scrub.c revision d458b0540ebd728b4d6ef47cc5ef0dbfd4dd361a
1/*
2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/ratelimit.h>
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
25#include "transaction.h"
26#include "backref.h"
27#include "extent_io.h"
28#include "dev-replace.h"
29#include "check-integrity.h"
30#include "rcu-string.h"
31#include "raid56.h"
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 *  - In case an unrepairable extent is encountered, track which files are
41 *    affected and report them
42 *  - track and record media errors, throw out bad devices
43 *  - add a mode to also read unallocated space
44 */
45
46struct scrub_block;
47struct scrub_ctx;
48
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65
66struct scrub_page {
67	struct scrub_block	*sblock;
68	struct page		*page;
69	struct btrfs_device	*dev;
70	u64			flags;  /* extent flags */
71	u64			generation;
72	u64			logical;
73	u64			physical;
74	u64			physical_for_dev_replace;
75	atomic_t		ref_count;
76	struct {
77		unsigned int	mirror_num:8;
78		unsigned int	have_csum:1;
79		unsigned int	io_error:1;
80	};
81	u8			csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85	int			index;
86	struct scrub_ctx	*sctx;
87	struct btrfs_device	*dev;
88	struct bio		*bio;
89	int			err;
90	u64			logical;
91	u64			physical;
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
97	int			page_count;
98	int			next_free;
99	struct btrfs_work	work;
100};
101
102struct scrub_block {
103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104	int			page_count;
105	atomic_t		outstanding_pages;
106	atomic_t		ref_count; /* free mem on transition to zero */
107	struct scrub_ctx	*sctx;
108	struct {
109		unsigned int	header_error:1;
110		unsigned int	checksum_error:1;
111		unsigned int	no_io_error_seen:1;
112		unsigned int	generation_error:1; /* also sets header_error */
113	};
114};
115
116struct scrub_wr_ctx {
117	struct scrub_bio *wr_curr_bio;
118	struct btrfs_device *tgtdev;
119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120	atomic_t flush_all_writes;
121	struct mutex wr_lock;
122};
123
124struct scrub_ctx {
125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126	struct btrfs_root	*dev_root;
127	int			first_free;
128	int			curr;
129	atomic_t		bios_in_flight;
130	atomic_t		workers_pending;
131	spinlock_t		list_lock;
132	wait_queue_head_t	list_wait;
133	u16			csum_size;
134	struct list_head	csum_list;
135	atomic_t		cancel_req;
136	int			readonly;
137	int			pages_per_rd_bio;
138	u32			sectorsize;
139	u32			nodesize;
140	u32			leafsize;
141
142	int			is_dev_replace;
143	struct scrub_wr_ctx	wr_ctx;
144
145	/*
146	 * statistics
147	 */
148	struct btrfs_scrub_progress stat;
149	spinlock_t		stat_lock;
150};
151
152struct scrub_fixup_nodatasum {
153	struct scrub_ctx	*sctx;
154	struct btrfs_device	*dev;
155	u64			logical;
156	struct btrfs_root	*root;
157	struct btrfs_work	work;
158	int			mirror_num;
159};
160
161struct scrub_nocow_inode {
162	u64			inum;
163	u64			offset;
164	u64			root;
165	struct list_head	list;
166};
167
168struct scrub_copy_nocow_ctx {
169	struct scrub_ctx	*sctx;
170	u64			logical;
171	u64			len;
172	int			mirror_num;
173	u64			physical_for_dev_replace;
174	struct list_head	inodes;
175	struct btrfs_work	work;
176};
177
178struct scrub_warning {
179	struct btrfs_path	*path;
180	u64			extent_item_size;
181	char			*scratch_buf;
182	char			*msg_buf;
183	const char		*errstr;
184	sector_t		sector;
185	u64			logical;
186	struct btrfs_device	*dev;
187	int			msg_bufsize;
188	int			scratch_bufsize;
189};
190
191
192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198				     struct btrfs_fs_info *fs_info,
199				     struct scrub_block *original_sblock,
200				     u64 length, u64 logical,
201				     struct scrub_block *sblocks_for_recheck);
202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203				struct scrub_block *sblock, int is_metadata,
204				int have_csum, u8 *csum, u64 generation,
205				u16 csum_size);
206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207					 struct scrub_block *sblock,
208					 int is_metadata, int have_csum,
209					 const u8 *csum, u64 generation,
210					 u16 csum_size);
211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212					     struct scrub_block *sblock_good,
213					     int force_write);
214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215					    struct scrub_block *sblock_good,
216					    int page_num, int force_write);
217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219					   int page_num);
220static int scrub_checksum_data(struct scrub_block *sblock);
221static int scrub_checksum_tree_block(struct scrub_block *sblock);
222static int scrub_checksum_super(struct scrub_block *sblock);
223static void scrub_block_get(struct scrub_block *sblock);
224static void scrub_block_put(struct scrub_block *sblock);
225static void scrub_page_get(struct scrub_page *spage);
226static void scrub_page_put(struct scrub_page *spage);
227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228				    struct scrub_page *spage);
229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230		       u64 physical, struct btrfs_device *dev, u64 flags,
231		       u64 gen, int mirror_num, u8 *csum, int force,
232		       u64 physical_for_dev_replace);
233static void scrub_bio_end_io(struct bio *bio, int err);
234static void scrub_bio_end_io_worker(struct btrfs_work *work);
235static void scrub_block_complete(struct scrub_block *sblock);
236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237			       u64 extent_logical, u64 extent_len,
238			       u64 *extent_physical,
239			       struct btrfs_device **extent_dev,
240			       int *extent_mirror_num);
241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242			      struct scrub_wr_ctx *wr_ctx,
243			      struct btrfs_fs_info *fs_info,
244			      struct btrfs_device *dev,
245			      int is_dev_replace);
246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248				    struct scrub_page *spage);
249static void scrub_wr_submit(struct scrub_ctx *sctx);
250static void scrub_wr_bio_end_io(struct bio *bio, int err);
251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252static int write_page_nocow(struct scrub_ctx *sctx,
253			    u64 physical_for_dev_replace, struct page *page);
254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255				      struct scrub_copy_nocow_ctx *ctx);
256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257			    int mirror_num, u64 physical_for_dev_replace);
258static void copy_nocow_pages_worker(struct btrfs_work *work);
259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261
262
263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264{
265	atomic_inc(&sctx->bios_in_flight);
266}
267
268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269{
270	atomic_dec(&sctx->bios_in_flight);
271	wake_up(&sctx->list_wait);
272}
273
274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275{
276	while (atomic_read(&fs_info->scrub_pause_req)) {
277		mutex_unlock(&fs_info->scrub_lock);
278		wait_event(fs_info->scrub_pause_wait,
279		   atomic_read(&fs_info->scrub_pause_req) == 0);
280		mutex_lock(&fs_info->scrub_lock);
281	}
282}
283
284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285{
286	atomic_inc(&fs_info->scrubs_paused);
287	wake_up(&fs_info->scrub_pause_wait);
288
289	mutex_lock(&fs_info->scrub_lock);
290	__scrub_blocked_if_needed(fs_info);
291	atomic_dec(&fs_info->scrubs_paused);
292	mutex_unlock(&fs_info->scrub_lock);
293
294	wake_up(&fs_info->scrub_pause_wait);
295}
296
297/*
298 * used for workers that require transaction commits (i.e., for the
299 * NOCOW case)
300 */
301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302{
303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305	/*
306	 * increment scrubs_running to prevent cancel requests from
307	 * completing as long as a worker is running. we must also
308	 * increment scrubs_paused to prevent deadlocking on pause
309	 * requests used for transactions commits (as the worker uses a
310	 * transaction context). it is safe to regard the worker
311	 * as paused for all matters practical. effectively, we only
312	 * avoid cancellation requests from completing.
313	 */
314	mutex_lock(&fs_info->scrub_lock);
315	atomic_inc(&fs_info->scrubs_running);
316	atomic_inc(&fs_info->scrubs_paused);
317	mutex_unlock(&fs_info->scrub_lock);
318
319	/*
320	 * check if @scrubs_running=@scrubs_paused condition
321	 * inside wait_event() is not an atomic operation.
322	 * which means we may inc/dec @scrub_running/paused
323	 * at any time. Let's wake up @scrub_pause_wait as
324	 * much as we can to let commit transaction blocked less.
325	 */
326	wake_up(&fs_info->scrub_pause_wait);
327
328	atomic_inc(&sctx->workers_pending);
329}
330
331/* used for workers that require transaction commits */
332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
333{
334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
335
336	/*
337	 * see scrub_pending_trans_workers_inc() why we're pretending
338	 * to be paused in the scrub counters
339	 */
340	mutex_lock(&fs_info->scrub_lock);
341	atomic_dec(&fs_info->scrubs_running);
342	atomic_dec(&fs_info->scrubs_paused);
343	mutex_unlock(&fs_info->scrub_lock);
344	atomic_dec(&sctx->workers_pending);
345	wake_up(&fs_info->scrub_pause_wait);
346	wake_up(&sctx->list_wait);
347}
348
349static void scrub_free_csums(struct scrub_ctx *sctx)
350{
351	while (!list_empty(&sctx->csum_list)) {
352		struct btrfs_ordered_sum *sum;
353		sum = list_first_entry(&sctx->csum_list,
354				       struct btrfs_ordered_sum, list);
355		list_del(&sum->list);
356		kfree(sum);
357	}
358}
359
360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
361{
362	int i;
363
364	if (!sctx)
365		return;
366
367	scrub_free_wr_ctx(&sctx->wr_ctx);
368
369	/* this can happen when scrub is cancelled */
370	if (sctx->curr != -1) {
371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
372
373		for (i = 0; i < sbio->page_count; i++) {
374			WARN_ON(!sbio->pagev[i]->page);
375			scrub_block_put(sbio->pagev[i]->sblock);
376		}
377		bio_put(sbio->bio);
378	}
379
380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
381		struct scrub_bio *sbio = sctx->bios[i];
382
383		if (!sbio)
384			break;
385		kfree(sbio);
386	}
387
388	scrub_free_csums(sctx);
389	kfree(sctx);
390}
391
392static noinline_for_stack
393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
394{
395	struct scrub_ctx *sctx;
396	int		i;
397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
398	int pages_per_rd_bio;
399	int ret;
400
401	/*
402	 * the setting of pages_per_rd_bio is correct for scrub but might
403	 * be wrong for the dev_replace code where we might read from
404	 * different devices in the initial huge bios. However, that
405	 * code is able to correctly handle the case when adding a page
406	 * to a bio fails.
407	 */
408	if (dev->bdev)
409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
410					 bio_get_nr_vecs(dev->bdev));
411	else
412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
414	if (!sctx)
415		goto nomem;
416	sctx->is_dev_replace = is_dev_replace;
417	sctx->pages_per_rd_bio = pages_per_rd_bio;
418	sctx->curr = -1;
419	sctx->dev_root = dev->dev_root;
420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
421		struct scrub_bio *sbio;
422
423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
424		if (!sbio)
425			goto nomem;
426		sctx->bios[i] = sbio;
427
428		sbio->index = i;
429		sbio->sctx = sctx;
430		sbio->page_count = 0;
431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
432				NULL, NULL);
433
434		if (i != SCRUB_BIOS_PER_SCTX - 1)
435			sctx->bios[i]->next_free = i + 1;
436		else
437			sctx->bios[i]->next_free = -1;
438	}
439	sctx->first_free = 0;
440	sctx->nodesize = dev->dev_root->nodesize;
441	sctx->leafsize = dev->dev_root->leafsize;
442	sctx->sectorsize = dev->dev_root->sectorsize;
443	atomic_set(&sctx->bios_in_flight, 0);
444	atomic_set(&sctx->workers_pending, 0);
445	atomic_set(&sctx->cancel_req, 0);
446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
447	INIT_LIST_HEAD(&sctx->csum_list);
448
449	spin_lock_init(&sctx->list_lock);
450	spin_lock_init(&sctx->stat_lock);
451	init_waitqueue_head(&sctx->list_wait);
452
453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
454				 fs_info->dev_replace.tgtdev, is_dev_replace);
455	if (ret) {
456		scrub_free_ctx(sctx);
457		return ERR_PTR(ret);
458	}
459	return sctx;
460
461nomem:
462	scrub_free_ctx(sctx);
463	return ERR_PTR(-ENOMEM);
464}
465
466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
467				     void *warn_ctx)
468{
469	u64 isize;
470	u32 nlink;
471	int ret;
472	int i;
473	struct extent_buffer *eb;
474	struct btrfs_inode_item *inode_item;
475	struct scrub_warning *swarn = warn_ctx;
476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
477	struct inode_fs_paths *ipath = NULL;
478	struct btrfs_root *local_root;
479	struct btrfs_key root_key;
480
481	root_key.objectid = root;
482	root_key.type = BTRFS_ROOT_ITEM_KEY;
483	root_key.offset = (u64)-1;
484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
485	if (IS_ERR(local_root)) {
486		ret = PTR_ERR(local_root);
487		goto err;
488	}
489
490	ret = inode_item_info(inum, 0, local_root, swarn->path);
491	if (ret) {
492		btrfs_release_path(swarn->path);
493		goto err;
494	}
495
496	eb = swarn->path->nodes[0];
497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
498					struct btrfs_inode_item);
499	isize = btrfs_inode_size(eb, inode_item);
500	nlink = btrfs_inode_nlink(eb, inode_item);
501	btrfs_release_path(swarn->path);
502
503	ipath = init_ipath(4096, local_root, swarn->path);
504	if (IS_ERR(ipath)) {
505		ret = PTR_ERR(ipath);
506		ipath = NULL;
507		goto err;
508	}
509	ret = paths_from_inode(inum, ipath);
510
511	if (ret < 0)
512		goto err;
513
514	/*
515	 * we deliberately ignore the bit ipath might have been too small to
516	 * hold all of the paths here
517	 */
518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
521			"length %llu, links %u (path: %s)\n", swarn->errstr,
522			swarn->logical, rcu_str_deref(swarn->dev->name),
523			(unsigned long long)swarn->sector, root, inum, offset,
524			min(isize - offset, (u64)PAGE_SIZE), nlink,
525			(char *)(unsigned long)ipath->fspath->val[i]);
526
527	free_ipath(ipath);
528	return 0;
529
530err:
531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
533		"resolving failed with ret=%d\n", swarn->errstr,
534		swarn->logical, rcu_str_deref(swarn->dev->name),
535		(unsigned long long)swarn->sector, root, inum, offset, ret);
536
537	free_ipath(ipath);
538	return 0;
539}
540
541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
542{
543	struct btrfs_device *dev;
544	struct btrfs_fs_info *fs_info;
545	struct btrfs_path *path;
546	struct btrfs_key found_key;
547	struct extent_buffer *eb;
548	struct btrfs_extent_item *ei;
549	struct scrub_warning swarn;
550	unsigned long ptr = 0;
551	u64 extent_item_pos;
552	u64 flags = 0;
553	u64 ref_root;
554	u32 item_size;
555	u8 ref_level;
556	const int bufsize = 4096;
557	int ret;
558
559	WARN_ON(sblock->page_count < 1);
560	dev = sblock->pagev[0]->dev;
561	fs_info = sblock->sctx->dev_root->fs_info;
562
563	path = btrfs_alloc_path();
564
565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
568	swarn.logical = sblock->pagev[0]->logical;
569	swarn.errstr = errstr;
570	swarn.dev = NULL;
571	swarn.msg_bufsize = bufsize;
572	swarn.scratch_bufsize = bufsize;
573
574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
575		goto out;
576
577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
578				  &flags);
579	if (ret < 0)
580		goto out;
581
582	extent_item_pos = swarn.logical - found_key.objectid;
583	swarn.extent_item_size = found_key.offset;
584
585	eb = path->nodes[0];
586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
588
589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
590		do {
591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
592							&ref_root, &ref_level);
593			printk_in_rcu(KERN_WARNING
594				"BTRFS: %s at logical %llu on dev %s, "
595				"sector %llu: metadata %s (level %d) in tree "
596				"%llu\n", errstr, swarn.logical,
597				rcu_str_deref(dev->name),
598				(unsigned long long)swarn.sector,
599				ref_level ? "node" : "leaf",
600				ret < 0 ? -1 : ref_level,
601				ret < 0 ? -1 : ref_root);
602		} while (ret != 1);
603		btrfs_release_path(path);
604	} else {
605		btrfs_release_path(path);
606		swarn.path = path;
607		swarn.dev = dev;
608		iterate_extent_inodes(fs_info, found_key.objectid,
609					extent_item_pos, 1,
610					scrub_print_warning_inode, &swarn);
611	}
612
613out:
614	btrfs_free_path(path);
615	kfree(swarn.scratch_buf);
616	kfree(swarn.msg_buf);
617}
618
619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
620{
621	struct page *page = NULL;
622	unsigned long index;
623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
624	int ret;
625	int corrected = 0;
626	struct btrfs_key key;
627	struct inode *inode = NULL;
628	struct btrfs_fs_info *fs_info;
629	u64 end = offset + PAGE_SIZE - 1;
630	struct btrfs_root *local_root;
631	int srcu_index;
632
633	key.objectid = root;
634	key.type = BTRFS_ROOT_ITEM_KEY;
635	key.offset = (u64)-1;
636
637	fs_info = fixup->root->fs_info;
638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
639
640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
641	if (IS_ERR(local_root)) {
642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
643		return PTR_ERR(local_root);
644	}
645
646	key.type = BTRFS_INODE_ITEM_KEY;
647	key.objectid = inum;
648	key.offset = 0;
649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
651	if (IS_ERR(inode))
652		return PTR_ERR(inode);
653
654	index = offset >> PAGE_CACHE_SHIFT;
655
656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
657	if (!page) {
658		ret = -ENOMEM;
659		goto out;
660	}
661
662	if (PageUptodate(page)) {
663		if (PageDirty(page)) {
664			/*
665			 * we need to write the data to the defect sector. the
666			 * data that was in that sector is not in memory,
667			 * because the page was modified. we must not write the
668			 * modified page to that sector.
669			 *
670			 * TODO: what could be done here: wait for the delalloc
671			 *       runner to write out that page (might involve
672			 *       COW) and see whether the sector is still
673			 *       referenced afterwards.
674			 *
675			 * For the meantime, we'll treat this error
676			 * incorrectable, although there is a chance that a
677			 * later scrub will find the bad sector again and that
678			 * there's no dirty page in memory, then.
679			 */
680			ret = -EIO;
681			goto out;
682		}
683		fs_info = BTRFS_I(inode)->root->fs_info;
684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
685					fixup->logical, page,
686					fixup->mirror_num);
687		unlock_page(page);
688		corrected = !ret;
689	} else {
690		/*
691		 * we need to get good data first. the general readpage path
692		 * will call repair_io_failure for us, we just have to make
693		 * sure we read the bad mirror.
694		 */
695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
696					EXTENT_DAMAGED, GFP_NOFS);
697		if (ret) {
698			/* set_extent_bits should give proper error */
699			WARN_ON(ret > 0);
700			if (ret > 0)
701				ret = -EFAULT;
702			goto out;
703		}
704
705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
706						btrfs_get_extent,
707						fixup->mirror_num);
708		wait_on_page_locked(page);
709
710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
711						end, EXTENT_DAMAGED, 0, NULL);
712		if (!corrected)
713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
714						EXTENT_DAMAGED, GFP_NOFS);
715	}
716
717out:
718	if (page)
719		put_page(page);
720	if (inode)
721		iput(inode);
722
723	if (ret < 0)
724		return ret;
725
726	if (ret == 0 && corrected) {
727		/*
728		 * we only need to call readpage for one of the inodes belonging
729		 * to this extent. so make iterate_extent_inodes stop
730		 */
731		return 1;
732	}
733
734	return -EIO;
735}
736
737static void scrub_fixup_nodatasum(struct btrfs_work *work)
738{
739	int ret;
740	struct scrub_fixup_nodatasum *fixup;
741	struct scrub_ctx *sctx;
742	struct btrfs_trans_handle *trans = NULL;
743	struct btrfs_path *path;
744	int uncorrectable = 0;
745
746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
747	sctx = fixup->sctx;
748
749	path = btrfs_alloc_path();
750	if (!path) {
751		spin_lock(&sctx->stat_lock);
752		++sctx->stat.malloc_errors;
753		spin_unlock(&sctx->stat_lock);
754		uncorrectable = 1;
755		goto out;
756	}
757
758	trans = btrfs_join_transaction(fixup->root);
759	if (IS_ERR(trans)) {
760		uncorrectable = 1;
761		goto out;
762	}
763
764	/*
765	 * the idea is to trigger a regular read through the standard path. we
766	 * read a page from the (failed) logical address by specifying the
767	 * corresponding copynum of the failed sector. thus, that readpage is
768	 * expected to fail.
769	 * that is the point where on-the-fly error correction will kick in
770	 * (once it's finished) and rewrite the failed sector if a good copy
771	 * can be found.
772	 */
773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
774						path, scrub_fixup_readpage,
775						fixup);
776	if (ret < 0) {
777		uncorrectable = 1;
778		goto out;
779	}
780	WARN_ON(ret != 1);
781
782	spin_lock(&sctx->stat_lock);
783	++sctx->stat.corrected_errors;
784	spin_unlock(&sctx->stat_lock);
785
786out:
787	if (trans && !IS_ERR(trans))
788		btrfs_end_transaction(trans, fixup->root);
789	if (uncorrectable) {
790		spin_lock(&sctx->stat_lock);
791		++sctx->stat.uncorrectable_errors;
792		spin_unlock(&sctx->stat_lock);
793		btrfs_dev_replace_stats_inc(
794			&sctx->dev_root->fs_info->dev_replace.
795			num_uncorrectable_read_errors);
796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
798			fixup->logical, rcu_str_deref(fixup->dev->name));
799	}
800
801	btrfs_free_path(path);
802	kfree(fixup);
803
804	scrub_pending_trans_workers_dec(sctx);
805}
806
807/*
808 * scrub_handle_errored_block gets called when either verification of the
809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
810 * case, this function handles all pages in the bio, even though only one
811 * may be bad.
812 * The goal of this function is to repair the errored block by using the
813 * contents of one of the mirrors.
814 */
815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
816{
817	struct scrub_ctx *sctx = sblock_to_check->sctx;
818	struct btrfs_device *dev;
819	struct btrfs_fs_info *fs_info;
820	u64 length;
821	u64 logical;
822	u64 generation;
823	unsigned int failed_mirror_index;
824	unsigned int is_metadata;
825	unsigned int have_csum;
826	u8 *csum;
827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828	struct scrub_block *sblock_bad;
829	int ret;
830	int mirror_index;
831	int page_num;
832	int success;
833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
834				      DEFAULT_RATELIMIT_BURST);
835
836	BUG_ON(sblock_to_check->page_count < 1);
837	fs_info = sctx->dev_root->fs_info;
838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
839		/*
840		 * if we find an error in a super block, we just report it.
841		 * They will get written with the next transaction commit
842		 * anyway
843		 */
844		spin_lock(&sctx->stat_lock);
845		++sctx->stat.super_errors;
846		spin_unlock(&sctx->stat_lock);
847		return 0;
848	}
849	length = sblock_to_check->page_count * PAGE_SIZE;
850	logical = sblock_to_check->pagev[0]->logical;
851	generation = sblock_to_check->pagev[0]->generation;
852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854	is_metadata = !(sblock_to_check->pagev[0]->flags &
855			BTRFS_EXTENT_FLAG_DATA);
856	have_csum = sblock_to_check->pagev[0]->have_csum;
857	csum = sblock_to_check->pagev[0]->csum;
858	dev = sblock_to_check->pagev[0]->dev;
859
860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
861		sblocks_for_recheck = NULL;
862		goto nodatasum_case;
863	}
864
865	/*
866	 * read all mirrors one after the other. This includes to
867	 * re-read the extent or metadata block that failed (that was
868	 * the cause that this fixup code is called) another time,
869	 * page by page this time in order to know which pages
870	 * caused I/O errors and which ones are good (for all mirrors).
871	 * It is the goal to handle the situation when more than one
872	 * mirror contains I/O errors, but the errors do not
873	 * overlap, i.e. the data can be repaired by selecting the
874	 * pages from those mirrors without I/O error on the
875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
876	 * would be that mirror #1 has an I/O error on the first page,
877	 * the second page is good, and mirror #2 has an I/O error on
878	 * the second page, but the first page is good.
879	 * Then the first page of the first mirror can be repaired by
880	 * taking the first page of the second mirror, and the
881	 * second page of the second mirror can be repaired by
882	 * copying the contents of the 2nd page of the 1st mirror.
883	 * One more note: if the pages of one mirror contain I/O
884	 * errors, the checksum cannot be verified. In order to get
885	 * the best data for repairing, the first attempt is to find
886	 * a mirror without I/O errors and with a validated checksum.
887	 * Only if this is not possible, the pages are picked from
888	 * mirrors with I/O errors without considering the checksum.
889	 * If the latter is the case, at the end, the checksum of the
890	 * repaired area is verified in order to correctly maintain
891	 * the statistics.
892	 */
893
894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
895				     sizeof(*sblocks_for_recheck),
896				     GFP_NOFS);
897	if (!sblocks_for_recheck) {
898		spin_lock(&sctx->stat_lock);
899		sctx->stat.malloc_errors++;
900		sctx->stat.read_errors++;
901		sctx->stat.uncorrectable_errors++;
902		spin_unlock(&sctx->stat_lock);
903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
904		goto out;
905	}
906
907	/* setup the context, map the logical blocks and alloc the pages */
908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
909					logical, sblocks_for_recheck);
910	if (ret) {
911		spin_lock(&sctx->stat_lock);
912		sctx->stat.read_errors++;
913		sctx->stat.uncorrectable_errors++;
914		spin_unlock(&sctx->stat_lock);
915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
916		goto out;
917	}
918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
920
921	/* build and submit the bios for the failed mirror, check checksums */
922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
923			    csum, generation, sctx->csum_size);
924
925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
926	    sblock_bad->no_io_error_seen) {
927		/*
928		 * the error disappeared after reading page by page, or
929		 * the area was part of a huge bio and other parts of the
930		 * bio caused I/O errors, or the block layer merged several
931		 * read requests into one and the error is caused by a
932		 * different bio (usually one of the two latter cases is
933		 * the cause)
934		 */
935		spin_lock(&sctx->stat_lock);
936		sctx->stat.unverified_errors++;
937		spin_unlock(&sctx->stat_lock);
938
939		if (sctx->is_dev_replace)
940			scrub_write_block_to_dev_replace(sblock_bad);
941		goto out;
942	}
943
944	if (!sblock_bad->no_io_error_seen) {
945		spin_lock(&sctx->stat_lock);
946		sctx->stat.read_errors++;
947		spin_unlock(&sctx->stat_lock);
948		if (__ratelimit(&_rs))
949			scrub_print_warning("i/o error", sblock_to_check);
950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
951	} else if (sblock_bad->checksum_error) {
952		spin_lock(&sctx->stat_lock);
953		sctx->stat.csum_errors++;
954		spin_unlock(&sctx->stat_lock);
955		if (__ratelimit(&_rs))
956			scrub_print_warning("checksum error", sblock_to_check);
957		btrfs_dev_stat_inc_and_print(dev,
958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
959	} else if (sblock_bad->header_error) {
960		spin_lock(&sctx->stat_lock);
961		sctx->stat.verify_errors++;
962		spin_unlock(&sctx->stat_lock);
963		if (__ratelimit(&_rs))
964			scrub_print_warning("checksum/header error",
965					    sblock_to_check);
966		if (sblock_bad->generation_error)
967			btrfs_dev_stat_inc_and_print(dev,
968				BTRFS_DEV_STAT_GENERATION_ERRS);
969		else
970			btrfs_dev_stat_inc_and_print(dev,
971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
972	}
973
974	if (sctx->readonly) {
975		ASSERT(!sctx->is_dev_replace);
976		goto out;
977	}
978
979	if (!is_metadata && !have_csum) {
980		struct scrub_fixup_nodatasum *fixup_nodatasum;
981
982nodatasum_case:
983		WARN_ON(sctx->is_dev_replace);
984
985		/*
986		 * !is_metadata and !have_csum, this means that the data
987		 * might not be COW'ed, that it might be modified
988		 * concurrently. The general strategy to work on the
989		 * commit root does not help in the case when COW is not
990		 * used.
991		 */
992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
993		if (!fixup_nodatasum)
994			goto did_not_correct_error;
995		fixup_nodatasum->sctx = sctx;
996		fixup_nodatasum->dev = dev;
997		fixup_nodatasum->logical = logical;
998		fixup_nodatasum->root = fs_info->extent_root;
999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
1108		goto out;
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144
1145		if (!page_bad->io_error)
1146			continue;
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
1163				}
1164			}
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
1170		}
1171	}
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
1223				scrub_page_put(sblock->pagev[page_index]);
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
1228
1229	return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
1236				     struct scrub_block *sblocks_for_recheck)
1237{
1238	int page_index;
1239	int mirror_index;
1240	int ret;
1241
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
1308}
1309
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
1336		}
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
1341			page->io_error = 1;
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_sector = page->physical >> 9;
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
1351
1352		bio_put(bio);
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
1359
1360	return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413	}
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
1423{
1424	int page_num;
1425	int ret = 0;
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
1438	return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
1453		int ret;
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_sector = page_bad->physical >> 9;
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
1485
1486	return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
1491	int page_num;
1492
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
1525	int ret;
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
1554		}
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_sector = sbio->physical >> 9;
1560		sbio->err = 0;
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
1626	int i;
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
1639		}
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
1651{
1652	u64 flags;
1653	int ret;
1654
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
1686		return 0;
1687
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
1712
1713	return fail;
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
1733
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
1784
1785	return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
1883{
1884	atomic_inc(&spage->ref_count);
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
1893	}
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
1899
1900	if (sctx->curr == -1)
1901		return;
1902
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_sector = sbio->physical >> 9;
1966		sbio->err = 0;
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
1994	return 0;
1995}
1996
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
2003	int index;
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
2070
2071	if (force)
2072		scrub_submit(sctx);
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
2103		}
2104	}
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
2135	if (!sblock->no_io_error_seen) {
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
2153	unsigned long num_sectors;
2154
2155	while (!list_empty(&sctx->csum_list)) {
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
2174	if (index == num_sectors - 1) {
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
2228		if (ret)
2229			return ret;
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
2238static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2239					   struct map_lookup *map,
2240					   struct btrfs_device *scrub_dev,
2241					   int num, u64 base, u64 length,
2242					   int is_dev_replace)
2243{
2244	struct btrfs_path *path;
2245	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2246	struct btrfs_root *root = fs_info->extent_root;
2247	struct btrfs_root *csum_root = fs_info->csum_root;
2248	struct btrfs_extent_item *extent;
2249	struct blk_plug plug;
2250	u64 flags;
2251	int ret;
2252	int slot;
2253	u64 nstripes;
2254	struct extent_buffer *l;
2255	struct btrfs_key key;
2256	u64 physical;
2257	u64 logical;
2258	u64 logic_end;
2259	u64 generation;
2260	int mirror_num;
2261	struct reada_control *reada1;
2262	struct reada_control *reada2;
2263	struct btrfs_key key_start;
2264	struct btrfs_key key_end;
2265	u64 increment = map->stripe_len;
2266	u64 offset;
2267	u64 extent_logical;
2268	u64 extent_physical;
2269	u64 extent_len;
2270	struct btrfs_device *extent_dev;
2271	int extent_mirror_num;
2272	int stop_loop;
2273
2274	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2275			 BTRFS_BLOCK_GROUP_RAID6)) {
2276		if (num >= nr_data_stripes(map)) {
2277			return 0;
2278		}
2279	}
2280
2281	nstripes = length;
2282	offset = 0;
2283	do_div(nstripes, map->stripe_len);
2284	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2285		offset = map->stripe_len * num;
2286		increment = map->stripe_len * map->num_stripes;
2287		mirror_num = 1;
2288	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2289		int factor = map->num_stripes / map->sub_stripes;
2290		offset = map->stripe_len * (num / map->sub_stripes);
2291		increment = map->stripe_len * factor;
2292		mirror_num = num % map->sub_stripes + 1;
2293	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2294		increment = map->stripe_len;
2295		mirror_num = num % map->num_stripes + 1;
2296	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2297		increment = map->stripe_len;
2298		mirror_num = num % map->num_stripes + 1;
2299	} else {
2300		increment = map->stripe_len;
2301		mirror_num = 1;
2302	}
2303
2304	path = btrfs_alloc_path();
2305	if (!path)
2306		return -ENOMEM;
2307
2308	/*
2309	 * work on commit root. The related disk blocks are static as
2310	 * long as COW is applied. This means, it is save to rewrite
2311	 * them to repair disk errors without any race conditions
2312	 */
2313	path->search_commit_root = 1;
2314	path->skip_locking = 1;
2315
2316	/*
2317	 * trigger the readahead for extent tree csum tree and wait for
2318	 * completion. During readahead, the scrub is officially paused
2319	 * to not hold off transaction commits
2320	 */
2321	logical = base + offset;
2322
2323	wait_event(sctx->list_wait,
2324		   atomic_read(&sctx->bios_in_flight) == 0);
2325	scrub_blocked_if_needed(fs_info);
2326
2327	/* FIXME it might be better to start readahead at commit root */
2328	key_start.objectid = logical;
2329	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2330	key_start.offset = (u64)0;
2331	key_end.objectid = base + offset + nstripes * increment;
2332	key_end.type = BTRFS_METADATA_ITEM_KEY;
2333	key_end.offset = (u64)-1;
2334	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2335
2336	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2337	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2338	key_start.offset = logical;
2339	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2340	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2341	key_end.offset = base + offset + nstripes * increment;
2342	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2343
2344	if (!IS_ERR(reada1))
2345		btrfs_reada_wait(reada1);
2346	if (!IS_ERR(reada2))
2347		btrfs_reada_wait(reada2);
2348
2349
2350	/*
2351	 * collect all data csums for the stripe to avoid seeking during
2352	 * the scrub. This might currently (crc32) end up to be about 1MB
2353	 */
2354	blk_start_plug(&plug);
2355
2356	/*
2357	 * now find all extents for each stripe and scrub them
2358	 */
2359	logical = base + offset;
2360	physical = map->stripes[num].physical;
2361	logic_end = logical + increment * nstripes;
2362	ret = 0;
2363	while (logical < logic_end) {
2364		/*
2365		 * canceled?
2366		 */
2367		if (atomic_read(&fs_info->scrub_cancel_req) ||
2368		    atomic_read(&sctx->cancel_req)) {
2369			ret = -ECANCELED;
2370			goto out;
2371		}
2372		/*
2373		 * check to see if we have to pause
2374		 */
2375		if (atomic_read(&fs_info->scrub_pause_req)) {
2376			/* push queued extents */
2377			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2378			scrub_submit(sctx);
2379			mutex_lock(&sctx->wr_ctx.wr_lock);
2380			scrub_wr_submit(sctx);
2381			mutex_unlock(&sctx->wr_ctx.wr_lock);
2382			wait_event(sctx->list_wait,
2383				   atomic_read(&sctx->bios_in_flight) == 0);
2384			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2385			scrub_blocked_if_needed(fs_info);
2386		}
2387
2388		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2389			key.type = BTRFS_METADATA_ITEM_KEY;
2390		else
2391			key.type = BTRFS_EXTENT_ITEM_KEY;
2392		key.objectid = logical;
2393		key.offset = (u64)-1;
2394
2395		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2396		if (ret < 0)
2397			goto out;
2398
2399		if (ret > 0) {
2400			ret = btrfs_previous_extent_item(root, path, 0);
2401			if (ret < 0)
2402				goto out;
2403			if (ret > 0) {
2404				/* there's no smaller item, so stick with the
2405				 * larger one */
2406				btrfs_release_path(path);
2407				ret = btrfs_search_slot(NULL, root, &key,
2408							path, 0, 0);
2409				if (ret < 0)
2410					goto out;
2411			}
2412		}
2413
2414		stop_loop = 0;
2415		while (1) {
2416			u64 bytes;
2417
2418			l = path->nodes[0];
2419			slot = path->slots[0];
2420			if (slot >= btrfs_header_nritems(l)) {
2421				ret = btrfs_next_leaf(root, path);
2422				if (ret == 0)
2423					continue;
2424				if (ret < 0)
2425					goto out;
2426
2427				stop_loop = 1;
2428				break;
2429			}
2430			btrfs_item_key_to_cpu(l, &key, slot);
2431
2432			if (key.type == BTRFS_METADATA_ITEM_KEY)
2433				bytes = root->leafsize;
2434			else
2435				bytes = key.offset;
2436
2437			if (key.objectid + bytes <= logical)
2438				goto next;
2439
2440			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2441			    key.type != BTRFS_METADATA_ITEM_KEY)
2442				goto next;
2443
2444			if (key.objectid >= logical + map->stripe_len) {
2445				/* out of this device extent */
2446				if (key.objectid >= logic_end)
2447					stop_loop = 1;
2448				break;
2449			}
2450
2451			extent = btrfs_item_ptr(l, slot,
2452						struct btrfs_extent_item);
2453			flags = btrfs_extent_flags(l, extent);
2454			generation = btrfs_extent_generation(l, extent);
2455
2456			if (key.objectid < logical &&
2457			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2458				btrfs_err(fs_info,
2459					   "scrub: tree block %llu spanning "
2460					   "stripes, ignored. logical=%llu",
2461				       key.objectid, logical);
2462				goto next;
2463			}
2464
2465again:
2466			extent_logical = key.objectid;
2467			extent_len = bytes;
2468
2469			/*
2470			 * trim extent to this stripe
2471			 */
2472			if (extent_logical < logical) {
2473				extent_len -= logical - extent_logical;
2474				extent_logical = logical;
2475			}
2476			if (extent_logical + extent_len >
2477			    logical + map->stripe_len) {
2478				extent_len = logical + map->stripe_len -
2479					     extent_logical;
2480			}
2481
2482			extent_physical = extent_logical - logical + physical;
2483			extent_dev = scrub_dev;
2484			extent_mirror_num = mirror_num;
2485			if (is_dev_replace)
2486				scrub_remap_extent(fs_info, extent_logical,
2487						   extent_len, &extent_physical,
2488						   &extent_dev,
2489						   &extent_mirror_num);
2490
2491			ret = btrfs_lookup_csums_range(csum_root, logical,
2492						logical + map->stripe_len - 1,
2493						&sctx->csum_list, 1);
2494			if (ret)
2495				goto out;
2496
2497			ret = scrub_extent(sctx, extent_logical, extent_len,
2498					   extent_physical, extent_dev, flags,
2499					   generation, extent_mirror_num,
2500					   extent_logical - logical + physical);
2501			if (ret)
2502				goto out;
2503
2504			scrub_free_csums(sctx);
2505			if (extent_logical + extent_len <
2506			    key.objectid + bytes) {
2507				logical += increment;
2508				physical += map->stripe_len;
2509
2510				if (logical < key.objectid + bytes) {
2511					cond_resched();
2512					goto again;
2513				}
2514
2515				if (logical >= logic_end) {
2516					stop_loop = 1;
2517					break;
2518				}
2519			}
2520next:
2521			path->slots[0]++;
2522		}
2523		btrfs_release_path(path);
2524		logical += increment;
2525		physical += map->stripe_len;
2526		spin_lock(&sctx->stat_lock);
2527		if (stop_loop)
2528			sctx->stat.last_physical = map->stripes[num].physical +
2529						   length;
2530		else
2531			sctx->stat.last_physical = physical;
2532		spin_unlock(&sctx->stat_lock);
2533		if (stop_loop)
2534			break;
2535	}
2536out:
2537	/* push queued extents */
2538	scrub_submit(sctx);
2539	mutex_lock(&sctx->wr_ctx.wr_lock);
2540	scrub_wr_submit(sctx);
2541	mutex_unlock(&sctx->wr_ctx.wr_lock);
2542
2543	blk_finish_plug(&plug);
2544	btrfs_free_path(path);
2545	return ret < 0 ? ret : 0;
2546}
2547
2548static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2549					  struct btrfs_device *scrub_dev,
2550					  u64 chunk_tree, u64 chunk_objectid,
2551					  u64 chunk_offset, u64 length,
2552					  u64 dev_offset, int is_dev_replace)
2553{
2554	struct btrfs_mapping_tree *map_tree =
2555		&sctx->dev_root->fs_info->mapping_tree;
2556	struct map_lookup *map;
2557	struct extent_map *em;
2558	int i;
2559	int ret = 0;
2560
2561	read_lock(&map_tree->map_tree.lock);
2562	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2563	read_unlock(&map_tree->map_tree.lock);
2564
2565	if (!em)
2566		return -EINVAL;
2567
2568	map = (struct map_lookup *)em->bdev;
2569	if (em->start != chunk_offset)
2570		goto out;
2571
2572	if (em->len < length)
2573		goto out;
2574
2575	for (i = 0; i < map->num_stripes; ++i) {
2576		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2577		    map->stripes[i].physical == dev_offset) {
2578			ret = scrub_stripe(sctx, map, scrub_dev, i,
2579					   chunk_offset, length,
2580					   is_dev_replace);
2581			if (ret)
2582				goto out;
2583		}
2584	}
2585out:
2586	free_extent_map(em);
2587
2588	return ret;
2589}
2590
2591static noinline_for_stack
2592int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2593			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2594			   int is_dev_replace)
2595{
2596	struct btrfs_dev_extent *dev_extent = NULL;
2597	struct btrfs_path *path;
2598	struct btrfs_root *root = sctx->dev_root;
2599	struct btrfs_fs_info *fs_info = root->fs_info;
2600	u64 length;
2601	u64 chunk_tree;
2602	u64 chunk_objectid;
2603	u64 chunk_offset;
2604	int ret;
2605	int slot;
2606	struct extent_buffer *l;
2607	struct btrfs_key key;
2608	struct btrfs_key found_key;
2609	struct btrfs_block_group_cache *cache;
2610	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2611
2612	path = btrfs_alloc_path();
2613	if (!path)
2614		return -ENOMEM;
2615
2616	path->reada = 2;
2617	path->search_commit_root = 1;
2618	path->skip_locking = 1;
2619
2620	key.objectid = scrub_dev->devid;
2621	key.offset = 0ull;
2622	key.type = BTRFS_DEV_EXTENT_KEY;
2623
2624	while (1) {
2625		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2626		if (ret < 0)
2627			break;
2628		if (ret > 0) {
2629			if (path->slots[0] >=
2630			    btrfs_header_nritems(path->nodes[0])) {
2631				ret = btrfs_next_leaf(root, path);
2632				if (ret)
2633					break;
2634			}
2635		}
2636
2637		l = path->nodes[0];
2638		slot = path->slots[0];
2639
2640		btrfs_item_key_to_cpu(l, &found_key, slot);
2641
2642		if (found_key.objectid != scrub_dev->devid)
2643			break;
2644
2645		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2646			break;
2647
2648		if (found_key.offset >= end)
2649			break;
2650
2651		if (found_key.offset < key.offset)
2652			break;
2653
2654		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2655		length = btrfs_dev_extent_length(l, dev_extent);
2656
2657		if (found_key.offset + length <= start) {
2658			key.offset = found_key.offset + length;
2659			btrfs_release_path(path);
2660			continue;
2661		}
2662
2663		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2664		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2665		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2666
2667		/*
2668		 * get a reference on the corresponding block group to prevent
2669		 * the chunk from going away while we scrub it
2670		 */
2671		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2672		if (!cache) {
2673			ret = -ENOENT;
2674			break;
2675		}
2676		dev_replace->cursor_right = found_key.offset + length;
2677		dev_replace->cursor_left = found_key.offset;
2678		dev_replace->item_needs_writeback = 1;
2679		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2680				  chunk_offset, length, found_key.offset,
2681				  is_dev_replace);
2682
2683		/*
2684		 * flush, submit all pending read and write bios, afterwards
2685		 * wait for them.
2686		 * Note that in the dev replace case, a read request causes
2687		 * write requests that are submitted in the read completion
2688		 * worker. Therefore in the current situation, it is required
2689		 * that all write requests are flushed, so that all read and
2690		 * write requests are really completed when bios_in_flight
2691		 * changes to 0.
2692		 */
2693		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2694		scrub_submit(sctx);
2695		mutex_lock(&sctx->wr_ctx.wr_lock);
2696		scrub_wr_submit(sctx);
2697		mutex_unlock(&sctx->wr_ctx.wr_lock);
2698
2699		wait_event(sctx->list_wait,
2700			   atomic_read(&sctx->bios_in_flight) == 0);
2701		atomic_inc(&fs_info->scrubs_paused);
2702		wake_up(&fs_info->scrub_pause_wait);
2703
2704		/*
2705		 * must be called before we decrease @scrub_paused.
2706		 * make sure we don't block transaction commit while
2707		 * we are waiting pending workers finished.
2708		 */
2709		wait_event(sctx->list_wait,
2710			   atomic_read(&sctx->workers_pending) == 0);
2711		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2712
2713		mutex_lock(&fs_info->scrub_lock);
2714		__scrub_blocked_if_needed(fs_info);
2715		atomic_dec(&fs_info->scrubs_paused);
2716		mutex_unlock(&fs_info->scrub_lock);
2717		wake_up(&fs_info->scrub_pause_wait);
2718
2719		btrfs_put_block_group(cache);
2720		if (ret)
2721			break;
2722		if (is_dev_replace &&
2723		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2724			ret = -EIO;
2725			break;
2726		}
2727		if (sctx->stat.malloc_errors > 0) {
2728			ret = -ENOMEM;
2729			break;
2730		}
2731
2732		dev_replace->cursor_left = dev_replace->cursor_right;
2733		dev_replace->item_needs_writeback = 1;
2734
2735		key.offset = found_key.offset + length;
2736		btrfs_release_path(path);
2737	}
2738
2739	btrfs_free_path(path);
2740
2741	/*
2742	 * ret can still be 1 from search_slot or next_leaf,
2743	 * that's not an error
2744	 */
2745	return ret < 0 ? ret : 0;
2746}
2747
2748static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2749					   struct btrfs_device *scrub_dev)
2750{
2751	int	i;
2752	u64	bytenr;
2753	u64	gen;
2754	int	ret;
2755	struct btrfs_root *root = sctx->dev_root;
2756
2757	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2758		return -EIO;
2759
2760	gen = root->fs_info->last_trans_committed;
2761
2762	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2763		bytenr = btrfs_sb_offset(i);
2764		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2765			break;
2766
2767		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2768				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2769				  NULL, 1, bytenr);
2770		if (ret)
2771			return ret;
2772	}
2773	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2774
2775	return 0;
2776}
2777
2778/*
2779 * get a reference count on fs_info->scrub_workers. start worker if necessary
2780 */
2781static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2782						int is_dev_replace)
2783{
2784	int ret = 0;
2785	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2786	int max_active = fs_info->thread_pool_size;
2787
2788	if (fs_info->scrub_workers_refcnt == 0) {
2789		if (is_dev_replace)
2790			fs_info->scrub_workers =
2791				btrfs_alloc_workqueue("btrfs-scrub", flags,
2792						      1, 4);
2793		else
2794			fs_info->scrub_workers =
2795				btrfs_alloc_workqueue("btrfs-scrub", flags,
2796						      max_active, 4);
2797		if (!fs_info->scrub_workers) {
2798			ret = -ENOMEM;
2799			goto out;
2800		}
2801		fs_info->scrub_wr_completion_workers =
2802			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2803					      max_active, 2);
2804		if (!fs_info->scrub_wr_completion_workers) {
2805			ret = -ENOMEM;
2806			goto out;
2807		}
2808		fs_info->scrub_nocow_workers =
2809			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2810		if (!fs_info->scrub_nocow_workers) {
2811			ret = -ENOMEM;
2812			goto out;
2813		}
2814	}
2815	++fs_info->scrub_workers_refcnt;
2816out:
2817	return ret;
2818}
2819
2820static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2821{
2822	if (--fs_info->scrub_workers_refcnt == 0) {
2823		btrfs_destroy_workqueue(fs_info->scrub_workers);
2824		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2825		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2826	}
2827	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2828}
2829
2830int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2831		    u64 end, struct btrfs_scrub_progress *progress,
2832		    int readonly, int is_dev_replace)
2833{
2834	struct scrub_ctx *sctx;
2835	int ret;
2836	struct btrfs_device *dev;
2837
2838	if (btrfs_fs_closing(fs_info))
2839		return -EINVAL;
2840
2841	/*
2842	 * check some assumptions
2843	 */
2844	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2845		btrfs_err(fs_info,
2846			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2847		       fs_info->chunk_root->nodesize,
2848		       fs_info->chunk_root->leafsize);
2849		return -EINVAL;
2850	}
2851
2852	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2853		/*
2854		 * in this case scrub is unable to calculate the checksum
2855		 * the way scrub is implemented. Do not handle this
2856		 * situation at all because it won't ever happen.
2857		 */
2858		btrfs_err(fs_info,
2859			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2860		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2861		return -EINVAL;
2862	}
2863
2864	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2865		/* not supported for data w/o checksums */
2866		btrfs_err(fs_info,
2867			   "scrub: size assumption sectorsize != PAGE_SIZE "
2868			   "(%d != %lu) fails",
2869		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2870		return -EINVAL;
2871	}
2872
2873	if (fs_info->chunk_root->nodesize >
2874	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2875	    fs_info->chunk_root->sectorsize >
2876	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2877		/*
2878		 * would exhaust the array bounds of pagev member in
2879		 * struct scrub_block
2880		 */
2881		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2882			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2883		       fs_info->chunk_root->nodesize,
2884		       SCRUB_MAX_PAGES_PER_BLOCK,
2885		       fs_info->chunk_root->sectorsize,
2886		       SCRUB_MAX_PAGES_PER_BLOCK);
2887		return -EINVAL;
2888	}
2889
2890
2891	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2892	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2893	if (!dev || (dev->missing && !is_dev_replace)) {
2894		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2895		return -ENODEV;
2896	}
2897
2898	mutex_lock(&fs_info->scrub_lock);
2899	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2900		mutex_unlock(&fs_info->scrub_lock);
2901		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2902		return -EIO;
2903	}
2904
2905	btrfs_dev_replace_lock(&fs_info->dev_replace);
2906	if (dev->scrub_device ||
2907	    (!is_dev_replace &&
2908	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2909		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2910		mutex_unlock(&fs_info->scrub_lock);
2911		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2912		return -EINPROGRESS;
2913	}
2914	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2915
2916	ret = scrub_workers_get(fs_info, is_dev_replace);
2917	if (ret) {
2918		mutex_unlock(&fs_info->scrub_lock);
2919		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2920		return ret;
2921	}
2922
2923	sctx = scrub_setup_ctx(dev, is_dev_replace);
2924	if (IS_ERR(sctx)) {
2925		mutex_unlock(&fs_info->scrub_lock);
2926		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2927		scrub_workers_put(fs_info);
2928		return PTR_ERR(sctx);
2929	}
2930	sctx->readonly = readonly;
2931	dev->scrub_device = sctx;
2932	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933
2934	/*
2935	 * checking @scrub_pause_req here, we can avoid
2936	 * race between committing transaction and scrubbing.
2937	 */
2938	__scrub_blocked_if_needed(fs_info);
2939	atomic_inc(&fs_info->scrubs_running);
2940	mutex_unlock(&fs_info->scrub_lock);
2941
2942	if (!is_dev_replace) {
2943		/*
2944		 * by holding device list mutex, we can
2945		 * kick off writing super in log tree sync.
2946		 */
2947		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2948		ret = scrub_supers(sctx, dev);
2949		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950	}
2951
2952	if (!ret)
2953		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2954					     is_dev_replace);
2955
2956	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2957	atomic_dec(&fs_info->scrubs_running);
2958	wake_up(&fs_info->scrub_pause_wait);
2959
2960	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2961
2962	if (progress)
2963		memcpy(progress, &sctx->stat, sizeof(*progress));
2964
2965	mutex_lock(&fs_info->scrub_lock);
2966	dev->scrub_device = NULL;
2967	scrub_workers_put(fs_info);
2968	mutex_unlock(&fs_info->scrub_lock);
2969
2970	scrub_free_ctx(sctx);
2971
2972	return ret;
2973}
2974
2975void btrfs_scrub_pause(struct btrfs_root *root)
2976{
2977	struct btrfs_fs_info *fs_info = root->fs_info;
2978
2979	mutex_lock(&fs_info->scrub_lock);
2980	atomic_inc(&fs_info->scrub_pause_req);
2981	while (atomic_read(&fs_info->scrubs_paused) !=
2982	       atomic_read(&fs_info->scrubs_running)) {
2983		mutex_unlock(&fs_info->scrub_lock);
2984		wait_event(fs_info->scrub_pause_wait,
2985			   atomic_read(&fs_info->scrubs_paused) ==
2986			   atomic_read(&fs_info->scrubs_running));
2987		mutex_lock(&fs_info->scrub_lock);
2988	}
2989	mutex_unlock(&fs_info->scrub_lock);
2990}
2991
2992void btrfs_scrub_continue(struct btrfs_root *root)
2993{
2994	struct btrfs_fs_info *fs_info = root->fs_info;
2995
2996	atomic_dec(&fs_info->scrub_pause_req);
2997	wake_up(&fs_info->scrub_pause_wait);
2998}
2999
3000int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3001{
3002	mutex_lock(&fs_info->scrub_lock);
3003	if (!atomic_read(&fs_info->scrubs_running)) {
3004		mutex_unlock(&fs_info->scrub_lock);
3005		return -ENOTCONN;
3006	}
3007
3008	atomic_inc(&fs_info->scrub_cancel_req);
3009	while (atomic_read(&fs_info->scrubs_running)) {
3010		mutex_unlock(&fs_info->scrub_lock);
3011		wait_event(fs_info->scrub_pause_wait,
3012			   atomic_read(&fs_info->scrubs_running) == 0);
3013		mutex_lock(&fs_info->scrub_lock);
3014	}
3015	atomic_dec(&fs_info->scrub_cancel_req);
3016	mutex_unlock(&fs_info->scrub_lock);
3017
3018	return 0;
3019}
3020
3021int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3022			   struct btrfs_device *dev)
3023{
3024	struct scrub_ctx *sctx;
3025
3026	mutex_lock(&fs_info->scrub_lock);
3027	sctx = dev->scrub_device;
3028	if (!sctx) {
3029		mutex_unlock(&fs_info->scrub_lock);
3030		return -ENOTCONN;
3031	}
3032	atomic_inc(&sctx->cancel_req);
3033	while (dev->scrub_device) {
3034		mutex_unlock(&fs_info->scrub_lock);
3035		wait_event(fs_info->scrub_pause_wait,
3036			   dev->scrub_device == NULL);
3037		mutex_lock(&fs_info->scrub_lock);
3038	}
3039	mutex_unlock(&fs_info->scrub_lock);
3040
3041	return 0;
3042}
3043
3044int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3045			 struct btrfs_scrub_progress *progress)
3046{
3047	struct btrfs_device *dev;
3048	struct scrub_ctx *sctx = NULL;
3049
3050	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3051	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3052	if (dev)
3053		sctx = dev->scrub_device;
3054	if (sctx)
3055		memcpy(progress, &sctx->stat, sizeof(*progress));
3056	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3057
3058	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3059}
3060
3061static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3062			       u64 extent_logical, u64 extent_len,
3063			       u64 *extent_physical,
3064			       struct btrfs_device **extent_dev,
3065			       int *extent_mirror_num)
3066{
3067	u64 mapped_length;
3068	struct btrfs_bio *bbio = NULL;
3069	int ret;
3070
3071	mapped_length = extent_len;
3072	ret = btrfs_map_block(fs_info, READ, extent_logical,
3073			      &mapped_length, &bbio, 0);
3074	if (ret || !bbio || mapped_length < extent_len ||
3075	    !bbio->stripes[0].dev->bdev) {
3076		kfree(bbio);
3077		return;
3078	}
3079
3080	*extent_physical = bbio->stripes[0].physical;
3081	*extent_mirror_num = bbio->mirror_num;
3082	*extent_dev = bbio->stripes[0].dev;
3083	kfree(bbio);
3084}
3085
3086static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3087			      struct scrub_wr_ctx *wr_ctx,
3088			      struct btrfs_fs_info *fs_info,
3089			      struct btrfs_device *dev,
3090			      int is_dev_replace)
3091{
3092	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3093
3094	mutex_init(&wr_ctx->wr_lock);
3095	wr_ctx->wr_curr_bio = NULL;
3096	if (!is_dev_replace)
3097		return 0;
3098
3099	WARN_ON(!dev->bdev);
3100	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3101					 bio_get_nr_vecs(dev->bdev));
3102	wr_ctx->tgtdev = dev;
3103	atomic_set(&wr_ctx->flush_all_writes, 0);
3104	return 0;
3105}
3106
3107static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3108{
3109	mutex_lock(&wr_ctx->wr_lock);
3110	kfree(wr_ctx->wr_curr_bio);
3111	wr_ctx->wr_curr_bio = NULL;
3112	mutex_unlock(&wr_ctx->wr_lock);
3113}
3114
3115static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3116			    int mirror_num, u64 physical_for_dev_replace)
3117{
3118	struct scrub_copy_nocow_ctx *nocow_ctx;
3119	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3120
3121	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3122	if (!nocow_ctx) {
3123		spin_lock(&sctx->stat_lock);
3124		sctx->stat.malloc_errors++;
3125		spin_unlock(&sctx->stat_lock);
3126		return -ENOMEM;
3127	}
3128
3129	scrub_pending_trans_workers_inc(sctx);
3130
3131	nocow_ctx->sctx = sctx;
3132	nocow_ctx->logical = logical;
3133	nocow_ctx->len = len;
3134	nocow_ctx->mirror_num = mirror_num;
3135	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3136	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3137	INIT_LIST_HEAD(&nocow_ctx->inodes);
3138	btrfs_queue_work(fs_info->scrub_nocow_workers,
3139			 &nocow_ctx->work);
3140
3141	return 0;
3142}
3143
3144static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3145{
3146	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3147	struct scrub_nocow_inode *nocow_inode;
3148
3149	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3150	if (!nocow_inode)
3151		return -ENOMEM;
3152	nocow_inode->inum = inum;
3153	nocow_inode->offset = offset;
3154	nocow_inode->root = root;
3155	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3156	return 0;
3157}
3158
3159#define COPY_COMPLETE 1
3160
3161static void copy_nocow_pages_worker(struct btrfs_work *work)
3162{
3163	struct scrub_copy_nocow_ctx *nocow_ctx =
3164		container_of(work, struct scrub_copy_nocow_ctx, work);
3165	struct scrub_ctx *sctx = nocow_ctx->sctx;
3166	u64 logical = nocow_ctx->logical;
3167	u64 len = nocow_ctx->len;
3168	int mirror_num = nocow_ctx->mirror_num;
3169	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3170	int ret;
3171	struct btrfs_trans_handle *trans = NULL;
3172	struct btrfs_fs_info *fs_info;
3173	struct btrfs_path *path;
3174	struct btrfs_root *root;
3175	int not_written = 0;
3176
3177	fs_info = sctx->dev_root->fs_info;
3178	root = fs_info->extent_root;
3179
3180	path = btrfs_alloc_path();
3181	if (!path) {
3182		spin_lock(&sctx->stat_lock);
3183		sctx->stat.malloc_errors++;
3184		spin_unlock(&sctx->stat_lock);
3185		not_written = 1;
3186		goto out;
3187	}
3188
3189	trans = btrfs_join_transaction(root);
3190	if (IS_ERR(trans)) {
3191		not_written = 1;
3192		goto out;
3193	}
3194
3195	ret = iterate_inodes_from_logical(logical, fs_info, path,
3196					  record_inode_for_nocow, nocow_ctx);
3197	if (ret != 0 && ret != -ENOENT) {
3198		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3199			"phys %llu, len %llu, mir %u, ret %d",
3200			logical, physical_for_dev_replace, len, mirror_num,
3201			ret);
3202		not_written = 1;
3203		goto out;
3204	}
3205
3206	btrfs_end_transaction(trans, root);
3207	trans = NULL;
3208	while (!list_empty(&nocow_ctx->inodes)) {
3209		struct scrub_nocow_inode *entry;
3210		entry = list_first_entry(&nocow_ctx->inodes,
3211					 struct scrub_nocow_inode,
3212					 list);
3213		list_del_init(&entry->list);
3214		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3215						 entry->root, nocow_ctx);
3216		kfree(entry);
3217		if (ret == COPY_COMPLETE) {
3218			ret = 0;
3219			break;
3220		} else if (ret) {
3221			break;
3222		}
3223	}
3224out:
3225	while (!list_empty(&nocow_ctx->inodes)) {
3226		struct scrub_nocow_inode *entry;
3227		entry = list_first_entry(&nocow_ctx->inodes,
3228					 struct scrub_nocow_inode,
3229					 list);
3230		list_del_init(&entry->list);
3231		kfree(entry);
3232	}
3233	if (trans && !IS_ERR(trans))
3234		btrfs_end_transaction(trans, root);
3235	if (not_written)
3236		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3237					    num_uncorrectable_read_errors);
3238
3239	btrfs_free_path(path);
3240	kfree(nocow_ctx);
3241
3242	scrub_pending_trans_workers_dec(sctx);
3243}
3244
3245static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3246				      struct scrub_copy_nocow_ctx *nocow_ctx)
3247{
3248	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3249	struct btrfs_key key;
3250	struct inode *inode;
3251	struct page *page;
3252	struct btrfs_root *local_root;
3253	struct btrfs_ordered_extent *ordered;
3254	struct extent_map *em;
3255	struct extent_state *cached_state = NULL;
3256	struct extent_io_tree *io_tree;
3257	u64 physical_for_dev_replace;
3258	u64 len = nocow_ctx->len;
3259	u64 lockstart = offset, lockend = offset + len - 1;
3260	unsigned long index;
3261	int srcu_index;
3262	int ret = 0;
3263	int err = 0;
3264
3265	key.objectid = root;
3266	key.type = BTRFS_ROOT_ITEM_KEY;
3267	key.offset = (u64)-1;
3268
3269	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3270
3271	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3272	if (IS_ERR(local_root)) {
3273		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3274		return PTR_ERR(local_root);
3275	}
3276
3277	key.type = BTRFS_INODE_ITEM_KEY;
3278	key.objectid = inum;
3279	key.offset = 0;
3280	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3281	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3282	if (IS_ERR(inode))
3283		return PTR_ERR(inode);
3284
3285	/* Avoid truncate/dio/punch hole.. */
3286	mutex_lock(&inode->i_mutex);
3287	inode_dio_wait(inode);
3288
3289	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3290	io_tree = &BTRFS_I(inode)->io_tree;
3291
3292	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3293	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3294	if (ordered) {
3295		btrfs_put_ordered_extent(ordered);
3296		goto out_unlock;
3297	}
3298
3299	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3300	if (IS_ERR(em)) {
3301		ret = PTR_ERR(em);
3302		goto out_unlock;
3303	}
3304
3305	/*
3306	 * This extent does not actually cover the logical extent anymore,
3307	 * move on to the next inode.
3308	 */
3309	if (em->block_start > nocow_ctx->logical ||
3310	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3311		free_extent_map(em);
3312		goto out_unlock;
3313	}
3314	free_extent_map(em);
3315
3316	while (len >= PAGE_CACHE_SIZE) {
3317		index = offset >> PAGE_CACHE_SHIFT;
3318again:
3319		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3320		if (!page) {
3321			btrfs_err(fs_info, "find_or_create_page() failed");
3322			ret = -ENOMEM;
3323			goto out;
3324		}
3325
3326		if (PageUptodate(page)) {
3327			if (PageDirty(page))
3328				goto next_page;
3329		} else {
3330			ClearPageError(page);
3331			err = extent_read_full_page_nolock(io_tree, page,
3332							   btrfs_get_extent,
3333							   nocow_ctx->mirror_num);
3334			if (err) {
3335				ret = err;
3336				goto next_page;
3337			}
3338
3339			lock_page(page);
3340			/*
3341			 * If the page has been remove from the page cache,
3342			 * the data on it is meaningless, because it may be
3343			 * old one, the new data may be written into the new
3344			 * page in the page cache.
3345			 */
3346			if (page->mapping != inode->i_mapping) {
3347				unlock_page(page);
3348				page_cache_release(page);
3349				goto again;
3350			}
3351			if (!PageUptodate(page)) {
3352				ret = -EIO;
3353				goto next_page;
3354			}
3355		}
3356		err = write_page_nocow(nocow_ctx->sctx,
3357				       physical_for_dev_replace, page);
3358		if (err)
3359			ret = err;
3360next_page:
3361		unlock_page(page);
3362		page_cache_release(page);
3363
3364		if (ret)
3365			break;
3366
3367		offset += PAGE_CACHE_SIZE;
3368		physical_for_dev_replace += PAGE_CACHE_SIZE;
3369		len -= PAGE_CACHE_SIZE;
3370	}
3371	ret = COPY_COMPLETE;
3372out_unlock:
3373	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3374			     GFP_NOFS);
3375out:
3376	mutex_unlock(&inode->i_mutex);
3377	iput(inode);
3378	return ret;
3379}
3380
3381static int write_page_nocow(struct scrub_ctx *sctx,
3382			    u64 physical_for_dev_replace, struct page *page)
3383{
3384	struct bio *bio;
3385	struct btrfs_device *dev;
3386	int ret;
3387
3388	dev = sctx->wr_ctx.tgtdev;
3389	if (!dev)
3390		return -EIO;
3391	if (!dev->bdev) {
3392		printk_ratelimited(KERN_WARNING
3393			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3394		return -EIO;
3395	}
3396	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3397	if (!bio) {
3398		spin_lock(&sctx->stat_lock);
3399		sctx->stat.malloc_errors++;
3400		spin_unlock(&sctx->stat_lock);
3401		return -ENOMEM;
3402	}
3403	bio->bi_size = 0;
3404	bio->bi_sector = physical_for_dev_replace >> 9;
3405	bio->bi_bdev = dev->bdev;
3406	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3407	if (ret != PAGE_CACHE_SIZE) {
3408leave_with_eio:
3409		bio_put(bio);
3410		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3411		return -EIO;
3412	}
3413
3414	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3415		goto leave_with_eio;
3416
3417	bio_put(bio);
3418	return 0;
3419}
3420