scrub.c revision 69f4cb526bd02ae5af35846f9a710c099eec3347
1/*
2 * Copyright (C) 2011 STRATO.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28
29/*
30 * This is only the first step towards a full-features scrub. It reads all
31 * extent and super block and verifies the checksums. In case a bad checksum
32 * is found or the extent cannot be read, good data will be written back if
33 * any can be found.
34 *
35 * Future enhancements:
36 *  - In case an unrepairable extent is encountered, track which files are
37 *    affected and report them
38 *  - In case of a read error on files with nodatasum, map the file and read
39 *    the extent to trigger a writeback of the good copy
40 *  - track and record media errors, throw out bad devices
41 *  - add a mode to also read unallocated space
42 */
43
44struct scrub_bio;
45struct scrub_page;
46struct scrub_dev;
47static void scrub_bio_end_io(struct bio *bio, int err);
48static void scrub_checksum(struct btrfs_work *work);
49static int scrub_checksum_data(struct scrub_dev *sdev,
50			       struct scrub_page *spag, void *buffer);
51static int scrub_checksum_tree_block(struct scrub_dev *sdev,
52				     struct scrub_page *spag, u64 logical,
53				     void *buffer);
54static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
55static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
56static void scrub_fixup_end_io(struct bio *bio, int err);
57static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
58			  struct page *page);
59static void scrub_fixup(struct scrub_bio *sbio, int ix);
60
61#define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
62#define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
63
64struct scrub_page {
65	u64			flags;  /* extent flags */
66	u64			generation;
67	int			mirror_num;
68	int			have_csum;
69	u8			csum[BTRFS_CSUM_SIZE];
70};
71
72struct scrub_bio {
73	int			index;
74	struct scrub_dev	*sdev;
75	struct bio		*bio;
76	int			err;
77	u64			logical;
78	u64			physical;
79	struct scrub_page	spag[SCRUB_PAGES_PER_BIO];
80	u64			count;
81	int			next_free;
82	struct btrfs_work	work;
83};
84
85struct scrub_dev {
86	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
87	struct btrfs_device	*dev;
88	int			first_free;
89	int			curr;
90	atomic_t		in_flight;
91	atomic_t		fixup_cnt;
92	spinlock_t		list_lock;
93	wait_queue_head_t	list_wait;
94	u16			csum_size;
95	struct list_head	csum_list;
96	atomic_t		cancel_req;
97	int			readonly;
98	/*
99	 * statistics
100	 */
101	struct btrfs_scrub_progress stat;
102	spinlock_t		stat_lock;
103};
104
105struct scrub_fixup_nodatasum {
106	struct scrub_dev	*sdev;
107	u64			logical;
108	struct btrfs_root	*root;
109	struct btrfs_work	work;
110	int			mirror_num;
111};
112
113struct scrub_warning {
114	struct btrfs_path	*path;
115	u64			extent_item_size;
116	char			*scratch_buf;
117	char			*msg_buf;
118	const char		*errstr;
119	sector_t		sector;
120	u64			logical;
121	struct btrfs_device	*dev;
122	int			msg_bufsize;
123	int			scratch_bufsize;
124};
125
126static void scrub_free_csums(struct scrub_dev *sdev)
127{
128	while (!list_empty(&sdev->csum_list)) {
129		struct btrfs_ordered_sum *sum;
130		sum = list_first_entry(&sdev->csum_list,
131				       struct btrfs_ordered_sum, list);
132		list_del(&sum->list);
133		kfree(sum);
134	}
135}
136
137static void scrub_free_bio(struct bio *bio)
138{
139	int i;
140	struct page *last_page = NULL;
141
142	if (!bio)
143		return;
144
145	for (i = 0; i < bio->bi_vcnt; ++i) {
146		if (bio->bi_io_vec[i].bv_page == last_page)
147			continue;
148		last_page = bio->bi_io_vec[i].bv_page;
149		__free_page(last_page);
150	}
151	bio_put(bio);
152}
153
154static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
155{
156	int i;
157
158	if (!sdev)
159		return;
160
161	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
162		struct scrub_bio *sbio = sdev->bios[i];
163
164		if (!sbio)
165			break;
166
167		scrub_free_bio(sbio->bio);
168		kfree(sbio);
169	}
170
171	scrub_free_csums(sdev);
172	kfree(sdev);
173}
174
175static noinline_for_stack
176struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
177{
178	struct scrub_dev *sdev;
179	int		i;
180	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
181
182	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
183	if (!sdev)
184		goto nomem;
185	sdev->dev = dev;
186	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
187		struct scrub_bio *sbio;
188
189		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
190		if (!sbio)
191			goto nomem;
192		sdev->bios[i] = sbio;
193
194		sbio->index = i;
195		sbio->sdev = sdev;
196		sbio->count = 0;
197		sbio->work.func = scrub_checksum;
198
199		if (i != SCRUB_BIOS_PER_DEV-1)
200			sdev->bios[i]->next_free = i + 1;
201		else
202			sdev->bios[i]->next_free = -1;
203	}
204	sdev->first_free = 0;
205	sdev->curr = -1;
206	atomic_set(&sdev->in_flight, 0);
207	atomic_set(&sdev->fixup_cnt, 0);
208	atomic_set(&sdev->cancel_req, 0);
209	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
210	INIT_LIST_HEAD(&sdev->csum_list);
211
212	spin_lock_init(&sdev->list_lock);
213	spin_lock_init(&sdev->stat_lock);
214	init_waitqueue_head(&sdev->list_wait);
215	return sdev;
216
217nomem:
218	scrub_free_dev(sdev);
219	return ERR_PTR(-ENOMEM);
220}
221
222static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
223{
224	u64 isize;
225	u32 nlink;
226	int ret;
227	int i;
228	struct extent_buffer *eb;
229	struct btrfs_inode_item *inode_item;
230	struct scrub_warning *swarn = ctx;
231	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
232	struct inode_fs_paths *ipath = NULL;
233	struct btrfs_root *local_root;
234	struct btrfs_key root_key;
235
236	root_key.objectid = root;
237	root_key.type = BTRFS_ROOT_ITEM_KEY;
238	root_key.offset = (u64)-1;
239	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
240	if (IS_ERR(local_root)) {
241		ret = PTR_ERR(local_root);
242		goto err;
243	}
244
245	ret = inode_item_info(inum, 0, local_root, swarn->path);
246	if (ret) {
247		btrfs_release_path(swarn->path);
248		goto err;
249	}
250
251	eb = swarn->path->nodes[0];
252	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
253					struct btrfs_inode_item);
254	isize = btrfs_inode_size(eb, inode_item);
255	nlink = btrfs_inode_nlink(eb, inode_item);
256	btrfs_release_path(swarn->path);
257
258	ipath = init_ipath(4096, local_root, swarn->path);
259	ret = paths_from_inode(inum, ipath);
260
261	if (ret < 0)
262		goto err;
263
264	/*
265	 * we deliberately ignore the bit ipath might have been too small to
266	 * hold all of the paths here
267	 */
268	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
269		printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
270			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
271			"length %llu, links %u (path: %s)\n", swarn->errstr,
272			swarn->logical, swarn->dev->name,
273			(unsigned long long)swarn->sector, root, inum, offset,
274			min(isize - offset, (u64)PAGE_SIZE), nlink,
275			(char *)ipath->fspath->val[i]);
276
277	free_ipath(ipath);
278	return 0;
279
280err:
281	printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
282		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
283		"resolving failed with ret=%d\n", swarn->errstr,
284		swarn->logical, swarn->dev->name,
285		(unsigned long long)swarn->sector, root, inum, offset, ret);
286
287	free_ipath(ipath);
288	return 0;
289}
290
291static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
292				int ix)
293{
294	struct btrfs_device *dev = sbio->sdev->dev;
295	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
296	struct btrfs_path *path;
297	struct btrfs_key found_key;
298	struct extent_buffer *eb;
299	struct btrfs_extent_item *ei;
300	struct scrub_warning swarn;
301	u32 item_size;
302	int ret;
303	u64 ref_root;
304	u8 ref_level;
305	unsigned long ptr = 0;
306	const int bufsize = 4096;
307	u64 extent_offset;
308
309	path = btrfs_alloc_path();
310
311	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
312	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
313	swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
314	swarn.logical = sbio->logical + ix * PAGE_SIZE;
315	swarn.errstr = errstr;
316	swarn.dev = dev;
317	swarn.msg_bufsize = bufsize;
318	swarn.scratch_bufsize = bufsize;
319
320	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
321		goto out;
322
323	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
324	if (ret < 0)
325		goto out;
326
327	extent_offset = swarn.logical - found_key.objectid;
328	swarn.extent_item_size = found_key.offset;
329
330	eb = path->nodes[0];
331	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
332	item_size = btrfs_item_size_nr(eb, path->slots[0]);
333
334	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
335		do {
336			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
337							&ref_root, &ref_level);
338			printk(KERN_WARNING "%s at logical %llu on dev %s, "
339				"sector %llu: metadata %s (level %d) in tree "
340				"%llu\n", errstr, swarn.logical, dev->name,
341				(unsigned long long)swarn.sector,
342				ref_level ? "node" : "leaf",
343				ret < 0 ? -1 : ref_level,
344				ret < 0 ? -1 : ref_root);
345		} while (ret != 1);
346	} else {
347		swarn.path = path;
348		iterate_extent_inodes(fs_info, path, found_key.objectid,
349					extent_offset,
350					scrub_print_warning_inode, &swarn);
351	}
352
353out:
354	btrfs_free_path(path);
355	kfree(swarn.scratch_buf);
356	kfree(swarn.msg_buf);
357}
358
359static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
360{
361	struct page *page = NULL;
362	unsigned long index;
363	struct scrub_fixup_nodatasum *fixup = ctx;
364	int ret;
365	int corrected = 0;
366	struct btrfs_key key;
367	struct inode *inode = NULL;
368	u64 end = offset + PAGE_SIZE - 1;
369	struct btrfs_root *local_root;
370
371	key.objectid = root;
372	key.type = BTRFS_ROOT_ITEM_KEY;
373	key.offset = (u64)-1;
374	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
375	if (IS_ERR(local_root))
376		return PTR_ERR(local_root);
377
378	key.type = BTRFS_INODE_ITEM_KEY;
379	key.objectid = inum;
380	key.offset = 0;
381	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
382	if (IS_ERR(inode))
383		return PTR_ERR(inode);
384
385	index = offset >> PAGE_CACHE_SHIFT;
386
387	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
388	if (!page) {
389		ret = -ENOMEM;
390		goto out;
391	}
392
393	if (PageUptodate(page)) {
394		struct btrfs_mapping_tree *map_tree;
395		if (PageDirty(page)) {
396			/*
397			 * we need to write the data to the defect sector. the
398			 * data that was in that sector is not in memory,
399			 * because the page was modified. we must not write the
400			 * modified page to that sector.
401			 *
402			 * TODO: what could be done here: wait for the delalloc
403			 *       runner to write out that page (might involve
404			 *       COW) and see whether the sector is still
405			 *       referenced afterwards.
406			 *
407			 * For the meantime, we'll treat this error
408			 * incorrectable, although there is a chance that a
409			 * later scrub will find the bad sector again and that
410			 * there's no dirty page in memory, then.
411			 */
412			ret = -EIO;
413			goto out;
414		}
415		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
416		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
417					fixup->logical, page,
418					fixup->mirror_num);
419		unlock_page(page);
420		corrected = !ret;
421	} else {
422		/*
423		 * we need to get good data first. the general readpage path
424		 * will call repair_io_failure for us, we just have to make
425		 * sure we read the bad mirror.
426		 */
427		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
428					EXTENT_DAMAGED, GFP_NOFS);
429		if (ret) {
430			/* set_extent_bits should give proper error */
431			WARN_ON(ret > 0);
432			if (ret > 0)
433				ret = -EFAULT;
434			goto out;
435		}
436
437		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
438						btrfs_get_extent,
439						fixup->mirror_num);
440		wait_on_page_locked(page);
441
442		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
443						end, EXTENT_DAMAGED, 0, NULL);
444		if (!corrected)
445			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
446						EXTENT_DAMAGED, GFP_NOFS);
447	}
448
449out:
450	if (page)
451		put_page(page);
452	if (inode)
453		iput(inode);
454
455	if (ret < 0)
456		return ret;
457
458	if (ret == 0 && corrected) {
459		/*
460		 * we only need to call readpage for one of the inodes belonging
461		 * to this extent. so make iterate_extent_inodes stop
462		 */
463		return 1;
464	}
465
466	return -EIO;
467}
468
469static void scrub_fixup_nodatasum(struct btrfs_work *work)
470{
471	int ret;
472	struct scrub_fixup_nodatasum *fixup;
473	struct scrub_dev *sdev;
474	struct btrfs_trans_handle *trans = NULL;
475	struct btrfs_fs_info *fs_info;
476	struct btrfs_path *path;
477	int uncorrectable = 0;
478
479	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
480	sdev = fixup->sdev;
481	fs_info = fixup->root->fs_info;
482
483	path = btrfs_alloc_path();
484	if (!path) {
485		spin_lock(&sdev->stat_lock);
486		++sdev->stat.malloc_errors;
487		spin_unlock(&sdev->stat_lock);
488		uncorrectable = 1;
489		goto out;
490	}
491
492	trans = btrfs_join_transaction(fixup->root);
493	if (IS_ERR(trans)) {
494		uncorrectable = 1;
495		goto out;
496	}
497
498	/*
499	 * the idea is to trigger a regular read through the standard path. we
500	 * read a page from the (failed) logical address by specifying the
501	 * corresponding copynum of the failed sector. thus, that readpage is
502	 * expected to fail.
503	 * that is the point where on-the-fly error correction will kick in
504	 * (once it's finished) and rewrite the failed sector if a good copy
505	 * can be found.
506	 */
507	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
508						path, scrub_fixup_readpage,
509						fixup);
510	if (ret < 0) {
511		uncorrectable = 1;
512		goto out;
513	}
514	WARN_ON(ret != 1);
515
516	spin_lock(&sdev->stat_lock);
517	++sdev->stat.corrected_errors;
518	spin_unlock(&sdev->stat_lock);
519
520out:
521	if (trans && !IS_ERR(trans))
522		btrfs_end_transaction(trans, fixup->root);
523	if (uncorrectable) {
524		spin_lock(&sdev->stat_lock);
525		++sdev->stat.uncorrectable_errors;
526		spin_unlock(&sdev->stat_lock);
527		printk_ratelimited(KERN_ERR "btrfs: unable to fixup "
528					"(nodatasum) error at logical %llu\n",
529					fixup->logical);
530	}
531
532	btrfs_free_path(path);
533	kfree(fixup);
534
535	/* see caller why we're pretending to be paused in the scrub counters */
536	mutex_lock(&fs_info->scrub_lock);
537	atomic_dec(&fs_info->scrubs_running);
538	atomic_dec(&fs_info->scrubs_paused);
539	mutex_unlock(&fs_info->scrub_lock);
540	atomic_dec(&sdev->fixup_cnt);
541	wake_up(&fs_info->scrub_pause_wait);
542	wake_up(&sdev->list_wait);
543}
544
545/*
546 * scrub_recheck_error gets called when either verification of the page
547 * failed or the bio failed to read, e.g. with EIO. In the latter case,
548 * recheck_error gets called for every page in the bio, even though only
549 * one may be bad
550 */
551static int scrub_recheck_error(struct scrub_bio *sbio, int ix)
552{
553	struct scrub_dev *sdev = sbio->sdev;
554	u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
555	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
556					DEFAULT_RATELIMIT_BURST);
557
558	if (sbio->err) {
559		if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector,
560				   sbio->bio->bi_io_vec[ix].bv_page) == 0) {
561			if (scrub_fixup_check(sbio, ix) == 0)
562				return 0;
563		}
564		if (__ratelimit(&_rs))
565			scrub_print_warning("i/o error", sbio, ix);
566	} else {
567		if (__ratelimit(&_rs))
568			scrub_print_warning("checksum error", sbio, ix);
569	}
570
571	spin_lock(&sdev->stat_lock);
572	++sdev->stat.read_errors;
573	spin_unlock(&sdev->stat_lock);
574
575	scrub_fixup(sbio, ix);
576	return 1;
577}
578
579static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
580{
581	int ret = 1;
582	struct page *page;
583	void *buffer;
584	u64 flags = sbio->spag[ix].flags;
585
586	page = sbio->bio->bi_io_vec[ix].bv_page;
587	buffer = kmap_atomic(page, KM_USER0);
588	if (flags & BTRFS_EXTENT_FLAG_DATA) {
589		ret = scrub_checksum_data(sbio->sdev,
590					  sbio->spag + ix, buffer);
591	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
592		ret = scrub_checksum_tree_block(sbio->sdev,
593						sbio->spag + ix,
594						sbio->logical + ix * PAGE_SIZE,
595						buffer);
596	} else {
597		WARN_ON(1);
598	}
599	kunmap_atomic(buffer, KM_USER0);
600
601	return ret;
602}
603
604static void scrub_fixup_end_io(struct bio *bio, int err)
605{
606	complete((struct completion *)bio->bi_private);
607}
608
609static void scrub_fixup(struct scrub_bio *sbio, int ix)
610{
611	struct scrub_dev *sdev = sbio->sdev;
612	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
613	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
614	struct btrfs_bio *bbio = NULL;
615	struct scrub_fixup_nodatasum *fixup;
616	u64 logical = sbio->logical + ix * PAGE_SIZE;
617	u64 length;
618	int i;
619	int ret;
620	DECLARE_COMPLETION_ONSTACK(complete);
621
622	if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
623	    (sbio->spag[ix].have_csum == 0)) {
624		fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
625		if (!fixup)
626			goto uncorrectable;
627		fixup->sdev = sdev;
628		fixup->logical = logical;
629		fixup->root = fs_info->extent_root;
630		fixup->mirror_num = sbio->spag[ix].mirror_num;
631		/*
632		 * increment scrubs_running to prevent cancel requests from
633		 * completing as long as a fixup worker is running. we must also
634		 * increment scrubs_paused to prevent deadlocking on pause
635		 * requests used for transactions commits (as the worker uses a
636		 * transaction context). it is safe to regard the fixup worker
637		 * as paused for all matters practical. effectively, we only
638		 * avoid cancellation requests from completing.
639		 */
640		mutex_lock(&fs_info->scrub_lock);
641		atomic_inc(&fs_info->scrubs_running);
642		atomic_inc(&fs_info->scrubs_paused);
643		mutex_unlock(&fs_info->scrub_lock);
644		atomic_inc(&sdev->fixup_cnt);
645		fixup->work.func = scrub_fixup_nodatasum;
646		btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work);
647		return;
648	}
649
650	length = PAGE_SIZE;
651	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
652			      &bbio, 0);
653	if (ret || !bbio || length < PAGE_SIZE) {
654		printk(KERN_ERR
655		       "scrub_fixup: btrfs_map_block failed us for %llu\n",
656		       (unsigned long long)logical);
657		WARN_ON(1);
658		kfree(bbio);
659		return;
660	}
661
662	if (bbio->num_stripes == 1)
663		/* there aren't any replicas */
664		goto uncorrectable;
665
666	/*
667	 * first find a good copy
668	 */
669	for (i = 0; i < bbio->num_stripes; ++i) {
670		if (i + 1 == sbio->spag[ix].mirror_num)
671			continue;
672
673		if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev,
674				   bbio->stripes[i].physical >> 9,
675				   sbio->bio->bi_io_vec[ix].bv_page)) {
676			/* I/O-error, this is not a good copy */
677			continue;
678		}
679
680		if (scrub_fixup_check(sbio, ix) == 0)
681			break;
682	}
683	if (i == bbio->num_stripes)
684		goto uncorrectable;
685
686	if (!sdev->readonly) {
687		/*
688		 * bi_io_vec[ix].bv_page now contains good data, write it back
689		 */
690		if (scrub_fixup_io(WRITE, sdev->dev->bdev,
691				   (sbio->physical + ix * PAGE_SIZE) >> 9,
692				   sbio->bio->bi_io_vec[ix].bv_page)) {
693			/* I/O-error, writeback failed, give up */
694			goto uncorrectable;
695		}
696	}
697
698	kfree(bbio);
699	spin_lock(&sdev->stat_lock);
700	++sdev->stat.corrected_errors;
701	spin_unlock(&sdev->stat_lock);
702
703	printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n",
704			       (unsigned long long)logical);
705	return;
706
707uncorrectable:
708	kfree(bbio);
709	spin_lock(&sdev->stat_lock);
710	++sdev->stat.uncorrectable_errors;
711	spin_unlock(&sdev->stat_lock);
712
713	printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at "
714				"logical %llu\n", (unsigned long long)logical);
715}
716
717static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
718			 struct page *page)
719{
720	struct bio *bio = NULL;
721	int ret;
722	DECLARE_COMPLETION_ONSTACK(complete);
723
724	bio = bio_alloc(GFP_NOFS, 1);
725	bio->bi_bdev = bdev;
726	bio->bi_sector = sector;
727	bio_add_page(bio, page, PAGE_SIZE, 0);
728	bio->bi_end_io = scrub_fixup_end_io;
729	bio->bi_private = &complete;
730	submit_bio(rw, bio);
731
732	/* this will also unplug the queue */
733	wait_for_completion(&complete);
734
735	ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
736	bio_put(bio);
737	return ret;
738}
739
740static void scrub_bio_end_io(struct bio *bio, int err)
741{
742	struct scrub_bio *sbio = bio->bi_private;
743	struct scrub_dev *sdev = sbio->sdev;
744	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
745
746	sbio->err = err;
747	sbio->bio = bio;
748
749	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
750}
751
752static void scrub_checksum(struct btrfs_work *work)
753{
754	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
755	struct scrub_dev *sdev = sbio->sdev;
756	struct page *page;
757	void *buffer;
758	int i;
759	u64 flags;
760	u64 logical;
761	int ret;
762
763	if (sbio->err) {
764		ret = 0;
765		for (i = 0; i < sbio->count; ++i)
766			ret |= scrub_recheck_error(sbio, i);
767		if (!ret) {
768			spin_lock(&sdev->stat_lock);
769			++sdev->stat.unverified_errors;
770			spin_unlock(&sdev->stat_lock);
771		}
772
773		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
774		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
775		sbio->bio->bi_phys_segments = 0;
776		sbio->bio->bi_idx = 0;
777
778		for (i = 0; i < sbio->count; i++) {
779			struct bio_vec *bi;
780			bi = &sbio->bio->bi_io_vec[i];
781			bi->bv_offset = 0;
782			bi->bv_len = PAGE_SIZE;
783		}
784		goto out;
785	}
786	for (i = 0; i < sbio->count; ++i) {
787		page = sbio->bio->bi_io_vec[i].bv_page;
788		buffer = kmap_atomic(page, KM_USER0);
789		flags = sbio->spag[i].flags;
790		logical = sbio->logical + i * PAGE_SIZE;
791		ret = 0;
792		if (flags & BTRFS_EXTENT_FLAG_DATA) {
793			ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
794		} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
795			ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
796							logical, buffer);
797		} else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
798			BUG_ON(i);
799			(void)scrub_checksum_super(sbio, buffer);
800		} else {
801			WARN_ON(1);
802		}
803		kunmap_atomic(buffer, KM_USER0);
804		if (ret) {
805			ret = scrub_recheck_error(sbio, i);
806			if (!ret) {
807				spin_lock(&sdev->stat_lock);
808				++sdev->stat.unverified_errors;
809				spin_unlock(&sdev->stat_lock);
810			}
811		}
812	}
813
814out:
815	scrub_free_bio(sbio->bio);
816	sbio->bio = NULL;
817	spin_lock(&sdev->list_lock);
818	sbio->next_free = sdev->first_free;
819	sdev->first_free = sbio->index;
820	spin_unlock(&sdev->list_lock);
821	atomic_dec(&sdev->in_flight);
822	wake_up(&sdev->list_wait);
823}
824
825static int scrub_checksum_data(struct scrub_dev *sdev,
826			       struct scrub_page *spag, void *buffer)
827{
828	u8 csum[BTRFS_CSUM_SIZE];
829	u32 crc = ~(u32)0;
830	int fail = 0;
831	struct btrfs_root *root = sdev->dev->dev_root;
832
833	if (!spag->have_csum)
834		return 0;
835
836	crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
837	btrfs_csum_final(crc, csum);
838	if (memcmp(csum, spag->csum, sdev->csum_size))
839		fail = 1;
840
841	spin_lock(&sdev->stat_lock);
842	++sdev->stat.data_extents_scrubbed;
843	sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
844	if (fail)
845		++sdev->stat.csum_errors;
846	spin_unlock(&sdev->stat_lock);
847
848	return fail;
849}
850
851static int scrub_checksum_tree_block(struct scrub_dev *sdev,
852				     struct scrub_page *spag, u64 logical,
853				     void *buffer)
854{
855	struct btrfs_header *h;
856	struct btrfs_root *root = sdev->dev->dev_root;
857	struct btrfs_fs_info *fs_info = root->fs_info;
858	u8 csum[BTRFS_CSUM_SIZE];
859	u32 crc = ~(u32)0;
860	int fail = 0;
861	int crc_fail = 0;
862
863	/*
864	 * we don't use the getter functions here, as we
865	 * a) don't have an extent buffer and
866	 * b) the page is already kmapped
867	 */
868	h = (struct btrfs_header *)buffer;
869
870	if (logical != le64_to_cpu(h->bytenr))
871		++fail;
872
873	if (spag->generation != le64_to_cpu(h->generation))
874		++fail;
875
876	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
877		++fail;
878
879	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
880		   BTRFS_UUID_SIZE))
881		++fail;
882
883	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
884			      PAGE_SIZE - BTRFS_CSUM_SIZE);
885	btrfs_csum_final(crc, csum);
886	if (memcmp(csum, h->csum, sdev->csum_size))
887		++crc_fail;
888
889	spin_lock(&sdev->stat_lock);
890	++sdev->stat.tree_extents_scrubbed;
891	sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
892	if (crc_fail)
893		++sdev->stat.csum_errors;
894	if (fail)
895		++sdev->stat.verify_errors;
896	spin_unlock(&sdev->stat_lock);
897
898	return fail || crc_fail;
899}
900
901static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
902{
903	struct btrfs_super_block *s;
904	u64 logical;
905	struct scrub_dev *sdev = sbio->sdev;
906	struct btrfs_root *root = sdev->dev->dev_root;
907	struct btrfs_fs_info *fs_info = root->fs_info;
908	u8 csum[BTRFS_CSUM_SIZE];
909	u32 crc = ~(u32)0;
910	int fail = 0;
911
912	s = (struct btrfs_super_block *)buffer;
913	logical = sbio->logical;
914
915	if (logical != le64_to_cpu(s->bytenr))
916		++fail;
917
918	if (sbio->spag[0].generation != le64_to_cpu(s->generation))
919		++fail;
920
921	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
922		++fail;
923
924	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
925			      PAGE_SIZE - BTRFS_CSUM_SIZE);
926	btrfs_csum_final(crc, csum);
927	if (memcmp(csum, s->csum, sbio->sdev->csum_size))
928		++fail;
929
930	if (fail) {
931		/*
932		 * if we find an error in a super block, we just report it.
933		 * They will get written with the next transaction commit
934		 * anyway
935		 */
936		spin_lock(&sdev->stat_lock);
937		++sdev->stat.super_errors;
938		spin_unlock(&sdev->stat_lock);
939	}
940
941	return fail;
942}
943
944static int scrub_submit(struct scrub_dev *sdev)
945{
946	struct scrub_bio *sbio;
947
948	if (sdev->curr == -1)
949		return 0;
950
951	sbio = sdev->bios[sdev->curr];
952	sbio->err = 0;
953	sdev->curr = -1;
954	atomic_inc(&sdev->in_flight);
955
956	submit_bio(READ, sbio->bio);
957
958	return 0;
959}
960
961static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
962		      u64 physical, u64 flags, u64 gen, int mirror_num,
963		      u8 *csum, int force)
964{
965	struct scrub_bio *sbio;
966	struct page *page;
967	int ret;
968
969again:
970	/*
971	 * grab a fresh bio or wait for one to become available
972	 */
973	while (sdev->curr == -1) {
974		spin_lock(&sdev->list_lock);
975		sdev->curr = sdev->first_free;
976		if (sdev->curr != -1) {
977			sdev->first_free = sdev->bios[sdev->curr]->next_free;
978			sdev->bios[sdev->curr]->next_free = -1;
979			sdev->bios[sdev->curr]->count = 0;
980			spin_unlock(&sdev->list_lock);
981		} else {
982			spin_unlock(&sdev->list_lock);
983			wait_event(sdev->list_wait, sdev->first_free != -1);
984		}
985	}
986	sbio = sdev->bios[sdev->curr];
987	if (sbio->count == 0) {
988		struct bio *bio;
989
990		sbio->physical = physical;
991		sbio->logical = logical;
992		bio = bio_alloc(GFP_NOFS, SCRUB_PAGES_PER_BIO);
993		if (!bio)
994			return -ENOMEM;
995
996		bio->bi_private = sbio;
997		bio->bi_end_io = scrub_bio_end_io;
998		bio->bi_bdev = sdev->dev->bdev;
999		bio->bi_sector = sbio->physical >> 9;
1000		sbio->err = 0;
1001		sbio->bio = bio;
1002	} else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
1003		   sbio->logical + sbio->count * PAGE_SIZE != logical) {
1004		ret = scrub_submit(sdev);
1005		if (ret)
1006			return ret;
1007		goto again;
1008	}
1009	sbio->spag[sbio->count].flags = flags;
1010	sbio->spag[sbio->count].generation = gen;
1011	sbio->spag[sbio->count].have_csum = 0;
1012	sbio->spag[sbio->count].mirror_num = mirror_num;
1013
1014	page = alloc_page(GFP_NOFS);
1015	if (!page)
1016		return -ENOMEM;
1017
1018	ret = bio_add_page(sbio->bio, page, PAGE_SIZE, 0);
1019	if (!ret) {
1020		__free_page(page);
1021		ret = scrub_submit(sdev);
1022		if (ret)
1023			return ret;
1024		goto again;
1025	}
1026
1027	if (csum) {
1028		sbio->spag[sbio->count].have_csum = 1;
1029		memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
1030	}
1031	++sbio->count;
1032	if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
1033		int ret;
1034
1035		ret = scrub_submit(sdev);
1036		if (ret)
1037			return ret;
1038	}
1039
1040	return 0;
1041}
1042
1043static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1044			   u8 *csum)
1045{
1046	struct btrfs_ordered_sum *sum = NULL;
1047	int ret = 0;
1048	unsigned long i;
1049	unsigned long num_sectors;
1050	u32 sectorsize = sdev->dev->dev_root->sectorsize;
1051
1052	while (!list_empty(&sdev->csum_list)) {
1053		sum = list_first_entry(&sdev->csum_list,
1054				       struct btrfs_ordered_sum, list);
1055		if (sum->bytenr > logical)
1056			return 0;
1057		if (sum->bytenr + sum->len > logical)
1058			break;
1059
1060		++sdev->stat.csum_discards;
1061		list_del(&sum->list);
1062		kfree(sum);
1063		sum = NULL;
1064	}
1065	if (!sum)
1066		return 0;
1067
1068	num_sectors = sum->len / sectorsize;
1069	for (i = 0; i < num_sectors; ++i) {
1070		if (sum->sums[i].bytenr == logical) {
1071			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1072			ret = 1;
1073			break;
1074		}
1075	}
1076	if (ret && i == num_sectors - 1) {
1077		list_del(&sum->list);
1078		kfree(sum);
1079	}
1080	return ret;
1081}
1082
1083/* scrub extent tries to collect up to 64 kB for each bio */
1084static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1085			u64 physical, u64 flags, u64 gen, int mirror_num)
1086{
1087	int ret;
1088	u8 csum[BTRFS_CSUM_SIZE];
1089
1090	while (len) {
1091		u64 l = min_t(u64, len, PAGE_SIZE);
1092		int have_csum = 0;
1093
1094		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1095			/* push csums to sbio */
1096			have_csum = scrub_find_csum(sdev, logical, l, csum);
1097			if (have_csum == 0)
1098				++sdev->stat.no_csum;
1099		}
1100		ret = scrub_page(sdev, logical, l, physical, flags, gen,
1101				 mirror_num, have_csum ? csum : NULL, 0);
1102		if (ret)
1103			return ret;
1104		len -= l;
1105		logical += l;
1106		physical += l;
1107	}
1108	return 0;
1109}
1110
1111static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1112	struct map_lookup *map, int num, u64 base, u64 length)
1113{
1114	struct btrfs_path *path;
1115	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1116	struct btrfs_root *root = fs_info->extent_root;
1117	struct btrfs_root *csum_root = fs_info->csum_root;
1118	struct btrfs_extent_item *extent;
1119	struct blk_plug plug;
1120	u64 flags;
1121	int ret;
1122	int slot;
1123	int i;
1124	u64 nstripes;
1125	struct extent_buffer *l;
1126	struct btrfs_key key;
1127	u64 physical;
1128	u64 logical;
1129	u64 generation;
1130	int mirror_num;
1131	struct reada_control *reada1;
1132	struct reada_control *reada2;
1133	struct btrfs_key key_start;
1134	struct btrfs_key key_end;
1135
1136	u64 increment = map->stripe_len;
1137	u64 offset;
1138
1139	nstripes = length;
1140	offset = 0;
1141	do_div(nstripes, map->stripe_len);
1142	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1143		offset = map->stripe_len * num;
1144		increment = map->stripe_len * map->num_stripes;
1145		mirror_num = 1;
1146	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1147		int factor = map->num_stripes / map->sub_stripes;
1148		offset = map->stripe_len * (num / map->sub_stripes);
1149		increment = map->stripe_len * factor;
1150		mirror_num = num % map->sub_stripes + 1;
1151	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1152		increment = map->stripe_len;
1153		mirror_num = num % map->num_stripes + 1;
1154	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1155		increment = map->stripe_len;
1156		mirror_num = num % map->num_stripes + 1;
1157	} else {
1158		increment = map->stripe_len;
1159		mirror_num = 1;
1160	}
1161
1162	path = btrfs_alloc_path();
1163	if (!path)
1164		return -ENOMEM;
1165
1166	path->search_commit_root = 1;
1167	path->skip_locking = 1;
1168
1169	/*
1170	 * trigger the readahead for extent tree csum tree and wait for
1171	 * completion. During readahead, the scrub is officially paused
1172	 * to not hold off transaction commits
1173	 */
1174	logical = base + offset;
1175
1176	wait_event(sdev->list_wait,
1177		   atomic_read(&sdev->in_flight) == 0);
1178	atomic_inc(&fs_info->scrubs_paused);
1179	wake_up(&fs_info->scrub_pause_wait);
1180
1181	/* FIXME it might be better to start readahead at commit root */
1182	key_start.objectid = logical;
1183	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1184	key_start.offset = (u64)0;
1185	key_end.objectid = base + offset + nstripes * increment;
1186	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1187	key_end.offset = (u64)0;
1188	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1189
1190	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1191	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1192	key_start.offset = logical;
1193	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1194	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1195	key_end.offset = base + offset + nstripes * increment;
1196	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1197
1198	if (!IS_ERR(reada1))
1199		btrfs_reada_wait(reada1);
1200	if (!IS_ERR(reada2))
1201		btrfs_reada_wait(reada2);
1202
1203	mutex_lock(&fs_info->scrub_lock);
1204	while (atomic_read(&fs_info->scrub_pause_req)) {
1205		mutex_unlock(&fs_info->scrub_lock);
1206		wait_event(fs_info->scrub_pause_wait,
1207		   atomic_read(&fs_info->scrub_pause_req) == 0);
1208		mutex_lock(&fs_info->scrub_lock);
1209	}
1210	atomic_dec(&fs_info->scrubs_paused);
1211	mutex_unlock(&fs_info->scrub_lock);
1212	wake_up(&fs_info->scrub_pause_wait);
1213
1214	/*
1215	 * collect all data csums for the stripe to avoid seeking during
1216	 * the scrub. This might currently (crc32) end up to be about 1MB
1217	 */
1218	blk_start_plug(&plug);
1219
1220	/*
1221	 * now find all extents for each stripe and scrub them
1222	 */
1223	logical = base + offset;
1224	physical = map->stripes[num].physical;
1225	ret = 0;
1226	for (i = 0; i < nstripes; ++i) {
1227		/*
1228		 * canceled?
1229		 */
1230		if (atomic_read(&fs_info->scrub_cancel_req) ||
1231		    atomic_read(&sdev->cancel_req)) {
1232			ret = -ECANCELED;
1233			goto out;
1234		}
1235		/*
1236		 * check to see if we have to pause
1237		 */
1238		if (atomic_read(&fs_info->scrub_pause_req)) {
1239			/* push queued extents */
1240			scrub_submit(sdev);
1241			wait_event(sdev->list_wait,
1242				   atomic_read(&sdev->in_flight) == 0);
1243			atomic_inc(&fs_info->scrubs_paused);
1244			wake_up(&fs_info->scrub_pause_wait);
1245			mutex_lock(&fs_info->scrub_lock);
1246			while (atomic_read(&fs_info->scrub_pause_req)) {
1247				mutex_unlock(&fs_info->scrub_lock);
1248				wait_event(fs_info->scrub_pause_wait,
1249				   atomic_read(&fs_info->scrub_pause_req) == 0);
1250				mutex_lock(&fs_info->scrub_lock);
1251			}
1252			atomic_dec(&fs_info->scrubs_paused);
1253			mutex_unlock(&fs_info->scrub_lock);
1254			wake_up(&fs_info->scrub_pause_wait);
1255		}
1256
1257		ret = btrfs_lookup_csums_range(csum_root, logical,
1258					       logical + map->stripe_len - 1,
1259					       &sdev->csum_list, 1);
1260		if (ret)
1261			goto out;
1262
1263		key.objectid = logical;
1264		key.type = BTRFS_EXTENT_ITEM_KEY;
1265		key.offset = (u64)0;
1266
1267		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1268		if (ret < 0)
1269			goto out;
1270		if (ret > 0) {
1271			ret = btrfs_previous_item(root, path, 0,
1272						  BTRFS_EXTENT_ITEM_KEY);
1273			if (ret < 0)
1274				goto out;
1275			if (ret > 0) {
1276				/* there's no smaller item, so stick with the
1277				 * larger one */
1278				btrfs_release_path(path);
1279				ret = btrfs_search_slot(NULL, root, &key,
1280							path, 0, 0);
1281				if (ret < 0)
1282					goto out;
1283			}
1284		}
1285
1286		while (1) {
1287			l = path->nodes[0];
1288			slot = path->slots[0];
1289			if (slot >= btrfs_header_nritems(l)) {
1290				ret = btrfs_next_leaf(root, path);
1291				if (ret == 0)
1292					continue;
1293				if (ret < 0)
1294					goto out;
1295
1296				break;
1297			}
1298			btrfs_item_key_to_cpu(l, &key, slot);
1299
1300			if (key.objectid + key.offset <= logical)
1301				goto next;
1302
1303			if (key.objectid >= logical + map->stripe_len)
1304				break;
1305
1306			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1307				goto next;
1308
1309			extent = btrfs_item_ptr(l, slot,
1310						struct btrfs_extent_item);
1311			flags = btrfs_extent_flags(l, extent);
1312			generation = btrfs_extent_generation(l, extent);
1313
1314			if (key.objectid < logical &&
1315			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1316				printk(KERN_ERR
1317				       "btrfs scrub: tree block %llu spanning "
1318				       "stripes, ignored. logical=%llu\n",
1319				       (unsigned long long)key.objectid,
1320				       (unsigned long long)logical);
1321				goto next;
1322			}
1323
1324			/*
1325			 * trim extent to this stripe
1326			 */
1327			if (key.objectid < logical) {
1328				key.offset -= logical - key.objectid;
1329				key.objectid = logical;
1330			}
1331			if (key.objectid + key.offset >
1332			    logical + map->stripe_len) {
1333				key.offset = logical + map->stripe_len -
1334					     key.objectid;
1335			}
1336
1337			ret = scrub_extent(sdev, key.objectid, key.offset,
1338					   key.objectid - logical + physical,
1339					   flags, generation, mirror_num);
1340			if (ret)
1341				goto out;
1342
1343next:
1344			path->slots[0]++;
1345		}
1346		btrfs_release_path(path);
1347		logical += increment;
1348		physical += map->stripe_len;
1349		spin_lock(&sdev->stat_lock);
1350		sdev->stat.last_physical = physical;
1351		spin_unlock(&sdev->stat_lock);
1352	}
1353	/* push queued extents */
1354	scrub_submit(sdev);
1355
1356out:
1357	blk_finish_plug(&plug);
1358	btrfs_free_path(path);
1359	return ret < 0 ? ret : 0;
1360}
1361
1362static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
1363	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
1364{
1365	struct btrfs_mapping_tree *map_tree =
1366		&sdev->dev->dev_root->fs_info->mapping_tree;
1367	struct map_lookup *map;
1368	struct extent_map *em;
1369	int i;
1370	int ret = -EINVAL;
1371
1372	read_lock(&map_tree->map_tree.lock);
1373	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1374	read_unlock(&map_tree->map_tree.lock);
1375
1376	if (!em)
1377		return -EINVAL;
1378
1379	map = (struct map_lookup *)em->bdev;
1380	if (em->start != chunk_offset)
1381		goto out;
1382
1383	if (em->len < length)
1384		goto out;
1385
1386	for (i = 0; i < map->num_stripes; ++i) {
1387		if (map->stripes[i].dev == sdev->dev) {
1388			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1389			if (ret)
1390				goto out;
1391		}
1392	}
1393out:
1394	free_extent_map(em);
1395
1396	return ret;
1397}
1398
1399static noinline_for_stack
1400int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1401{
1402	struct btrfs_dev_extent *dev_extent = NULL;
1403	struct btrfs_path *path;
1404	struct btrfs_root *root = sdev->dev->dev_root;
1405	struct btrfs_fs_info *fs_info = root->fs_info;
1406	u64 length;
1407	u64 chunk_tree;
1408	u64 chunk_objectid;
1409	u64 chunk_offset;
1410	int ret;
1411	int slot;
1412	struct extent_buffer *l;
1413	struct btrfs_key key;
1414	struct btrfs_key found_key;
1415	struct btrfs_block_group_cache *cache;
1416
1417	path = btrfs_alloc_path();
1418	if (!path)
1419		return -ENOMEM;
1420
1421	path->reada = 2;
1422	path->search_commit_root = 1;
1423	path->skip_locking = 1;
1424
1425	key.objectid = sdev->dev->devid;
1426	key.offset = 0ull;
1427	key.type = BTRFS_DEV_EXTENT_KEY;
1428
1429
1430	while (1) {
1431		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1432		if (ret < 0)
1433			break;
1434		if (ret > 0) {
1435			if (path->slots[0] >=
1436			    btrfs_header_nritems(path->nodes[0])) {
1437				ret = btrfs_next_leaf(root, path);
1438				if (ret)
1439					break;
1440			}
1441		}
1442
1443		l = path->nodes[0];
1444		slot = path->slots[0];
1445
1446		btrfs_item_key_to_cpu(l, &found_key, slot);
1447
1448		if (found_key.objectid != sdev->dev->devid)
1449			break;
1450
1451		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1452			break;
1453
1454		if (found_key.offset >= end)
1455			break;
1456
1457		if (found_key.offset < key.offset)
1458			break;
1459
1460		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461		length = btrfs_dev_extent_length(l, dev_extent);
1462
1463		if (found_key.offset + length <= start) {
1464			key.offset = found_key.offset + length;
1465			btrfs_release_path(path);
1466			continue;
1467		}
1468
1469		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1470		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1471		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1472
1473		/*
1474		 * get a reference on the corresponding block group to prevent
1475		 * the chunk from going away while we scrub it
1476		 */
1477		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1478		if (!cache) {
1479			ret = -ENOENT;
1480			break;
1481		}
1482		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1483				  chunk_offset, length);
1484		btrfs_put_block_group(cache);
1485		if (ret)
1486			break;
1487
1488		key.offset = found_key.offset + length;
1489		btrfs_release_path(path);
1490	}
1491
1492	btrfs_free_path(path);
1493
1494	/*
1495	 * ret can still be 1 from search_slot or next_leaf,
1496	 * that's not an error
1497	 */
1498	return ret < 0 ? ret : 0;
1499}
1500
1501static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1502{
1503	int	i;
1504	u64	bytenr;
1505	u64	gen;
1506	int	ret;
1507	struct btrfs_device *device = sdev->dev;
1508	struct btrfs_root *root = device->dev_root;
1509
1510	gen = root->fs_info->last_trans_committed;
1511
1512	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1513		bytenr = btrfs_sb_offset(i);
1514		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1515			break;
1516
1517		ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1518				 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1519		if (ret)
1520			return ret;
1521	}
1522	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1523
1524	return 0;
1525}
1526
1527/*
1528 * get a reference count on fs_info->scrub_workers. start worker if necessary
1529 */
1530static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1531{
1532	struct btrfs_fs_info *fs_info = root->fs_info;
1533
1534	mutex_lock(&fs_info->scrub_lock);
1535	if (fs_info->scrub_workers_refcnt == 0) {
1536		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1537			   fs_info->thread_pool_size, &fs_info->generic_worker);
1538		fs_info->scrub_workers.idle_thresh = 4;
1539		btrfs_start_workers(&fs_info->scrub_workers, 1);
1540	}
1541	++fs_info->scrub_workers_refcnt;
1542	mutex_unlock(&fs_info->scrub_lock);
1543
1544	return 0;
1545}
1546
1547static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1548{
1549	struct btrfs_fs_info *fs_info = root->fs_info;
1550
1551	mutex_lock(&fs_info->scrub_lock);
1552	if (--fs_info->scrub_workers_refcnt == 0)
1553		btrfs_stop_workers(&fs_info->scrub_workers);
1554	WARN_ON(fs_info->scrub_workers_refcnt < 0);
1555	mutex_unlock(&fs_info->scrub_lock);
1556}
1557
1558
1559int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1560		    struct btrfs_scrub_progress *progress, int readonly)
1561{
1562	struct scrub_dev *sdev;
1563	struct btrfs_fs_info *fs_info = root->fs_info;
1564	int ret;
1565	struct btrfs_device *dev;
1566
1567	if (btrfs_fs_closing(root->fs_info))
1568		return -EINVAL;
1569
1570	/*
1571	 * check some assumptions
1572	 */
1573	if (root->sectorsize != PAGE_SIZE ||
1574	    root->sectorsize != root->leafsize ||
1575	    root->sectorsize != root->nodesize) {
1576		printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1577		return -EINVAL;
1578	}
1579
1580	ret = scrub_workers_get(root);
1581	if (ret)
1582		return ret;
1583
1584	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1585	dev = btrfs_find_device(root, devid, NULL, NULL);
1586	if (!dev || dev->missing) {
1587		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1588		scrub_workers_put(root);
1589		return -ENODEV;
1590	}
1591	mutex_lock(&fs_info->scrub_lock);
1592
1593	if (!dev->in_fs_metadata) {
1594		mutex_unlock(&fs_info->scrub_lock);
1595		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1596		scrub_workers_put(root);
1597		return -ENODEV;
1598	}
1599
1600	if (dev->scrub_device) {
1601		mutex_unlock(&fs_info->scrub_lock);
1602		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1603		scrub_workers_put(root);
1604		return -EINPROGRESS;
1605	}
1606	sdev = scrub_setup_dev(dev);
1607	if (IS_ERR(sdev)) {
1608		mutex_unlock(&fs_info->scrub_lock);
1609		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1610		scrub_workers_put(root);
1611		return PTR_ERR(sdev);
1612	}
1613	sdev->readonly = readonly;
1614	dev->scrub_device = sdev;
1615
1616	atomic_inc(&fs_info->scrubs_running);
1617	mutex_unlock(&fs_info->scrub_lock);
1618	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1619
1620	down_read(&fs_info->scrub_super_lock);
1621	ret = scrub_supers(sdev);
1622	up_read(&fs_info->scrub_super_lock);
1623
1624	if (!ret)
1625		ret = scrub_enumerate_chunks(sdev, start, end);
1626
1627	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1628	atomic_dec(&fs_info->scrubs_running);
1629	wake_up(&fs_info->scrub_pause_wait);
1630
1631	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
1632
1633	if (progress)
1634		memcpy(progress, &sdev->stat, sizeof(*progress));
1635
1636	mutex_lock(&fs_info->scrub_lock);
1637	dev->scrub_device = NULL;
1638	mutex_unlock(&fs_info->scrub_lock);
1639
1640	scrub_free_dev(sdev);
1641	scrub_workers_put(root);
1642
1643	return ret;
1644}
1645
1646int btrfs_scrub_pause(struct btrfs_root *root)
1647{
1648	struct btrfs_fs_info *fs_info = root->fs_info;
1649
1650	mutex_lock(&fs_info->scrub_lock);
1651	atomic_inc(&fs_info->scrub_pause_req);
1652	while (atomic_read(&fs_info->scrubs_paused) !=
1653	       atomic_read(&fs_info->scrubs_running)) {
1654		mutex_unlock(&fs_info->scrub_lock);
1655		wait_event(fs_info->scrub_pause_wait,
1656			   atomic_read(&fs_info->scrubs_paused) ==
1657			   atomic_read(&fs_info->scrubs_running));
1658		mutex_lock(&fs_info->scrub_lock);
1659	}
1660	mutex_unlock(&fs_info->scrub_lock);
1661
1662	return 0;
1663}
1664
1665int btrfs_scrub_continue(struct btrfs_root *root)
1666{
1667	struct btrfs_fs_info *fs_info = root->fs_info;
1668
1669	atomic_dec(&fs_info->scrub_pause_req);
1670	wake_up(&fs_info->scrub_pause_wait);
1671	return 0;
1672}
1673
1674int btrfs_scrub_pause_super(struct btrfs_root *root)
1675{
1676	down_write(&root->fs_info->scrub_super_lock);
1677	return 0;
1678}
1679
1680int btrfs_scrub_continue_super(struct btrfs_root *root)
1681{
1682	up_write(&root->fs_info->scrub_super_lock);
1683	return 0;
1684}
1685
1686int btrfs_scrub_cancel(struct btrfs_root *root)
1687{
1688	struct btrfs_fs_info *fs_info = root->fs_info;
1689
1690	mutex_lock(&fs_info->scrub_lock);
1691	if (!atomic_read(&fs_info->scrubs_running)) {
1692		mutex_unlock(&fs_info->scrub_lock);
1693		return -ENOTCONN;
1694	}
1695
1696	atomic_inc(&fs_info->scrub_cancel_req);
1697	while (atomic_read(&fs_info->scrubs_running)) {
1698		mutex_unlock(&fs_info->scrub_lock);
1699		wait_event(fs_info->scrub_pause_wait,
1700			   atomic_read(&fs_info->scrubs_running) == 0);
1701		mutex_lock(&fs_info->scrub_lock);
1702	}
1703	atomic_dec(&fs_info->scrub_cancel_req);
1704	mutex_unlock(&fs_info->scrub_lock);
1705
1706	return 0;
1707}
1708
1709int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1710{
1711	struct btrfs_fs_info *fs_info = root->fs_info;
1712	struct scrub_dev *sdev;
1713
1714	mutex_lock(&fs_info->scrub_lock);
1715	sdev = dev->scrub_device;
1716	if (!sdev) {
1717		mutex_unlock(&fs_info->scrub_lock);
1718		return -ENOTCONN;
1719	}
1720	atomic_inc(&sdev->cancel_req);
1721	while (dev->scrub_device) {
1722		mutex_unlock(&fs_info->scrub_lock);
1723		wait_event(fs_info->scrub_pause_wait,
1724			   dev->scrub_device == NULL);
1725		mutex_lock(&fs_info->scrub_lock);
1726	}
1727	mutex_unlock(&fs_info->scrub_lock);
1728
1729	return 0;
1730}
1731int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1732{
1733	struct btrfs_fs_info *fs_info = root->fs_info;
1734	struct btrfs_device *dev;
1735	int ret;
1736
1737	/*
1738	 * we have to hold the device_list_mutex here so the device
1739	 * does not go away in cancel_dev. FIXME: find a better solution
1740	 */
1741	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1742	dev = btrfs_find_device(root, devid, NULL, NULL);
1743	if (!dev) {
1744		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1745		return -ENODEV;
1746	}
1747	ret = btrfs_scrub_cancel_dev(root, dev);
1748	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1749
1750	return ret;
1751}
1752
1753int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1754			 struct btrfs_scrub_progress *progress)
1755{
1756	struct btrfs_device *dev;
1757	struct scrub_dev *sdev = NULL;
1758
1759	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1760	dev = btrfs_find_device(root, devid, NULL, NULL);
1761	if (dev)
1762		sdev = dev->scrub_device;
1763	if (sdev)
1764		memcpy(progress, &sdev->stat, sizeof(*progress));
1765	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1766
1767	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1768}
1769