scrub.c revision 27f9f02357f2bff96fc5e8a000c78ec5f96d42af
1/*
2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28#include "dev-replace.h"
29#include "check-integrity.h"
30#include "rcu-string.h"
31#include "raid56.h"
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 *  - In case an unrepairable extent is encountered, track which files are
41 *    affected and report them
42 *  - track and record media errors, throw out bad devices
43 *  - add a mode to also read unallocated space
44 */
45
46struct scrub_block;
47struct scrub_ctx;
48
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65
66struct scrub_page {
67	struct scrub_block	*sblock;
68	struct page		*page;
69	struct btrfs_device	*dev;
70	u64			flags;  /* extent flags */
71	u64			generation;
72	u64			logical;
73	u64			physical;
74	u64			physical_for_dev_replace;
75	atomic_t		ref_count;
76	struct {
77		unsigned int	mirror_num:8;
78		unsigned int	have_csum:1;
79		unsigned int	io_error:1;
80	};
81	u8			csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85	int			index;
86	struct scrub_ctx	*sctx;
87	struct btrfs_device	*dev;
88	struct bio		*bio;
89	int			err;
90	u64			logical;
91	u64			physical;
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
97	int			page_count;
98	int			next_free;
99	struct btrfs_work	work;
100};
101
102struct scrub_block {
103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104	int			page_count;
105	atomic_t		outstanding_pages;
106	atomic_t		ref_count; /* free mem on transition to zero */
107	struct scrub_ctx	*sctx;
108	struct {
109		unsigned int	header_error:1;
110		unsigned int	checksum_error:1;
111		unsigned int	no_io_error_seen:1;
112		unsigned int	generation_error:1; /* also sets header_error */
113	};
114};
115
116struct scrub_wr_ctx {
117	struct scrub_bio *wr_curr_bio;
118	struct btrfs_device *tgtdev;
119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120	atomic_t flush_all_writes;
121	struct mutex wr_lock;
122};
123
124struct scrub_ctx {
125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126	struct btrfs_root	*dev_root;
127	int			first_free;
128	int			curr;
129	atomic_t		bios_in_flight;
130	atomic_t		workers_pending;
131	spinlock_t		list_lock;
132	wait_queue_head_t	list_wait;
133	u16			csum_size;
134	struct list_head	csum_list;
135	atomic_t		cancel_req;
136	int			readonly;
137	int			pages_per_rd_bio;
138	u32			sectorsize;
139	u32			nodesize;
140	u32			leafsize;
141
142	int			is_dev_replace;
143	struct scrub_wr_ctx	wr_ctx;
144
145	/*
146	 * statistics
147	 */
148	struct btrfs_scrub_progress stat;
149	spinlock_t		stat_lock;
150};
151
152struct scrub_fixup_nodatasum {
153	struct scrub_ctx	*sctx;
154	struct btrfs_device	*dev;
155	u64			logical;
156	struct btrfs_root	*root;
157	struct btrfs_work	work;
158	int			mirror_num;
159};
160
161struct scrub_copy_nocow_ctx {
162	struct scrub_ctx	*sctx;
163	u64			logical;
164	u64			len;
165	int			mirror_num;
166	u64			physical_for_dev_replace;
167	struct btrfs_work	work;
168};
169
170struct scrub_warning {
171	struct btrfs_path	*path;
172	u64			extent_item_size;
173	char			*scratch_buf;
174	char			*msg_buf;
175	const char		*errstr;
176	sector_t		sector;
177	u64			logical;
178	struct btrfs_device	*dev;
179	int			msg_bufsize;
180	int			scratch_bufsize;
181};
182
183
184static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190				     struct btrfs_fs_info *fs_info,
191				     struct scrub_block *original_sblock,
192				     u64 length, u64 logical,
193				     struct scrub_block *sblocks_for_recheck);
194static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195				struct scrub_block *sblock, int is_metadata,
196				int have_csum, u8 *csum, u64 generation,
197				u16 csum_size);
198static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199					 struct scrub_block *sblock,
200					 int is_metadata, int have_csum,
201					 const u8 *csum, u64 generation,
202					 u16 csum_size);
203static void scrub_complete_bio_end_io(struct bio *bio, int err);
204static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205					     struct scrub_block *sblock_good,
206					     int force_write);
207static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208					    struct scrub_block *sblock_good,
209					    int page_num, int force_write);
210static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212					   int page_num);
213static int scrub_checksum_data(struct scrub_block *sblock);
214static int scrub_checksum_tree_block(struct scrub_block *sblock);
215static int scrub_checksum_super(struct scrub_block *sblock);
216static void scrub_block_get(struct scrub_block *sblock);
217static void scrub_block_put(struct scrub_block *sblock);
218static void scrub_page_get(struct scrub_page *spage);
219static void scrub_page_put(struct scrub_page *spage);
220static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221				    struct scrub_page *spage);
222static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223		       u64 physical, struct btrfs_device *dev, u64 flags,
224		       u64 gen, int mirror_num, u8 *csum, int force,
225		       u64 physical_for_dev_replace);
226static void scrub_bio_end_io(struct bio *bio, int err);
227static void scrub_bio_end_io_worker(struct btrfs_work *work);
228static void scrub_block_complete(struct scrub_block *sblock);
229static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230			       u64 extent_logical, u64 extent_len,
231			       u64 *extent_physical,
232			       struct btrfs_device **extent_dev,
233			       int *extent_mirror_num);
234static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235			      struct scrub_wr_ctx *wr_ctx,
236			      struct btrfs_fs_info *fs_info,
237			      struct btrfs_device *dev,
238			      int is_dev_replace);
239static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241				    struct scrub_page *spage);
242static void scrub_wr_submit(struct scrub_ctx *sctx);
243static void scrub_wr_bio_end_io(struct bio *bio, int err);
244static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245static int write_page_nocow(struct scrub_ctx *sctx,
246			    u64 physical_for_dev_replace, struct page *page);
247static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248				      void *ctx);
249static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250			    int mirror_num, u64 physical_for_dev_replace);
251static void copy_nocow_pages_worker(struct btrfs_work *work);
252
253
254static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255{
256	atomic_inc(&sctx->bios_in_flight);
257}
258
259static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260{
261	atomic_dec(&sctx->bios_in_flight);
262	wake_up(&sctx->list_wait);
263}
264
265/*
266 * used for workers that require transaction commits (i.e., for the
267 * NOCOW case)
268 */
269static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270{
271	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272
273	/*
274	 * increment scrubs_running to prevent cancel requests from
275	 * completing as long as a worker is running. we must also
276	 * increment scrubs_paused to prevent deadlocking on pause
277	 * requests used for transactions commits (as the worker uses a
278	 * transaction context). it is safe to regard the worker
279	 * as paused for all matters practical. effectively, we only
280	 * avoid cancellation requests from completing.
281	 */
282	mutex_lock(&fs_info->scrub_lock);
283	atomic_inc(&fs_info->scrubs_running);
284	atomic_inc(&fs_info->scrubs_paused);
285	mutex_unlock(&fs_info->scrub_lock);
286	atomic_inc(&sctx->workers_pending);
287}
288
289/* used for workers that require transaction commits */
290static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291{
292	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293
294	/*
295	 * see scrub_pending_trans_workers_inc() why we're pretending
296	 * to be paused in the scrub counters
297	 */
298	mutex_lock(&fs_info->scrub_lock);
299	atomic_dec(&fs_info->scrubs_running);
300	atomic_dec(&fs_info->scrubs_paused);
301	mutex_unlock(&fs_info->scrub_lock);
302	atomic_dec(&sctx->workers_pending);
303	wake_up(&fs_info->scrub_pause_wait);
304	wake_up(&sctx->list_wait);
305}
306
307static void scrub_free_csums(struct scrub_ctx *sctx)
308{
309	while (!list_empty(&sctx->csum_list)) {
310		struct btrfs_ordered_sum *sum;
311		sum = list_first_entry(&sctx->csum_list,
312				       struct btrfs_ordered_sum, list);
313		list_del(&sum->list);
314		kfree(sum);
315	}
316}
317
318static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319{
320	int i;
321
322	if (!sctx)
323		return;
324
325	scrub_free_wr_ctx(&sctx->wr_ctx);
326
327	/* this can happen when scrub is cancelled */
328	if (sctx->curr != -1) {
329		struct scrub_bio *sbio = sctx->bios[sctx->curr];
330
331		for (i = 0; i < sbio->page_count; i++) {
332			WARN_ON(!sbio->pagev[i]->page);
333			scrub_block_put(sbio->pagev[i]->sblock);
334		}
335		bio_put(sbio->bio);
336	}
337
338	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339		struct scrub_bio *sbio = sctx->bios[i];
340
341		if (!sbio)
342			break;
343		kfree(sbio);
344	}
345
346	scrub_free_csums(sctx);
347	kfree(sctx);
348}
349
350static noinline_for_stack
351struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352{
353	struct scrub_ctx *sctx;
354	int		i;
355	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356	int pages_per_rd_bio;
357	int ret;
358
359	/*
360	 * the setting of pages_per_rd_bio is correct for scrub but might
361	 * be wrong for the dev_replace code where we might read from
362	 * different devices in the initial huge bios. However, that
363	 * code is able to correctly handle the case when adding a page
364	 * to a bio fails.
365	 */
366	if (dev->bdev)
367		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368					 bio_get_nr_vecs(dev->bdev));
369	else
370		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372	if (!sctx)
373		goto nomem;
374	sctx->is_dev_replace = is_dev_replace;
375	sctx->pages_per_rd_bio = pages_per_rd_bio;
376	sctx->curr = -1;
377	sctx->dev_root = dev->dev_root;
378	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379		struct scrub_bio *sbio;
380
381		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382		if (!sbio)
383			goto nomem;
384		sctx->bios[i] = sbio;
385
386		sbio->index = i;
387		sbio->sctx = sctx;
388		sbio->page_count = 0;
389		sbio->work.func = scrub_bio_end_io_worker;
390
391		if (i != SCRUB_BIOS_PER_SCTX - 1)
392			sctx->bios[i]->next_free = i + 1;
393		else
394			sctx->bios[i]->next_free = -1;
395	}
396	sctx->first_free = 0;
397	sctx->nodesize = dev->dev_root->nodesize;
398	sctx->leafsize = dev->dev_root->leafsize;
399	sctx->sectorsize = dev->dev_root->sectorsize;
400	atomic_set(&sctx->bios_in_flight, 0);
401	atomic_set(&sctx->workers_pending, 0);
402	atomic_set(&sctx->cancel_req, 0);
403	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404	INIT_LIST_HEAD(&sctx->csum_list);
405
406	spin_lock_init(&sctx->list_lock);
407	spin_lock_init(&sctx->stat_lock);
408	init_waitqueue_head(&sctx->list_wait);
409
410	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411				 fs_info->dev_replace.tgtdev, is_dev_replace);
412	if (ret) {
413		scrub_free_ctx(sctx);
414		return ERR_PTR(ret);
415	}
416	return sctx;
417
418nomem:
419	scrub_free_ctx(sctx);
420	return ERR_PTR(-ENOMEM);
421}
422
423static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424				     void *warn_ctx)
425{
426	u64 isize;
427	u32 nlink;
428	int ret;
429	int i;
430	struct extent_buffer *eb;
431	struct btrfs_inode_item *inode_item;
432	struct scrub_warning *swarn = warn_ctx;
433	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434	struct inode_fs_paths *ipath = NULL;
435	struct btrfs_root *local_root;
436	struct btrfs_key root_key;
437
438	root_key.objectid = root;
439	root_key.type = BTRFS_ROOT_ITEM_KEY;
440	root_key.offset = (u64)-1;
441	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442	if (IS_ERR(local_root)) {
443		ret = PTR_ERR(local_root);
444		goto err;
445	}
446
447	ret = inode_item_info(inum, 0, local_root, swarn->path);
448	if (ret) {
449		btrfs_release_path(swarn->path);
450		goto err;
451	}
452
453	eb = swarn->path->nodes[0];
454	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455					struct btrfs_inode_item);
456	isize = btrfs_inode_size(eb, inode_item);
457	nlink = btrfs_inode_nlink(eb, inode_item);
458	btrfs_release_path(swarn->path);
459
460	ipath = init_ipath(4096, local_root, swarn->path);
461	if (IS_ERR(ipath)) {
462		ret = PTR_ERR(ipath);
463		ipath = NULL;
464		goto err;
465	}
466	ret = paths_from_inode(inum, ipath);
467
468	if (ret < 0)
469		goto err;
470
471	/*
472	 * we deliberately ignore the bit ipath might have been too small to
473	 * hold all of the paths here
474	 */
475	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
478			"length %llu, links %u (path: %s)\n", swarn->errstr,
479			swarn->logical, rcu_str_deref(swarn->dev->name),
480			(unsigned long long)swarn->sector, root, inum, offset,
481			min(isize - offset, (u64)PAGE_SIZE), nlink,
482			(char *)(unsigned long)ipath->fspath->val[i]);
483
484	free_ipath(ipath);
485	return 0;
486
487err:
488	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490		"resolving failed with ret=%d\n", swarn->errstr,
491		swarn->logical, rcu_str_deref(swarn->dev->name),
492		(unsigned long long)swarn->sector, root, inum, offset, ret);
493
494	free_ipath(ipath);
495	return 0;
496}
497
498static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499{
500	struct btrfs_device *dev;
501	struct btrfs_fs_info *fs_info;
502	struct btrfs_path *path;
503	struct btrfs_key found_key;
504	struct extent_buffer *eb;
505	struct btrfs_extent_item *ei;
506	struct scrub_warning swarn;
507	unsigned long ptr = 0;
508	u64 extent_item_pos;
509	u64 flags = 0;
510	u64 ref_root;
511	u32 item_size;
512	u8 ref_level;
513	const int bufsize = 4096;
514	int ret;
515
516	WARN_ON(sblock->page_count < 1);
517	dev = sblock->pagev[0]->dev;
518	fs_info = sblock->sctx->dev_root->fs_info;
519
520	path = btrfs_alloc_path();
521
522	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524	swarn.sector = (sblock->pagev[0]->physical) >> 9;
525	swarn.logical = sblock->pagev[0]->logical;
526	swarn.errstr = errstr;
527	swarn.dev = NULL;
528	swarn.msg_bufsize = bufsize;
529	swarn.scratch_bufsize = bufsize;
530
531	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532		goto out;
533
534	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535				  &flags);
536	if (ret < 0)
537		goto out;
538
539	extent_item_pos = swarn.logical - found_key.objectid;
540	swarn.extent_item_size = found_key.offset;
541
542	eb = path->nodes[0];
543	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544	item_size = btrfs_item_size_nr(eb, path->slots[0]);
545
546	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547		do {
548			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549							&ref_root, &ref_level);
550			printk_in_rcu(KERN_WARNING
551				"btrfs: %s at logical %llu on dev %s, "
552				"sector %llu: metadata %s (level %d) in tree "
553				"%llu\n", errstr, swarn.logical,
554				rcu_str_deref(dev->name),
555				(unsigned long long)swarn.sector,
556				ref_level ? "node" : "leaf",
557				ret < 0 ? -1 : ref_level,
558				ret < 0 ? -1 : ref_root);
559		} while (ret != 1);
560		btrfs_release_path(path);
561	} else {
562		btrfs_release_path(path);
563		swarn.path = path;
564		swarn.dev = dev;
565		iterate_extent_inodes(fs_info, found_key.objectid,
566					extent_item_pos, 1,
567					scrub_print_warning_inode, &swarn);
568	}
569
570out:
571	btrfs_free_path(path);
572	kfree(swarn.scratch_buf);
573	kfree(swarn.msg_buf);
574}
575
576static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
577{
578	struct page *page = NULL;
579	unsigned long index;
580	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
581	int ret;
582	int corrected = 0;
583	struct btrfs_key key;
584	struct inode *inode = NULL;
585	struct btrfs_fs_info *fs_info;
586	u64 end = offset + PAGE_SIZE - 1;
587	struct btrfs_root *local_root;
588	int srcu_index;
589
590	key.objectid = root;
591	key.type = BTRFS_ROOT_ITEM_KEY;
592	key.offset = (u64)-1;
593
594	fs_info = fixup->root->fs_info;
595	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596
597	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598	if (IS_ERR(local_root)) {
599		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600		return PTR_ERR(local_root);
601	}
602
603	key.type = BTRFS_INODE_ITEM_KEY;
604	key.objectid = inum;
605	key.offset = 0;
606	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608	if (IS_ERR(inode))
609		return PTR_ERR(inode);
610
611	index = offset >> PAGE_CACHE_SHIFT;
612
613	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
614	if (!page) {
615		ret = -ENOMEM;
616		goto out;
617	}
618
619	if (PageUptodate(page)) {
620		if (PageDirty(page)) {
621			/*
622			 * we need to write the data to the defect sector. the
623			 * data that was in that sector is not in memory,
624			 * because the page was modified. we must not write the
625			 * modified page to that sector.
626			 *
627			 * TODO: what could be done here: wait for the delalloc
628			 *       runner to write out that page (might involve
629			 *       COW) and see whether the sector is still
630			 *       referenced afterwards.
631			 *
632			 * For the meantime, we'll treat this error
633			 * incorrectable, although there is a chance that a
634			 * later scrub will find the bad sector again and that
635			 * there's no dirty page in memory, then.
636			 */
637			ret = -EIO;
638			goto out;
639		}
640		fs_info = BTRFS_I(inode)->root->fs_info;
641		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642					fixup->logical, page,
643					fixup->mirror_num);
644		unlock_page(page);
645		corrected = !ret;
646	} else {
647		/*
648		 * we need to get good data first. the general readpage path
649		 * will call repair_io_failure for us, we just have to make
650		 * sure we read the bad mirror.
651		 */
652		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653					EXTENT_DAMAGED, GFP_NOFS);
654		if (ret) {
655			/* set_extent_bits should give proper error */
656			WARN_ON(ret > 0);
657			if (ret > 0)
658				ret = -EFAULT;
659			goto out;
660		}
661
662		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663						btrfs_get_extent,
664						fixup->mirror_num);
665		wait_on_page_locked(page);
666
667		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668						end, EXTENT_DAMAGED, 0, NULL);
669		if (!corrected)
670			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671						EXTENT_DAMAGED, GFP_NOFS);
672	}
673
674out:
675	if (page)
676		put_page(page);
677	if (inode)
678		iput(inode);
679
680	if (ret < 0)
681		return ret;
682
683	if (ret == 0 && corrected) {
684		/*
685		 * we only need to call readpage for one of the inodes belonging
686		 * to this extent. so make iterate_extent_inodes stop
687		 */
688		return 1;
689	}
690
691	return -EIO;
692}
693
694static void scrub_fixup_nodatasum(struct btrfs_work *work)
695{
696	int ret;
697	struct scrub_fixup_nodatasum *fixup;
698	struct scrub_ctx *sctx;
699	struct btrfs_trans_handle *trans = NULL;
700	struct btrfs_fs_info *fs_info;
701	struct btrfs_path *path;
702	int uncorrectable = 0;
703
704	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
705	sctx = fixup->sctx;
706	fs_info = fixup->root->fs_info;
707
708	path = btrfs_alloc_path();
709	if (!path) {
710		spin_lock(&sctx->stat_lock);
711		++sctx->stat.malloc_errors;
712		spin_unlock(&sctx->stat_lock);
713		uncorrectable = 1;
714		goto out;
715	}
716
717	trans = btrfs_join_transaction(fixup->root);
718	if (IS_ERR(trans)) {
719		uncorrectable = 1;
720		goto out;
721	}
722
723	/*
724	 * the idea is to trigger a regular read through the standard path. we
725	 * read a page from the (failed) logical address by specifying the
726	 * corresponding copynum of the failed sector. thus, that readpage is
727	 * expected to fail.
728	 * that is the point where on-the-fly error correction will kick in
729	 * (once it's finished) and rewrite the failed sector if a good copy
730	 * can be found.
731	 */
732	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733						path, scrub_fixup_readpage,
734						fixup);
735	if (ret < 0) {
736		uncorrectable = 1;
737		goto out;
738	}
739	WARN_ON(ret != 1);
740
741	spin_lock(&sctx->stat_lock);
742	++sctx->stat.corrected_errors;
743	spin_unlock(&sctx->stat_lock);
744
745out:
746	if (trans && !IS_ERR(trans))
747		btrfs_end_transaction(trans, fixup->root);
748	if (uncorrectable) {
749		spin_lock(&sctx->stat_lock);
750		++sctx->stat.uncorrectable_errors;
751		spin_unlock(&sctx->stat_lock);
752		btrfs_dev_replace_stats_inc(
753			&sctx->dev_root->fs_info->dev_replace.
754			num_uncorrectable_read_errors);
755		printk_ratelimited_in_rcu(KERN_ERR
756			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757			fixup->logical, rcu_str_deref(fixup->dev->name));
758	}
759
760	btrfs_free_path(path);
761	kfree(fixup);
762
763	scrub_pending_trans_workers_dec(sctx);
764}
765
766/*
767 * scrub_handle_errored_block gets called when either verification of the
768 * pages failed or the bio failed to read, e.g. with EIO. In the latter
769 * case, this function handles all pages in the bio, even though only one
770 * may be bad.
771 * The goal of this function is to repair the errored block by using the
772 * contents of one of the mirrors.
773 */
774static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
775{
776	struct scrub_ctx *sctx = sblock_to_check->sctx;
777	struct btrfs_device *dev;
778	struct btrfs_fs_info *fs_info;
779	u64 length;
780	u64 logical;
781	u64 generation;
782	unsigned int failed_mirror_index;
783	unsigned int is_metadata;
784	unsigned int have_csum;
785	u8 *csum;
786	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
787	struct scrub_block *sblock_bad;
788	int ret;
789	int mirror_index;
790	int page_num;
791	int success;
792	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
793				      DEFAULT_RATELIMIT_BURST);
794
795	BUG_ON(sblock_to_check->page_count < 1);
796	fs_info = sctx->dev_root->fs_info;
797	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
798		/*
799		 * if we find an error in a super block, we just report it.
800		 * They will get written with the next transaction commit
801		 * anyway
802		 */
803		spin_lock(&sctx->stat_lock);
804		++sctx->stat.super_errors;
805		spin_unlock(&sctx->stat_lock);
806		return 0;
807	}
808	length = sblock_to_check->page_count * PAGE_SIZE;
809	logical = sblock_to_check->pagev[0]->logical;
810	generation = sblock_to_check->pagev[0]->generation;
811	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
812	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
813	is_metadata = !(sblock_to_check->pagev[0]->flags &
814			BTRFS_EXTENT_FLAG_DATA);
815	have_csum = sblock_to_check->pagev[0]->have_csum;
816	csum = sblock_to_check->pagev[0]->csum;
817	dev = sblock_to_check->pagev[0]->dev;
818
819	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
820		sblocks_for_recheck = NULL;
821		goto nodatasum_case;
822	}
823
824	/*
825	 * read all mirrors one after the other. This includes to
826	 * re-read the extent or metadata block that failed (that was
827	 * the cause that this fixup code is called) another time,
828	 * page by page this time in order to know which pages
829	 * caused I/O errors and which ones are good (for all mirrors).
830	 * It is the goal to handle the situation when more than one
831	 * mirror contains I/O errors, but the errors do not
832	 * overlap, i.e. the data can be repaired by selecting the
833	 * pages from those mirrors without I/O error on the
834	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
835	 * would be that mirror #1 has an I/O error on the first page,
836	 * the second page is good, and mirror #2 has an I/O error on
837	 * the second page, but the first page is good.
838	 * Then the first page of the first mirror can be repaired by
839	 * taking the first page of the second mirror, and the
840	 * second page of the second mirror can be repaired by
841	 * copying the contents of the 2nd page of the 1st mirror.
842	 * One more note: if the pages of one mirror contain I/O
843	 * errors, the checksum cannot be verified. In order to get
844	 * the best data for repairing, the first attempt is to find
845	 * a mirror without I/O errors and with a validated checksum.
846	 * Only if this is not possible, the pages are picked from
847	 * mirrors with I/O errors without considering the checksum.
848	 * If the latter is the case, at the end, the checksum of the
849	 * repaired area is verified in order to correctly maintain
850	 * the statistics.
851	 */
852
853	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
854				     sizeof(*sblocks_for_recheck),
855				     GFP_NOFS);
856	if (!sblocks_for_recheck) {
857		spin_lock(&sctx->stat_lock);
858		sctx->stat.malloc_errors++;
859		sctx->stat.read_errors++;
860		sctx->stat.uncorrectable_errors++;
861		spin_unlock(&sctx->stat_lock);
862		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
863		goto out;
864	}
865
866	/* setup the context, map the logical blocks and alloc the pages */
867	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
868					logical, sblocks_for_recheck);
869	if (ret) {
870		spin_lock(&sctx->stat_lock);
871		sctx->stat.read_errors++;
872		sctx->stat.uncorrectable_errors++;
873		spin_unlock(&sctx->stat_lock);
874		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
875		goto out;
876	}
877	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
878	sblock_bad = sblocks_for_recheck + failed_mirror_index;
879
880	/* build and submit the bios for the failed mirror, check checksums */
881	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
882			    csum, generation, sctx->csum_size);
883
884	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
885	    sblock_bad->no_io_error_seen) {
886		/*
887		 * the error disappeared after reading page by page, or
888		 * the area was part of a huge bio and other parts of the
889		 * bio caused I/O errors, or the block layer merged several
890		 * read requests into one and the error is caused by a
891		 * different bio (usually one of the two latter cases is
892		 * the cause)
893		 */
894		spin_lock(&sctx->stat_lock);
895		sctx->stat.unverified_errors++;
896		spin_unlock(&sctx->stat_lock);
897
898		if (sctx->is_dev_replace)
899			scrub_write_block_to_dev_replace(sblock_bad);
900		goto out;
901	}
902
903	if (!sblock_bad->no_io_error_seen) {
904		spin_lock(&sctx->stat_lock);
905		sctx->stat.read_errors++;
906		spin_unlock(&sctx->stat_lock);
907		if (__ratelimit(&_rs))
908			scrub_print_warning("i/o error", sblock_to_check);
909		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
910	} else if (sblock_bad->checksum_error) {
911		spin_lock(&sctx->stat_lock);
912		sctx->stat.csum_errors++;
913		spin_unlock(&sctx->stat_lock);
914		if (__ratelimit(&_rs))
915			scrub_print_warning("checksum error", sblock_to_check);
916		btrfs_dev_stat_inc_and_print(dev,
917					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
918	} else if (sblock_bad->header_error) {
919		spin_lock(&sctx->stat_lock);
920		sctx->stat.verify_errors++;
921		spin_unlock(&sctx->stat_lock);
922		if (__ratelimit(&_rs))
923			scrub_print_warning("checksum/header error",
924					    sblock_to_check);
925		if (sblock_bad->generation_error)
926			btrfs_dev_stat_inc_and_print(dev,
927				BTRFS_DEV_STAT_GENERATION_ERRS);
928		else
929			btrfs_dev_stat_inc_and_print(dev,
930				BTRFS_DEV_STAT_CORRUPTION_ERRS);
931	}
932
933	if (sctx->readonly && !sctx->is_dev_replace)
934		goto did_not_correct_error;
935
936	if (!is_metadata && !have_csum) {
937		struct scrub_fixup_nodatasum *fixup_nodatasum;
938
939nodatasum_case:
940		WARN_ON(sctx->is_dev_replace);
941
942		/*
943		 * !is_metadata and !have_csum, this means that the data
944		 * might not be COW'ed, that it might be modified
945		 * concurrently. The general strategy to work on the
946		 * commit root does not help in the case when COW is not
947		 * used.
948		 */
949		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
950		if (!fixup_nodatasum)
951			goto did_not_correct_error;
952		fixup_nodatasum->sctx = sctx;
953		fixup_nodatasum->dev = dev;
954		fixup_nodatasum->logical = logical;
955		fixup_nodatasum->root = fs_info->extent_root;
956		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
957		scrub_pending_trans_workers_inc(sctx);
958		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
959		btrfs_queue_worker(&fs_info->scrub_workers,
960				   &fixup_nodatasum->work);
961		goto out;
962	}
963
964	/*
965	 * now build and submit the bios for the other mirrors, check
966	 * checksums.
967	 * First try to pick the mirror which is completely without I/O
968	 * errors and also does not have a checksum error.
969	 * If one is found, and if a checksum is present, the full block
970	 * that is known to contain an error is rewritten. Afterwards
971	 * the block is known to be corrected.
972	 * If a mirror is found which is completely correct, and no
973	 * checksum is present, only those pages are rewritten that had
974	 * an I/O error in the block to be repaired, since it cannot be
975	 * determined, which copy of the other pages is better (and it
976	 * could happen otherwise that a correct page would be
977	 * overwritten by a bad one).
978	 */
979	for (mirror_index = 0;
980	     mirror_index < BTRFS_MAX_MIRRORS &&
981	     sblocks_for_recheck[mirror_index].page_count > 0;
982	     mirror_index++) {
983		struct scrub_block *sblock_other;
984
985		if (mirror_index == failed_mirror_index)
986			continue;
987		sblock_other = sblocks_for_recheck + mirror_index;
988
989		/* build and submit the bios, check checksums */
990		scrub_recheck_block(fs_info, sblock_other, is_metadata,
991				    have_csum, csum, generation,
992				    sctx->csum_size);
993
994		if (!sblock_other->header_error &&
995		    !sblock_other->checksum_error &&
996		    sblock_other->no_io_error_seen) {
997			if (sctx->is_dev_replace) {
998				scrub_write_block_to_dev_replace(sblock_other);
999			} else {
1000				int force_write = is_metadata || have_csum;
1001
1002				ret = scrub_repair_block_from_good_copy(
1003						sblock_bad, sblock_other,
1004						force_write);
1005			}
1006			if (0 == ret)
1007				goto corrected_error;
1008		}
1009	}
1010
1011	/*
1012	 * for dev_replace, pick good pages and write to the target device.
1013	 */
1014	if (sctx->is_dev_replace) {
1015		success = 1;
1016		for (page_num = 0; page_num < sblock_bad->page_count;
1017		     page_num++) {
1018			int sub_success;
1019
1020			sub_success = 0;
1021			for (mirror_index = 0;
1022			     mirror_index < BTRFS_MAX_MIRRORS &&
1023			     sblocks_for_recheck[mirror_index].page_count > 0;
1024			     mirror_index++) {
1025				struct scrub_block *sblock_other =
1026					sblocks_for_recheck + mirror_index;
1027				struct scrub_page *page_other =
1028					sblock_other->pagev[page_num];
1029
1030				if (!page_other->io_error) {
1031					ret = scrub_write_page_to_dev_replace(
1032							sblock_other, page_num);
1033					if (ret == 0) {
1034						/* succeeded for this page */
1035						sub_success = 1;
1036						break;
1037					} else {
1038						btrfs_dev_replace_stats_inc(
1039							&sctx->dev_root->
1040							fs_info->dev_replace.
1041							num_write_errors);
1042					}
1043				}
1044			}
1045
1046			if (!sub_success) {
1047				/*
1048				 * did not find a mirror to fetch the page
1049				 * from. scrub_write_page_to_dev_replace()
1050				 * handles this case (page->io_error), by
1051				 * filling the block with zeros before
1052				 * submitting the write request
1053				 */
1054				success = 0;
1055				ret = scrub_write_page_to_dev_replace(
1056						sblock_bad, page_num);
1057				if (ret)
1058					btrfs_dev_replace_stats_inc(
1059						&sctx->dev_root->fs_info->
1060						dev_replace.num_write_errors);
1061			}
1062		}
1063
1064		goto out;
1065	}
1066
1067	/*
1068	 * for regular scrub, repair those pages that are errored.
1069	 * In case of I/O errors in the area that is supposed to be
1070	 * repaired, continue by picking good copies of those pages.
1071	 * Select the good pages from mirrors to rewrite bad pages from
1072	 * the area to fix. Afterwards verify the checksum of the block
1073	 * that is supposed to be repaired. This verification step is
1074	 * only done for the purpose of statistic counting and for the
1075	 * final scrub report, whether errors remain.
1076	 * A perfect algorithm could make use of the checksum and try
1077	 * all possible combinations of pages from the different mirrors
1078	 * until the checksum verification succeeds. For example, when
1079	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080	 * of mirror #2 is readable but the final checksum test fails,
1081	 * then the 2nd page of mirror #3 could be tried, whether now
1082	 * the final checksum succeedes. But this would be a rare
1083	 * exception and is therefore not implemented. At least it is
1084	 * avoided that the good copy is overwritten.
1085	 * A more useful improvement would be to pick the sectors
1086	 * without I/O error based on sector sizes (512 bytes on legacy
1087	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088	 * mirror could be repaired by taking 512 byte of a different
1089	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090	 * area are unreadable.
1091	 */
1092
1093	/* can only fix I/O errors from here on */
1094	if (sblock_bad->no_io_error_seen)
1095		goto did_not_correct_error;
1096
1097	success = 1;
1098	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1099		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1100
1101		if (!page_bad->io_error)
1102			continue;
1103
1104		for (mirror_index = 0;
1105		     mirror_index < BTRFS_MAX_MIRRORS &&
1106		     sblocks_for_recheck[mirror_index].page_count > 0;
1107		     mirror_index++) {
1108			struct scrub_block *sblock_other = sblocks_for_recheck +
1109							   mirror_index;
1110			struct scrub_page *page_other = sblock_other->pagev[
1111							page_num];
1112
1113			if (!page_other->io_error) {
1114				ret = scrub_repair_page_from_good_copy(
1115					sblock_bad, sblock_other, page_num, 0);
1116				if (0 == ret) {
1117					page_bad->io_error = 0;
1118					break; /* succeeded for this page */
1119				}
1120			}
1121		}
1122
1123		if (page_bad->io_error) {
1124			/* did not find a mirror to copy the page from */
1125			success = 0;
1126		}
1127	}
1128
1129	if (success) {
1130		if (is_metadata || have_csum) {
1131			/*
1132			 * need to verify the checksum now that all
1133			 * sectors on disk are repaired (the write
1134			 * request for data to be repaired is on its way).
1135			 * Just be lazy and use scrub_recheck_block()
1136			 * which re-reads the data before the checksum
1137			 * is verified, but most likely the data comes out
1138			 * of the page cache.
1139			 */
1140			scrub_recheck_block(fs_info, sblock_bad,
1141					    is_metadata, have_csum, csum,
1142					    generation, sctx->csum_size);
1143			if (!sblock_bad->header_error &&
1144			    !sblock_bad->checksum_error &&
1145			    sblock_bad->no_io_error_seen)
1146				goto corrected_error;
1147			else
1148				goto did_not_correct_error;
1149		} else {
1150corrected_error:
1151			spin_lock(&sctx->stat_lock);
1152			sctx->stat.corrected_errors++;
1153			spin_unlock(&sctx->stat_lock);
1154			printk_ratelimited_in_rcu(KERN_ERR
1155				"btrfs: fixed up error at logical %llu on dev %s\n",
1156				logical, rcu_str_deref(dev->name));
1157		}
1158	} else {
1159did_not_correct_error:
1160		spin_lock(&sctx->stat_lock);
1161		sctx->stat.uncorrectable_errors++;
1162		spin_unlock(&sctx->stat_lock);
1163		printk_ratelimited_in_rcu(KERN_ERR
1164			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1165			logical, rcu_str_deref(dev->name));
1166	}
1167
1168out:
1169	if (sblocks_for_recheck) {
1170		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1171		     mirror_index++) {
1172			struct scrub_block *sblock = sblocks_for_recheck +
1173						     mirror_index;
1174			int page_index;
1175
1176			for (page_index = 0; page_index < sblock->page_count;
1177			     page_index++) {
1178				sblock->pagev[page_index]->sblock = NULL;
1179				scrub_page_put(sblock->pagev[page_index]);
1180			}
1181		}
1182		kfree(sblocks_for_recheck);
1183	}
1184
1185	return 0;
1186}
1187
1188static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1189				     struct btrfs_fs_info *fs_info,
1190				     struct scrub_block *original_sblock,
1191				     u64 length, u64 logical,
1192				     struct scrub_block *sblocks_for_recheck)
1193{
1194	int page_index;
1195	int mirror_index;
1196	int ret;
1197
1198	/*
1199	 * note: the two members ref_count and outstanding_pages
1200	 * are not used (and not set) in the blocks that are used for
1201	 * the recheck procedure
1202	 */
1203
1204	page_index = 0;
1205	while (length > 0) {
1206		u64 sublen = min_t(u64, length, PAGE_SIZE);
1207		u64 mapped_length = sublen;
1208		struct btrfs_bio *bbio = NULL;
1209
1210		/*
1211		 * with a length of PAGE_SIZE, each returned stripe
1212		 * represents one mirror
1213		 */
1214		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1215				      &mapped_length, &bbio, 0);
1216		if (ret || !bbio || mapped_length < sublen) {
1217			kfree(bbio);
1218			return -EIO;
1219		}
1220
1221		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1222		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1223		     mirror_index++) {
1224			struct scrub_block *sblock;
1225			struct scrub_page *page;
1226
1227			if (mirror_index >= BTRFS_MAX_MIRRORS)
1228				continue;
1229
1230			sblock = sblocks_for_recheck + mirror_index;
1231			sblock->sctx = sctx;
1232			page = kzalloc(sizeof(*page), GFP_NOFS);
1233			if (!page) {
1234leave_nomem:
1235				spin_lock(&sctx->stat_lock);
1236				sctx->stat.malloc_errors++;
1237				spin_unlock(&sctx->stat_lock);
1238				kfree(bbio);
1239				return -ENOMEM;
1240			}
1241			scrub_page_get(page);
1242			sblock->pagev[page_index] = page;
1243			page->logical = logical;
1244			page->physical = bbio->stripes[mirror_index].physical;
1245			BUG_ON(page_index >= original_sblock->page_count);
1246			page->physical_for_dev_replace =
1247				original_sblock->pagev[page_index]->
1248				physical_for_dev_replace;
1249			/* for missing devices, dev->bdev is NULL */
1250			page->dev = bbio->stripes[mirror_index].dev;
1251			page->mirror_num = mirror_index + 1;
1252			sblock->page_count++;
1253			page->page = alloc_page(GFP_NOFS);
1254			if (!page->page)
1255				goto leave_nomem;
1256		}
1257		kfree(bbio);
1258		length -= sublen;
1259		logical += sublen;
1260		page_index++;
1261	}
1262
1263	return 0;
1264}
1265
1266/*
1267 * this function will check the on disk data for checksum errors, header
1268 * errors and read I/O errors. If any I/O errors happen, the exact pages
1269 * which are errored are marked as being bad. The goal is to enable scrub
1270 * to take those pages that are not errored from all the mirrors so that
1271 * the pages that are errored in the just handled mirror can be repaired.
1272 */
1273static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1274				struct scrub_block *sblock, int is_metadata,
1275				int have_csum, u8 *csum, u64 generation,
1276				u16 csum_size)
1277{
1278	int page_num;
1279
1280	sblock->no_io_error_seen = 1;
1281	sblock->header_error = 0;
1282	sblock->checksum_error = 0;
1283
1284	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1285		struct bio *bio;
1286		struct scrub_page *page = sblock->pagev[page_num];
1287		DECLARE_COMPLETION_ONSTACK(complete);
1288
1289		if (page->dev->bdev == NULL) {
1290			page->io_error = 1;
1291			sblock->no_io_error_seen = 0;
1292			continue;
1293		}
1294
1295		WARN_ON(!page->page);
1296		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1297		if (!bio) {
1298			page->io_error = 1;
1299			sblock->no_io_error_seen = 0;
1300			continue;
1301		}
1302		bio->bi_bdev = page->dev->bdev;
1303		bio->bi_sector = page->physical >> 9;
1304		bio->bi_end_io = scrub_complete_bio_end_io;
1305		bio->bi_private = &complete;
1306
1307		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1308		btrfsic_submit_bio(READ, bio);
1309
1310		/* this will also unplug the queue */
1311		wait_for_completion(&complete);
1312
1313		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1314		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1315			sblock->no_io_error_seen = 0;
1316		bio_put(bio);
1317	}
1318
1319	if (sblock->no_io_error_seen)
1320		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1321					     have_csum, csum, generation,
1322					     csum_size);
1323
1324	return;
1325}
1326
1327static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1328					 struct scrub_block *sblock,
1329					 int is_metadata, int have_csum,
1330					 const u8 *csum, u64 generation,
1331					 u16 csum_size)
1332{
1333	int page_num;
1334	u8 calculated_csum[BTRFS_CSUM_SIZE];
1335	u32 crc = ~(u32)0;
1336	void *mapped_buffer;
1337
1338	WARN_ON(!sblock->pagev[0]->page);
1339	if (is_metadata) {
1340		struct btrfs_header *h;
1341
1342		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1343		h = (struct btrfs_header *)mapped_buffer;
1344
1345		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1346		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1347		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1348			   BTRFS_UUID_SIZE)) {
1349			sblock->header_error = 1;
1350		} else if (generation != btrfs_stack_header_generation(h)) {
1351			sblock->header_error = 1;
1352			sblock->generation_error = 1;
1353		}
1354		csum = h->csum;
1355	} else {
1356		if (!have_csum)
1357			return;
1358
1359		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1360	}
1361
1362	for (page_num = 0;;) {
1363		if (page_num == 0 && is_metadata)
1364			crc = btrfs_csum_data(
1365				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1366				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1367		else
1368			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1369
1370		kunmap_atomic(mapped_buffer);
1371		page_num++;
1372		if (page_num >= sblock->page_count)
1373			break;
1374		WARN_ON(!sblock->pagev[page_num]->page);
1375
1376		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1377	}
1378
1379	btrfs_csum_final(crc, calculated_csum);
1380	if (memcmp(calculated_csum, csum, csum_size))
1381		sblock->checksum_error = 1;
1382}
1383
1384static void scrub_complete_bio_end_io(struct bio *bio, int err)
1385{
1386	complete((struct completion *)bio->bi_private);
1387}
1388
1389static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1390					     struct scrub_block *sblock_good,
1391					     int force_write)
1392{
1393	int page_num;
1394	int ret = 0;
1395
1396	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1397		int ret_sub;
1398
1399		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1400							   sblock_good,
1401							   page_num,
1402							   force_write);
1403		if (ret_sub)
1404			ret = ret_sub;
1405	}
1406
1407	return ret;
1408}
1409
1410static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1411					    struct scrub_block *sblock_good,
1412					    int page_num, int force_write)
1413{
1414	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1415	struct scrub_page *page_good = sblock_good->pagev[page_num];
1416
1417	BUG_ON(page_bad->page == NULL);
1418	BUG_ON(page_good->page == NULL);
1419	if (force_write || sblock_bad->header_error ||
1420	    sblock_bad->checksum_error || page_bad->io_error) {
1421		struct bio *bio;
1422		int ret;
1423		DECLARE_COMPLETION_ONSTACK(complete);
1424
1425		if (!page_bad->dev->bdev) {
1426			printk_ratelimited(KERN_WARNING
1427				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1428			return -EIO;
1429		}
1430
1431		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1432		if (!bio)
1433			return -EIO;
1434		bio->bi_bdev = page_bad->dev->bdev;
1435		bio->bi_sector = page_bad->physical >> 9;
1436		bio->bi_end_io = scrub_complete_bio_end_io;
1437		bio->bi_private = &complete;
1438
1439		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1440		if (PAGE_SIZE != ret) {
1441			bio_put(bio);
1442			return -EIO;
1443		}
1444		btrfsic_submit_bio(WRITE, bio);
1445
1446		/* this will also unplug the queue */
1447		wait_for_completion(&complete);
1448		if (!bio_flagged(bio, BIO_UPTODATE)) {
1449			btrfs_dev_stat_inc_and_print(page_bad->dev,
1450				BTRFS_DEV_STAT_WRITE_ERRS);
1451			btrfs_dev_replace_stats_inc(
1452				&sblock_bad->sctx->dev_root->fs_info->
1453				dev_replace.num_write_errors);
1454			bio_put(bio);
1455			return -EIO;
1456		}
1457		bio_put(bio);
1458	}
1459
1460	return 0;
1461}
1462
1463static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1464{
1465	int page_num;
1466
1467	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1468		int ret;
1469
1470		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1471		if (ret)
1472			btrfs_dev_replace_stats_inc(
1473				&sblock->sctx->dev_root->fs_info->dev_replace.
1474				num_write_errors);
1475	}
1476}
1477
1478static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1479					   int page_num)
1480{
1481	struct scrub_page *spage = sblock->pagev[page_num];
1482
1483	BUG_ON(spage->page == NULL);
1484	if (spage->io_error) {
1485		void *mapped_buffer = kmap_atomic(spage->page);
1486
1487		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1488		flush_dcache_page(spage->page);
1489		kunmap_atomic(mapped_buffer);
1490	}
1491	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1492}
1493
1494static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1495				    struct scrub_page *spage)
1496{
1497	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1498	struct scrub_bio *sbio;
1499	int ret;
1500
1501	mutex_lock(&wr_ctx->wr_lock);
1502again:
1503	if (!wr_ctx->wr_curr_bio) {
1504		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1505					      GFP_NOFS);
1506		if (!wr_ctx->wr_curr_bio) {
1507			mutex_unlock(&wr_ctx->wr_lock);
1508			return -ENOMEM;
1509		}
1510		wr_ctx->wr_curr_bio->sctx = sctx;
1511		wr_ctx->wr_curr_bio->page_count = 0;
1512	}
1513	sbio = wr_ctx->wr_curr_bio;
1514	if (sbio->page_count == 0) {
1515		struct bio *bio;
1516
1517		sbio->physical = spage->physical_for_dev_replace;
1518		sbio->logical = spage->logical;
1519		sbio->dev = wr_ctx->tgtdev;
1520		bio = sbio->bio;
1521		if (!bio) {
1522			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1523			if (!bio) {
1524				mutex_unlock(&wr_ctx->wr_lock);
1525				return -ENOMEM;
1526			}
1527			sbio->bio = bio;
1528		}
1529
1530		bio->bi_private = sbio;
1531		bio->bi_end_io = scrub_wr_bio_end_io;
1532		bio->bi_bdev = sbio->dev->bdev;
1533		bio->bi_sector = sbio->physical >> 9;
1534		sbio->err = 0;
1535	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1536		   spage->physical_for_dev_replace ||
1537		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1538		   spage->logical) {
1539		scrub_wr_submit(sctx);
1540		goto again;
1541	}
1542
1543	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1544	if (ret != PAGE_SIZE) {
1545		if (sbio->page_count < 1) {
1546			bio_put(sbio->bio);
1547			sbio->bio = NULL;
1548			mutex_unlock(&wr_ctx->wr_lock);
1549			return -EIO;
1550		}
1551		scrub_wr_submit(sctx);
1552		goto again;
1553	}
1554
1555	sbio->pagev[sbio->page_count] = spage;
1556	scrub_page_get(spage);
1557	sbio->page_count++;
1558	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1559		scrub_wr_submit(sctx);
1560	mutex_unlock(&wr_ctx->wr_lock);
1561
1562	return 0;
1563}
1564
1565static void scrub_wr_submit(struct scrub_ctx *sctx)
1566{
1567	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1568	struct scrub_bio *sbio;
1569
1570	if (!wr_ctx->wr_curr_bio)
1571		return;
1572
1573	sbio = wr_ctx->wr_curr_bio;
1574	wr_ctx->wr_curr_bio = NULL;
1575	WARN_ON(!sbio->bio->bi_bdev);
1576	scrub_pending_bio_inc(sctx);
1577	/* process all writes in a single worker thread. Then the block layer
1578	 * orders the requests before sending them to the driver which
1579	 * doubled the write performance on spinning disks when measured
1580	 * with Linux 3.5 */
1581	btrfsic_submit_bio(WRITE, sbio->bio);
1582}
1583
1584static void scrub_wr_bio_end_io(struct bio *bio, int err)
1585{
1586	struct scrub_bio *sbio = bio->bi_private;
1587	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1588
1589	sbio->err = err;
1590	sbio->bio = bio;
1591
1592	sbio->work.func = scrub_wr_bio_end_io_worker;
1593	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1594}
1595
1596static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1597{
1598	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1599	struct scrub_ctx *sctx = sbio->sctx;
1600	int i;
1601
1602	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1603	if (sbio->err) {
1604		struct btrfs_dev_replace *dev_replace =
1605			&sbio->sctx->dev_root->fs_info->dev_replace;
1606
1607		for (i = 0; i < sbio->page_count; i++) {
1608			struct scrub_page *spage = sbio->pagev[i];
1609
1610			spage->io_error = 1;
1611			btrfs_dev_replace_stats_inc(&dev_replace->
1612						    num_write_errors);
1613		}
1614	}
1615
1616	for (i = 0; i < sbio->page_count; i++)
1617		scrub_page_put(sbio->pagev[i]);
1618
1619	bio_put(sbio->bio);
1620	kfree(sbio);
1621	scrub_pending_bio_dec(sctx);
1622}
1623
1624static int scrub_checksum(struct scrub_block *sblock)
1625{
1626	u64 flags;
1627	int ret;
1628
1629	WARN_ON(sblock->page_count < 1);
1630	flags = sblock->pagev[0]->flags;
1631	ret = 0;
1632	if (flags & BTRFS_EXTENT_FLAG_DATA)
1633		ret = scrub_checksum_data(sblock);
1634	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1635		ret = scrub_checksum_tree_block(sblock);
1636	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1637		(void)scrub_checksum_super(sblock);
1638	else
1639		WARN_ON(1);
1640	if (ret)
1641		scrub_handle_errored_block(sblock);
1642
1643	return ret;
1644}
1645
1646static int scrub_checksum_data(struct scrub_block *sblock)
1647{
1648	struct scrub_ctx *sctx = sblock->sctx;
1649	u8 csum[BTRFS_CSUM_SIZE];
1650	u8 *on_disk_csum;
1651	struct page *page;
1652	void *buffer;
1653	u32 crc = ~(u32)0;
1654	int fail = 0;
1655	u64 len;
1656	int index;
1657
1658	BUG_ON(sblock->page_count < 1);
1659	if (!sblock->pagev[0]->have_csum)
1660		return 0;
1661
1662	on_disk_csum = sblock->pagev[0]->csum;
1663	page = sblock->pagev[0]->page;
1664	buffer = kmap_atomic(page);
1665
1666	len = sctx->sectorsize;
1667	index = 0;
1668	for (;;) {
1669		u64 l = min_t(u64, len, PAGE_SIZE);
1670
1671		crc = btrfs_csum_data(buffer, crc, l);
1672		kunmap_atomic(buffer);
1673		len -= l;
1674		if (len == 0)
1675			break;
1676		index++;
1677		BUG_ON(index >= sblock->page_count);
1678		BUG_ON(!sblock->pagev[index]->page);
1679		page = sblock->pagev[index]->page;
1680		buffer = kmap_atomic(page);
1681	}
1682
1683	btrfs_csum_final(crc, csum);
1684	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1685		fail = 1;
1686
1687	return fail;
1688}
1689
1690static int scrub_checksum_tree_block(struct scrub_block *sblock)
1691{
1692	struct scrub_ctx *sctx = sblock->sctx;
1693	struct btrfs_header *h;
1694	struct btrfs_root *root = sctx->dev_root;
1695	struct btrfs_fs_info *fs_info = root->fs_info;
1696	u8 calculated_csum[BTRFS_CSUM_SIZE];
1697	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1698	struct page *page;
1699	void *mapped_buffer;
1700	u64 mapped_size;
1701	void *p;
1702	u32 crc = ~(u32)0;
1703	int fail = 0;
1704	int crc_fail = 0;
1705	u64 len;
1706	int index;
1707
1708	BUG_ON(sblock->page_count < 1);
1709	page = sblock->pagev[0]->page;
1710	mapped_buffer = kmap_atomic(page);
1711	h = (struct btrfs_header *)mapped_buffer;
1712	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1713
1714	/*
1715	 * we don't use the getter functions here, as we
1716	 * a) don't have an extent buffer and
1717	 * b) the page is already kmapped
1718	 */
1719
1720	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1721		++fail;
1722
1723	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1724		++fail;
1725
1726	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1727		++fail;
1728
1729	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1730		   BTRFS_UUID_SIZE))
1731		++fail;
1732
1733	WARN_ON(sctx->nodesize != sctx->leafsize);
1734	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1735	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1736	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1737	index = 0;
1738	for (;;) {
1739		u64 l = min_t(u64, len, mapped_size);
1740
1741		crc = btrfs_csum_data(p, crc, l);
1742		kunmap_atomic(mapped_buffer);
1743		len -= l;
1744		if (len == 0)
1745			break;
1746		index++;
1747		BUG_ON(index >= sblock->page_count);
1748		BUG_ON(!sblock->pagev[index]->page);
1749		page = sblock->pagev[index]->page;
1750		mapped_buffer = kmap_atomic(page);
1751		mapped_size = PAGE_SIZE;
1752		p = mapped_buffer;
1753	}
1754
1755	btrfs_csum_final(crc, calculated_csum);
1756	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1757		++crc_fail;
1758
1759	return fail || crc_fail;
1760}
1761
1762static int scrub_checksum_super(struct scrub_block *sblock)
1763{
1764	struct btrfs_super_block *s;
1765	struct scrub_ctx *sctx = sblock->sctx;
1766	struct btrfs_root *root = sctx->dev_root;
1767	struct btrfs_fs_info *fs_info = root->fs_info;
1768	u8 calculated_csum[BTRFS_CSUM_SIZE];
1769	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1770	struct page *page;
1771	void *mapped_buffer;
1772	u64 mapped_size;
1773	void *p;
1774	u32 crc = ~(u32)0;
1775	int fail_gen = 0;
1776	int fail_cor = 0;
1777	u64 len;
1778	int index;
1779
1780	BUG_ON(sblock->page_count < 1);
1781	page = sblock->pagev[0]->page;
1782	mapped_buffer = kmap_atomic(page);
1783	s = (struct btrfs_super_block *)mapped_buffer;
1784	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1785
1786	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1787		++fail_cor;
1788
1789	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1790		++fail_gen;
1791
1792	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1793		++fail_cor;
1794
1795	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1796	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1797	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1798	index = 0;
1799	for (;;) {
1800		u64 l = min_t(u64, len, mapped_size);
1801
1802		crc = btrfs_csum_data(p, crc, l);
1803		kunmap_atomic(mapped_buffer);
1804		len -= l;
1805		if (len == 0)
1806			break;
1807		index++;
1808		BUG_ON(index >= sblock->page_count);
1809		BUG_ON(!sblock->pagev[index]->page);
1810		page = sblock->pagev[index]->page;
1811		mapped_buffer = kmap_atomic(page);
1812		mapped_size = PAGE_SIZE;
1813		p = mapped_buffer;
1814	}
1815
1816	btrfs_csum_final(crc, calculated_csum);
1817	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1818		++fail_cor;
1819
1820	if (fail_cor + fail_gen) {
1821		/*
1822		 * if we find an error in a super block, we just report it.
1823		 * They will get written with the next transaction commit
1824		 * anyway
1825		 */
1826		spin_lock(&sctx->stat_lock);
1827		++sctx->stat.super_errors;
1828		spin_unlock(&sctx->stat_lock);
1829		if (fail_cor)
1830			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1831				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1832		else
1833			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1834				BTRFS_DEV_STAT_GENERATION_ERRS);
1835	}
1836
1837	return fail_cor + fail_gen;
1838}
1839
1840static void scrub_block_get(struct scrub_block *sblock)
1841{
1842	atomic_inc(&sblock->ref_count);
1843}
1844
1845static void scrub_block_put(struct scrub_block *sblock)
1846{
1847	if (atomic_dec_and_test(&sblock->ref_count)) {
1848		int i;
1849
1850		for (i = 0; i < sblock->page_count; i++)
1851			scrub_page_put(sblock->pagev[i]);
1852		kfree(sblock);
1853	}
1854}
1855
1856static void scrub_page_get(struct scrub_page *spage)
1857{
1858	atomic_inc(&spage->ref_count);
1859}
1860
1861static void scrub_page_put(struct scrub_page *spage)
1862{
1863	if (atomic_dec_and_test(&spage->ref_count)) {
1864		if (spage->page)
1865			__free_page(spage->page);
1866		kfree(spage);
1867	}
1868}
1869
1870static void scrub_submit(struct scrub_ctx *sctx)
1871{
1872	struct scrub_bio *sbio;
1873
1874	if (sctx->curr == -1)
1875		return;
1876
1877	sbio = sctx->bios[sctx->curr];
1878	sctx->curr = -1;
1879	scrub_pending_bio_inc(sctx);
1880
1881	if (!sbio->bio->bi_bdev) {
1882		/*
1883		 * this case should not happen. If btrfs_map_block() is
1884		 * wrong, it could happen for dev-replace operations on
1885		 * missing devices when no mirrors are available, but in
1886		 * this case it should already fail the mount.
1887		 * This case is handled correctly (but _very_ slowly).
1888		 */
1889		printk_ratelimited(KERN_WARNING
1890			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1891		bio_endio(sbio->bio, -EIO);
1892	} else {
1893		btrfsic_submit_bio(READ, sbio->bio);
1894	}
1895}
1896
1897static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1898				    struct scrub_page *spage)
1899{
1900	struct scrub_block *sblock = spage->sblock;
1901	struct scrub_bio *sbio;
1902	int ret;
1903
1904again:
1905	/*
1906	 * grab a fresh bio or wait for one to become available
1907	 */
1908	while (sctx->curr == -1) {
1909		spin_lock(&sctx->list_lock);
1910		sctx->curr = sctx->first_free;
1911		if (sctx->curr != -1) {
1912			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1913			sctx->bios[sctx->curr]->next_free = -1;
1914			sctx->bios[sctx->curr]->page_count = 0;
1915			spin_unlock(&sctx->list_lock);
1916		} else {
1917			spin_unlock(&sctx->list_lock);
1918			wait_event(sctx->list_wait, sctx->first_free != -1);
1919		}
1920	}
1921	sbio = sctx->bios[sctx->curr];
1922	if (sbio->page_count == 0) {
1923		struct bio *bio;
1924
1925		sbio->physical = spage->physical;
1926		sbio->logical = spage->logical;
1927		sbio->dev = spage->dev;
1928		bio = sbio->bio;
1929		if (!bio) {
1930			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1931			if (!bio)
1932				return -ENOMEM;
1933			sbio->bio = bio;
1934		}
1935
1936		bio->bi_private = sbio;
1937		bio->bi_end_io = scrub_bio_end_io;
1938		bio->bi_bdev = sbio->dev->bdev;
1939		bio->bi_sector = sbio->physical >> 9;
1940		sbio->err = 0;
1941	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1942		   spage->physical ||
1943		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1944		   spage->logical ||
1945		   sbio->dev != spage->dev) {
1946		scrub_submit(sctx);
1947		goto again;
1948	}
1949
1950	sbio->pagev[sbio->page_count] = spage;
1951	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1952	if (ret != PAGE_SIZE) {
1953		if (sbio->page_count < 1) {
1954			bio_put(sbio->bio);
1955			sbio->bio = NULL;
1956			return -EIO;
1957		}
1958		scrub_submit(sctx);
1959		goto again;
1960	}
1961
1962	scrub_block_get(sblock); /* one for the page added to the bio */
1963	atomic_inc(&sblock->outstanding_pages);
1964	sbio->page_count++;
1965	if (sbio->page_count == sctx->pages_per_rd_bio)
1966		scrub_submit(sctx);
1967
1968	return 0;
1969}
1970
1971static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1972		       u64 physical, struct btrfs_device *dev, u64 flags,
1973		       u64 gen, int mirror_num, u8 *csum, int force,
1974		       u64 physical_for_dev_replace)
1975{
1976	struct scrub_block *sblock;
1977	int index;
1978
1979	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1980	if (!sblock) {
1981		spin_lock(&sctx->stat_lock);
1982		sctx->stat.malloc_errors++;
1983		spin_unlock(&sctx->stat_lock);
1984		return -ENOMEM;
1985	}
1986
1987	/* one ref inside this function, plus one for each page added to
1988	 * a bio later on */
1989	atomic_set(&sblock->ref_count, 1);
1990	sblock->sctx = sctx;
1991	sblock->no_io_error_seen = 1;
1992
1993	for (index = 0; len > 0; index++) {
1994		struct scrub_page *spage;
1995		u64 l = min_t(u64, len, PAGE_SIZE);
1996
1997		spage = kzalloc(sizeof(*spage), GFP_NOFS);
1998		if (!spage) {
1999leave_nomem:
2000			spin_lock(&sctx->stat_lock);
2001			sctx->stat.malloc_errors++;
2002			spin_unlock(&sctx->stat_lock);
2003			scrub_block_put(sblock);
2004			return -ENOMEM;
2005		}
2006		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2007		scrub_page_get(spage);
2008		sblock->pagev[index] = spage;
2009		spage->sblock = sblock;
2010		spage->dev = dev;
2011		spage->flags = flags;
2012		spage->generation = gen;
2013		spage->logical = logical;
2014		spage->physical = physical;
2015		spage->physical_for_dev_replace = physical_for_dev_replace;
2016		spage->mirror_num = mirror_num;
2017		if (csum) {
2018			spage->have_csum = 1;
2019			memcpy(spage->csum, csum, sctx->csum_size);
2020		} else {
2021			spage->have_csum = 0;
2022		}
2023		sblock->page_count++;
2024		spage->page = alloc_page(GFP_NOFS);
2025		if (!spage->page)
2026			goto leave_nomem;
2027		len -= l;
2028		logical += l;
2029		physical += l;
2030		physical_for_dev_replace += l;
2031	}
2032
2033	WARN_ON(sblock->page_count == 0);
2034	for (index = 0; index < sblock->page_count; index++) {
2035		struct scrub_page *spage = sblock->pagev[index];
2036		int ret;
2037
2038		ret = scrub_add_page_to_rd_bio(sctx, spage);
2039		if (ret) {
2040			scrub_block_put(sblock);
2041			return ret;
2042		}
2043	}
2044
2045	if (force)
2046		scrub_submit(sctx);
2047
2048	/* last one frees, either here or in bio completion for last page */
2049	scrub_block_put(sblock);
2050	return 0;
2051}
2052
2053static void scrub_bio_end_io(struct bio *bio, int err)
2054{
2055	struct scrub_bio *sbio = bio->bi_private;
2056	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2057
2058	sbio->err = err;
2059	sbio->bio = bio;
2060
2061	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2062}
2063
2064static void scrub_bio_end_io_worker(struct btrfs_work *work)
2065{
2066	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2067	struct scrub_ctx *sctx = sbio->sctx;
2068	int i;
2069
2070	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2071	if (sbio->err) {
2072		for (i = 0; i < sbio->page_count; i++) {
2073			struct scrub_page *spage = sbio->pagev[i];
2074
2075			spage->io_error = 1;
2076			spage->sblock->no_io_error_seen = 0;
2077		}
2078	}
2079
2080	/* now complete the scrub_block items that have all pages completed */
2081	for (i = 0; i < sbio->page_count; i++) {
2082		struct scrub_page *spage = sbio->pagev[i];
2083		struct scrub_block *sblock = spage->sblock;
2084
2085		if (atomic_dec_and_test(&sblock->outstanding_pages))
2086			scrub_block_complete(sblock);
2087		scrub_block_put(sblock);
2088	}
2089
2090	bio_put(sbio->bio);
2091	sbio->bio = NULL;
2092	spin_lock(&sctx->list_lock);
2093	sbio->next_free = sctx->first_free;
2094	sctx->first_free = sbio->index;
2095	spin_unlock(&sctx->list_lock);
2096
2097	if (sctx->is_dev_replace &&
2098	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2099		mutex_lock(&sctx->wr_ctx.wr_lock);
2100		scrub_wr_submit(sctx);
2101		mutex_unlock(&sctx->wr_ctx.wr_lock);
2102	}
2103
2104	scrub_pending_bio_dec(sctx);
2105}
2106
2107static void scrub_block_complete(struct scrub_block *sblock)
2108{
2109	if (!sblock->no_io_error_seen) {
2110		scrub_handle_errored_block(sblock);
2111	} else {
2112		/*
2113		 * if has checksum error, write via repair mechanism in
2114		 * dev replace case, otherwise write here in dev replace
2115		 * case.
2116		 */
2117		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2118			scrub_write_block_to_dev_replace(sblock);
2119	}
2120}
2121
2122static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2123			   u8 *csum)
2124{
2125	struct btrfs_ordered_sum *sum = NULL;
2126	unsigned long index;
2127	unsigned long num_sectors;
2128
2129	while (!list_empty(&sctx->csum_list)) {
2130		sum = list_first_entry(&sctx->csum_list,
2131				       struct btrfs_ordered_sum, list);
2132		if (sum->bytenr > logical)
2133			return 0;
2134		if (sum->bytenr + sum->len > logical)
2135			break;
2136
2137		++sctx->stat.csum_discards;
2138		list_del(&sum->list);
2139		kfree(sum);
2140		sum = NULL;
2141	}
2142	if (!sum)
2143		return 0;
2144
2145	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2146	num_sectors = sum->len / sctx->sectorsize;
2147	memcpy(csum, sum->sums + index, sctx->csum_size);
2148	if (index == num_sectors - 1) {
2149		list_del(&sum->list);
2150		kfree(sum);
2151	}
2152	return 1;
2153}
2154
2155/* scrub extent tries to collect up to 64 kB for each bio */
2156static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2157			u64 physical, struct btrfs_device *dev, u64 flags,
2158			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2159{
2160	int ret;
2161	u8 csum[BTRFS_CSUM_SIZE];
2162	u32 blocksize;
2163
2164	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2165		blocksize = sctx->sectorsize;
2166		spin_lock(&sctx->stat_lock);
2167		sctx->stat.data_extents_scrubbed++;
2168		sctx->stat.data_bytes_scrubbed += len;
2169		spin_unlock(&sctx->stat_lock);
2170	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2171		WARN_ON(sctx->nodesize != sctx->leafsize);
2172		blocksize = sctx->nodesize;
2173		spin_lock(&sctx->stat_lock);
2174		sctx->stat.tree_extents_scrubbed++;
2175		sctx->stat.tree_bytes_scrubbed += len;
2176		spin_unlock(&sctx->stat_lock);
2177	} else {
2178		blocksize = sctx->sectorsize;
2179		WARN_ON(1);
2180	}
2181
2182	while (len) {
2183		u64 l = min_t(u64, len, blocksize);
2184		int have_csum = 0;
2185
2186		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2187			/* push csums to sbio */
2188			have_csum = scrub_find_csum(sctx, logical, l, csum);
2189			if (have_csum == 0)
2190				++sctx->stat.no_csum;
2191			if (sctx->is_dev_replace && !have_csum) {
2192				ret = copy_nocow_pages(sctx, logical, l,
2193						       mirror_num,
2194						      physical_for_dev_replace);
2195				goto behind_scrub_pages;
2196			}
2197		}
2198		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2199				  mirror_num, have_csum ? csum : NULL, 0,
2200				  physical_for_dev_replace);
2201behind_scrub_pages:
2202		if (ret)
2203			return ret;
2204		len -= l;
2205		logical += l;
2206		physical += l;
2207		physical_for_dev_replace += l;
2208	}
2209	return 0;
2210}
2211
2212static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2213					   struct map_lookup *map,
2214					   struct btrfs_device *scrub_dev,
2215					   int num, u64 base, u64 length,
2216					   int is_dev_replace)
2217{
2218	struct btrfs_path *path;
2219	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2220	struct btrfs_root *root = fs_info->extent_root;
2221	struct btrfs_root *csum_root = fs_info->csum_root;
2222	struct btrfs_extent_item *extent;
2223	struct blk_plug plug;
2224	u64 flags;
2225	int ret;
2226	int slot;
2227	u64 nstripes;
2228	struct extent_buffer *l;
2229	struct btrfs_key key;
2230	u64 physical;
2231	u64 logical;
2232	u64 logic_end;
2233	u64 generation;
2234	int mirror_num;
2235	struct reada_control *reada1;
2236	struct reada_control *reada2;
2237	struct btrfs_key key_start;
2238	struct btrfs_key key_end;
2239	u64 increment = map->stripe_len;
2240	u64 offset;
2241	u64 extent_logical;
2242	u64 extent_physical;
2243	u64 extent_len;
2244	struct btrfs_device *extent_dev;
2245	int extent_mirror_num;
2246	int stop_loop;
2247
2248	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2249			 BTRFS_BLOCK_GROUP_RAID6)) {
2250		if (num >= nr_data_stripes(map)) {
2251			return 0;
2252		}
2253	}
2254
2255	nstripes = length;
2256	offset = 0;
2257	do_div(nstripes, map->stripe_len);
2258	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2259		offset = map->stripe_len * num;
2260		increment = map->stripe_len * map->num_stripes;
2261		mirror_num = 1;
2262	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2263		int factor = map->num_stripes / map->sub_stripes;
2264		offset = map->stripe_len * (num / map->sub_stripes);
2265		increment = map->stripe_len * factor;
2266		mirror_num = num % map->sub_stripes + 1;
2267	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2268		increment = map->stripe_len;
2269		mirror_num = num % map->num_stripes + 1;
2270	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2271		increment = map->stripe_len;
2272		mirror_num = num % map->num_stripes + 1;
2273	} else {
2274		increment = map->stripe_len;
2275		mirror_num = 1;
2276	}
2277
2278	path = btrfs_alloc_path();
2279	if (!path)
2280		return -ENOMEM;
2281
2282	/*
2283	 * work on commit root. The related disk blocks are static as
2284	 * long as COW is applied. This means, it is save to rewrite
2285	 * them to repair disk errors without any race conditions
2286	 */
2287	path->search_commit_root = 1;
2288	path->skip_locking = 1;
2289
2290	/*
2291	 * trigger the readahead for extent tree csum tree and wait for
2292	 * completion. During readahead, the scrub is officially paused
2293	 * to not hold off transaction commits
2294	 */
2295	logical = base + offset;
2296
2297	wait_event(sctx->list_wait,
2298		   atomic_read(&sctx->bios_in_flight) == 0);
2299	atomic_inc(&fs_info->scrubs_paused);
2300	wake_up(&fs_info->scrub_pause_wait);
2301
2302	/* FIXME it might be better to start readahead at commit root */
2303	key_start.objectid = logical;
2304	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2305	key_start.offset = (u64)0;
2306	key_end.objectid = base + offset + nstripes * increment;
2307	key_end.type = BTRFS_METADATA_ITEM_KEY;
2308	key_end.offset = (u64)-1;
2309	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2310
2311	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2312	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2313	key_start.offset = logical;
2314	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2315	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2316	key_end.offset = base + offset + nstripes * increment;
2317	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2318
2319	if (!IS_ERR(reada1))
2320		btrfs_reada_wait(reada1);
2321	if (!IS_ERR(reada2))
2322		btrfs_reada_wait(reada2);
2323
2324	mutex_lock(&fs_info->scrub_lock);
2325	while (atomic_read(&fs_info->scrub_pause_req)) {
2326		mutex_unlock(&fs_info->scrub_lock);
2327		wait_event(fs_info->scrub_pause_wait,
2328		   atomic_read(&fs_info->scrub_pause_req) == 0);
2329		mutex_lock(&fs_info->scrub_lock);
2330	}
2331	atomic_dec(&fs_info->scrubs_paused);
2332	mutex_unlock(&fs_info->scrub_lock);
2333	wake_up(&fs_info->scrub_pause_wait);
2334
2335	/*
2336	 * collect all data csums for the stripe to avoid seeking during
2337	 * the scrub. This might currently (crc32) end up to be about 1MB
2338	 */
2339	blk_start_plug(&plug);
2340
2341	/*
2342	 * now find all extents for each stripe and scrub them
2343	 */
2344	logical = base + offset;
2345	physical = map->stripes[num].physical;
2346	logic_end = logical + increment * nstripes;
2347	ret = 0;
2348	while (logical < logic_end) {
2349		/*
2350		 * canceled?
2351		 */
2352		if (atomic_read(&fs_info->scrub_cancel_req) ||
2353		    atomic_read(&sctx->cancel_req)) {
2354			ret = -ECANCELED;
2355			goto out;
2356		}
2357		/*
2358		 * check to see if we have to pause
2359		 */
2360		if (atomic_read(&fs_info->scrub_pause_req)) {
2361			/* push queued extents */
2362			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2363			scrub_submit(sctx);
2364			mutex_lock(&sctx->wr_ctx.wr_lock);
2365			scrub_wr_submit(sctx);
2366			mutex_unlock(&sctx->wr_ctx.wr_lock);
2367			wait_event(sctx->list_wait,
2368				   atomic_read(&sctx->bios_in_flight) == 0);
2369			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2370			atomic_inc(&fs_info->scrubs_paused);
2371			wake_up(&fs_info->scrub_pause_wait);
2372			mutex_lock(&fs_info->scrub_lock);
2373			while (atomic_read(&fs_info->scrub_pause_req)) {
2374				mutex_unlock(&fs_info->scrub_lock);
2375				wait_event(fs_info->scrub_pause_wait,
2376				   atomic_read(&fs_info->scrub_pause_req) == 0);
2377				mutex_lock(&fs_info->scrub_lock);
2378			}
2379			atomic_dec(&fs_info->scrubs_paused);
2380			mutex_unlock(&fs_info->scrub_lock);
2381			wake_up(&fs_info->scrub_pause_wait);
2382		}
2383
2384		key.objectid = logical;
2385		key.type = BTRFS_EXTENT_ITEM_KEY;
2386		key.offset = (u64)-1;
2387
2388		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2389		if (ret < 0)
2390			goto out;
2391
2392		if (ret > 0) {
2393			ret = btrfs_previous_item(root, path, 0,
2394						  BTRFS_EXTENT_ITEM_KEY);
2395			if (ret < 0)
2396				goto out;
2397			if (ret > 0) {
2398				/* there's no smaller item, so stick with the
2399				 * larger one */
2400				btrfs_release_path(path);
2401				ret = btrfs_search_slot(NULL, root, &key,
2402							path, 0, 0);
2403				if (ret < 0)
2404					goto out;
2405			}
2406		}
2407
2408		stop_loop = 0;
2409		while (1) {
2410			u64 bytes;
2411
2412			l = path->nodes[0];
2413			slot = path->slots[0];
2414			if (slot >= btrfs_header_nritems(l)) {
2415				ret = btrfs_next_leaf(root, path);
2416				if (ret == 0)
2417					continue;
2418				if (ret < 0)
2419					goto out;
2420
2421				stop_loop = 1;
2422				break;
2423			}
2424			btrfs_item_key_to_cpu(l, &key, slot);
2425
2426			if (key.type == BTRFS_METADATA_ITEM_KEY)
2427				bytes = root->leafsize;
2428			else
2429				bytes = key.offset;
2430
2431			if (key.objectid + bytes <= logical)
2432				goto next;
2433
2434			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2435			    key.type != BTRFS_METADATA_ITEM_KEY)
2436				goto next;
2437
2438			if (key.objectid >= logical + map->stripe_len) {
2439				/* out of this device extent */
2440				if (key.objectid >= logic_end)
2441					stop_loop = 1;
2442				break;
2443			}
2444
2445			extent = btrfs_item_ptr(l, slot,
2446						struct btrfs_extent_item);
2447			flags = btrfs_extent_flags(l, extent);
2448			generation = btrfs_extent_generation(l, extent);
2449
2450			if (key.objectid < logical &&
2451			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2452				printk(KERN_ERR
2453				       "btrfs scrub: tree block %llu spanning "
2454				       "stripes, ignored. logical=%llu\n",
2455				       key.objectid, logical);
2456				goto next;
2457			}
2458
2459again:
2460			extent_logical = key.objectid;
2461			extent_len = bytes;
2462
2463			/*
2464			 * trim extent to this stripe
2465			 */
2466			if (extent_logical < logical) {
2467				extent_len -= logical - extent_logical;
2468				extent_logical = logical;
2469			}
2470			if (extent_logical + extent_len >
2471			    logical + map->stripe_len) {
2472				extent_len = logical + map->stripe_len -
2473					     extent_logical;
2474			}
2475
2476			extent_physical = extent_logical - logical + physical;
2477			extent_dev = scrub_dev;
2478			extent_mirror_num = mirror_num;
2479			if (is_dev_replace)
2480				scrub_remap_extent(fs_info, extent_logical,
2481						   extent_len, &extent_physical,
2482						   &extent_dev,
2483						   &extent_mirror_num);
2484
2485			ret = btrfs_lookup_csums_range(csum_root, logical,
2486						logical + map->stripe_len - 1,
2487						&sctx->csum_list, 1);
2488			if (ret)
2489				goto out;
2490
2491			ret = scrub_extent(sctx, extent_logical, extent_len,
2492					   extent_physical, extent_dev, flags,
2493					   generation, extent_mirror_num,
2494					   extent_logical - logical + physical);
2495			if (ret)
2496				goto out;
2497
2498			scrub_free_csums(sctx);
2499			if (extent_logical + extent_len <
2500			    key.objectid + bytes) {
2501				logical += increment;
2502				physical += map->stripe_len;
2503
2504				if (logical < key.objectid + bytes) {
2505					cond_resched();
2506					goto again;
2507				}
2508
2509				if (logical >= logic_end) {
2510					stop_loop = 1;
2511					break;
2512				}
2513			}
2514next:
2515			path->slots[0]++;
2516		}
2517		btrfs_release_path(path);
2518		logical += increment;
2519		physical += map->stripe_len;
2520		spin_lock(&sctx->stat_lock);
2521		if (stop_loop)
2522			sctx->stat.last_physical = map->stripes[num].physical +
2523						   length;
2524		else
2525			sctx->stat.last_physical = physical;
2526		spin_unlock(&sctx->stat_lock);
2527		if (stop_loop)
2528			break;
2529	}
2530out:
2531	/* push queued extents */
2532	scrub_submit(sctx);
2533	mutex_lock(&sctx->wr_ctx.wr_lock);
2534	scrub_wr_submit(sctx);
2535	mutex_unlock(&sctx->wr_ctx.wr_lock);
2536
2537	blk_finish_plug(&plug);
2538	btrfs_free_path(path);
2539	return ret < 0 ? ret : 0;
2540}
2541
2542static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2543					  struct btrfs_device *scrub_dev,
2544					  u64 chunk_tree, u64 chunk_objectid,
2545					  u64 chunk_offset, u64 length,
2546					  u64 dev_offset, int is_dev_replace)
2547{
2548	struct btrfs_mapping_tree *map_tree =
2549		&sctx->dev_root->fs_info->mapping_tree;
2550	struct map_lookup *map;
2551	struct extent_map *em;
2552	int i;
2553	int ret = 0;
2554
2555	read_lock(&map_tree->map_tree.lock);
2556	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2557	read_unlock(&map_tree->map_tree.lock);
2558
2559	if (!em)
2560		return -EINVAL;
2561
2562	map = (struct map_lookup *)em->bdev;
2563	if (em->start != chunk_offset)
2564		goto out;
2565
2566	if (em->len < length)
2567		goto out;
2568
2569	for (i = 0; i < map->num_stripes; ++i) {
2570		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2571		    map->stripes[i].physical == dev_offset) {
2572			ret = scrub_stripe(sctx, map, scrub_dev, i,
2573					   chunk_offset, length,
2574					   is_dev_replace);
2575			if (ret)
2576				goto out;
2577		}
2578	}
2579out:
2580	free_extent_map(em);
2581
2582	return ret;
2583}
2584
2585static noinline_for_stack
2586int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2587			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2588			   int is_dev_replace)
2589{
2590	struct btrfs_dev_extent *dev_extent = NULL;
2591	struct btrfs_path *path;
2592	struct btrfs_root *root = sctx->dev_root;
2593	struct btrfs_fs_info *fs_info = root->fs_info;
2594	u64 length;
2595	u64 chunk_tree;
2596	u64 chunk_objectid;
2597	u64 chunk_offset;
2598	int ret;
2599	int slot;
2600	struct extent_buffer *l;
2601	struct btrfs_key key;
2602	struct btrfs_key found_key;
2603	struct btrfs_block_group_cache *cache;
2604	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2605
2606	path = btrfs_alloc_path();
2607	if (!path)
2608		return -ENOMEM;
2609
2610	path->reada = 2;
2611	path->search_commit_root = 1;
2612	path->skip_locking = 1;
2613
2614	key.objectid = scrub_dev->devid;
2615	key.offset = 0ull;
2616	key.type = BTRFS_DEV_EXTENT_KEY;
2617
2618	while (1) {
2619		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620		if (ret < 0)
2621			break;
2622		if (ret > 0) {
2623			if (path->slots[0] >=
2624			    btrfs_header_nritems(path->nodes[0])) {
2625				ret = btrfs_next_leaf(root, path);
2626				if (ret)
2627					break;
2628			}
2629		}
2630
2631		l = path->nodes[0];
2632		slot = path->slots[0];
2633
2634		btrfs_item_key_to_cpu(l, &found_key, slot);
2635
2636		if (found_key.objectid != scrub_dev->devid)
2637			break;
2638
2639		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2640			break;
2641
2642		if (found_key.offset >= end)
2643			break;
2644
2645		if (found_key.offset < key.offset)
2646			break;
2647
2648		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2649		length = btrfs_dev_extent_length(l, dev_extent);
2650
2651		if (found_key.offset + length <= start) {
2652			key.offset = found_key.offset + length;
2653			btrfs_release_path(path);
2654			continue;
2655		}
2656
2657		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2658		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2659		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2660
2661		/*
2662		 * get a reference on the corresponding block group to prevent
2663		 * the chunk from going away while we scrub it
2664		 */
2665		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2666		if (!cache) {
2667			ret = -ENOENT;
2668			break;
2669		}
2670		dev_replace->cursor_right = found_key.offset + length;
2671		dev_replace->cursor_left = found_key.offset;
2672		dev_replace->item_needs_writeback = 1;
2673		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2674				  chunk_offset, length, found_key.offset,
2675				  is_dev_replace);
2676
2677		/*
2678		 * flush, submit all pending read and write bios, afterwards
2679		 * wait for them.
2680		 * Note that in the dev replace case, a read request causes
2681		 * write requests that are submitted in the read completion
2682		 * worker. Therefore in the current situation, it is required
2683		 * that all write requests are flushed, so that all read and
2684		 * write requests are really completed when bios_in_flight
2685		 * changes to 0.
2686		 */
2687		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2688		scrub_submit(sctx);
2689		mutex_lock(&sctx->wr_ctx.wr_lock);
2690		scrub_wr_submit(sctx);
2691		mutex_unlock(&sctx->wr_ctx.wr_lock);
2692
2693		wait_event(sctx->list_wait,
2694			   atomic_read(&sctx->bios_in_flight) == 0);
2695		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2696		atomic_inc(&fs_info->scrubs_paused);
2697		wake_up(&fs_info->scrub_pause_wait);
2698		wait_event(sctx->list_wait,
2699			   atomic_read(&sctx->workers_pending) == 0);
2700
2701		mutex_lock(&fs_info->scrub_lock);
2702		while (atomic_read(&fs_info->scrub_pause_req)) {
2703			mutex_unlock(&fs_info->scrub_lock);
2704			wait_event(fs_info->scrub_pause_wait,
2705			   atomic_read(&fs_info->scrub_pause_req) == 0);
2706			mutex_lock(&fs_info->scrub_lock);
2707		}
2708		atomic_dec(&fs_info->scrubs_paused);
2709		mutex_unlock(&fs_info->scrub_lock);
2710		wake_up(&fs_info->scrub_pause_wait);
2711
2712		dev_replace->cursor_left = dev_replace->cursor_right;
2713		dev_replace->item_needs_writeback = 1;
2714		btrfs_put_block_group(cache);
2715		if (ret)
2716			break;
2717		if (is_dev_replace &&
2718		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2719			ret = -EIO;
2720			break;
2721		}
2722		if (sctx->stat.malloc_errors > 0) {
2723			ret = -ENOMEM;
2724			break;
2725		}
2726
2727		key.offset = found_key.offset + length;
2728		btrfs_release_path(path);
2729	}
2730
2731	btrfs_free_path(path);
2732
2733	/*
2734	 * ret can still be 1 from search_slot or next_leaf,
2735	 * that's not an error
2736	 */
2737	return ret < 0 ? ret : 0;
2738}
2739
2740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2741					   struct btrfs_device *scrub_dev)
2742{
2743	int	i;
2744	u64	bytenr;
2745	u64	gen;
2746	int	ret;
2747	struct btrfs_root *root = sctx->dev_root;
2748
2749	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2750		return -EIO;
2751
2752	gen = root->fs_info->last_trans_committed;
2753
2754	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2755		bytenr = btrfs_sb_offset(i);
2756		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2757			break;
2758
2759		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2760				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2761				  NULL, 1, bytenr);
2762		if (ret)
2763			return ret;
2764	}
2765	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2766
2767	return 0;
2768}
2769
2770/*
2771 * get a reference count on fs_info->scrub_workers. start worker if necessary
2772 */
2773static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2774						int is_dev_replace)
2775{
2776	int ret = 0;
2777
2778	mutex_lock(&fs_info->scrub_lock);
2779	if (fs_info->scrub_workers_refcnt == 0) {
2780		if (is_dev_replace)
2781			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2782					&fs_info->generic_worker);
2783		else
2784			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2785					fs_info->thread_pool_size,
2786					&fs_info->generic_worker);
2787		fs_info->scrub_workers.idle_thresh = 4;
2788		ret = btrfs_start_workers(&fs_info->scrub_workers);
2789		if (ret)
2790			goto out;
2791		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2792				   "scrubwrc",
2793				   fs_info->thread_pool_size,
2794				   &fs_info->generic_worker);
2795		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2796		ret = btrfs_start_workers(
2797				&fs_info->scrub_wr_completion_workers);
2798		if (ret)
2799			goto out;
2800		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2801				   &fs_info->generic_worker);
2802		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2803		if (ret)
2804			goto out;
2805	}
2806	++fs_info->scrub_workers_refcnt;
2807out:
2808	mutex_unlock(&fs_info->scrub_lock);
2809
2810	return ret;
2811}
2812
2813static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2814{
2815	mutex_lock(&fs_info->scrub_lock);
2816	if (--fs_info->scrub_workers_refcnt == 0) {
2817		btrfs_stop_workers(&fs_info->scrub_workers);
2818		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2819		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2820	}
2821	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2822	mutex_unlock(&fs_info->scrub_lock);
2823}
2824
2825int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2826		    u64 end, struct btrfs_scrub_progress *progress,
2827		    int readonly, int is_dev_replace)
2828{
2829	struct scrub_ctx *sctx;
2830	int ret;
2831	struct btrfs_device *dev;
2832
2833	if (btrfs_fs_closing(fs_info))
2834		return -EINVAL;
2835
2836	/*
2837	 * check some assumptions
2838	 */
2839	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2840		printk(KERN_ERR
2841		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2842		       fs_info->chunk_root->nodesize,
2843		       fs_info->chunk_root->leafsize);
2844		return -EINVAL;
2845	}
2846
2847	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2848		/*
2849		 * in this case scrub is unable to calculate the checksum
2850		 * the way scrub is implemented. Do not handle this
2851		 * situation at all because it won't ever happen.
2852		 */
2853		printk(KERN_ERR
2854		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2855		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2856		return -EINVAL;
2857	}
2858
2859	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2860		/* not supported for data w/o checksums */
2861		printk(KERN_ERR
2862		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2863		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2864		return -EINVAL;
2865	}
2866
2867	if (fs_info->chunk_root->nodesize >
2868	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2869	    fs_info->chunk_root->sectorsize >
2870	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2871		/*
2872		 * would exhaust the array bounds of pagev member in
2873		 * struct scrub_block
2874		 */
2875		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2876		       fs_info->chunk_root->nodesize,
2877		       SCRUB_MAX_PAGES_PER_BLOCK,
2878		       fs_info->chunk_root->sectorsize,
2879		       SCRUB_MAX_PAGES_PER_BLOCK);
2880		return -EINVAL;
2881	}
2882
2883	ret = scrub_workers_get(fs_info, is_dev_replace);
2884	if (ret)
2885		return ret;
2886
2887	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2888	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2889	if (!dev || (dev->missing && !is_dev_replace)) {
2890		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2891		scrub_workers_put(fs_info);
2892		return -ENODEV;
2893	}
2894	mutex_lock(&fs_info->scrub_lock);
2895
2896	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2897		mutex_unlock(&fs_info->scrub_lock);
2898		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899		scrub_workers_put(fs_info);
2900		return -EIO;
2901	}
2902
2903	btrfs_dev_replace_lock(&fs_info->dev_replace);
2904	if (dev->scrub_device ||
2905	    (!is_dev_replace &&
2906	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2907		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2908		mutex_unlock(&fs_info->scrub_lock);
2909		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2910		scrub_workers_put(fs_info);
2911		return -EINPROGRESS;
2912	}
2913	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2914	sctx = scrub_setup_ctx(dev, is_dev_replace);
2915	if (IS_ERR(sctx)) {
2916		mutex_unlock(&fs_info->scrub_lock);
2917		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2918		scrub_workers_put(fs_info);
2919		return PTR_ERR(sctx);
2920	}
2921	sctx->readonly = readonly;
2922	dev->scrub_device = sctx;
2923
2924	atomic_inc(&fs_info->scrubs_running);
2925	mutex_unlock(&fs_info->scrub_lock);
2926	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2927
2928	if (!is_dev_replace) {
2929		down_read(&fs_info->scrub_super_lock);
2930		ret = scrub_supers(sctx, dev);
2931		up_read(&fs_info->scrub_super_lock);
2932	}
2933
2934	if (!ret)
2935		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2936					     is_dev_replace);
2937
2938	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2939	atomic_dec(&fs_info->scrubs_running);
2940	wake_up(&fs_info->scrub_pause_wait);
2941
2942	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2943
2944	if (progress)
2945		memcpy(progress, &sctx->stat, sizeof(*progress));
2946
2947	mutex_lock(&fs_info->scrub_lock);
2948	dev->scrub_device = NULL;
2949	mutex_unlock(&fs_info->scrub_lock);
2950
2951	scrub_free_ctx(sctx);
2952	scrub_workers_put(fs_info);
2953
2954	return ret;
2955}
2956
2957void btrfs_scrub_pause(struct btrfs_root *root)
2958{
2959	struct btrfs_fs_info *fs_info = root->fs_info;
2960
2961	mutex_lock(&fs_info->scrub_lock);
2962	atomic_inc(&fs_info->scrub_pause_req);
2963	while (atomic_read(&fs_info->scrubs_paused) !=
2964	       atomic_read(&fs_info->scrubs_running)) {
2965		mutex_unlock(&fs_info->scrub_lock);
2966		wait_event(fs_info->scrub_pause_wait,
2967			   atomic_read(&fs_info->scrubs_paused) ==
2968			   atomic_read(&fs_info->scrubs_running));
2969		mutex_lock(&fs_info->scrub_lock);
2970	}
2971	mutex_unlock(&fs_info->scrub_lock);
2972}
2973
2974void btrfs_scrub_continue(struct btrfs_root *root)
2975{
2976	struct btrfs_fs_info *fs_info = root->fs_info;
2977
2978	atomic_dec(&fs_info->scrub_pause_req);
2979	wake_up(&fs_info->scrub_pause_wait);
2980}
2981
2982void btrfs_scrub_pause_super(struct btrfs_root *root)
2983{
2984	down_write(&root->fs_info->scrub_super_lock);
2985}
2986
2987void btrfs_scrub_continue_super(struct btrfs_root *root)
2988{
2989	up_write(&root->fs_info->scrub_super_lock);
2990}
2991
2992int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2993{
2994	mutex_lock(&fs_info->scrub_lock);
2995	if (!atomic_read(&fs_info->scrubs_running)) {
2996		mutex_unlock(&fs_info->scrub_lock);
2997		return -ENOTCONN;
2998	}
2999
3000	atomic_inc(&fs_info->scrub_cancel_req);
3001	while (atomic_read(&fs_info->scrubs_running)) {
3002		mutex_unlock(&fs_info->scrub_lock);
3003		wait_event(fs_info->scrub_pause_wait,
3004			   atomic_read(&fs_info->scrubs_running) == 0);
3005		mutex_lock(&fs_info->scrub_lock);
3006	}
3007	atomic_dec(&fs_info->scrub_cancel_req);
3008	mutex_unlock(&fs_info->scrub_lock);
3009
3010	return 0;
3011}
3012
3013int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3014			   struct btrfs_device *dev)
3015{
3016	struct scrub_ctx *sctx;
3017
3018	mutex_lock(&fs_info->scrub_lock);
3019	sctx = dev->scrub_device;
3020	if (!sctx) {
3021		mutex_unlock(&fs_info->scrub_lock);
3022		return -ENOTCONN;
3023	}
3024	atomic_inc(&sctx->cancel_req);
3025	while (dev->scrub_device) {
3026		mutex_unlock(&fs_info->scrub_lock);
3027		wait_event(fs_info->scrub_pause_wait,
3028			   dev->scrub_device == NULL);
3029		mutex_lock(&fs_info->scrub_lock);
3030	}
3031	mutex_unlock(&fs_info->scrub_lock);
3032
3033	return 0;
3034}
3035
3036int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3037			 struct btrfs_scrub_progress *progress)
3038{
3039	struct btrfs_device *dev;
3040	struct scrub_ctx *sctx = NULL;
3041
3042	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3043	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3044	if (dev)
3045		sctx = dev->scrub_device;
3046	if (sctx)
3047		memcpy(progress, &sctx->stat, sizeof(*progress));
3048	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3049
3050	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3051}
3052
3053static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3054			       u64 extent_logical, u64 extent_len,
3055			       u64 *extent_physical,
3056			       struct btrfs_device **extent_dev,
3057			       int *extent_mirror_num)
3058{
3059	u64 mapped_length;
3060	struct btrfs_bio *bbio = NULL;
3061	int ret;
3062
3063	mapped_length = extent_len;
3064	ret = btrfs_map_block(fs_info, READ, extent_logical,
3065			      &mapped_length, &bbio, 0);
3066	if (ret || !bbio || mapped_length < extent_len ||
3067	    !bbio->stripes[0].dev->bdev) {
3068		kfree(bbio);
3069		return;
3070	}
3071
3072	*extent_physical = bbio->stripes[0].physical;
3073	*extent_mirror_num = bbio->mirror_num;
3074	*extent_dev = bbio->stripes[0].dev;
3075	kfree(bbio);
3076}
3077
3078static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3079			      struct scrub_wr_ctx *wr_ctx,
3080			      struct btrfs_fs_info *fs_info,
3081			      struct btrfs_device *dev,
3082			      int is_dev_replace)
3083{
3084	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3085
3086	mutex_init(&wr_ctx->wr_lock);
3087	wr_ctx->wr_curr_bio = NULL;
3088	if (!is_dev_replace)
3089		return 0;
3090
3091	WARN_ON(!dev->bdev);
3092	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3093					 bio_get_nr_vecs(dev->bdev));
3094	wr_ctx->tgtdev = dev;
3095	atomic_set(&wr_ctx->flush_all_writes, 0);
3096	return 0;
3097}
3098
3099static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3100{
3101	mutex_lock(&wr_ctx->wr_lock);
3102	kfree(wr_ctx->wr_curr_bio);
3103	wr_ctx->wr_curr_bio = NULL;
3104	mutex_unlock(&wr_ctx->wr_lock);
3105}
3106
3107static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3108			    int mirror_num, u64 physical_for_dev_replace)
3109{
3110	struct scrub_copy_nocow_ctx *nocow_ctx;
3111	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3112
3113	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3114	if (!nocow_ctx) {
3115		spin_lock(&sctx->stat_lock);
3116		sctx->stat.malloc_errors++;
3117		spin_unlock(&sctx->stat_lock);
3118		return -ENOMEM;
3119	}
3120
3121	scrub_pending_trans_workers_inc(sctx);
3122
3123	nocow_ctx->sctx = sctx;
3124	nocow_ctx->logical = logical;
3125	nocow_ctx->len = len;
3126	nocow_ctx->mirror_num = mirror_num;
3127	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3128	nocow_ctx->work.func = copy_nocow_pages_worker;
3129	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3130			   &nocow_ctx->work);
3131
3132	return 0;
3133}
3134
3135static void copy_nocow_pages_worker(struct btrfs_work *work)
3136{
3137	struct scrub_copy_nocow_ctx *nocow_ctx =
3138		container_of(work, struct scrub_copy_nocow_ctx, work);
3139	struct scrub_ctx *sctx = nocow_ctx->sctx;
3140	u64 logical = nocow_ctx->logical;
3141	u64 len = nocow_ctx->len;
3142	int mirror_num = nocow_ctx->mirror_num;
3143	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3144	int ret;
3145	struct btrfs_trans_handle *trans = NULL;
3146	struct btrfs_fs_info *fs_info;
3147	struct btrfs_path *path;
3148	struct btrfs_root *root;
3149	int not_written = 0;
3150
3151	fs_info = sctx->dev_root->fs_info;
3152	root = fs_info->extent_root;
3153
3154	path = btrfs_alloc_path();
3155	if (!path) {
3156		spin_lock(&sctx->stat_lock);
3157		sctx->stat.malloc_errors++;
3158		spin_unlock(&sctx->stat_lock);
3159		not_written = 1;
3160		goto out;
3161	}
3162
3163	trans = btrfs_join_transaction(root);
3164	if (IS_ERR(trans)) {
3165		not_written = 1;
3166		goto out;
3167	}
3168
3169	ret = iterate_inodes_from_logical(logical, fs_info, path,
3170					  copy_nocow_pages_for_inode,
3171					  nocow_ctx);
3172	if (ret != 0 && ret != -ENOENT) {
3173		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3174			logical, physical_for_dev_replace, len,
3175			(unsigned long long)mirror_num, ret);
3176		not_written = 1;
3177		goto out;
3178	}
3179
3180out:
3181	if (trans && !IS_ERR(trans))
3182		btrfs_end_transaction(trans, root);
3183	if (not_written)
3184		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3185					    num_uncorrectable_read_errors);
3186
3187	btrfs_free_path(path);
3188	kfree(nocow_ctx);
3189
3190	scrub_pending_trans_workers_dec(sctx);
3191}
3192
3193static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3194{
3195	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3196	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3197	struct btrfs_key key;
3198	struct inode *inode;
3199	struct page *page;
3200	struct btrfs_root *local_root;
3201	u64 physical_for_dev_replace;
3202	u64 len;
3203	unsigned long index;
3204	int srcu_index;
3205	int ret;
3206	int err;
3207
3208	key.objectid = root;
3209	key.type = BTRFS_ROOT_ITEM_KEY;
3210	key.offset = (u64)-1;
3211
3212	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3213
3214	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3215	if (IS_ERR(local_root)) {
3216		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3217		return PTR_ERR(local_root);
3218	}
3219
3220	if (btrfs_root_refs(&local_root->root_item) == 0) {
3221		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3222		return -ENOENT;
3223	}
3224
3225	key.type = BTRFS_INODE_ITEM_KEY;
3226	key.objectid = inum;
3227	key.offset = 0;
3228	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3229	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3230	if (IS_ERR(inode))
3231		return PTR_ERR(inode);
3232
3233	/* Avoid truncate/dio/punch hole.. */
3234	mutex_lock(&inode->i_mutex);
3235	inode_dio_wait(inode);
3236
3237	ret = 0;
3238	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3239	len = nocow_ctx->len;
3240	while (len >= PAGE_CACHE_SIZE) {
3241		index = offset >> PAGE_CACHE_SHIFT;
3242again:
3243		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3244		if (!page) {
3245			pr_err("find_or_create_page() failed\n");
3246			ret = -ENOMEM;
3247			goto out;
3248		}
3249
3250		if (PageUptodate(page)) {
3251			if (PageDirty(page))
3252				goto next_page;
3253		} else {
3254			ClearPageError(page);
3255			err = extent_read_full_page(&BTRFS_I(inode)->
3256							 io_tree,
3257							page, btrfs_get_extent,
3258							nocow_ctx->mirror_num);
3259			if (err) {
3260				ret = err;
3261				goto next_page;
3262			}
3263
3264			lock_page(page);
3265			/*
3266			 * If the page has been remove from the page cache,
3267			 * the data on it is meaningless, because it may be
3268			 * old one, the new data may be written into the new
3269			 * page in the page cache.
3270			 */
3271			if (page->mapping != inode->i_mapping) {
3272				page_cache_release(page);
3273				goto again;
3274			}
3275			if (!PageUptodate(page)) {
3276				ret = -EIO;
3277				goto next_page;
3278			}
3279		}
3280		err = write_page_nocow(nocow_ctx->sctx,
3281				       physical_for_dev_replace, page);
3282		if (err)
3283			ret = err;
3284next_page:
3285		unlock_page(page);
3286		page_cache_release(page);
3287
3288		if (ret)
3289			break;
3290
3291		offset += PAGE_CACHE_SIZE;
3292		physical_for_dev_replace += PAGE_CACHE_SIZE;
3293		len -= PAGE_CACHE_SIZE;
3294	}
3295out:
3296	mutex_unlock(&inode->i_mutex);
3297	iput(inode);
3298	return ret;
3299}
3300
3301static int write_page_nocow(struct scrub_ctx *sctx,
3302			    u64 physical_for_dev_replace, struct page *page)
3303{
3304	struct bio *bio;
3305	struct btrfs_device *dev;
3306	int ret;
3307	DECLARE_COMPLETION_ONSTACK(compl);
3308
3309	dev = sctx->wr_ctx.tgtdev;
3310	if (!dev)
3311		return -EIO;
3312	if (!dev->bdev) {
3313		printk_ratelimited(KERN_WARNING
3314			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3315		return -EIO;
3316	}
3317	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3318	if (!bio) {
3319		spin_lock(&sctx->stat_lock);
3320		sctx->stat.malloc_errors++;
3321		spin_unlock(&sctx->stat_lock);
3322		return -ENOMEM;
3323	}
3324	bio->bi_private = &compl;
3325	bio->bi_end_io = scrub_complete_bio_end_io;
3326	bio->bi_size = 0;
3327	bio->bi_sector = physical_for_dev_replace >> 9;
3328	bio->bi_bdev = dev->bdev;
3329	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3330	if (ret != PAGE_CACHE_SIZE) {
3331leave_with_eio:
3332		bio_put(bio);
3333		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3334		return -EIO;
3335	}
3336	btrfsic_submit_bio(WRITE_SYNC, bio);
3337	wait_for_completion(&compl);
3338
3339	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3340		goto leave_with_eio;
3341
3342	bio_put(bio);
3343	return 0;
3344}
3345