		goto error_dst_buf;
229	}
230
231	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
232	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
233	memset(iv, 0, ivsize);
234
235	/* Setup B0 */
236	b0.flags = 0x59;	/* Format B0 */
237	b0.ccm_nonce = *n;
238	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
239
240	/* Setup B1
241	 *
242	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
243	 * says that to initialize B1 from A with 'l(a) = blen +
244	 * 14'--after clarification, it means to use A's contents
245	 * for MAC Header, EO, sec reserved and padding.
246	 */
247	b1.la = cpu_to_be16(blen + 14);
248	memcpy(&b1.mac_header, a, sizeof(*a));
249
250	sg_init_table(sg, ARRAY_SIZE(sg));
251	sg_set_buf(&sg[0], &b0, sizeof(b0));
252	sg_set_buf(&sg[1], &b1, sizeof(b1));
253	sg_set_buf(&sg[2], b, blen);
254	/* 0 if well behaved :) */
255	sg_set_buf(&sg[3], bzero, zero_padding);
256	sg_init_one(&sg_dst, dst_buf, dst_size);
257
258	desc.tfm = tfm_cbc;
259	desc.flags = 0;
260	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
261	if (result < 0) {
262		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
263		       result);
264		goto error_cbc_crypt;
265	}
266
267	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
268	 * The procedure is to AES crypt the A0 block and XOR the MIC
269	 * Tag agains it; we only do the first 8 bytes and place it
270	 * directly in the destination buffer.
271	 *
272	 * POS Crypto API: size is assumed to be AES's block size.
273	 * Thanks for documenting it -- tip taken from airo.c
274	 */
275	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
276	ax.ccm_nonce = *n;
277	ax.counter = 0;
278	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
279	bytewise_xor(mic, &ax, iv, 8);
280	result = 8;
281error_cbc_crypt:
282	kfree(dst_buf);
283error_dst_buf:
284	return result;
285}
286
287/*
288 * WUSB Pseudo Random Function (WUSB1.0[6.5])
289 *
290 * @b: buffer to the source data; cannot be a global or const local
291 *     (will confuse the scatterlists)
292 */
293ssize_t wusb_prf(void *out, size_t out_size,
294		 const u8 key[16], const struct aes_ccm_nonce *_n,
295		 const struct aes_ccm_label *a,
296		 const void *b, size_t blen, size_t len)
297{
298	ssize_t result, bytes = 0, bitr;
299	struct aes_ccm_nonce n = *_n;
300	struct crypto_blkcipher *tfm_cbc;
301	struct crypto_cipher *tfm_aes;
302	u64 sfn = 0;
303	__le64 sfn_le;
304
305	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
306	if (IS_ERR(tfm_cbc)) {
307		result = PTR_ERR(tfm_cbc);
308		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
309		goto error_alloc_cbc;
310	}
311	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
312	if (result < 0) {
313		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
314		goto error_setkey_cbc;
315	}
316
317	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
318	if (IS_ERR(tfm_aes)) {
319		result = PTR_ERR(tfm_aes);
320		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
321		goto error_alloc_aes;
322	}
323	result = crypto_cipher_setkey(tfm_aes, key, 16);
324	if (result < 0) {
325		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
326		goto error_setkey_aes;
327	}
328
329	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
330		sfn_le = cpu_to_le64(sfn++);
331		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
332		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
333				      &n, a, b, blen);
334		if (result < 0)
335			goto error_ccm_mac;
336		bytes += result;
337	}
338	result = bytes;
339error_ccm_mac:
340error_setkey_aes:
341	crypto_free_cipher(tfm_aes);
342error_alloc_aes:
343error_setkey_cbc:
344	crypto_free_blkcipher(tfm_cbc);
345error_alloc_cbc:
346	return result;
347}
348
349/* WUSB1.0[A.2] test vectors */
350static const u8 stv_hsmic_key[16] = {
351	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
352	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
353};
354
355static const struct aes_ccm_nonce stv_hsmic_n = {
356	.sfn = { 0 },
357	.tkid = { 0x76, 0x98, 0x01,  },
358	.dest_addr = { .data = { 0xbe, 0x00 } },
359		.src_addr = { .data = { 0x76, 0x98 } },
360};
361
362/*
363 * Out-of-band MIC Generation verification code
364 *
365 */
366static int wusb_oob_mic_verify(void)
367{
368	int result;
369	u8 mic[8];
370	/* WUSB1.0[A.2] test vectors
371	 *
372	 * Need to keep it in the local stack as GCC 4.1.3something
373	 * messes up and generates noise.
374	 */
375	struct usb_handshake stv_hsmic_hs = {
376		.bMessageNumber = 2,
377		.bStatus 	= 00,
378		.tTKID 		= { 0x76, 0x98, 0x01 },
379		.bReserved 	= 00,
380		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
381				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
382				    0x3c, 0x3d, 0x3e, 0x3f },
383		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
384				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
385				    0x2c, 0x2d, 0x2e, 0x2f },
386		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
387				    0x14, 0x7b } ,
388	};
389	size_t hs_size;
390
391	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
392	if (result < 0)
393		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
394	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
395		printk(KERN_ERR "E: OOB MIC test: "
396		       "mismatch between MIC result and WUSB1.0[A2]\n");
397		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
398		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
399		dump_bytes(NULL, &stv_hsmic_hs, hs_size);
400		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
401		       sizeof(stv_hsmic_n));
402		dump_bytes(NULL, &stv_hsmic_n, sizeof(stv_hsmic_n));
403		printk(KERN_ERR "E: MIC out:\n");
404		dump_bytes(NULL, mic, sizeof(mic));
405		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
406		dump_bytes(NULL, stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
407		result = -EINVAL;
408	} else
409		result = 0;
410	return result;
411}
412
413/*
414 * Test vectors for Key derivation
415 *
416 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
417 * (errata corrected in 2005/07).
418 */
419static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
420	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
421	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
422};
423
424static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
425	.sfn = { 0 },
426	.tkid = { 0x76, 0x98, 0x01,  },
427	.dest_addr = { .data = { 0xbe, 0x00 } },
428	.src_addr = { .data = { 0x76, 0x98 } },
429};
430
431static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
432	.kck = {
433		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
434		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
435	},
436	.ptk = {
437		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
438		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
439	}
440};
441
442/*
443 * Performa a test to make sure we match the vectors defined in
444 * WUSB1.0[A.1](Errata2006/12)
445 */
446static int wusb_key_derive_verify(void)
447{
448	int result = 0;
449	struct wusb_keydvt_out keydvt_out;
450	/* These come from WUSB1.0[A.1] + 2006/12 errata
451	 * NOTE: can't make this const or global -- somehow it seems
452	 *       the scatterlists for crypto get confused and we get
453	 *       bad data. There is no doc on this... */
454	struct wusb_keydvt_in stv_keydvt_in_a1 = {
455		.hnonce = {
456			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
457			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
458		},
459		.dnonce = {
460			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
461			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
462		}
463	};
464
465	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
466				 &stv_keydvt_in_a1);
467	if (result < 0)
468		printk(KERN_ERR "E: WUSB key derivation test: "
469		       "derivation failed: %d\n", result);
470	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
471		printk(KERN_ERR "E: WUSB key derivation test: "
472		       "mismatch between key derivation result "
473		       "and WUSB1.0[A1] Errata 2006/12\n");
474		printk(KERN_ERR "E: keydvt in: key (%zu bytes)\n",
475		       sizeof(stv_key_a1));
476		dump_bytes(NULL, stv_key_a1, sizeof(stv_key_a1));
477		printk(KERN_ERR "E: keydvt in: nonce (%zu bytes)\n",
478		       sizeof(stv_keydvt_n_a1));
479		dump_bytes(NULL, &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
480		printk(KERN_ERR "E: keydvt in: hnonce & dnonce (%zu bytes)\n",
481		       sizeof(stv_keydvt_in_a1));
482		dump_bytes(NULL, &stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
483		printk(KERN_ERR "E: keydvt out: KCK\n");
484		dump_bytes(NULL, &keydvt_out.kck, sizeof(keydvt_out.kck));
485		printk(KERN_ERR "E: keydvt out: PTK\n");
486		dump_bytes(NULL, &keydvt_out.ptk, sizeof(keydvt_out.ptk));
487		result = -EINVAL;
488	} else
489		result = 0;
490	return result;
491}
492
493/*
494 * Initialize crypto system
495 *
496 * FIXME: we do nothing now, other than verifying. Later on we'll
497 * cache the encryption stuff, so that's why we have a separate init.
498 */
499int wusb_crypto_init(void)
500{
501	int result;
502
503	if (debug_crypto_verify) {
504		result = wusb_key_derive_verify();
505		if (result < 0)
506			return result;
507		return wusb_oob_mic_verify();
508	}
509	return 0;
510}
511
512void wusb_crypto_exit(void)
513{
514	/* FIXME: free cached crypto transforms */
515}
516