crypto.c revision e43ace891229607c43d35597cbba77c2e40f48d4
1/*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
4 *
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
27 *
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
30 *
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
37 *
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
40 *
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 *             am learning a lot...
43 *
44 *             Conveniently, some data structures that need to be
45 *             funneled through AES are...16 bytes in size!
46 */
47
48#include <linux/crypto.h>
49#include <linux/module.h>
50#include <linux/err.h>
51#include <linux/uwb.h>
52#include <linux/usb/wusb.h>
53#include <linux/scatterlist.h>
54
55static int debug_crypto_verify = 0;
56
57module_param(debug_crypto_verify, int, 0);
58MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
59
60static void wusb_key_dump(const void *buf, size_t len)
61{
62	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
63		       buf, len, 0);
64}
65
66/*
67 * Block of data, as understood by AES-CCM
68 *
69 * The code assumes this structure is nothing but a 16 byte array
70 * (packed in a struct to avoid common mess ups that I usually do with
71 * arrays and enforcing type checking).
72 */
73struct aes_ccm_block {
74	u8 data[16];
75} __attribute__((packed));
76
77/*
78 * Counter-mode Blocks (WUSB1.0[6.4])
79 *
80 * According to CCM (or so it seems), for the purpose of calculating
81 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
82 * ... BN.
83 *
84 * B0 contains flags, the CCM nonce and l(m).
85 *
86 * B1 contains l(a), the MAC header, the encryption offset and padding.
87 *
88 * If EO is nonzero, additional blocks are built from payload bytes
89 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
90 * padding is not xmitted.
91 */
92
93/* WUSB1.0[T6.4] */
94struct aes_ccm_b0 {
95	u8 flags;	/* 0x59, per CCM spec */
96	struct aes_ccm_nonce ccm_nonce;
97	__be16 lm;
98} __attribute__((packed));
99
100/* WUSB1.0[T6.5] */
101struct aes_ccm_b1 {
102	__be16 la;
103	u8 mac_header[10];
104	__le16 eo;
105	u8 security_reserved;	/* This is always zero */
106	u8 padding;		/* 0 */
107} __attribute__((packed));
108
109/*
110 * Encryption Blocks (WUSB1.0[6.4.4])
111 *
112 * CCM uses Ax blocks to generate a keystream with which the MIC and
113 * the message's payload are encoded. A0 always encrypts/decrypts the
114 * MIC. Ax (x>0) are used for the sucesive payload blocks.
115 *
116 * The x is the counter, and is increased for each block.
117 */
118struct aes_ccm_a {
119	u8 flags;	/* 0x01, per CCM spec */
120	struct aes_ccm_nonce ccm_nonce;
121	__be16 counter;	/* Value of x */
122} __attribute__((packed));
123
124static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
125			 size_t size)
126{
127	u8 *bo = _bo;
128	const u8 *bi1 = _bi1, *bi2 = _bi2;
129	size_t itr;
130	for (itr = 0; itr < size; itr++)
131		bo[itr] = bi1[itr] ^ bi2[itr];
132}
133
134/*
135 * CC-MAC function WUSB1.0[6.5]
136 *
137 * Take a data string and produce the encrypted CBC Counter-mode MIC
138 *
139 * Note the names for most function arguments are made to (more or
140 * less) match those used in the pseudo-function definition given in
141 * WUSB1.0[6.5].
142 *
143 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
144 *
145 * @tfm_aes: AES cipher handle (initialized)
146 *
147 * @mic: buffer for placing the computed MIC (Message Integrity
148 *       Code). This is exactly 8 bytes, and we expect the buffer to
149 *       be at least eight bytes in length.
150 *
151 * @key: 128 bit symmetric key
152 *
153 * @n: CCM nonce
154 *
155 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
156 *     we use exactly 14 bytes).
157 *
158 * @b: data stream to be processed; cannot be a global or const local
159 *     (will confuse the scatterlists)
160 *
161 * @blen: size of b...
162 *
163 * Still not very clear how this is done, but looks like this: we
164 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
165 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
166 * take the payload and divide it in blocks (16 bytes), xor them with
167 * the previous crypto result (16 bytes) and crypt it, repeat the next
168 * block with the output of the previous one, rinse wash (I guess this
169 * is what AES CBC mode means...but I truly have no idea). So we use
170 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
171 * Vector) is 16 bytes and is set to zero, so
172 *
173 * See rfc3610. Linux crypto has a CBC implementation, but the
174 * documentation is scarce, to say the least, and the example code is
175 * so intricated that is difficult to understand how things work. Most
176 * of this is guess work -- bite me.
177 *
178 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
179 *     using the 14 bytes of @a to fill up
180 *     b1.{mac_header,e0,security_reserved,padding}.
181 *
182 * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
183 *       l(m) is orthogonal, they bear no relationship, so it is not
184 *       in conflict with the parameter's relation that
185 *       WUSB1.0[6.4.2]) defines.
186 *
187 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
188 *       first errata released on 2005/07.
189 *
190 * NOTE: we need to clean IV to zero at each invocation to make sure
191 *       we start with a fresh empty Initial Vector, so that the CBC
192 *       works ok.
193 *
194 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
195 *       what sg[4] is for. Maybe there is a smarter way to do this.
196 */
197static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
198			struct crypto_cipher *tfm_aes, void *mic,
199			const struct aes_ccm_nonce *n,
200			const struct aes_ccm_label *a, const void *b,
201			size_t blen)
202{
203	int result = 0;
204	struct blkcipher_desc desc;
205	struct aes_ccm_b0 b0;
206	struct aes_ccm_b1 b1;
207	struct aes_ccm_a ax;
208	struct scatterlist sg[4], sg_dst;
209	void *iv, *dst_buf;
210	size_t ivsize, dst_size;
211	const u8 bzero[16] = { 0 };
212	size_t zero_padding;
213
214	/*
215	 * These checks should be compile time optimized out
216	 * ensure @a fills b1's mac_header and following fields
217	 */
218	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
219	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
220	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
221	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
222
223	result = -ENOMEM;
224	zero_padding = sizeof(struct aes_ccm_block)
225		- blen % sizeof(struct aes_ccm_block);
226	zero_padding = blen % sizeof(struct aes_ccm_block);
227	if (zero_padding)
228		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
229	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
230	dst_buf = kzalloc(dst_size, GFP_KERNEL);
231	if (dst_buf == NULL) {
232		printk(KERN_ERR "E: can't alloc destination buffer\n");
233		goto error_dst_buf;
234	}
235
236	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
237	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
238	memset(iv, 0, ivsize);
239
240	/* Setup B0 */
241	b0.flags = 0x59;	/* Format B0 */
242	b0.ccm_nonce = *n;
243	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
244
245	/* Setup B1
246	 *
247	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
248	 * says that to initialize B1 from A with 'l(a) = blen +
249	 * 14'--after clarification, it means to use A's contents
250	 * for MAC Header, EO, sec reserved and padding.
251	 */
252	b1.la = cpu_to_be16(blen + 14);
253	memcpy(&b1.mac_header, a, sizeof(*a));
254
255	sg_init_table(sg, ARRAY_SIZE(sg));
256	sg_set_buf(&sg[0], &b0, sizeof(b0));
257	sg_set_buf(&sg[1], &b1, sizeof(b1));
258	sg_set_buf(&sg[2], b, blen);
259	/* 0 if well behaved :) */
260	sg_set_buf(&sg[3], bzero, zero_padding);
261	sg_init_one(&sg_dst, dst_buf, dst_size);
262
263	desc.tfm = tfm_cbc;
264	desc.flags = 0;
265	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
266	if (result < 0) {
267		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
268		       result);
269		goto error_cbc_crypt;
270	}
271
272	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
273	 * The procedure is to AES crypt the A0 block and XOR the MIC
274	 * Tag agains it; we only do the first 8 bytes and place it
275	 * directly in the destination buffer.
276	 *
277	 * POS Crypto API: size is assumed to be AES's block size.
278	 * Thanks for documenting it -- tip taken from airo.c
279	 */
280	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
281	ax.ccm_nonce = *n;
282	ax.counter = 0;
283	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
284	bytewise_xor(mic, &ax, iv, 8);
285	result = 8;
286error_cbc_crypt:
287	kfree(dst_buf);
288error_dst_buf:
289	return result;
290}
291
292/*
293 * WUSB Pseudo Random Function (WUSB1.0[6.5])
294 *
295 * @b: buffer to the source data; cannot be a global or const local
296 *     (will confuse the scatterlists)
297 */
298ssize_t wusb_prf(void *out, size_t out_size,
299		 const u8 key[16], const struct aes_ccm_nonce *_n,
300		 const struct aes_ccm_label *a,
301		 const void *b, size_t blen, size_t len)
302{
303	ssize_t result, bytes = 0, bitr;
304	struct aes_ccm_nonce n = *_n;
305	struct crypto_blkcipher *tfm_cbc;
306	struct crypto_cipher *tfm_aes;
307	u64 sfn = 0;
308	__le64 sfn_le;
309
310	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
311	if (IS_ERR(tfm_cbc)) {
312		result = PTR_ERR(tfm_cbc);
313		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
314		goto error_alloc_cbc;
315	}
316	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
317	if (result < 0) {
318		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
319		goto error_setkey_cbc;
320	}
321
322	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
323	if (IS_ERR(tfm_aes)) {
324		result = PTR_ERR(tfm_aes);
325		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
326		goto error_alloc_aes;
327	}
328	result = crypto_cipher_setkey(tfm_aes, key, 16);
329	if (result < 0) {
330		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
331		goto error_setkey_aes;
332	}
333
334	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
335		sfn_le = cpu_to_le64(sfn++);
336		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
337		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
338				      &n, a, b, blen);
339		if (result < 0)
340			goto error_ccm_mac;
341		bytes += result;
342	}
343	result = bytes;
344error_ccm_mac:
345error_setkey_aes:
346	crypto_free_cipher(tfm_aes);
347error_alloc_aes:
348error_setkey_cbc:
349	crypto_free_blkcipher(tfm_cbc);
350error_alloc_cbc:
351	return result;
352}
353
354/* WUSB1.0[A.2] test vectors */
355static const u8 stv_hsmic_key[16] = {
356	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
357	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
358};
359
360static const struct aes_ccm_nonce stv_hsmic_n = {
361	.sfn = { 0 },
362	.tkid = { 0x76, 0x98, 0x01,  },
363	.dest_addr = { .data = { 0xbe, 0x00 } },
364		.src_addr = { .data = { 0x76, 0x98 } },
365};
366
367/*
368 * Out-of-band MIC Generation verification code
369 *
370 */
371static int wusb_oob_mic_verify(void)
372{
373	int result;
374	u8 mic[8];
375	/* WUSB1.0[A.2] test vectors
376	 *
377	 * Need to keep it in the local stack as GCC 4.1.3something
378	 * messes up and generates noise.
379	 */
380	struct usb_handshake stv_hsmic_hs = {
381		.bMessageNumber = 2,
382		.bStatus 	= 00,
383		.tTKID 		= { 0x76, 0x98, 0x01 },
384		.bReserved 	= 00,
385		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
386				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
387				    0x3c, 0x3d, 0x3e, 0x3f },
388		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
389				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
390				    0x2c, 0x2d, 0x2e, 0x2f },
391		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
392				    0x14, 0x7b } ,
393	};
394	size_t hs_size;
395
396	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
397	if (result < 0)
398		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
399	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
400		printk(KERN_ERR "E: OOB MIC test: "
401		       "mismatch between MIC result and WUSB1.0[A2]\n");
402		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
403		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
404		wusb_key_dump(&stv_hsmic_hs, hs_size);
405		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
406		       sizeof(stv_hsmic_n));
407		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
408		printk(KERN_ERR "E: MIC out:\n");
409		wusb_key_dump(mic, sizeof(mic));
410		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
411		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
412		result = -EINVAL;
413	} else
414		result = 0;
415	return result;
416}
417
418/*
419 * Test vectors for Key derivation
420 *
421 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
422 * (errata corrected in 2005/07).
423 */
424static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
425	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
426	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
427};
428
429static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
430	.sfn = { 0 },
431	.tkid = { 0x76, 0x98, 0x01,  },
432	.dest_addr = { .data = { 0xbe, 0x00 } },
433	.src_addr = { .data = { 0x76, 0x98 } },
434};
435
436static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
437	.kck = {
438		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
439		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
440	},
441	.ptk = {
442		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
443		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
444	}
445};
446
447/*
448 * Performa a test to make sure we match the vectors defined in
449 * WUSB1.0[A.1](Errata2006/12)
450 */
451static int wusb_key_derive_verify(void)
452{
453	int result = 0;
454	struct wusb_keydvt_out keydvt_out;
455	/* These come from WUSB1.0[A.1] + 2006/12 errata
456	 * NOTE: can't make this const or global -- somehow it seems
457	 *       the scatterlists for crypto get confused and we get
458	 *       bad data. There is no doc on this... */
459	struct wusb_keydvt_in stv_keydvt_in_a1 = {
460		.hnonce = {
461			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
462			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
463		},
464		.dnonce = {
465			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
466			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
467		}
468	};
469
470	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
471				 &stv_keydvt_in_a1);
472	if (result < 0)
473		printk(KERN_ERR "E: WUSB key derivation test: "
474		       "derivation failed: %d\n", result);
475	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
476		printk(KERN_ERR "E: WUSB key derivation test: "
477		       "mismatch between key derivation result "
478		       "and WUSB1.0[A1] Errata 2006/12\n");
479		printk(KERN_ERR "E: keydvt in: key\n");
480		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
481		printk(KERN_ERR "E: keydvt in: nonce\n");
482		wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
483		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
484		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
485		printk(KERN_ERR "E: keydvt out: KCK\n");
486		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
487		printk(KERN_ERR "E: keydvt out: PTK\n");
488		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
489		result = -EINVAL;
490	} else
491		result = 0;
492	return result;
493}
494
495/*
496 * Initialize crypto system
497 *
498 * FIXME: we do nothing now, other than verifying. Later on we'll
499 * cache the encryption stuff, so that's why we have a separate init.
500 */
501int wusb_crypto_init(void)
502{
503	int result;
504
505	if (debug_crypto_verify) {
506		result = wusb_key_derive_verify();
507		if (result < 0)
508			return result;
509		return wusb_oob_mic_verify();
510	}
511	return 0;
512}
513
514void wusb_crypto_exit(void)
515{
516	/* FIXME: free cached crypto transforms */
517}
518